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Abstract. Proximity full-text search is commonly implemented in con-
temporary full-text search systems. Let us assume that the search query
is a list of words. It is natural to consider a document as relevant if
the queried words are near each other in the document. The proximity
factor is even more significant for the case where the query consists of
frequently occurring words. Proximity full-text search requires the stor-
age of information for every occurrence in documents of every word that
the user can search. For every occurrence of every word in a document,
we employ additional indexes to store information about nearby words,
that is, the words that occur in the document at distances from the given
word of less than or equal to the MaxDistance parameter. We showed
in previous works that these indexes can be used to improve the aver-
age query execution time by up to 130 times for queries that consist of
words occurring with high-frequency. In this paper, we consider how both
the search performance and the search quality depend on the value of
MaxDistance and other parameters. Well-known GOV2 text collection
is used in the experiments for reproducibility of the results. We propose
a new index schema after the analysis of the results of the experiments.

Keywords: Full-text search · Inverted indexes · Proximity search · Term
proximity · Query processing · DAAT.

1 Introduction

In full-text search, a query is a list of words. The result of the search is a list
of documents containing these words. Consider a query that consists of words
occurring with high-frequency. In [16], we improved the average query processing
time by a factor of 130 for these queries relative to traditional inverted indexes.
A methodology for high-performance proximity full-text searches that covers
different types of queries was discussed in [17].

The factor of proximity or nearness between the queried words in the indexed
document plays an important role in modern information retrieval [19, 12, 3].
We assume that a document should contain query words near each other to be
relevant for the user in the context of the search query. Taking this factor into
account is essential if the query consists of frequently occurring words.

Copyright © 2020 for this paper by its authors. Use permitted under Creative 
Commons License Attribution 4.0 International (CC BY 4.0).
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Some words occur in texts significantly more frequently than others. We can
illustrate this [17] by referring to Zipf’s law [20]. An example of a typical word
occurrence distribution is presented in Fig. 1. The horizontal axis represents
different words in decreasing order of their occurrence in texts. On the vertical
axis, we plot the number of occurrences of each word. This peculiarity of language
has a strong influence on the search performance.

The inverted index [21, 2] is a commonly used data structure for full-text
searches. The traditional inverted index contains records (ID, P ), where ID is
the identifier of the document and P is the position of the word in the document,
for example, an ordinal number of the word in the document. This record cor-
responds to an occurrence of a word in a document. These (ID, P ) records are
called “postings”. The inverted index enables us to obtain a list of postings that
corresponds to the given word. These lists of postings are used for the search.

For proximity full-text searches, we need to store the (ID, P ) record for every
occurrence of every word in the indexed document [15, 8, 9]. In other words, for
proximity searches, we require a word-level inverted index instead of a document-
level index [8]. Consequently, if a word occurs frequently in the texts, then its
list of postings is long [17]. The query search time is proportional to the number
of occurrences of the queried words in the indexed documents. To process a
search query that contains words occurring with high-frequency, a search system
requires much more time, as shown on the left side of Fig. 1, than a query that
contains only ordinary words, as shown on the right side of Fig. 1.

Fig. 1. Example of a word frequency distribution.

According to [13], we can consider a full-text query as a “simple inquiry”
[17]. In this case, we may require that the search results be provided within two
seconds, as stated in [13], to prevent the interruption of the thought continuity
of the user. To enhance the performance, the following approaches can be used.

Early-termination approaches can be employed for full-text searches [1, 11].
However, these methods are not effective in the case of proximity full-text
searches [16]. Usually, early-termination approaches are applied to document-
level indexes. It is difficult to combine the early-termination approach with the
incorporation of term-proximity data into relevance models.

Additional indexes can improve the search performance. In [14, 18], addi-
tional indexes were used to improve phrase searches. However, the approaches
reported in [14, 18] cannot be used for proximity full-text searches. Their area
of application is limited by phrase searches. We have overcome this limitation.
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With our additional indexes, an arbitrary query can be executed very fast
and quickly [17].

In an example given in [16], we indexed a subset of the Project Gutenberg
web site using Apache Lucene and Apache Tika and performed some searches. A
query that contained words occurring with high-frequency was evaluated within
21 sec. On the other hand, another query that contained ordinary words was
evaluated within 172 milliseconds. This difference is considerable. However, our
algorithms reported in [16, 17] can help address this issue.

The goals and questions of this paper are as follows:

1) We need to examine how search performance is improved with consideration
of different values of MaxDistance and other parameters.

2) We need to investigate search performance on the commonly used text col-
lection.

3) Does the search performance depend on the document size?

4) What are other factors that can affect the performance?

5) We evaluate the performance with respect to both short and long queries.

Key points of our research are the following. We use the word-level index.
We use the DAAT approach [6, 10]. We include in the indexes information about
all lemmas. Our indexes support incremental updates. We can store one posting
list in several data streams. We read entire posting lists when searching and no
early-termination are used.

2 Lemmatization and Lemma Type

For this paper, we use an English dictionary with approximately 92 thousand
English lemmas. This dictionary is used by a morphology analyzer. The analyzer
produces a list of numbers of lemmas, that is, basic or canonical forms, for every
word from the dictionary. Usually, a word has one lemma, but some words have
several lemmas. For example, the word “mine” has two lemmas, namely, “mine”
and “my”.

Consider an array of all lemmas. Let us sort all lemmas in decreasing order
of their occurrence frequency in the texts. We call the result of sorting the FL-
list [17]. The number of a lemma w in the FL-list is called its FL-number [17]
and is denoted by FL(w). Let us say that lemma “earth” > “day” because
FL(earth) = 309, FL(day) = 199, and 309 > 199. We use the FL-numbers to
define the order of the lemmas in the collection of all lemmas.

In our search methodology [16], we defined three types of lemmas, namely,
stop lemmas, frequently used lemmas and ordinary lemmas.

The first SWCount most frequently occurring lemmas are stop lemmas. Ex-
amples include “earth”, “yes”, “who”, “day”, “war”, “time”, “man” and “be”.

The second FUCount most frequently occurring lemmas are frequently used
lemmas. Examples include “red”, “beautiful”, and “mountain”.

All other lemmas are ordinary lemmas, e.g., “fiber” and “undersea”.
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SWCount and FUCount are the parameters. We use SWCount = 500 and
FUCount = 1050 in the experiments described here. Let MaxDistance be a
parameter that can take a value of 5, 7, 9 or even greater.

The value of SWCount is very near 421 from [7]. However, as we include
information about all lemmas in the indexes, we can use very different values of
the parameters. If an ordinary lemma, q, occurs in the text so rarely that FL(q)
is irrelevant, then we can say that FL(q) =∼. Here, “∼” denotes a large number.

3 Can Stop Words be Skipped?

Let us discuss the stop-word approach, in which some words occurring with high-
frequency or their lemmas are excluded from the search. We do not agree with
this approach. A word cannot be excluded from the search because even a word
occurring with high-frequency can have a specific meaning in the context of a
specific query [16, 18]. Therefore, excluding some words from the search can lead
to search quality degradation or unpredictable effects [18]. Additionally, stop
words are often employed in higher-order term proximity feature models [5].

Consider the query “who are you who” [17]. The Who are an English rock
band, and “Who are You” is one of their works. The word “Who” has a specific
meaning in the context of this query. Therefore, in our approach, we include
information about all of the words in the indexes. Moreover, we can easily see
that modern search systems, such as Google, do not skip stop words in a search.

4 The Types of Additional Indexes

The three-component key (f, s, t) index [17] is the list of the occurrences of the
lemma f for which lemmas s and t both occur in the text at distances that
are less than or equal to the MaxDistance from f . Each posting includes the
distance between f and s in the text and the distance between f and t in the
text. An (f, s, t) index is created only for the case in which f ≤ s ≤ t. Here, f ,
s, and t are all stop lemmas.

In [16], we considered queries consisting of high-frequency occurring words. In
addition, we showed that the average query execution time can be improved with
three-component key indexes by up to 15.6 times relative to the time necessary
using two-component key indexes only. Therefore, (f, s, t) indexes are required
if we need to search queries that contain high-frequently occurring words.

The two-component key (w, v) index [17] is the list of occurrences of the
lemma w for which lemma v occurs in the text at a distance that is less than or
equal to the MaxDistance from w. Each posting includes the distance between
w and v in the text. Here, w denotes a frequently used lemma, and v denotes a
frequently used or ordinary lemma.

Let us consider the traditional index with near stop word (NSW) records. For
each occurrence of each ordinary or frequently used lemma in each document, we
include a posting record (ID, P,NSW) in the index. ID can be the ordinal num-
ber of the specific document, and P is the position of the word in the document,
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e.g., the ordinal number of the word in the document. The NSW record contains
information about all high-frequency lemmas, that is, stop lemmas, occurring
near position P in the document (at a distance that is less than or equal to the
MaxDistance from P ). Examples of the indexes are given in [17].

The posting list of a key is stored in several data streams [17]. For the tradi-
tional index with NSW records, we can use up to three streams for one key: one
stream for (ID), one for (P ) and one for (NSW). On the other hand, for this
index, we can use two streams: the first is (ID, P ), and the second is (NSW).
The actual choice depends on the length of the posting list. For short lists, we
use two streams; for long lists, we use three streams. This architecture allows
us to skip NSW records when they are not required. For the (w, v) and (f, s, t)
indexes, we use one or two data streams for every key.

5 Experiment

5.1 Indexes, Collection and Environment

We create the following indexes:
Idx0: the traditional inverted index without any enhancements, such as NSW

records. The total size is 143 GB. This value includes the total size of indexed
texts in compressed form, which is 57.3 GB.

Idx5: our indexes, including the traditional inverted index with the NSW
records and the (w, v) and (f, s, t) indexes, where MaxDistance = 5. The total
size is 1.29 TB, the total size of the (w, v) index is 104 GB, the total size of the
(f, s, t) index is 727 GB, and the total size of the traditional index with NSW
records is 192 GB.

Idx7: our indexes, where MaxDistance = 7. The total size is 2.16 TB, the
total size of the (w, v) index is 148 GB, the total size of the (f, s, t) index is 1.422
TB, and the total size of the traditional index with NSW records is 239 GB.

Idx9: our indexes, where MaxDistance = 9. The total size is 3.27 TB, the
total size of the (w, v) index is 191 GB, the total size of the (f, s, t) index is 2.349
TB, and the total size of the traditional index with NSW records is 283 GB.

For the experiment, GOV2 [4] text collection and the following queries are
used: title queries from TREC Robust Task 2004 (with 250 queries in total),
title queries from TREC Terabyte Task from 2004 to 2006 (with 150 queries in
total), title queries from TREC Web Task from 2009 to 2014 (with 300 queries
in total), queries from TREC 2007 Million Query Track (10000 queries in total).

The total size of the query set after duplicate removal is 10 665 queries. GOV2
text collection contains 25 million documents. The total size of the collection is
approximately 426 GB, and after HTML tag removal, there is approximately
167 GB of plain text. The average document text size is approximately 7 KB.

We used the following computational resources: CPU: Intel(R) Core(TM) i7
CPU 920 @ 2.67 GHz. HDD: 7200 RPM. RAM: 24 GB. OS: Microsoft Windows
2008 R2 Enterprise.

The query set can be divided into the following subsets depending on lemmas
in a concrete query [17]. All queries are evaluated within one program thread.
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If we have a query with a length greater than MaxDistance, then we should
divide it into several parts. For example, when the value of MaxDistance is 5,
then the query “to be or not to be that is the question” should be rewritten
as “(to be or not to) (be that is the question)”, and these two parts should be
evaluated independently; then, the results should be combined.

5.2 Q1. Only Stop Lemmas

Every query in the subset contains only stop lemmas. There are 119 queries
in this subset. Examples include the following: to be or not to be that is the
question, kids earth day activities. With FL-numbers, we have the following
queries: [to: 9] [be: 7] [or: 38] [not: 64] [to: 9] [be: 7] [that: 40] [be: 7] [the: 1]
[question: 305] and [kid: 447] [earth: 309] [day: 199] [activity: 247].

For these queries, the (f, s, t) indexes are used [16].
Average query processing times:
Idx0: 51.4 s, Idx5: 0.82 s, Idx7: 0.86 s, Idx9: 1.05 s (see Fig. 2).
Average data read sizes per query:
Idx0: 1.3 GB, Idx5: 11.1 MB, Idx7: 15.6 MB, Idx9: 20.1 MB.
Average numbers of postings per query:
Idx0: 317.8 million, Idx5: 0.88 million, Idx7: 1.15 million, Idx9: 1.5 million.
We improved the query time by a factor of 62.7 with Idx5, by a factor of

59.4 with Idx7, and by a factor of 48.7 with Idx9 in comparison with Idx0.

Fig. 2. The average query execution times for Idx0, Idx5, Idx7, and Idx9 (seconds);
the query subsets Q1, Q2, Q3.

5.3 Q2. Stop and Frequently Used and/or Ordinary Lemmas

Every query in the subset contains one or several stop lemmas. The query also
contains some other lemmas that may be frequently used or ordinary. There are
7 244 queries in the subset. Examples include the following: History of Physicians
in America. With FL-numbers, we have the following query:

[history: 598] [of: 4] [physician: 1760] [in: 14] [America: 1391]
For these queries, we need to read one posting list with NSW records from

the traditional index for some query lemma. This lemma is designated as the
“main” lemma of the query. If there is a frequently used lemma in the query,
then we can use two-component key indexes, like (physician, history), for other
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lemmas. If the query consists of only stop and ordinary lemmas, then we use
posting lists from the traditional index for the remaining ordinary lemmas but
without reading the NSW records. The details are described in [17].

Average query times: Idx0: 50 s, Idx5: 1.9 s, Idx7: 2 s, Idx9: 2.14 s.
Average data read sizes per query:
Idx0: 1.3 GB, Idx5: 64.3 MB, Idx7: 68.7 MB, Idx9: 76 MB.
Average numbers of postings per query:
Idx0: 324.7 million, Idx5: 3.7 million, Idx7: 3.4 million, Idx9: 3.3 million.
The number of postings for Idx7 is less than that for Idx5 because fewer

queries were divided into parts. Additionally, the sizes of the NSW records are
different for Idx5, Idx7 and Idx9. We improved the query processing time by a
factor of 25.6 with Idx5, by a factor of 24.7 with Idx7, and by a factor of 23.3
with Idx9 in comparison with Idx0.

5.4 Q3. Only Frequently Used Lemmas

Every query in the subset contains only frequently used lemmas. There are 79
queries in this subset. Examples include the following: california mountain pass.

With FL-numbers, we have the following query:
[california: 518] [mountain: 704] [pass: 528]
Two-component (w, v) key indexes are used. For example, we can use the

(california, pass) and (*pass, mountain) two-component key indexes.
Average query times: Idx0: 2.5 s, Idx5: 0.32 s, Idx7: 0.33 s, Idx9: 0.34 s.
Average data read sizes per query:
Idx0: 53.3 MB, Idx5: 4.69 MB, Idx7: 4.79 MB, Idx9: 4.93 MB.
Average numbers of postings per query:
Idx0: 9.4 million, Idx5: 0.59 million, Idx7: 0.6 million, Idx9: 0.61 million.
We improved the query time by a factor of 7.83 with Idx5, by a factor of

7.58 with Idx7, and by a factor of 7.44 with Idx9 in comparison with Idx0.

5.5 Q4. Frequently Used Lemmas and Ordinary Lemmas

Every query in the subset contains frequently used lemmas and ordinary lemmas.
There are 1 388 queries in this subset.

Examples include the following: Scalable Vector Graphics.
With FL-numbers, we have the following query:
[scalable: ∼] [vector: 2953] [graphics: 921]
Each query contains a frequently used lemma; therefore, two-component key

indexes can be used. For example, we can use the (graphics, scalable) and (graph-
ics, vector) two-component key indexes.

Average query times: Idx0: 2.2 s, Idx5: 0.36 s, Idx7: 0.34 s, Idx9: 0.32 s.
Average data read sizes per query:
Idx0: 41.7 MB, Idx5: 1.5 MB, Idx7: 1.6 MB, Idx9: 1.8 MB.
Average numbers of postings per query:
Idx0: 8.1 million, Idx5: 0.17 million, Idx7: 0.17 million, Idx9: 0.17 million.
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We improved the query time by a factor of 6 with Idx5, by a factor of 6.4
with Idx7, and by a factor of 6.8 with Idx9 in comparison with Idx0.

5.6 Q5. Only Ordinary Lemmas

Every query in the subset contains only ordinary lemmas. There are 1 835 queries
in this subset. Examples include the following: Undersea Fiber Optic Cable.

With FL-numbers, we have the following query:
[undersea: 15873] [fiber: 3127] [optic: 2986] [cable: 2771]
We use the traditional index only for these queries. We do not need to read

the NSW records because they are stored in separated streams of data.
Average query times: Idx0: 0.789 s, Idx5: 0.819 s, Idx7: 0.8 s, Idx9: 0.81 s.
Average data read sizes per query:
Idx0: 14.2 MB, Idx5: 15.6 MB, Idx7: 15.7 MB, Idx9: 15.8 MB.
Average numbers of postings per query:
Idx0: 2.89 million, Idx5: 2.89 million, Idx7: 2.89 million, Idx9: 2.89 million.
The query processing time for these queries does not need any improvement.

5.7 Results for Entire Query Set

Average query times: Idx0: 34.9 s, Idx5: 1.51 s, Idx7: 1.57 s, Idx9: 1.66 s.
Average data read sizes per query:
Idx0: 0.93 GB, Idx5: 46.4 MB, Idx7: 49.5 MB, Idx9: 54.5 MB.
Average numbers of postings per query:
Idx0: 225.7 million, Idx5: 3.08 million, Idx7: 2.85 million, Idx9: 2.76 million.
We improved the query time by a factor of 23.1 with Idx5, by a factor of

22.4 with Idx7, and by a factor of 21 with Idx9 in comparison with Idx0.

5.8 Analysis of the Results

The average time that is needed for the search for Idx5, Idx7, and Idx9, is
approximately 1-2 sec. for every query type.

For Idx0, we need 2-2.5 sec. for the search if the query consists only of
ordinary or frequently used lemmas. For the queries that contain any stop lemma
(Q1, Q2), Idx0 requires approximately 50 sec. for the search on average.

This means that the search in Idx5, Idx7, and Idx9 is stable from the per-
formance point of view. However, for Idx0, the search system has a performance
problem if the query contains any high-frequency occurring lemma. The differ-
ence in performance between Idx0 and multi-component key indexes Idx5, Idx7
and Idx9 is larger in cases when more high-frequency occurring lemmas occur
in the queries.

In [16], we improved the average query execution time by up to 130 times for
queries that consist of words occurring with high-frequency. For TREC GOV2,
we improved the average query execution time by up to 62.7 times for these
queries (i.e., the query set Q1). Perhaps the difference in the “improvement
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factor” is dependent on the average document text size, which is approximately
7 KB for TREG GOV2 and 384 KB for the text collection that was used in [16].
The other factor is the length of the query. However, an improvement of 62.7
times in the average query execution time also seems good.

Let us analyze this in more detail. Let us consider the following example. We
have two documents, D0 and D1. Let us consider a word w. For w, we have the
following posting list in the traditional index: (0, 1), (0, 5), (0, 7), (1, 2), (1, 5).

We use two very common encoding schemes. The idea of the first scheme
as follows. We group the records that are related to a specific document. We
convert the original posting list as follows: (0, (1, 5, 7)), (1, (2, 5)). For other kinds
of indexes, we have the same.

Therefore, we store in the index the ID of the document and then the list of
word’s positions. The second scheme is a delta-encoding scheme. Consequently,
we have the following. (0, (1, 4, 2)), (1, (2, 3)). For example, consider (1, 5, 7). In-
stead of 5, we store 4 = 5 − 1, where 1 is the previous value in the list.

The first scheme is much more effective for text collections that consist of
large documents. This explains the difference in “improvement factor” in the
experiments with two aforementioned collections. However, with our method, we
can use any other encoding scheme and any other inverted index organization.

In addition, the “improvement factor” can depend on the structure of the
query set. To analyze this question, we performed additional experiment. We
formed another query set, using the method from [16]. Consequently, we se-
lected a document from the TREC GOV2 collection. We used the content of
the document to produce a set of 3500 queries. We performed our experiments
again, using this query set. The “improvement factor” was similar to the fore-
going results that we have for TREC GOV2.

The next question is, how can we select the values of our parameters? The
value of MaxDistance affects relevance and should be determined according
to the selected relevance function [17]. The results of experiments allows us to
predict how the change of the MaxDistance affects the search time and index
size. Let us discuss now, how the values of SWCount and FUCount affect these
metrics.

The value of SWCount is more important than the value of FUCount, be-
cause it affects Q1 and Q2 queries, which are most complex from the performance
point of view. Let us consider SWCount now. Let us consider Q2 query subset.
We use Zipf’s law [20] as a representation of our word occurrence distribution.
According to this, the second most frequently occurring lemma, occurs half as
often as the first. The third most frequently occurring lemma, occurs 1/3 as
often as the first, and so on. Let V be the number of occurrences of the most
frequently occurring lemma. Therefore, our lemmas have the following number
of occurrences: V, V/2, V/3, ...

Let us consider a query q = (q1, q2, ..., qn) from Q2. Here, qi is the number
of corresponding lemma in the FL-list. The query contains one or several stop
lemmas and some other lemmas that may be frequently used or ordinary. To
evaluate the query using traditional index, we need to read the following number
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of postings from the index:
n∑

i=1

V/qi. Let, without loss of generality, q1 and q2

be stop lemmas and qn is the main lemma of the query. With the use of NSW

records, we need to read the following number of postings.
n∑

i=3

V/qi + (V/qn) ×

(NSWFactor − 1). That means, we do not need to read the postings list for q1
and q2. However, for qn we need to read its posting list with NSW records.

The size of the posting (ID, P,NSW ) in bytes is up to NSWFactor = 4.5
times large than the size of (ID, P ). The experiments with MaxDistance = 5
show this. Therefore, we can calculate the ”planned performance gain” as follows:

PPG(q) =

(
n∑

i=1

1/qi

)
/

(
n∑

i=3

1/qi + (1/qn) × (NSWFactor − 1)

)
.

If we have a query set Q, then we can calculate the average planned per-
formance gain, APPG(Q) = 1

|Q|
∑
q∈Q

PPG(q). Let now use only Q2 queries

for estimations. If a query q is not a Q2 query, then let PPG(q) be 1. Let
APPG(Q,SWCount) be the average planned performance gain that is calcu-
lated for a specific value of SWCount.

For the query set that we use in this paper, i.e., 10 665 queries, we have the
following: APPG(Q, 100) = 43, APPG(Q, 500) = 105, APPG(Q, 1000) = 153.
However, this model do not take into account (w, v) and (f, s, t) indexes. In
future, we plan to develop more precise models. However, from this model, we
can predict that SWCount should not be increased.

The foregoing results need a more detailed examination. Let us consider a
search query. The query consists of some set of lemmas. Let Min-FL-number be
the minimum FL-number among all lemmas of the query. A lower FL-number
corresponds to a more frequently occurring lemma. If the Min-FL-number of
a query is a small number, then the query can induce performance problems
because the query contains some high-frequency occurring lemma.

Then, we divide the entire query set into subsets based on the Min-FL-
number of queries. We select 100 as the division step. In the first subset, we
include all queries with Min-FL-numbers from 0 to 99; in the second subset,
we include all queries with Min-FL-numbers from 100 to 199; and so on. In the
following diagrams, we consider the first 21 subsets.

Fig. 3. The average query execution times for Idx0 (seconds); the query set is divided
based on the Min-FL-number with a step of 100.

In Fig. 3, the average query execution time for Idx0 in seconds is displayed
for every subset. The first bar is significantly larger than the other bars, showing
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that the first subset induces some performance problems. The first 8 subsets
have an average query execution time of more than two seconds.

Fig. 4. The average query execution times for Idx5 (seconds); the query set is divided
based on the Min-FL-number with a step of 100.

In Fig. 4, the average query execution time for Idx5 in seconds is displayed
for every subset. For the first subset, the average query execution time is about
two seconds. For each following subset, the average query execution time is less
than two seconds.

Fig. 5. The improvement factor for Idx5 in comparison with Idx0 (times); the query
set is divided based on the Min-FL-number with a step of 100.

In Fig. 5, we show the improvement factor for Idx5 in comparison with Idx0.
The first bar value is 33, which means that the average query execution time for
the first subset is improved by a factor of 33. We also see how the performance
is changed when the Min-FL-number of a query crosses the SWCount of 500.

By this diagram, we can propose that the value of SWCount can be lowered
to 100. Consequently, we created another index Idx5/SW100, with SWCount =
100 and FUCount = 1450.

Fig. 6. The average query execution times for Idx5/SW100 (seconds); the query set
is divided based on the Min-FL-number with a step of 100.

In Fig. 6, the average query execution time for Idx5/SW100 in seconds is
displayed for every subset. For each subset, the average query execution time is
less than two seconds. The results look more promising than those for Idx5.
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However, let us consider Q1 queries when the value of SWCount is 500, which
are the queries that consist only of lemmas with FL-number < 500. There are 119
queries in this subset, as discussed above. It was established that for this subset,
the average query search time with Idx5 is 0.8 sec. but with Idx5/SW100, it is
6.7 sec., which is significantly larger. When this subset is evaluated with Idx5,
three-component key indexes are used.

Fig. 7. The average query execution times for Idx0, Idx5, and Idx5/SW100 (seconds);
the query set Q1 is divided based on the Min-FL-number with a step of 100.

Let us divide query set Q1 into five subsets based on the Min-FL-number
value of the concrete query. In Fig. 7, the average query execution time for Idx0,
Idx5 and Idx5/SW100 in seconds is displayed for every subset. We see that the
search in Idx5/SW100 works significantly more slowly than that in Idx5.

Therefore, we come to the following conclusions for different kinds of queries.
Consequently, we propose the new index schema.

T1 A query consists of extreme high-frequency occurring lemmas and high-
frequency occurring lemmas. This means that all lemmas of the query are
extreme high-frequency occurring or high-frequently occurring. E.g., for ev-
ery lemma of the query, FL-number < 500.

The (f, s, t) indexes work better for these queries than do other types of
indexes, as shown by Fig. 7. The search in Idx5/SW100 is significantly slower
than that in Idx5. When the search is performed using Idx5, the (f, s, t)
indexes are used for every query in T1. When the search is performed using
Idx5/SW100, the (f, s, t) indexes are used only if FL(f) < 100, FL(s) <
100, and FL(t) < 100.

T2 A query contains a low-frequency occurring lemma (ordinary or frequently
used). Additionally, the query may contain high-frequency occurring lemmas,
but for every query lemma, FL-number ≥ 100.

The (w, v) indexes allow one to achieve a better performance improvement,
as shown in Fig. 6. For subsets starting from FL-number = 100, no (f, s, t)
indexes or NSW records are used when we do the search using Idx5/SW100.
Here, Idx5/SW100 is better than Idx5.

T3 A query contains a low-frequency occurring lemma (ordinary or frequently
used) and some extreme high-frequency occurring lemmas with FL-number
< 100.

The (w, v) indexes and NSW records are required. The first bar in Figures
3, 4 and 6 supports this, and our previous experiments in [16] confirm it.
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5.9 The New Index Schema

The original schema can be represented by the following rules:

1) (f, s, t) indexes, where FL(f), FL(s), FL(t) < SWCount.

2) (w, v) indexes, where
SWCount ≤ FL(w) < SWCount + FUCount, and SWCount ≤ FL(v).

3) Traditional indexes (x) with NSW records, SWCount ≤ FL(x); the NSW
records contain information about all lemmas y with the condition FL(y) <
SWCount that occur near lemma x in the text.

For the new schema, we use the following parameters with example values.
EHFCount = 100 – for extreme high-frequency occurring lemmas.
HFCount = 400 – for high-frequency occurring lemmas.
FUCount = 1050 – for frequently used lemmas.
We propose using the following indexes.

1) (f, s, t) indexes that can be used for T1 queries, where
FL(f), FL(s), FL(t) < EHFCount + HFCount = 500,

2) (w, v) indexes that can be used for T2 and T3 queries, where
100 = EHFCount ≤ FL(w) < EHFCount + HFCount + FUCount = 1450,

100 = EHFCount ≤ FL(v).

3) Traditional indexes (x) with NSW records, 100 = EHFCount ≤ FL(x);
the NSW records contain information about all lemmas y with the condition
FL(y) < EHFCount = 100 that occur near lemma x in the text. These
indexes can be used for T3 queries.

The concrete values of the parameters are provided only for example and can
be different for different languages and text collections.

6 Conclusions and Future Work

In this paper, we investigated how multi-component key indexes help to improve
search performance. We used well-known GOV2 text collection. We proposed
a method of analyzing the search performance by considering different types
of queries. By following this method, we found that the performance can be
improved further and proposed a new index schema.

We analyzed how the value of MaxDistance affects the search performance.
With an increase in the value of MaxDistance from 5 to 9, the average search
time using multi-component key indexes was increased from 1.51 sec. to 1.66
sec. Therefore, the value of MaxDistance can be increased even further, and
the main limitations here are the disk space and the time of indexing. Our
multi-component indexes are relatively large for large values of MaxDistance.
However, large hard disk drives are now available. In many cases, it would be
preferable to spend several TB of disk space but to increase the search speed by
a factor of 20 times or more.

348



We found that multi-component key indexes work significantly better on text
collections with large documents (e.g., documents with sizes of approximately
several hundred KB or more) than on text collection that consists of small doc-
uments; thus, an improvement factor of 20 can be considered as a minimum
improvement factor. In the future, it is important to consider how different com-
pression technologies can reduce the index total size, which will increase the
search speed even more.

The proposed indexes with multi-component keys have one limitation. If we
have a document that contains queried words and the distance between these
words is greater than MaxDistance, then this document can be absent in the
search results. This is usually not a problem if the average document size in
the text collection is relatively large, e.g., several hundreds of kilobytes. In this
case, after the proximity search with multi-component key indexes, we can run
a search without distance. When the former requires the word-level index, the
latter needs only the document-level index and works significantly faster.

Second, in the majority of modern relevance models, it is defined that the
weight of the document is inversely proportional to the square of the distance
between queried words in the document [19]. With a relatively large value of
MaxDistance, we can be sure that all relevant documents will occur in the search
results. When the first consideration for GOV2 collection is under question,
because the documents are small, the second is still valid.
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