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Abstract

In the last two decades, Craig interpolation has emerged as a powerful tool in formal verification.

Interpolants are largely exploited as an efficient method to approximate the reachable states and for

invariant synthesis. In this survey, we report recent results on “stronger interpolants”, called uniform
interpolants, and we discuss how they can be used to develop effective techniques for computing the

reachable states in an exact way. Uniform interpolants can be efficiently computed when verifying

data-aware processes, where the control flow of a (business) process can interact with a data storage.

This is significant since integrating data and processes is a long-standing problem in business process

management.
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1. Overview

In this survey, we report recent results on the use of uniform interpolants (UIs) in automated

reasoning [1, 2] and in the context of formal verification of the so-called data-aware (business)
processes [3, 4, 5]. These results originate from the confluence of two well-established research

fields: model-theoretic algebra [6] in mathematical logic, where UIs were originally investigated

for non-classical logics, and Satisfiability Modulo Theories (SMT) [7], where UIs provide a

‘light form’ of quantifier elimination. We discuss how such apparently quite distant scientific

paradigms can cooperate in verification of infinite-state systems such as data-aware processes

[8, 4, 9, 10], where the control flow of a (business) process can interact with a data storage.

Verification of Data-Aware Business Processes. In recent years, a growing number of AI

application domains asks for process modeling languages paired with automated verification

techniques that do not just consider the control flow dimension of a process, but also take

into consideration the data dimension [11, 12, 13]. From a theoretical perspective, this has led

to the development of formal frameworks for attacking the problem of verifying data-aware

processes (DAPs) [14, 15, 16, 17, 18]. What all these frameworks have in common is that they

strive to focus on general DAP models that formalize abstract dynamic systems (i.e., the process
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component) interacting with data persistent storage (i.e., the data component). DAP verification

should reflect the possibility of expressing properties that simultaneously account for the data

and the process perspectives, and most importantly for their interaction. Because of data, DAP

models are intrinsically infinite-state: a database is finite but its size is unbounded and unknown a

priori (since new tuples can always be added to relations using elements from infinite domains).

From a more applied perspective, a huge body of research has been dedicated to the prob-

lem of reconciling data and business process management (BPM [19]) within contemporary

organizations [20, 21, 22]. More specifically, in the BPM context it has become more and more

important to study multi-perspective models that do not just conceptually account for the

control-flow dimension of business processes, but also consider the interplay with data [23, 14]:

in contrast with abstract DAPs, these models are more focused on concrete processes as they

are interpreted by stakeholders and BPM practitioners. One important challenge that naturally

arises is how to formally verify such business processes enriched with data [24, 23]: since they

are complex infinite-state systems, this requires to develop sophisticated symbolic techniques.

The Problem of Quantifiers. Verification of infinite-state systems, and in particular of DAPs,

when studied in declarative terms, requires to symbolically represent transitions and reachable
states: contrary to finite-state model checking [25], an explicit and exhaustive exploration of

the state space is not possible, because of the presence of infinitely many states.

Several techniques based on SMT have been studied to attack the general problem: for instance,

there are prominent methods that are based on forward reachability, such as K-induction [26],

or on backward reachability [27]. Methods based on backward reachability symbolically explore

the state space starting from ‘unsafe’ states via an iterative computation of predecessors (i.e., the

(pre-)image), until a fixpoint is reached or the initial state(s) are intersected. There exist various

SMT-based model checkers implementing these methods (e.g., Kind 2 [28] or mcmt [29]).

In many first-order (FO) declarative formalisms (e.g., [27]), sets of states are represented using

quantifier-free logical formulae, called state formulae: the content of variables in a state formula

characterizes the global state of the system and may change during its evolution. The verification

procedure symbolically computes reachable sets of states, which should be represented again as

state formulae: indeed, images are intended to describe sets of states, and, as such, they should

be quantifier-free. Reachable sets of states need to be manipulated, because in general are not
described by state formulae: this is because, when computing images, FO (mostly, existential)
quantifiers may be introduced by the transitions, which are usually quantified formulae. For

instance, this is the case of DAP models, whose transitions contain as guards existential queries

over a relational database [8, 4]. These quantifiers appear in image computation, breaking the

quantifier-free format of state formulae. Hence, a sort of quantifier elimination (QE) is needed

to represent reachable states as state formulae. QE is also essential for efficiency reasons: e.g.,

using approaches à la Bounded Model Checking [30], where paths with incremental length are

encoded, QE guarantees that the size of formulae does not increase, avoiding their blow-up.

Dealing with quantifiers is a genuine problem when using frameworks based on SMT. For

instance, declarative versions of backward reachability [31, 27] require discharging to SMT

solvers proof obligations in the form of satisfiability tests for quantified formulae with a restricted

shape. Although SMT solvers natively reason about the quantifier-free fragments, FO quantifiers



can be in some cases handled by instantiation [27], whereas in others [32], where quantifiers

range over specific real values involving light forms of arithmetic, proper QE can be used [33].

To summmarize, the precise computation of the set of reachable states can be in principle

performed via proper quantifier elimination. However, quantifier elimination is not always

possible in generic FO theories, and, when available, is in many cases computationally intractable:

for instance, this is the case of arithmetical theories. In order to cope with this problem,

other methods for symbol elimination (e.g., predicate abstraction [34, 35] or ordinary (Craig)
interpolation [36, 37, 38]) have been investigated, which do not compute precise images, but

perform an approximation of the reachable states: this implies that images can contain ‘spurious

elements’, i.e., states that are not properly reachable in one step. Nevertheless, these methods are

quite successful and computationally efficient. The main limitation is that they usually require

refinement techniques to handle the spurious traces possibly produced by the approximation.

2. Model Completions and Uniform Interpolation

We now remark how in significant cases (e.g., data-aware business processes), approximating

methods can be abandoned in favor of exact methods that have the merits of both computing

precise images and remaining computationally tractable (i.e., in polytime). These methods are

based on the use of uniform interpolants, a strong form of interpolants having strict relationships

with quantifier elimination performed in richer theories called model completions. We clarify

why model completions come to the picture and how they are related to uniform interpolation.

Model-Theoretic Algebra and Model Completions An FO theory 𝑇 has quantifier elimi-
nation iff for every formula 𝜑 in the signature Σ of 𝑇 there is a quantifier-free formula 𝜑′ s.t. 𝜑
is 𝑇 -equivalent to 𝜑′. Eliminating quantifiers from a generic FO formula can be equivalently

formulated as the problem of eliminating existential quantifiers from constraints. Elimination

of existentials has an interesting interpretation: it can be seen as the logical counterpart of

finding witnesses, i.e., solutions, to suitable systems of logical “equations and/or disequalities”.

Model-theoretic algebra, since the pioneering work by Robinson [39, 6], provides a powerful

setting where to formulate this problem in algebraic terms and solve it using model theory.

The central notion is that of existentially closed model. A quantifier-free formula with param-

eters in a model 𝑀 is solvable if there is an extension 𝑀 ′
of 𝑀 where the formula is satisfied. A

model 𝑀 is existentially closed if any solvable formula already has a solution in 𝑀 itself. This

is not FO definable in general. However, in significant cases, the class of existentially closed

models of 𝑇 are exactly the models of another FO theory 𝑇 *
, called model completion [40] of

𝑇 . Formally, a universal theory 𝑇 has a model completion iff there is a stronger theory 𝑇 * ⊇ 𝑇
(still within the same signature Σ of 𝑇 ) s. t.: (i) every Σ-constraint satisfiable in a model of 𝑇 is

satisfiable in a model of 𝑇 *
; (ii) 𝑇 * eliminates quantifiers. The theory 𝑇 *

, if it exists, is unique.

In model completions, QE holds, even in case it does not in 𝑇 . The model completion of a theory

identifies the class of the models where all satisfiable existential statements can be satisfied.

In declarative approaches to verification of infinite-state systems, the runs of a system that are

‘analyzed’ by image computation are identified with certain definable paths in the models of a

suitable theory 𝑇 : e.g., in the case of DAP models, the theory 𝑇 formalizes the relational database



that is queried and modified by the process [3]. As noticed, when performing these computations,

FO quantifiers are introduced and need to be eliminated, even in case of theories 𝑇 not admitting

QE. Nevertheless, in significant cases where QE is not available, model completions still exist.

This is the case of useful theories such as the ones used for DAP verification [3, 4].

Model completions become the crucial tool to exploit: one of the main results from [3] is that

one can restrict the analysis to paths within existentially closed models, thus taking profit from

the properties of the model completion 𝑇 *
, first of all QE. For instance, in [3] it is shown that,

in the case of safety verification, performing backward reachability for systems whose models

live in 𝑇 is equivalent to performing backward reachability for systems whose models live in

𝑇 *
: favorably, in 𝑇 *

quantifiers can be eliminated, even when QE is not available in 𝑇 .

UIs and QE in Model Completions. We give a general definition of UIs and we discuss

their strict relationship with model completions. Let 𝑇 be a logic or a theory and let 𝐿 be a

suitable fragment (propositional, FO quantifier-free, etc.) of its language. Given an 𝐿-formula

𝜑(𝑥, 𝑦) (𝑥, 𝑦 are the variables occurring in 𝜑), a (𝐿-)uniform interpolant (UI) of 𝜑 (w.r.t. 𝑦) is an

𝐿-formula 𝜑′(𝑥) where only the 𝑥 occur, satisfying these two properties: (i) 𝜑(𝑥, 𝑦) ⊢𝑇 𝜑
′(𝑥);

(ii) for any further 𝐿-formula 𝜓(𝑥, 𝑧) such that 𝜑(𝑥, 𝑦) ⊢𝑇 𝜓(𝑥, 𝑧), we have 𝜑′(𝑥) ⊢𝑇 𝜓(𝑥, 𝑧).
For every pair of 𝐿-formulae 𝜑(𝑥, 𝑦) and 𝜓(𝑥, 𝑧) s.t. 𝜑 ⊢𝑇 𝜓, a UI of 𝜑 is in particular an

ordinary (Craig) interpolant for the pair (𝜑, 𝜓) [41]. Hence, whenever UIs exist, one can compute

an ordinary interpolant for 𝜑 ⊢𝑇 𝜓 in a way that is independent of 𝜓, i.e., uniformly.

UIs were originally investigated in non-classical logics, since the work by Pitts [42]. They are

stronger than ordinary interpolants: even in case Craig interpolants exist, UIs may not exist.

Since the nineties, they have been extensively studied in a large literature (e.g., [43, 44, 45]).

Recently, the automated reasoning community has developed an increasing interest in UIs,

where 𝐿 is the quantifier-free fragment of an FO theory 𝑇 : from now on, we restrict our

attention to this case. This is witnessed by various talks by Kapur (FLoC 2010, ISCAS 2013-14,

SCS 2017 [46]), as well as by Gulwani and Musuvathi in [47], where UIs are called covers.
The use of UIs in model checking to compute exact images of states was first shown in that

work, and then further motivated by DAP verification [8, 1]. The first formal proof about the

existence of UIs in ℰ𝒰ℱ (Equality and Uninterpreted Functions) was published in [48, 1], where

was also proved that computing UIs in 𝑇 is equivalent to eliminating quantifiers in its model

completion 𝑇 *
. Hence, instead of investigating paths in 𝑇 *

and eliminating quantifiers in model

completions, reachability can be performed in 𝑇 itself by computing UIs there. In [48], a UI

algorithm for ℰ𝒰ℱ relying on the constrained Superposition Calculus was proposed: in the case

that is used to verify DAP models, a quadratic bound in time for UI computation can be given [1].

Two simpler UI algorithms are in [49].

DAP verification also suggests the study of UI transfer to combined theories: it is natural

to consider the combination of theories accounting for different datatypes contained in the

persistent storage [2, 8]. The UI transfer problem is: if UIs exist in theories 𝑇1 and 𝑇2, under which
conditions do they exist also in the combined theory 𝑇1 ∪ 𝑇2? In [50, 2] combined UIs are shown

to exist in the disjoint-signatures convex case under the same hypothesis, i.e., the equality
interpolating condition [51], guaranteeing the transfer of quantifier-free ordinary interpolation;

in [50, 2], a combined UI algorithm, based on the use of Beth definability, is also provided.
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