
From image to UML: First results of image-based UML
diagram generation using LLMs
Aaron Conrardy1,∗, Jordi Cabot1,2

1Luxembourg Institute of Science and Technology, Luxembourg
2University of Luxembourg, Luxembourg

Abstract
In software engineering processes, systems are first specified using a modeling language such as UML.
These initial designs are often collaboratively created, many times in meetings where different domain
experts use whiteboards, paper or other types of quick supports to create drawings and blueprints that
then will need to be formalized. These proper, machine-readable, models are key to ensure models can be
part of automated processes (e.g. input of a low-code generation pipeline, a model-based testing system,
...). But going from hand-drawn diagrams to actual models is a time-consuming process that sometimes
ends up with such drawings just added as informal images to the software documentation, reducing
their value a lot. To avoid this tedious task, we explore the usage of Large Language Models (LLM) to
generate the formal representation of (UML) models from a given drawing. More specifically, we have
evaluated the capabilities of different LLMs to convert images of (hand-drawn) UML class diagrams into
the actual models represented in the images. While the results are good enough to use such an approach
as part of a model-driven engineering pipeline we also highlight some of their current limitations and
the need to keep the human in the loop to overcome those limitations.

Keywords
Large Language Model, UML Diagram, Software Models, Low-code

1. Introduction

The continuous progress and rise of Large Language Models (LLM) has led to their integration
into various tasks in various domains, such as medical advice consultation in healthcare, writing
or reading assistance in education, legal interpretation and reasoning in Law or financial
reasoning [1]. Computer science is not an exception, with various LLMs being used in software
development as programming assistants [2], but also in software modeling as a model creation
tool from natural language [3, 4], showing promising results on both fronts. Beyond textual
input, some LLMs additionally provide support for image input, also described as visual LLMs.
Generally, OpenAI’s GPT-4V1 and Google’s Gemini (Pro/Ultra)2 are seen as the best publicly
available multimodal LLM. Unfortunately, these are either hidden behind a paywall or only
accessible through specific platforms’ interfaces. CogVLM [5] acts as an open-source alternative,
providing not only its source code but also a free chat interface to interact with the model.

First Large Language Models for Model-Driven Engineering Workshop (LLM4MDE 2024), Enschede, Netherlands
∗Corresponding author.
Envelope-Open aaron.conrardy@list.lu (A. Conrardy); jordi.cabot@list.lu (J. Cabot)
Orcid 0000-0002-3030-4529 (A. Conrardy); 0000-0003-2418-2489 (J. Cabot)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1https://openai.com/research/gpt-4v-system-card
2https://deepmind.google/technologies/gemini

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:aaron.conrardy@list.lu
mailto:jordi.cabot@list.lu
https://orcid.org/0000-0002-3030-4529
https://orcid.org/0000-0003-2418-2489
https://creativecommons.org/licenses/by/4.0
https://openai.com/research/gpt-4v-system-card
https://deepmind.google/technologies/gemini


These multi-modal LLMs further broadened the range of possible applications, such as tools
like Design2Code [6] or Make-real3 that allow for the generation of HTML, CSS and JS code
from either screenshots of web pages or mock-ups. In the domain of software modeling, we
believe that these image reading capabilities could also be leveraged to facilitate and accelerate
the modeling process itself.

Indeed, one of the biggest hurdles of modeling tools is the usability of such tools [7]. Take the
example of UML class diagrams that are used to represent the structure of software. These are
usually collaboratively sketched on a whiteboard in an attempt to crystallize the initial design
idea of an application. Yet, once drawn, there still is the need to transform the drawing into
a more polished form, for example for documentation purposes. Additionally, one might also
want a computer readable format to use the UML class diagram for code generation. The same
goes for migrating legacy projects where, most likely, no specification is available but rather
only a few drawings as part of the system documentation.

In a low-code context, which focuses on reducing the amount of hand-coding required to
create applications, these models can be further processed to (semi)automatically generate
software. Following these footsteps, the term ”low-modeling” [8] was also created to describe
techniques and tools that accelerate the modeling process, effectively speeding up the low-code
pipeline. We believe that a tool capable of converting given images to UML diagrams could
speed up this tedious process and quickly provide initial models that could be extended or
further used, effectively enabling the low-modeling of software.

In this paper, we explore the capabilities of LLMs with image processing capabilities to act as
image to UML converters, contributing towards the hybridization between Software Engineering
and LLMs [9]. We conducted experiments on various images of drawn UML diagrams using
visual LLMs and evaluate the correctness and completeness of the generated results. Our
findings reveal that GPT4-V provided the best results in terms of correctness and completeness,
and indeed that the usage of LLMs to convert images to UML provides positive results, although
with the need of keeping the human in the loop and dependent on the used LLM.

The rest of the paper is structured as follows: in Section 2, we go over related work and the
used approaches. Section 3 lists the research questions. Section 4 describes the experiment,
the results and interprets them. Section 5 consists of a discussion concerning the results and
further findings. Section 6 describes a tool with an image to UML feature. Section 7 concludes
the paper and describes the planned future work.

2. State of the art

Existing research works have already tackled the concept of generating UML diagrams in a
computer readable format from given images of diagrams. Most notably, [10] proposes the
Img2UML tool that aimed at generating XMI files from images of UML class diagrams. The tool
was specifically tailored to recognize UML class diagrams created with computer-aided software
engineering (CASE) tools and makes use of optical character recognition (OCR) techniques
for analysing the provided images. It is unclear whether the tool also works for drawn UML
class diagrams and we could not access the tool to conduct our own tests. Another more recent

3https://github.com/tldraw/make-real

https://github.com/tldraw/make-real


attempt at recognizing images of UML class diagrams is ReSECDI [11]. Yet, ReSECDI only
focuses on recognizing semantic elements, such as classes or relationships, from given images
and generates an output text file they describe as semantic design model. The output contains
the recognized semantic information, but does not follow a standard notation for UML class
specification. Again, it is unclear whether ReSECDI could work with hand-drawn diagrams.

Other works abstract the task further by either only providing a set of information from
given diagrams [12], such as the location and text inside classes, or only attempt to classify
the type of UML diagram and not the content itself using deep learning techniques [13]. Not a
lot of research focuses on the ability to extract information from images of hand-drawn UML
diagrams and existing attempts are outdated and do not hold up to the constant technological
progress or focus on drawings made with a specific tool and not on actual paper [14, 15].

As previously mentioned, attempts at generating UML models using LLMs have already been
made [3, 4] using the PlantUML notation as output, yet, these two attempts only tackle textual
input. To the best of our knowledge, we are the first to leverage LLMs’ image recognition
capabilities to generate UML models.

3. Research questions

Our main goal is to evaluate vision LLMs’ capabilities to process and transform images of UML
diagrams into a computer readable format while also exploring possible variables that affect the
transformation. We focus on hand-drawn UML diagrams as we assume that the transformation
of images of hand-drawn UML diagrams into a computer readable format is more difficult than
the same task for images of UML diagrams that were created with CASE tools, as drawings
generally contain more inconsistencies in terms of handwriting, lines, etc. This assumption
implies that any results obtained with images of hand-drawn UML diagrams can be used as
an approximate result for images of UML diagrams created with CASE tools. Moreover, we
will primarily focus on UML class diagrams, as these seem to be the most popular type of
UML diagram [16]. We partially inspire ourselves from the experiment conducted in [4] and
formulate the following Research Questions (RQ):

• RQ1: Are LLMs capable of providing a complete (classes, relationships, textual content,...)
re-creation of a given image containing the depiction of a UML class diagram?

• RQ2: Do LLMs respect the syntax of the chosen notation for the output?
• RQ3: Does complexity of the given diagram affect the results?
• RQ4: Does semantic correctness of the given diagram affect the results?
• RQ5: Does descriptiveness of the prompt affect the results?

4. Experiment

4.1. Setup

To answer the RQs, we iterate through different examples of UML class diagrams and evaluate
the produced results. For that purpose, we defined 4 diagrams, where the first 3 are denoted
by a steady increase in difficulty due to the addition of elements and concepts, and the final



diagram represents a UML class diagram with a correct syntax but that represents a model that,
semantically, is not representing a realistic domain. These hand-drawn images, all created by
the same person, are fed into an LLM with a corresponding prompt requesting a generation of
the understood model using a concrete notation as output. We opted for the aforementioned
LLMs GTP-4V, Gemini (Pro and Ultra) and CogVLM with its default configuration (top_p=0.40,
temperature=0.80, top_k=1). As concrete notation, we opted for the PlantUML4 notation, as
it is a text-based diagramming tool that enables the creation of UML diagrams such as class
diagrams using a simple and intuitive syntax, ingestable by generators to produce applications.

The used diagrams can be seen in Figure 1 accompanied by the expected solution and the
best obtained solution from the experiments. We also crafted several prompts, each offering
increasing levels of detail to describe the task. In increasing order, the used prompts are:

• ”Can you turn this hand-drawn UML class diagram into the corresponding class diagram in
PlantUML notation?”

• ”Given the hand-drawn UML class diagram provided, can you accurately convert it into
PlantUML notation, ensuring fidelity to the original structure and relationships between
classes? Please pay close attention to attributes, methods, and their respective visibilities.”

• ”Given the hand-drawn UML class diagram provided, can you faithfully translate it into
PlantUML notation, preserving all class relationships, including associations, aggregations,
and generalizations? Ensure that attributes, methods, and their respective access modifiers
are accurately represented. Additionally, please accurately replicate the existing cardinalities
and multiplicities without altering them. Please provide a clear and coherent conversion,
maintaining the integrity of the original diagram.”

Preliminary tests showed that while LLMs provide nondeterministic results when generating
the PlantUML class diagrams, the degree of variance between each attempt for a given example
and LLM was not large. Therefore, we decided that per prompt and per LLM, evaluating three
runs should be enough to give an adequate performance overview. Each attempt has been done
in an empty conversation to avoid any kind of influence from previous messages.

Regarding grading scheme, as the goal is to faithfully re-create the given examples, based on
the given class diagram, we will simply stick to counting the number of missing elements in the
output as mistakes. Additionally, any hallucinated element is also counted as a mistake.

4.2. Results

Table 1 contains the results of the experiment. Each row showcases, for a given image and
LLM, the number of mistakes in the three attempts for each prompt. We use the word ”Error”
to denote the attempts that generated PlantUML compilation errors. Empty cells describe
occurrences where the LLM refused to generate PlantUML code.

The results show that GPT-4V performs the best. For all LLMs, We also observe a steady
increase in mistakes between class diagrams level 1 and level 3, showcasing indeed a correlation
between complexity of input and number of mistakes during generation.

Furthermore, Table 2 summarizes the number of times wrong PlantUML syntax was generated
and the times the LLM refused to generate PlantUML code. CogVLM produced the highest
4https://plantuml.com/

https://plantuml.com/


Figure 1: Used UML class diagram examples and best output

number of outputs with syntax errors, closely followed by Gemini Pro and Ultra. On the other
hand, GPT-4V produced not a single syntax error after 36 generations. Regarding the nature of
the syntax errors, the Gemini models often had trouble with the notation to define inter-class
relationships. An example would be for inheritance, instead of the correct syntax ”class Fish
extends Animal{...}” Gemini Pro would generate ”class Fish <|– Animal{...}”. As for CogVLM,
simple class definitions such as ”class Duck{}” would already cause problems as it would attempt
to define classes as ”Duck{}”.

Additionally, only Gemini models refused to generate solutions for some of the images.



Table 1
Experiment Results: Mistake count for each attempt per model per prompt and level

UML Image LLM Model Prompt
Mistakes

Attempt 1 Attempt 2 Attempt 3

Level 1

1 2 2 2
2 1 1 2GPT-4V
3 1 2 1

Gemini Pro
1 2 2 Error
2 Error Error Error
3 Error Error 2

Gemini Ultra
1 Error 9 Error
2 Error 2 Error
3 Error / Error

CogVLM
1 14 Error 10
2 Error Error 33
3 Error 5 13

Level 2

1 2 2 2
2 1 3 2GPT-4V
3 2 2 2

Gemini Pro
1 Error 4 Error
2 2 Error 5
3 4 Error Error

Gemini Ultra
1 Error Error Error
2 4 4 10
3 4 4 Error

CogVLM
1 20 Error 9
2 15 Error 25
3 Error Error Error

Level 3

1 10 7 10
2 14 10 18GPT-4V
3 14 8 11

Gemini Pro
1 16 17 17
2 Error 25 21
3 Error 24 26

Gemini Ultra
1 18 Error Error
2 Error 24 Error
3 Error Error 23

CogVLM
1 23 Error Error
2 26 26 Error
3 27 Error Error

Level 4

1 4 3 4
2 5 5 5GPT-4V
3 6 5 6

Gemini Pro
1 / / /
2 Error Error /
3 13 22 Error

Gemini Ultra
1 / / /
2 / / /
3 / / /

CogVLM
1 22 20 Error
2 Error Error 24
3 Error Error Error

Especially level 4 resulted in the most outputs without generation. Notably, Gemini models
deemed the given syntactically correct but semantically questionable input as not being real
UML models and therefore refusing to process them. An example of such a response would be
”Unfortunately, I cannot translate the hand-drawn UML class diagram into PlantUML notation
based on the image you provided. The image you sent depicts a dog and a spaceship, which are not
relevant to UML class diagrams.”. The nonsensical diagram also seems to have caused a high



Table 2
Experiment Results: Number of attempts resulting in wrong PlantUML syntax or missing generation by
LLM Model (N=36)

LLM Model Number outputs with wrong
syntax (Percentage)

Number outputs without
PlantUML code (Percentage)

GPT-4V 0 (0.0 %) 0 (0.0 %)
Gemini Pro 16 (44.4 %) 4 (11.1 %)
Gemini Ultra 16 (44.4 %) 8 (22.2 %)
CogVLM 20 (55.6 %) 0 (0.0 %)

Table 3
Experiment Results: Prompt ranking based on best and worst score per model and level (N=16)

Prompt Number of times the best
score was attained

Number of times the worst
score was attained

1 8 5
2 6 4
3 4 6

number of syntax errors for the Gemini Pro and CogVLM model.
Finally, Table 3 showcases the number of times each prompt received the best and worst

score respectively. The results show that prompt 1 generated the best results overall.
These results provide us with a good basis to answer the research questions.
RQ1: Are LLMs capable of providing a complete (classes, relationships, textual

content,...) re-creation of a given UML diagram? When generated without syntax errors,
LLMs managed to re-create the given UML class diagram with a variable degree of accuracy,
depending on the used LLM. While sometimes some elements were either missing, wrongly
interpreted or hallucinated, the resulting output of the best result ended up providing a faithful
recreation of the given input. Nevertheless, there is a huge variation in the quality of the results
so the choice of the LLM is key.

RQ2: Do LLMs respect the syntax of the chosen notation for the output? As we saw,
GPT-4V flawlessly provided PlantUML code containing no syntax errors. The same cannot be
said about the other tested models that tended to provide wrong syntax for more around 50% of
cases. Overall, LLMs are able to provide correct PlantUML syntax, depending on the LLM.

RQ3: Does complexity of the given diagram affect the results? As highlighted, the
results present in Table 1 show that the complexity of the input diagram, defined by a higher
number of elements and concepts, negatively affect the accuracy of the generated result. This
correlation seems to count for every LLM used in the experiment.

RQ4: Does semantic correctness of the given diagram affect the results? While GPT-4V
does not seem to be affected by the semantic correctness of the given input, the other LLMs are
strongly affected by the semantic correctness or logic behind the given input.

RQ5: Does descriptiveness of the prompt affect the results? As stated, our results
show that the least descriptive prompt led to the best results overall and the most descriptive
prompt to the worst. While counterintuitive, as prompt engineering usually advocates that
more descriptive prompts lead to better results [1], based on our results, we would argue that
the descriptiveness negatively affects the results for the PlantUML generation task.



5. Discussion

Previously, we discussed the results from a quantitative perspective by looking at the numbers
based on our grading scheme. This section further elaborates on the findings by taking a closer
look at individual results and responses.

Inconsistency in the output syntax. Gemini is inconsistent with the quality of the output
syntax. While sometimes it is able to generate the proper one (showing that in fact it knows
it), it also often generates wrong syntax. We can force it to correct the syntax by explicitly
showing it the right syntax to use, but just telling Gemini that the syntax is wrong does not fix
the issue (even if we know that in fact it is able to generate proper syntax). This showcases the
importance of prompt engineering and that different LLMs expect different prompting strategies
to complete (and correct) tasks successfully. At the same time, one could use this as a metric to
rate the quality of LLMs in future experiments, as a LLM completing a task without needing a
reminder of the syntax of a notation is less tedious to use.

Imposed view of ”real” UML class diagrams. The Gemini models sometimes refused
to generate any PlantUML code as it deemed the given input as not being real UML. This
phenomena mostly occurred when attempting to convert the ”nonsensical” UML class diagram.
Interestingly, appending the sentence ”Ignore the semantics.” to the prompt resulted in actual
PlantUML generation taking place. This again highlights the importance of prompt engineering,
but also hints at default restrictions being implemented into Gemini, imposing its truth onto
the user except when specified otherwise.

A behaviour similar in nature can also be observed in GPT-4V, as in of the attempts to generate
the nonsensical class diagram, it decided to change the inheritance of Human from Spaceship,
to a uni-directional association from Human to Spaceship labeled ”uses”, something that would
make more sense in the real world. While we argued that we consider this as a mistake for our
experiment, in general this could also be used in favor of the user. This could fit in use-cases
such as students attempting to create a class diagram for a task and the LLM could re-create it
but also provide feedback and propose fitting changes.

Choosing an output notation with enough training data available. Beside PlantUML,
other textual notations, such as Umple or yuml, exist to define UML diagrams. Yet, informal
testing has shown that the tested LLMs seemed to have the least trouble with PlantUML. While
no thorough systematic tests were done on the different notations, we still see that the choice
of the notation is important, as it affects the quality of the output. Furthermore, the better
performance when using the PlantUML notation seems to correlate with the popularity of the
notation, as PlantUML is considered one of the most popular UML tools available5. Arguably,
this leads to more PlantUML data being available and thus, more PlantUML data contained in
the LLMs’ training data.

Keeping the human in the loop. Overall, while the Gemini models and CogVLM manage
to provide a sort of base prototype for the given images, a lot of syntax and general adjustments
are needed as compared to GPT-4V that usually provides an almost correct end-result in one go,
without needing to complicate the prompt. We would argue that GPT-4V is the most suitable
for the given task. Nevertheless, the minor errors still require human correction, thus, following

5https://modeling-languages.com/text-uml-tools-complete-list/

https://modeling-languages.com/text-uml-tools-complete-list/


the human-in-the-loop paradigm is currently still necessary.

5.1. Threats to internal validity

Grading scheme. The grading scheme used to evaluate the output potentially may not
completely reflect the performance of the LLMs. Aspects such as every mistake, excluding
syntax errors, being worth 1 mistake could be seen as limited. Some might argue that forgetting
an entire class might be worth more than just forgetting to add an attribute. Additionally, when
syntax errors occurred, we marked the result of the attempt as an error. This resulted in outputs
with correct syntax but with a lot of mistakes and hallucinations to be evaluated as a better
result than those with syntax errors. One could question whether it is fair to say that something
that does not compile but has less mistakes is worse than something that does compile but
contains a lot of unwanted and wrong elements. In this case, we would argue that sometimes,
creating something from scratch might prove easier than needing to change a lot of mistakes in
a given prototype.

Scalability to larger diagrams. Finally, the used UML class diagrams were fairly small
in nature and do not cover more complex software systems. Our observed results might not
be applicable to larger UML class diagrams. We would still argue that the experiment itself is
realistic in the sense that, in collaborative sessions, small or very abstract prototypes, or small
components of a larger system are sketched and not big and complex UML class diagrams.

Chosen prompts. The chosen prompts might not have been the best ones for such a task,
as is evident by Gemini’s change in response to the given nonsensical UML class diagram when
appending ”Ignore the semantics.” to the prompt. Another experiment could aim to determine
the best prompt to create UML class diagrams out of images depending on the used LLM.

5.2. Threats to external validity

Nondeterministic nature of LLMs and sample size. The nondeterministic nature of LLMs
might affect the validity of the interpretation of the results. This is further the case due to the
small sample number of attempts used to evaluate the LLMs per prompt and per image. Although,
ignoring the results with syntax errors, the number of errors in the generated PlantUML code
per LLM seemed to vary very little, showing consistent performance for each example.

Generalization to other LLMs. Although the results of the experiment reflect the perfor-
mance of the used visual LLMs, the results do not generalize to other visual LLMs. Indeed, the
experiment itself has shown that some LLMs are more adequate for the explored task than others.
This means, rather than saying that all visual LLMs are capable or not capable of transforming
images of UML diagrams to a computer readable format, it always depends on the LLM. Thus,
if another model is to be used, tests are required.

6. Tool support

In a first step towards low-modeling, the BESSER platform includes a UML class diagram image
to PlantUML converter. BESSER [17], which focuses on the efficient development of smart
software, implements an LLM interface that currently supports GPT-4V via the OpenAI API.



Beyond the transformation to PlantUML, the library also offers a transformation to the BESSER
Universal Modeling Language (B-UML), that is the UML-inspired language of the BESSER
low-code platform. It aims to leverage the advantages of UML while also having the freedom to
integrate and extend the language with other (meta)models based on the requirements. The
transformation to B-UML enables an immediate usage of the BESSER generations, effectively
completing the pipeline from image, to computer readable format, and to software. The BESSER-
examples6 repository contains guidelines on how to use the image to UML functionality.

The used examples and results of the experiment can be found on the IMG2UML-Examples7

repository. We encourage the community to use the examples from the repository with other
LLMs and push the results to the repository.

7. Conclusion and future work

The inclusion of image processing in Large Language Models has further broadened the pos-
sibilities of how these can be used to assist humans in domains such as computer science. In
this paper, we specifically explore their capabilities in software modeling as a tool to transform
given drawn inputs into a concrete syntax. Results show that the quality of the replicated UML
models can be good enough to use them as part of a modeling pipeline though results depend a
lot on the LLM and prompt strategy used.

In the future, we plan to conduct qualitative studies, inviting human participants, software
engineering experts or computer science students, to evaluate the usability and usefulness
of the concept and results. Additionally, we would like to evaluate the ability of LLMs to
transform other types of UML diagrams, such as state diagrams or use case diagrams, but
also, more generally, non-UML diagrams often used in software engineering such as entity
relationship diagrams. On the technical side, we want to improve the process by automatically
checking some correctness properties of the recognized models as part of a pipeline that would
automatically trigger new calls to the LLMs asking them to revise the detected mistakes. A
second LLM could also be used for this purpose. This LLM-as-judge would evaluate the results
and decide whether a new generation is needed. Finally, we would like to explore the usefulness
of this transformation in an educational context where the LLM could play different roles. For
instance, one could instruct the LLM to act as a mentor or teacher to the students using it to solve
problems. Based on the received input from the students, the LLM could either immediately
correct the given image and give feedback or even return the generated UML class diagram
alongside with feedback on aspects it perceives as wrong and nudge the students to correct
them, acting as an educational agent.

Acknowledgments

This project is supported by the Luxembourg National Research Fund (FNR) PEARL program,
grant agreement 16544475 and the CLIMABOROUGH project, funded by the European Union
under the grant agreement 101096464.

6https://github.com/BESSER-PEARL/BESSER-examples
7https://github.com/BESSER-PEARL/IMG2UML-Examples

https://github.com/BESSER-PEARL/BESSER-examples
https://github.com/BESSER-PEARL/IMG2UML-Examples


References

[1] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, et al., A survey of large language
models, 2023. arXiv:2303.18223.

[2] S. Barke, M. B. James, N. Polikarpova, Grounded copilot: How programmers interact with
code-generating models, 2022. arXiv:2206.15000.

[3] H.-G. Fill, P. Fettke, J. Köpke, Conceptual modeling and large languagemodels: Impressions
from first experiments with chatgpt, Enterprise Modelling and Information Systems
Architectures 18 (2023) 1–15. doi:10.18417/emisa.18.3.

[4] J. Cámara, J. Troya, L. Burgueño, A. Vallecillo, On the assessment of generative ai in
modeling tasks: an experience report with chatgpt and uml, Softw. Syst. Model. 22 (2023)
781–793. doi:10.1007/s10270-023-01105-5.

[5] W. Wang, Q. Lv, W. Yu, W. Hong, J. Qi, Y. Wang, et al., Cogvlm: Visual expert for pretrained
language models, 2023. arXiv:2311.03079.

[6] C. Si, Y. Zhang, Z. Yang, R. Liu, D. Yang, Design2code: How far are we from automating
front-end engineering?, 2024. arXiv:2403.03163.

[7] E. Planas, J. Cabot, How are uml class diagrams built in practice? a usability study of two
uml tools: Magicdraw and papyrus, Computer Standards & Interfaces 67 (2019) 103363.
doi:10.1016/j.csi.2019.103363.

[8] J. Cabot, Low-modeling of software systems, 2024. arXiv:2402.18375.
[9] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo, et al., Large language

models for software engineering: Survey and open problems, 2023. arXiv:2310.03533.
[10] B. Karasneh, M. R. Chaudron, Img2uml: A system for extracting uml models from images,

in: 2013 39th Euromicro Conference on Software Engineering and Advanced Applications,
2013, pp. 134–137. doi:10.1109/SEAA.2013.45.

[11] F. Chen, L. Zhang, L. Xiaoli, N. Niu, Automatically recognizing the semantic elements
from uml class diagram images, Journal of Systems and Software 193 (2022) 111431.
doi:10.1016/j.jss.2022.111431.

[12] N. Best, J. Ott, E. Linstead, Exploring the efficacy of transfer learning in mining image-based
software artifacts, 2020. arXiv:2003.01627.

[13] S. Shcherban, P. Liang, Z. Li, C. Yang, Multiclass classification of uml diagrams from
images using deep learning, International Journal of Software Engineering 31 (2021).
doi:10.1142/S0218194021400179.

[14] E. Lank, J. Thorley, S. Chen, D. Blostein, On-line recognition of uml diagrams, in:
Proceedings of Sixth International Conference on Document Analysis and Recognition,
2001, pp. 356–360. doi:10.1109/ICDAR.2001.953813.

[15] T. Hammond, R. Davis, Tahuti: A geometrical sketch recognition system for uml class
diagrams, AAAI Press (2002). doi:10.1145/1185657.1185786.

[16] H. Koç, A. M. Erdoğan, Y. Barjakly, S. Peker, Uml diagrams in software engineer-
ing research: A systematic literature review, Proceedings 74 (2021). doi:10.3390/
proceedings2021074013.

[17] I. Alfonso, A. Conrardy, A. Sulejmani, A. Nirumand, F. Ul Haq, et al., Building BESSER: An
open-source low-code platform, in: Enterprise, Business-Process and Information Systems
Modeling, 2024, pp. 203–212. doi:doi.org/10.1007/978-3-031-61007-3_16.

http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2206.15000
http://dx.doi.org/10.18417/emisa.18.3
http://dx.doi.org/10.1007/s10270-023-01105-5
http://arxiv.org/abs/2311.03079
http://arxiv.org/abs/2403.03163
http://dx.doi.org/10.1016/j.csi.2019.103363
http://arxiv.org/abs/2402.18375
http://arxiv.org/abs/2310.03533
http://dx.doi.org/10.1109/SEAA.2013.45
http://dx.doi.org/10.1016/j.jss.2022.111431
http://arxiv.org/abs/2003.01627
http://dx.doi.org/10.1142/S0218194021400179
http://dx.doi.org/10.1109/ICDAR.2001.953813
http://dx.doi.org/10.1145/1185657.1185786
http://dx.doi.org/10.3390/proceedings2021074013
http://dx.doi.org/10.3390/proceedings2021074013
http://dx.doi.org/doi.org/10.1007/978-3-031-61007-3_16

	1 Introduction
	2 State of the art
	3 Research questions
	4 Experiment
	4.1 Setup
	4.2 Results

	5 Discussion
	5.1 Threats to internal validity
	5.2 Threats to external validity

	6 Tool support
	7 Conclusion and future work

