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Abstract This paper analyzes the probabilistic description logi§RZQ as a
fragment of first-order probabilistic logic (FOPL). $HZQ was suggested as

a language that is capable of representing and reasoning abouemtifiénds

of uncertainty in ontologies, namely generic probabilistic relationships legtwe
concepts and probabilistic facts about individuals. However, somargenprop-
erties of PSHZ Q have been unclear which raised concerns regarding whether it
could be used for representing probabilistic ontologies. In this paperovide

an insight into its semantics by translatingSP£Z Q into FOPL with a specific
semantics based on possible worlds. From that reduction, we showotnat s
of the restrictions of RSHZ Q are fundamental and sketch alternative semantic
foundations for a probabilistic description logic.

1 Introduction and Motivation

One common complaint about description logic (DL) basedlogly languages, such as
the Web Ontology Language (OWL), is they fail to support ntassical uncertainty, in
particular, probability. One answer to this complaint is ExSH family of logics which
allow for the incorporation of probabilistic formulae aseriension of the familiar and
widely usedS’H DLs [1] [2]. Unlike Bayesian extensions to DLs and OWL, th&P-
family consists of proper extensions to the syntax and s&osaof the underlying logic
and inference services. These logics are also decidaleraly of the same worst case
complexity as the base logic, and can be implemented on tegisting DL reasoners.

However, there are several issues with th8R-family both from an expressivity
and from a theoretical point of view. First, it has not beeltyfalear how it actually
combines statistical and subjective probabilities. Sdcpnobabilistic ABoxes have a
number of strong restrictions (including no support of sadssertions between proba-
bilistic individuals and only one probabilistic individuser ABox).

Often, insight into a DL (and associated extensions ancreag techniques) has
followed by considering its standard first-order translatithat is, in considering it as
a fragment of first order-logics. In this paper, we attemgapply this methodology to
the PSH family by considering them as fragments of a first-orderdagitended with
various forms of probability (FOPL). We show that we can ustind PS’H logics as
fragments of FOPL and explain its limitations on the basithefknown properties of
FOPL with semantics based on possible worlds. Finally, veéckkanother fragment of
FOPL which has different semantics and allows lifting of ER§H restrictions.
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2 Preliminaries

P-SHZQ We consider a particular representative of th&R-family, named P-
SHZQ, whose syntactic constructs include those&S®Z Q together withconditional
constraints Constraints are expressions of the fqtC')[l, u] whereD, C areSHZ Q
concept expressions (callednclusiorandevidenceespectively) andl, «] C [0, 1].

A probabilistic TBox (PTBox) is a 2-tupléT = (O, P) whereO is a classical
DL ontology andP is a finite set of conditional constraints. Informally, a Fokaxiom
(D|C)[l, u] means that “if a randomly chosen individual belongg’taits probability
of belonging toD is in [I,u]". A probabilistic ABox (PABoX) is a finite set of condi-
tional constraints pertaining to a single probabilistiditidual o. Set of all probabilistic
individuals is denoted asp. A probabilistic ontologyPO = (O, P, (P,)oci,) iS @
combination of one PTBox and a set of PABoxes, one for eadbgmibistic individual.

The semantics of BFHZ Q is standardly explained in terms of the notion gi@s-
sible worldwhich is defined with respect to a set of basic concépfg]. A possible
world I is a set of DL concepts fror® such that{a : C|C € I} U {a : -C|C ¢ I}
is satisfiable for a fresh individual (in other words, possible worlds correspondéde
alizableconcept types). The set of all possible worlds with respedt is denoted as
Zs. A world I satisfies a concept denoted ad = C'if C € I. Satisfiability of basic
concepts is inductively extended to concept expressionsiza.

Aworld I is said to be anodelof a DL axiomn denoted ag = nif nU{a : C|C €
It U{a : =C|C ¢ I} is satisfiable for a fresh individual A world I is a model of a
classical DL knowledge bas@ denoted ad = O if it is a model of all axioms o).
Existence of such world is equivalent to the standard saligity in DL [2].

A probabilistic interpretatiorPr is a discrete probability distribution ovég. Pr
is said tosatisfya DL knowledge basé® denoted as®r = KB iff VI € Zg, Pr(I) >
0 = I = KB. The probability of a concept’, denoted asPr(C), is defined as
> 1=c Pr(I). Pr(D|C) is used as an abbreviation fétr(C 1 D)/Pr(C) given
Pr(C) > 0. A probabilistic interpretationPr satisfies a conditional constraint
(D|C)[l,u], denoted asPr = (D|C)[l,u], iff Pr(C) = 0 or Pr(D|C) € [l,u]. Pr
satisfies a set of conditional constraittsff it satisfies each of the constraints. A PT-
Box PT = (O, P) is calledsatisfiableiff there exists an interpretation that satisfies
O UP. Logical entailment is defined in a standard way[2]

First-Order Probabilistic Logic FOPL; is a probabilistic generalization of first-order
logic aimed at capturing belief statements (the subscrigtafds for the Type 2 se-
mantics [3]), like “the probability that Tweety (a partiaulbird) flies is over 90%". It
is very expressive allowing to attach probabilities to ey first-order formulas. Its
representational and computational properties have ewoughly investigated, and
the results of these investigations are applicable toatgrfrents.

The syntaxof FOPL; is defined as follows [3]: assume a first-order alphabet
of function and predicate names, and a countable set of tolge@bles X °. Object

1P-SHZQ, asitis presented in [2], is a non-monotonic formalism. However, wsider only
its monotonic basis in this paper. Our position is that it must be clarified fe&ir® proceeding
to non-monotonic machinery, such as lexicographic entailment, built orpits to



termsare formed by closing® off under function application as usual. In addition, the
language containfgeld terms which range over reals (withand1 being distinguished
constants) and probability terms of the forni¢), where¢ is a first-order formula.
Field terms are closed off under applications of functiens- on reals (the denotation
w(g|y) < tis the abbreviation ofv(¢ A 1) < t x w(v))). Then FOPL formulas are
defined as follows:

— If P is an n-ary predicate name i@ and ¢q,...,t¢, are object terms, then
P(t1,...,t,) is an atomic formula.

— If t1,t5 are field terms, thety < to,t1 > to, t1 < to, t1 > to, t; = t5 are atomic
formulas. Standard relationships between (in)equaligtiens are assumed.

— If ¢, 4 are formulas and € X°, theng Ay, Vb, V(x)p, 3(x)p, ~¢ are formulas.
Standard relationships between logical connectives aadtdiers are assumed.

A probabilistic interpretation(Type 2 probability structure in [3])/ is a tuple
(D,S,m, 1), whereD is a domain,S is a set of stategy is a functionS x & — &
(where®p, is a set of predicates and functions ovéywhich preserves arity, andis
a probability distribution ovef. M together with a state and a valuation associates
each object term with an element oD ([o]***) € D) and each field ternf with a
real number(M, s, v) associates formulas with truth values (we wtild, s, v) = ¢ if
¢istruein(M, s, v)) as follows:

— (M, s,v) = P(x) if v(z) € w(s, P).
— (M,S,U) ': t1 < to if [tl}M’S’U < [tg}(M’S"U).
— (M, s,v) EV(x)pif (M,s,v[z/d]) E ¢foralld € D.

Other formulas, e.gp A ¥, =, t; = to, etc. are defined as usual. It remains to
define the mapping for the probability terms of the faury): [w(¢)] M) = u{s’ €
S|(M,s',v) = ¢}. As usual, a FOPLformula is calledsatisfiableif there exists a
tuple (M, s, v) in which the formula is true.

Note that, although FORLdoes not impose any restrictions on the $éie. it can
be any set over which a probability distribution can be definelowever, it is natural to
associate states with possible interpretations of symbdatover D (see [4]). Then the
model structure can be simplified {®, S, 1) since the interpretations are implicitly
encoded in the states.

3 Mapping between PSHZ Q and FOPL,

This section presents a mapping betweeSMZQ and FOPL. For brevity we will
limit our attention to.4L£C concepts (calling the resulting logic R£C) as the trans-
lation can be easily extended to more expressive DLs. Weshdlv that it preserves
entailments so that B#Z Q can be viewed as a fragment of FOPL

Basic Translation We define the injective function to be the mapping of syntactic
constructs of PALC to FOPLy?. It is a superset of the standard translatiotddiC into



Table 1. Translation of PALC formulae into FOPL

P-ALC FOPL,

r(A,var) A(var)

k(—C, var) —(k(C,var))
k(R,var,var’) |R(var,var’)

C M D,var) |k(C,var) A k(D,var)

=

(

(

(

( (
k(C'U D,var) |k(C,var)V &(D,var)
k(VR.C,var) |V(var’)(R(var,var") — k(C,var’))
k(3R.C,var) |[I(var’)(R(var,var’) A k(C,var’))
k(a:C) K(C, z)[a/x]
k((a,0) : R)  |Ra/z,b/y]
k(C C D,x) V(x)(k(C,z) — k(D,z))
k((BJA)[lu], )|l < w(B(r)|A(r) <u

FOL [5] (in the Table 34, B stand for concept nameg, for a role name(, D for
conceptsy for a fresh constanyar € {x,y};var’ = x if var = y andy if var = z).

This function transforms a £C PTBox into a FOPL theory. The most important
thing is that it translategenericPTBox constraints intground probabilistic formulas
for a fresh constant. The implications of this will be discussed in Section 4.

Faithfulness We next show that this translation is faithful by establghcorrespon-
dence between models inREC and FOPL. Observe, that in contrast to [6], here we
consider the natural choice of states in Type 2 model stre@uvhich they correspond
to first-order models of the knowledge base.

Theorem 1. Let PT = (O, P) be a PTBox in RALC and F = {x(¢)|¢p € OU P} be

the corresponding FORLtheory. Then for every ALC model Pr of PT there exists
a corresponding Type 2 structuld = (D, S, i) such that 1M = k(¢) forall ¢ € O

and 2)M | < w(B(r)|A(r)) < w for all conditional constraintg B|A)[l, u] in P,

and vice versa, where is defined according to Table 1.

Proof. We prove only &). Let Pr : Zg — [0,1] be a model ofPT. Pr satisfies
classical ontology® so there exists a classical model= (AZ,.Z) of O. We first
extend A to ensure that all possible worlds are realizable over i (possibility is
to take the disjoint union of all realizatiods)Then we construct a Type 2 structure
(D, S, u) as follows: letD = AZ and S be the set of all interpretations of predicate
names (translations of concept and roles names)rameer A that satisfy classical
formulas inF'. S must be non-empty: letz be such thatz(P) = «~1(P)Z for all
predicate names ang (r) is an arbitrary domain element. Sincés a fresh constant
andx encompasses a standard and faithful translation $4atd to FOL, sz is a model

of all classical formulas i¥” and thereford.) holds.

2 For a possible world = {C;} we use the notation(I) to denote the sefx(C;)}
3 This is only possible if the DL does not allow for nominals.



The rest is to define a probability distributiprthat satisfies probabilistic formulas
in F. Recall thatPr is probability distribution over the set of (possible waidWe
define a functioro which maps each world = {C;} to a set of states(/) C S as
follows: o(I) = {s|s = «(I)(r)} . Then letu(o(I)) = Pr(I) for all possible worlds.
Itis not hard to see thatis a probability distribution as it mimics the probabilitistti-
bution Pr. Finally, (D, S, i) satisfies all formulas of the kind< w(B(r)|A(r)) < u
in F because.(B(r)ANA(r)) = Pr(BMA), u(A(r)) = Pr(A)) (by construction, e.g.,
H(AW) = p{sls = A} = Soppa t{o(Cli)} = Yoy s Pr(Cli) = Pr(A))
andPr = (B|A)[l,u] and therefor@) holds. m|

Theorem 1 implies that the translation preserves satisfiaand entailments.

Translation of PABoxes One particularly odd restriction of BHZ Q is that PABoxes
cannot be combined into a single set of formulas. This is salme PABox constraints
are modeled as generic constraints and the informationtabeundividual is present
only on a meta-level (as a label of the PABox). Therefore,xi@red our translation
to PABoxes we either have to translate them into a correspgmdisjoint set of la-
beled FOPL theories or make special arrangements to faithfully tetesthem into a
combined FOPL theory. We opt for the latter because it will let us get rid o§ aneta-
logical aspects and help analyze &P£LQ ontology as a standard FORtheory.

Since PABoxes in SHZQ are isolated from each other, the translation should
preserve that isolation. The most obvious way to preventiteyaction between sets
of formulas in a single logical theory is to make their sigmas disjoint. However,
the translation should not only respect disjointness of ®&B3 but also preserve their
interaction with PTBox and the classical part of the ontgl¢gge Example 1).

Example 1.Consider the following PTBoxP = {(FlyingObject| Bird)[0.9, 1],
(FlyingObject|-~Bird)[0,0.5]} and two PABOXeSPryecry, = {(Bird|T)[1,1]},

Psam = {(=Bird|T)[1,1]}. Obviously, if these sets of axioms are translated and com-
bined into a single FORLtheory then it will contain a conflicting pair of formulas
{w(Bird(r)) > 0.9,w(Bird(r)) < 0.5} C F'. This inconsistency can be avoided by
introducing fresh first-order predicates for every PABOui( Birdryeety(r)) > 0.9,
w(Birdsam(r)) < 0.5}. However, this would break any connection between PTBox
and PABox axioms, for example, prevent the following entaihts:
{w(FlyingObjectryeety(r)) > 0.9, w(FlyingObjectsam(r)) < 0.5}.

One can faithfully extend the translation to PABoxes byddtrcing fresh concept
names taelativizeeach TBox and PTBox axiom for every probabilistic individta
avoid inconsistencies. The transformation will consisthef following step&

— Firstly, we transform a RALC ontology PO = (O, P, (P,)) into a set of PTBoxes
{(O,PUP,)}U{(O,P)}. Informally, we create a copy PTBox for every prob-
abilistic individual (PT,) and make them isolated from each other. Now, instead
of one PTBox and a set of PABoxes we have just a set of PTBoxas. step
preserves probabilistic entailments in the following €30 = (B|A)[l, u] iff
(O,P) = (B|A)[l,u) and PO = (B|A)[l,u] for o iff PT, = (B|A)[l,u].

* Full example is available at http://www.cs.man.ac.uk/ klinovp/reseasbitfexample.pdf.



— Secondly, we transform every PTBdXT, into PT, by renaming every concept
nameC' into C, in all TBox axioms and conditional constraints. It is easy to
see thatPT, = C C D iff PT, = C, C D, and PT, = (B|A)[l,u] iff
PT! = (Bo|Ao)[l, u]. Intuitively, we have created a fresh copy of each PTBox
to guard against possible conflicts between PABox conssréin different proba-
bilistic individuals. Signatures aP7?, are pairwise disjoint and denoted Bs.

— Next, we union allPT with disjoint signatures (including the origind®7 =
(O, P)) into a single unified PTBoXPTy = |J PT, U PT with signature
v =Uoer, ToU L.

— Finally we can apply the previously presented faithful $lation to 7, and ob-
tain a single FOPL theory which corresponds to the original4:C ontology.

o€l

A necessary condition for faithfulness of this transforiorats that the original iso-
lation of PABoxes is preserved by creating fresh copies @&XEs. In particular, this
means that the unified PTBox cannot entail any subsumptlatioe between concept
expressiong’,, andC,, defined over disjoint signatures except of the case when one
of them is eitherT or L. If this is false, for example, iPTy; = C,, T C,, then
the following PABox constraints represented(@$, | T)[1,1] and (C,,|T)[0, 0] will
be mutually inconsistent ii?Ty; (but they were consistent in the original&£C be-
cause they belonged to different PABoxes isolated from e#obr). This condition is
formalized in the following lemma (whose proof is omitted Eoevity):

Lemma 1. Let O; and O, be copies of a satisfiabld £LC ontology © with disjoint
signatures’; and Y, and Oy be the union of®; and O,. Then for any concept
expressiong’;, Cy over X and X5 respectively such thad, ¥ C; C 1L and O, ¥
TLCCy, Oy ¥CLC Cs.

Now we can obtain the main result:

Theorem 2. Let PO = (O, P, (P,)) be a P:ALC ontology andF’ be a FOPL; theory
obtained by combining PABoxes and translating the resyidiBox into FOPL. Then
for every P:ALC modelPr, of PT, = (O, P UP,) for every probabilistic individual
o there exists a corresponding Type 2 structie= (D, S, 1) such that:

1. M E k() forall ¢ € O,
2. M =1 <w(B(r)|A(r)) < u for all conditional constraint§ B|A)[l, u] in P,
3. M E 1l <w(B,(r)|A.(r)) < uforall conditional constraintg B| A)[l, u] in P,,

and vice versa, where is defined according to Table 1.

Proof. Due to Theorem 1 it suffices to show that the steps 1-3 of thesfibamation
preserve probabilistic models. This can be done by eskabijsa correspondence be-
tween possible worlds of eadtl, and P1y;. Since there are no subsumptions between
concept expressions over signatures of different PTBos@s lemma 1), each possi-
ble world I, in PT, corresponds to a finite set of possible worldsRif;; defined as:
o(l,) = {Iy|C;, € Iy iff C; € I,} (eachC;, is a new concept name fdr; intro-
duced on step 2). Then, a probability distribution over agible worlds inPT;; can

be defined a®ry (Iy) = Pro(1,)/|o(1,)|. It follows that for any concept’ over X,



Pr,(C) is equal taPry (C,) whereC, is the correspondingly renamed concept. There-
fore, Pry = (B,|AL)[l, u] if Pr, = (B|A)[l,u]. The reverse direction can be proved
along the same lines (i.ePr,(1,) can be defined &, ;) Pru(lv)).

4 Discussion

The main conclusion following from the presented transtats that PSHZ Q all PT-
Box statements expresiegrees of beliefi.e. subjective probabilities) about a single,
yet unnamed, individual. This is not an easily expectedaute because the variable-
free syntax of RSHZ Q may give a misleading impression that PTBox constraints cor
respond to universally quantified formulas of some sort.fabethat probabilistic indi-
viduals are not translated to corresponding constants PLEQ@n contrast to classical
individuals) is also not a trivial outcome. Both these feasuof PSHZQ have im-
portant implications, but before moving to them, let us édeisanother, perhaps more
naturally looking translation and explain why it is not Fdiil.

It may well appear that conditional constraints ilSP£Z Q should be interpreted as
implicitly universally quantified formulas analogously poobabilistic logic program-
ming. That way,(B|A)[l,u] corresponds t&/z(l < w(B(z)|A(x)) < u). However,
the standard behavior of the universal quantifier is incdibfgawith the PSHZ Q se-
mantics in which classical and probabilistic individuals aeparated. For example, the
PTBox ({a : =A}, {(A|T)[1,1]}) is satisfiable although the corresponding FOPL the-
ory {-A(a),Vz(w(A(x)) = 1)} is not.

There is a possibility to interpret conditional constraiimtP-SHZ O as closed quan-
tified formulas, but this requires a non-standard quantiflech makes the variable act
as a random designator. This idea dates back to Cheesemaorigimally proposed to
use formulas of the formvz.pr[B(z)|A(x)][l, u] to capture statistical knowledge [7].
In fact, the fresh constamtused in our translation plays the role of such non-standard
guantifier. However, as pointed out by several authors (speogally [3] [8] [9]), such
formulascannotserve as representations of statistical assertions betaeis interpre-
tations are not based on proportions of domain elerents

Unfortunately, using Type 2 semantics to interpret diffierkinds of probabili-
ties complicates not only the representation of statidiigsalso the combination of
statistical assertions with probabilistic statementsualspecific individuals (degrees
of belief). In particular, this requires modeling of PABoanstraints in RSHZQ as
generic PTBox statements with information about individuaresenting only on a
meta-level. This is the reason why PABox statements do nokespond to ground
probabilistic formulas in FOPL If they did, then there would be no connection be-
tween a “statistical” statemeqFlyingObject| Bird)[0.9, 1] (represented in FORLas
(0.9 < flyingobject(r)|bird(r)) < 1) and a belief statemefitweety : Bird)[1, 1]
(represented ab < w(bird(tweety) < 1) since beliefs about cannot affect beliefs
abouttweety. Thereforgtweety : Bird)[1, 1] is effectively modeled a&Bird|T)[1, 1]

5 We must mention that B{Z Q could, in principle, be translated to FOPL with domain-based
semantics by employing a known translation between domain-basedjitybend possible-
world-based probability (see [10] for details). However, this will soleéssues with RSHZ Q
as it will still behave as FOPRLwith single probabilistic individual.



(or as1l < w(bird(r)) < 1in FOPLy) with the individual nameweety lifted at the
meta-level to serve as a label for the corresponding PABox.

However, this introduces other problems which are resptm$or the limitations
of P-SHZ Q. Since PABox constraints expressing probabilistic knogkeabout differ-
ent probabilistic individualsnustbe isolated from each other, there appears to be no
straightforward way of combining them. In particular, tpi®hibits representation of
classical or probabilistic role assertions between difieiprobabilistic individuals or,
in other words, the logic does not support probabilistiatiehal structurés Thus, it
can be concluded that, in essenceS"HZ Q is closer to a propositional probabilistic
logic rather than to a full-fledged probabilistic first-ordermalism.

The problems mentioned above cannot be solved simply bytigcgn appropriate
semantics for representing statistics, such as Type 1 smmanwhich probability dis-
tributions are defined over the interpretation domain. Sarclkattempt has been made
by Giugno and Lukasiewicz in the early paper oS RO Q [1]. In that logic proba-
bilistic concept membership assertions were represergiad mominals, for example,
(C{a})[0.5,1]. Unfortunately, as proved by Halpern, closed first-ordemfadas can
only have probability) or 1 in any Type 1 probabilistic model (see Lemma 2.3 in [3]) so
the representation is unsatisfactory. It is not hard tolsaethe probability of C'|{a}),
equivalent to%, is0if aZ ¢ CT or1if o € CT if Pris defined overAZ.

All the features and limitations explained above are by n@mseunique to P-
SHIQ. They have been discovered and studied for first-order $olgyca number of
authors who claimed that neither domain-based nor possitiiel-based semantids/
itself is suitable for representation and reasoning about diffdd@ds of probabilities.
However, their proper combination (called Type 3 semari8fshas the required po-
tential. The corresponding logic (FOPRLs free of any limitations described above, is
completely axiomatizable for a range of interesting fragte¢e.g., logics with bounded
model property such ad£C), and can be used for defining probabilistic DLs.

5 Probabilistic Description Logic with Combined Semantics

In this section we briefly outline the syntax and semantidhefxtended probabilistic
DL for representation and reasoning about different kifggababilities. The language
corresponds to the DL fragment of FOPWith the principle of direct inference [9]. We
loosely call it PDL (whereDL stands for a subset FROZ Q).

Syntax Analogously to PSHZQ the syntax of PDL is based on conditional con-
straints. However, we distinguish between statisticaktraints and belief constraints
by providing different syntactic constructs for ea&tatistical conditional constraints
are expressions of the for®|C') 514+ 1, u] whereD, C are concept expressiorelief
constraintsare expressions of the for(w)esie ¢[1, u] OF (1|®)peric £ [, u] Wherey, ¢ are
ABox assertions. We define PTBox to be a set of statisticastraimts, and PABox to

5 Allowing nominals in the classical part of the language lets us expressaitistic roles
R(a,b)[l,u] as(3R.{b}| T)[l, u] for a [2]. However, this is still very restrictive because there
cannot be a PABox faob (in other wordsp cannot be a probabilistic individual).



be a set of belief constraints. An ontology irfR: is a triple(O, Psiat, Pheries) Where
O is aDL ontology, Psiq: is @ PTBox andPyi;c ¢ is a PABOX.

Semantics Both types of conditional constraints are interpreted gitiire Type 3 struc-
ture M = (A, S, Prsiar, Prieiies) [3]. Here A is a non-empty domairg' is a set of
states that correspond to interpretations of concept,amdeindividual names oved,
Prgq: is a probability distribution overd, and Pry.i;.r is @ probability distribution
over S. For a states € S we uses(C) (resp.s(R), s(a)) to express the interpretation
of a concept” (resp. roleR and individuala) in s. For an axiomy we write s = 7

if 1 is satisfied by the corresponding interpretation. Such éeedbstructure is used to
interpret both statistical and belief statements respagtin the following way:

— Statistical probability of a concefit in M in a states (denoted ag’(M-*)) is equal

t0 Pryrar{d € Ald € s(C)}. (D|C)M>* is an abbreviation of%wj)

— Subjective probability of an ABox assertion (denoted asp™ is equal to
M
Prociics{s € S|s |= ¢}. (1]¢)™M is an abbreviation of“5¢)—.

— M satisfies a statistical constraif®|C') ;4 [1, u] if Vs € S, (D|C) M%) € [1,u].
— M satisfies a belief constrait|¢)peiic [, u] if (¥|)M € [I,u].

Direct Inference FOPL; provides means for representing and reasoning about-differ
ent kinds of probabilities but, as it stands, it does not sujpgny relationship between
them. However, in most scenarios, e.g., in actuarial raagoit is desirable to infer
subjective beliefs from available classical and statitimowledge. Such reasoning is
often calleddirect inferenceand it can be supported in FORPRNd its fragments.

The main idea behind direct inference, that goes back tohRaltach’s reference
class reasoning [11], is to consider every individual to lbhgpécal representative of the
smallestlass of objects which it belongs to and for whiehiable statistics is available.
For example, the probability that Tweety flies should be étuthe probability that a
randomly taken object, having the same set of propertiesvae(y, flies. There are a
few proposed ways to implement this idea, one of which wectkisélow.

One can capture the notion of typicality directly by equatihe degree of belief
in a ground formula to thexpectatiorof the statistical probability of iteandomized
version given the rest of classical and statistical formubs proposed in [9]. Ran-
domization is replacement of all constants in ground foasaudy fresh variables. Ex-
pectation of a field terny is a rigid (i.e. not depending on a state) term defined as
E(f)M = 3 g Proeiics(s) x [f]**). The expectation operator and conditioning
on statistical formulae are only used on the semantic, nusstic, level of PDL.

Consider the example. Lé{ Fly|Bird)[0.9,1]} be PTBox andBird(tweety) be
an ABox axiom. Then the degree of belief Burd(tweety) is within the bounds of
E(bird(v)|0.9 < w(fly(v)|bird(v)) > 1), wherew is a fresh constant introduced
by randomization. The resulting interval 89, 1], as expected. Note that P£ will
probably require a non-monotonic mechanism similar 8§72 Q to handle situations
when an explicitly specified subjective probability is difént from the computed via
direct inference (e.g., when the individuals in questicarat typical).
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Direct inference via randomization serves the same purpe$aSHZ Q'’s way of
combining PTBox and PABox constraints (in that sens8HP£ZQ can be thought of
as an implementable, non-monotomipproximationof FOPL;). However, it is con-
siderably less restrictive because it does not requireesemting PABox statements as
universal PTBox constraints. Since all belief statemebtsiaiparticular individual are
ground formulas with proper constants (likeeety), they can be combined in a single
theory. Thus the representation supports arbitrary welatistructures involving differ-
ent probabilistic individuals and does not force unnataegaration of PABoxes. It is
also possible to make the assumption that a pair of indiVsdare typical thus enabling
the inference of probabilistic role assertions. Finalgupports smooth integration of
classical knowledge (i.e. ABox axioms) and beliefs aboetshme individual while
P-SHZQ requires separation between classical and probabilisfigiduals.

6 Conclusion

In this paper we have presented a new look at the probabildtiP-SHZ Q as a frag-
ment of probabilistic first-order logic. We gave a translatof P-SHZ Q knowledge
bases into FOPL theories and proved its faithfulness. This brought an extsaht
into P-SHZQ, most importantly, into its limitations. It appears thag timajor restric-
tion, namely the lack of support of relational structure foobabilistic individuals, is
caused by attempt to use the possible world based semanmtidi§férent kinds of prob-
abilities. This makes the probabilistic component G$RZ Q essentially propositional
(i.e. all probabilistic statements relate to a single camist). We sketched how a more
direct fragment of FOPL, which we called P£, could overcome these limitations
while still retaining the ability to combine probabilitie different sorts. Future inves-
tigations include decidability, implementability, and dadling applicability of PDL.
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