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Abstract. Automated support to enterprize modeling has increasingly
become a subject of interest for organizations seeking solutions for stor-
age, distribution and analysis of knowledge about business processes.
This interest has recently resulted in approving the standard for spec-
ifying Semantics of Business Vocabulary and Business Rules (SBVR).
Despite the existence of formally grounded notations, up to now SBVR
still lacks a sound and consistent logical formalization which would allow
developing automated solutions able to check the consistency of a set of
business rules. This work reports on the attempt to provide logical foun-
dations for SBVR by the means of defining a specific first-order deontic-
alethic logic (FODAL). The connections of FODAL with the modal logic
QK and the description logic ALCQI have been investigated and, on
top of the obtained theoretical results, a special tool providing automated
support for consistency checks of a set of ALCQI-expressible deontic and
alethic business rules has been implemented.

1 Introduction

Automated support to enterprize modeling has increasingly become a subject of
interest for organizations seeking solutions for storage, distribution and analysis
of knowledge about business processes. One of the most common approaches for
describing business and the information used by that business is the rule-based
approach [4], which was adopted by the Object Management Group (OMG) for
a standard for specifying business objects and rules. The Semantics of Business
Vocabulary and Business Rules (SBVR) [19] standard provides means for de-
scribing the structure of the meaning of rules, so called “semantic formulation”,
expressed in one of the intuitive notations, including the natural language that
business people use [2] and Object-Role Modeling (ORM2) diagrams [8]. ORM2
has recently become widely used as conceptual modeling approach combining
both formal, textual specification language and graphical modeling language [9].
It consists in identifying and articulating the rules that define the structure
(alethic) and control the operation (deontic) of an enterprize [18]. The main
expectation from automated solutions built upon this approach is the ability to
automatically determine consistency of business rules in a business model, so
that they can be further exploited to build information systems and relational
databases that are coherent with the intended domain business logic.



Several attempts have been made so far in order to provide a logical formal-
ization for structural and operational rules in SBVR and its notations. The most
significant related work includes several formalizations of the purely structural
fragment of ORM2, including translation to first-order predicate logic (FOL)
[10] and some description logics (DL), e.g. [14] and [12]. However, none of the
existing approaches enables consistency checks for a combined set of possibly
interacting alethic and deontic business rules.

In this paper we define a multimodal first-order deontic-alethic logic (FO-
DAL) with sound and complete axiomatization that captures the desired se-
mantics of and interaction between business rules. We then report on the logical
properties of such formalization and its connections with the modal logic QK
and the description logic ALCQI. Finally we present the tool which provides
automated support for consistency checks of a set of ALCQI-expressible deon-
tic and alethic ORM2 constraints. Additionally, it implements the translation of
aforementioned class of ORM2 constraints into an OWL2 ontology.

The rest of the paper is organized as follows. In the second section an overview
of the SBVR standard and its ORM2 notation is given. Third section describes
the proposed logical formalization in terms of first-order deontic-alethic logic
(FODAL) along with its syntax, semantics and complete and sound axiomati-
zation. Next two paragraphs are devoted to modeling SBVR rules with FODAL
and checking their consistency with the help of this logic, while in the sixth
section a connection with standard modal logic is introduced. Finally, the last
paragraph describes the tool developed to provide automated support for con-
sistency checks together with translation to OWL2.

2 SBVR Overview

A core idea of business rules formally supported by SBVR is the following [19]:
“Rules build on facts, and facts build on concepts as expressed by terms. Terms
express business concepts; facts make assertions about these concepts; rules con-
strain and support these facts”. The notions of terms and facts of this “business
rules mantra” correspond to SBVR noun concepts and verb concepts (or fact
types) respectively.

Noun and verb concepts. According to the SBVR 1.0 specification [19]
a noun concept is defined as a “concept that is the meaning of a noun or noun
phrase”. It has several subtypes: object type, individual concept and fact type
role. An object type is defined as “noun concept that classifies things on the
basis of their common properties”, while individual concept is “a concept that
corresponds to only one object [thing]”. A role is a “noun concept that corre-
sponds to things based on their playing a part, assuming a function or being
used in some situation”.

A verb concept (or fact type) represents the notion of relations and is defined
as “a concept that is the meaning of a verb phrase”. A fact type can have one
(characteristic), two (binary) or more fact type roles.



Fig. 1. SBVR overview

Business rules. The main types of rules defined in SBVR standard are
structural business rules and operative business rules (See Figure 1). Structural
(definitional) rules specify what the organization takes things to be, how do the
members of the community agree on the understanding of the domain [5]. They
define the characteristics of noun concepts and put constraints on verb concepts
and can not be broken. Operative (behavioral) business rules are intended to
describe the business processes in organization and can be either ignored or
violated by people.

Conceptual model. An SBVR conceptual model CM = 〈S, F 〉 is a struc-
ture intended to describe a business domain, where S is a conceptual schema,
declaring fact types and rules relevant to the business domain, and F is a popula-
tion of facts that conform to this schema. Business rules defined in the conceptual
schema S can be considered as high-level facts (i.e., facts about propositions)
and play a role of constraints, which are used to impose restrictions concerning
fact populations.

The SBVR standard provides means for formally expressing business facts
and business rules in terms of fact types of pre-defined schema and certain logical
operators, quantifiers, etc. These formal statements of rules may be transformed
into logical formulations, which can in turn be used for exchange with other
rules-based software tools. Such logical rule formulations are equivalent to for-
mulae in 2-valued first-order predicate calculus with identity [19]. In addition to
standard universal (∀) and existential (∃) quantifiers, for the sake of convenience,
SBVR standard allows logical formulation to use some pre-defined [8] numeric
quantifiers, such as at-most-one (∃0..1), exactly-n (∃n, n ≥ 1) and others.

In order to express the structural or operational nature of a business rule, the
corresponding rule formulation uses any of the basic alethic or deontic modalities.
Structural rule formulations use alethic operators: � = it is necessary that and
♦ = it is possible that ; while operative rule formulations use deontic modal
operators O = it is obligatory that, P = it is permitted that, as well as F = it
is forbidden that.



Notations for business vocabulary and rules. There are several com-
mon means of expressing facts and business rules in SBVR, namely through
statements, diagrams or any combination of those, each serving best for dif-
ferent purposes ([16], [19, Annex C, Annex L]). While graphical notations are
helpful for demonstrating how concepts are related, they are usually impractical
when defining vocabularies or expressing rules. We use r to denote a business
rule in SBVR regardless the particular format in which it is written. For the
sake of readability we will denote any necessity claim as r

�
, possibility claim as

r♦ , obligation claim as r
O

and permission claim as r
P

.

One of the most promising notations for SBVR is Object-Role Modeling
(ORM2), which is a conceptual modeling approach combining both formal, tex-
tual specification language and formal graphical modeling language [9]. ORM2
specification language applies to mixfix predicates of any arity and contains
predefined patterns covering a wide range of constraints typical for business
domains. An example of a structural rule expressed as necessity statement in
ORM2 specification language is the following:

r = Each visitor has at most one passport.

An example illustrating ORM2 graphical notation is introduced on Figure 2.

Fig. 2. Example of ORM2 diagram

The advantage of ORM2 over other notations is that it is a formal language
per se, featuring rich expressive power, intelligibility, and semantic stability [11].
There exist several translations from non-modal ORM2 expressions to standard
logics, including translation to first-order logic ([10]) and some description logics
([14], [7]). We will hereafter denote by φr̂ a first-order representation of a non-

modal ORM2 expression1 r̂ from a rule r. Similarly, we will denote by φ
DL

r̂ a
description logic representation of a non-modal ORM2 expression r̂.

Aforementioned existing translations to standard logics may be seen as at-
tempts to provide a logical formalization for structural and operational rules.
However, since they consider only the purely structural fragment of ORM2, they
are not capable of providing consistency checks for a combined set of possibly
interacting alethic and deontic business rules.

1 Since the nature of business rules implies the absence of uncertainty, it means that
the resulting first-order formulae will not contain free variables, i.e. will be closed
formulae. Then an SBVR rule may be represented by an expression resulted from
application of modalities and boolean connectives to a set of closed FOL formulae φr̂i .



3 First-order deontic-alethic logic (FODAL)

In this section we describe our attempt to provide logical foundations for SBVR
by the means of defining a specific multi-modal logic. The basic formalisms we
use to model business rule formulations are standard deontic logic (SDL) and
normal modal logic S4, which are both propositional modal logics. We then
construct a first-order deontic-alethic logic (FODAL) – a multimodal logic, as a
first-order extension of a combination of SDL and S4 to be able to express busi-
ness constraints defined in SBVR. In order to construct the first-order extension
for the combined logic we follow the procedure described in [6].

3.1 Syntax

The alphabet of FODAL contains the following symbols:

– a set of propositional connectives: ¬,∧.
– a universal quantifier: ∀ (for all).
– an infinite set P = {P 1

1 , P
1
2 , ..., P

2
1 , P

2
2 , ..., P

n
1 , P

n
2 , ...} of n-place relation sym-

bols (also referred to as predicate symbols).
– an infinite set V = {v1, v2, ...} of variable symbols.
– modal operators: alethic – � (necessity) and deontic – O (obligation).

FODAL formulae. The formulae of FODAL are defined inductively in the
following way:

– Every atomic formula is a formula.
– If X is a formula, so is ¬X.
– If X and Y are formulae, then X ∧ Y is a formula.
– If X is a formula, then so are �X and OX.
– If X is a formula and v is a variable, then ∀vX is a formula.

The existential quantifier (∃) as well as other propositional connectives (∨,→,↔)
are defined as usual, while additional modal operators (♦,P ,F ) are defined in
the following way:

♦φ ≡ ¬�¬φ Pφ ≡ ¬O¬φ Fφ ≡ O¬φ (1)

A FODAL formula with no free variable occurrences is called a closed formula
or a sentence. A modal sentence is a sentence whose main logical operator is a
modal operator. An atomic modal sentence is a modal sentence which contains
one and the only modal operator.

3.2 Semantics

Since SBVR itself interprets constraints in the context of possible worlds which
correspond to states of the fact model (i.e. different fact populations), the choice
of varying domain Kripke semantics is intuitively justified. Also, since SBVR
rule formulations may includes two types of modalities: deontic and alethic, - we
utilize the notion of two-layer Kripke frames with accessibility relations RO and
R� respectively.



Augmented frame. A varying domain augmented bimodal frame is a re-
lational structure Fvar = 〈W, RO, R�,D〉, where 〈W, RO, R�〉 is a two-layer
Kripke frame, W is a non-empty set of worlds, R(·) are binary relations on W
and D is a domain function mapping worlds of W to non-empty sets. A domain
of a possible world w is then denoted as D(w) and a frame domain is defined as
D(F) =

⋃
{D(wi)|wi ∈ W}.

In order to correctly capture the behavior and interaction of the alethic and
deontic modal operators it is necessary to constrain the corresponding accessi-
bility relations: the alethic accessibility is usually taken to be a reflexive and
transitive relation (S4) [3], while the behavior of a deontic modality is classi-
cally considered to be captured by a serial relation (KD) [15]. We refer to the
corresponding class of bimodal frames as S4⊗KD-frames.

Moreover, since one of the objectives of the formalization under development
is to define the consistency of the set of business rules, it should also take into
account the existing interaction between alethic and deontic modalities. The
desired interaction can be verbalized as “Everything which is necessary is also
obligatory” and then expressed as a following FODAL formula:

�X → OX (2)

It can be proved that the formula 2 defines a special subclass of S4⊗KD-frames.

Theorem 1. The modal formula �X → OX defines the subclass of augmented
bimodal S4⊗KD-frames F = 〈W, RO, R�,D〉 such that RO ⊆ R�, where R�

is a preorder and RO is serial. We then call such frame a FODAL frame.
Proof: For the complete proof please refer to [17].

Interpretation and model. An interpretation I in a varying domain aug-
mented frame Fvar = 〈W, RO, R�,D〉 is a function which assigns to each m-
place relation symbol P and to each possible world w ∈ W some m-place
relation on the domain D(w) of that world. I can be also interpreted as a
function that assigns to each possible world w ∈ W some first-order inter-
pretation I(w). A FODAL varying domain first-order model is a structure
M = 〈W, RO, R�,D, I〉, where 〈W, RO, R�,D〉 is a FODAL frame and I is
an interpretation in it.

Truth in a model. The satisfiability relation between FODAL models and
formulae is then defined in the usual way, using the notion of valuation which
maps variables to elements of the domain.
Let M = 〈W, RO, R�,D, I〉 be a FODAL model, X,Y and Φ be FODAL for-
mulae. Then for each possible world w ∈ W and each valuation σ on D(M) the
following holds:

– if P is a m-place relation symbol, then M, w �σ P (x1, ..., xm) if and only if

(σ(x1), ..., σ(xm)) ∈ I(P,w) or, equivalently, I(w) �
FOL

σ P (x1, ..., xm),
– M, w �σ ¬X if and only if M, w 2σ X,
– M, w �σ X ∧ Y if and only if M, w �σ X and M, w �σ Y ,
– M, w �σ ∀xΦ if and only if for every x-variant σ′ of σ at w, M, v �σ Φ,
– M, w �σ ∃xΦ if and only if for some x-variant σ′ of σ at w, M, v �σ Φ,



– M, w �σ �X if and only if for every v ∈ W such that wR�v, M, v �σ X,
– M, w �σ ♦X if and only if for some v ∈ W such that wR�v, M, v �σ X,
– M, w �σ OX if and only if for every v ∈ W such that wROv, M, v �σ X,
– M, w �σ PX if and only if for some v ∈ W such that wROv, M, v �σ X.

3.3 Axiomatization

A FODAL axiom system for first-order alethic-deontic logic is defined following
the approach presented in [6] and is obtained by combining the axiom systems
for the propositional modal logics S4 and KD and extending the resulting
combination with additional axiom schemas and the axiom 9 reflecting desired
interaction between alethic and deontic modalities.

Axioms. All the formulae of the following forms are taken as axioms.

(Tautologies S4) Any FOL substitution-instance of a theorem of S4 (3)

(Tautologies KD) Any FOL substitution-instance of a theorem of KD (4)

(Vacuous ∀) ∀xφ ≡ φ, provided x is not free in φ (5)

(∀ Distributivity) ∀x(φ→ ψ)→ (∀xφ→ ∀xψ) (6)

(∀ Permutation) ∀x∀yφ→ ∀y∀xφ (7)

(∀ Elimination) ∀y(∀xφ(x)→ φ(y)) (8)

(Necessary O) �φ→ Oφ (9)

Rules of inference.

(Modus Ponens)
φ φ→ ψ

ψ
(Alethic Necessitation)

φ

�φ
(10)

(Deontic Necessitation)
φ

Oφ
(∀ Generalization)

φ

∀xφ
(11)

Theorem 2. The FODAL axiom system is complete and sound with respect to
the class of FODAL frames.
Proof: For the complete proof please refer to [17].

4 Modeling SBVR vocabulary and rules with FODAL

Given an SBVR conceptual schema S we define the following translation τ(·)
from elements of S to notions of first-order deontic-alethic logic:

– For each noun concept A from S, τ(A) is an unary predicate in FODAL.
– For each verb concept R from S, τ(R) is an n-ary predicate in FODAL

(n ≥ 2).

Recall that an SBVR business rule may be represented by an expression resulted
from application of modalities and boolean connectives to a set of closed first-
order formulae φr̂i . Then for each SBVR rule r from S, its FODAL formalization
τ(r) is defined inductively as follows:



– τ(r̂) = φr̂, where r̂ is an non-modal SBVR expression and φr̂ is its first-order
translation,

– τ(¬r) = ¬τ(r),
– τ(r1 ◦ r2) = τ(r1) ◦ τ(r2), ◦ ∈ {∧,∨,→,↔}, where r1 and r2 are rule

formulations,
– τ(�r̂) = �τ(r̂) and τ(Or̂) = Oτ(r̂).

Example 1. Assume the following set of business rules, expressed in SBVR Struc-
tured English:

(r1) Each car rental is insured by exactly one credit card.

(r2) Each luxury car rental is a car rental.

(r3) It is obligatory that each luxury car rental is insured by at least

two credit cards.

Then the corresponding FODAL formulas are the following:

τ(r1) = ∀x∃1y(CarRental(x) ∧ Insured(x, y)),

τ(r2) = ∀x(LuxuryCarRental(x)→ CarRental(x)),

τ(r3) = O(∀x∃≥2y(LuxuryCarRental(x) ∧ Insured(x, y))).

While our FODAL formalization of SBVR rules provides logical mechanism
supporting rule formulations with multiple occurrences of modalities, SBVR
standard mostly focuses on normalized business constraints [19, p.108] that may
be expressed by rule statements of the form of atomic modal sentences or by
statements reducible to such a form via mechanisms provided by FODAL ax-
iomatization. As a matter of fact, restricting the domain of interest only to such
atomic modal rule formulations allows to obtain some useful results concerning
satisfiability reduction and connection to standard logics, as shown in [17].

Hereafter we will only consider SBVR rules expressible in one of the following
forms of atomic modal sentences:

�φ ♦φ Oφ Pφ (12)

where φ is any closed wff of first-order logic.
In the case of having negation in front of the modal operator, we assume appli-
cation of the standard modal negation equivalences in order to obtain the basic
form of the initial rule.

FODAL regulation. A FODAL regulation Σ is a set of FODAL atomic
modal sentences formalizing structural and operational rules of an SBVR con-
ceptual schema S. We introduce the following designations:

τ(r
�

) = �η, τ(r♦) = ♦π,

τ(r
O

) = Oθ, τ(r
P

) = P ρ,

Σ = {�η1, ...,�ηk,♦π1, ...,♦πl, Oθ1, ...,Oθm,P ρ1, ...,P ρn} (13)

Σ∧ =

k∧
i=1

�ηi ∧
l∧
i=1

♦πi ∧
m∧
i=1

Oθi ∧
n∧
i=1

P ρi (14)

where every ηi, πi, θi, ρi is a closed first-order logic formula.



5 Consistency of a set of business rules

The final objective of the proposed formalization is to provide an automation
solution with reasoning support for SBVR business modeling and business pro-
cesses monitoring. It is well known that when reasoning about some particular
universe of discourse, consistency is essential.

Assume a FODAL regulation Σ representing a set of structural and operative
business rules. The task of consistency check for Σ is defined as procedure which
analyzes the given set Σ and decides whether the rules do not contradict each
other, i.e. there is no formula ψ such that Σ ` ψ ∧ ¬ψ ≡ ⊥.
A FODAL regulation Σ is called internally inconsistent when the specified con-
straints contradict each other when the system is populated. We then define a
minimal inconsistent set Σ⊥ ⊆ Σ such that Σ⊥ ` ⊥ and ∀∆ ⊂ Σ⊥, ∆ 0 ⊥.

We distinguish several types of inconsistency depending on types of modali-
ties of rules involved. The set Σ is called alethic inconsistent if it is inconsistent
and the minimal inconsistent set Σ⊥ contains formulae of only alethic nature,
i.e. Σ⊥ ⊆ Σ�. The set Σ is called deontic inconsistent if it is inconsistent and
the minimal inconsistent set Σ⊥ contains formulae of only deontic nature, i.e.
Σ⊥ ⊆ ΣO. Otherwise, if Σ⊥ ⊆ Σ� ∪ΣO, the set Σ is called cross inconsistent.

According to the completeness of the FODAL logic we have that Σ 0 ψ if
and only if there exists a FODAL model M and a possible world w in it, such
that M, w � Σ ∧ ¬ψ. Therefore, it is sufficient to state the satisfiability of the
conjunction of all formulae of the set:

Σ∧ =

k∧
i=1

�ηi ∧
l∧
i=1

♦πi ∧
m∧
i=1

Oθi ∧
n∧
i=1

P ρi

Bearing in mind the fact that the regulation Σ may only contain FODAL atomic
modal sentences and taking into account the properties of accessibility relations
of the FODAL frame F, we can obtain the following result:

Theorem 3. A FODAL regulation Σ∧ =
∧k
i=1 �ηi ∧

∧l
i=1 ♦πi ∧

∧m
i=1 Oθi ∧∧n

i=1 P ρi is FODAL-satisfiable if and only if each of the following formulae
N ,O,Qj ,Pj is independently first-order satisfiable:

N =

k∧
i=1

ηi (15a)

O =

m∧
i=1

θi ∧
k∧
i=1

ηi (15b)

Qj = πj ∧
k∧
i=1

ηi, ∀j =
−−−→
1 . . . l (15c)

Pj = ρj ∧
m∧
i=1

θi ∧
k∧
i=1

ηi, ∀j =
−−−→
1 . . . n (15d)

Proof: For the complete proof please refer to [17].



Observe that satisfiability ofN follows naturally from satisfiability of anyQj .
The same holds for O and Pj respectively. However, the satisfiability checks for
15a and 15b should be examined explicitly, since Σ may only contain necessity
and obligation rules. Moreover, such definition allows to detect the actual source
of unsatisfiability of the FODAL regulation Σ.

Modularity of the approach. It should be noted that the developed ap-
proach of satisfiability reduction possesses a property of modularity, i.e. it does
not depend on the formalism behind the rule bodies ηi, θi, πi and ρi, as long as
formalism-specific satisfiability relation is provided.

6 Reduction from FODAL to monomodal logic QK

As a matter of fact, the FODAL logic inherits the property of undecidability from
both its component logics: standard predicate modal logics QS4 and QKD are
undecidable [13]. However, decidability results have been obtained for several
well-studied fragments of quantified modal logics [20]. This section defines a
truth-preserving translation of atomic modal sentences of the FODAL logic into
standard predicate modal logic QK, which allows to use those results.

Monomodal simulating pointed frame. Given a FODAL frame
F = 〈W, RO, R�,D〉 and a possible world w0 ∈ W, a monomodal simulating
pointed frame Fsw0

is defined as a tuple 〈Ws, Rs,Ds, w0〉, such that:

– Ws includes w0 and all its deontic and alethic successors:
Ws = {w0}∪{v | (w0, v) ∈ RO}∪{v | (w0, v) ∈ R�} = |since RO ⊆ R� and
R� is reflexive| = {v | (w0, v) ∈ R�}.

– Rs = {(w0, v) | (w0, v) ∈ R�}, and �s,♦s are modal operators associated
with Rs.

– Ds is a domain function on Ws such that Ds(v) = D(v) ∪ {πDs},∀v ∈ Ws,
where πDs

/∈ D is a new service domain symbol.

Since the definition of Rs does not preserve specific properties of RO and R�,
the resulting frame Fsw0

belongs neither to serial nor to transitive nor to reflexive
class of frames and therefore can be classified as a K-frame.

Monomodal translation. Given a FODAL regulation Σ expressed as a
conjunction of FODAL atomic modal sentences 14, a monomodal translation of
regulation MTR(Σ∧) is defined inductively as follows:

MTR(φ) = φ,where φ is an objective FODAL formula,

MTR(φ1 ∧ φ2) = MTR(φ1) ∧MTR(φ2),where φ1 and φ2 are FODAL atomic

modal sentences,

MTR(�ψ) = �sMTR(ψ), MTR(Oψ) = �s(¬Π →MTR(ψ)),

MTR(♦ψ) = ♦s(MTR(ψ) ∧Π), MTR(Pψ) = ♦s(MTR(ψ) ∧ ¬Π),

where ψ is a objective FODAL formula and Π is a 0-place predicate symbol,
i.e. propositional letter, encapsulating the nature of the original modality of the
rules of possibility and permission.



Simulated pointed model. Given a FODAL model M = 〈F, I〉 and a
possible world w0 ∈ W, a simulated pointed model Ms

w0
is defined as a tuple

〈Fs
w0
, Is〉 such that:

– Fsw0
= 〈Ws, Rs,Ds, w0〉 is a monomodal simulating pointed frame for F =

〈W, RO, R�,D〉 and a possible world w0 ∈ W,
– Is is a first-order interpretation on the frame Fsw0

such that:
• For each v ∈ Ws and for every n-place predicate P , Is(P, v) = I(P, v),
• For each v ∈ Ws such that (w0, v) ∈ RO, Is(Π, v) = ∅,
• For each v ∈ Ws such that (w0, v) /∈ RO, Is(Π, v) = {πDs}.

We now state formally that the translation given above is truth-preserving
with respect to varying domain semantics.

Theorem 4. For any FODAL regulation Σ, any FODAL model M and any
possible world w0 of a model, we have that

M, w0 � Σ if and only if Ms
w0
, w0 �MTR(Σ), (16)

where Ms
w0

is a simulated pointed model for M and w0.

Proof: For the complete proof please refer to [17].

Therefore, the truth-preserving translationMTR defined for FODAL regulations
enables the transfer of decidability results from well-studied fragments of predi-
cate modal logics ([20], [1]) to FODAL. In particular, the following fragments of
FODAL logic are decidable:

– the set of atomic modal sentences with at most two variables,
– the set of monadic atomic modal sentences, all predicate symbols in which

are at most unary,
– the set of atomic modal sentences, modal operators in which are applied to

subformulas from the guarded fragment of first-order logic.

7 Implementation of automated reasoning support tool

7.1 General description of the tool

The ORM2 automated reasoning support tool is implemented in Java and in-
cludes a parser for ORM2 Formal Syntax [7], a set of Java classes represent-
ing the ORM2 knowledge database, a translator into an OWL2 ontology and a
modal reasoning engine using HermiT or FaCT++ as an underlying reasoner.
The workflow diagram of the tool is depicted on Figure 3. Currently, the tool
provides the following functionality:

– Checking the consistency of a given ORM2 schema which may include both
alethic (necessities and possibilities) and deontic (obligations and permis-
sions) constraints. One of the advantages of the underlying approach is the
straight-forward possibility to determine whether the inconsistency is caused
purely by alethic or deontic constraints or by their combination. Additionally
to the result of the consistency check, the tool prints out the list of concepts
which are involved in conflicting constraints.



– Translating a given ORM2 schema into OWL2 ontology which can then be
saved in various formats for further use. However, this translation does not
support modalities in their diversity and, therefore, takes into account only
structural constraints (i.e. alethic rules).

Fig. 3. Workflow Diagram

1 Neumont ORM Architect for Visual Studio
2 PNA Group Discovery and Validation Assistant

7.2 Logical foundations of implementation

The algorithm of the developed automated reasoning support tool relies on two
fundamental results.

Firstly, it implements the procedure defined in [7] to translate a set of con-
straints from ORM2 Formal Syntax to ALCQI description logic, which is in
fact a fragment of OWL2. Since the implemented ORM2 reasoning procedure
involves less expressive ALCQI logic as underlying formalism [17], it does not
support reasoning about the following information about the ORM2 conceptual
schema:

– frequency constraints on multiple roles,

– generalized subset constraints on relations,

• still supported: simple case of stand-alone roles,

• still supported: special case of contiguous full-set of roles;

– ring constraints (NB: drawback of mapping n-ary relations via reification).

The same information is lost by translating a given ORM2 schema into OWL2
ontology.

Secondly, in order to check the consistency of a set of business rules expressed
in ALCQI-definable fragment of ORM2, we utilize the modularity of the ap-
proach defined in Section 5 and adapt the result of satisfiability reduction for
the case of general description logic DL. The satisfiability relation for ORM2 is
then provided by the semantic-preserved translation from ORM2 Formal Syntax
to ALCQI [7].



Theorem 5. A FODAL regulationΣ = {�η1, ...,�ηk,♦π1, ...,♦πl,Oθ1, ...,Oθm,
P ρ1, ...,P ρn}, expressed in DL-definable fragment of ORM2, is internally con-
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Thus, we can reduce the consistency of a given set of constraints to ALCQI
satisfiability, which in turn can be interpreted as unsatisfiable concepts’ check
in resulting OWL2 ontology. Indeed, whenever a formula in ALCQI is unsatis-
fiable, it means that the concept definition expressed by this formula contains a
contradiction which prevents the concept from having a model, i.e. the concept
is forced to not have any instances, hence is unsatisfiable.

7.3 Usage of the tool

In the following section we will demonstrate the functionality of the implemented
tool by means of a real-life example of its usage. The graphical user interface of a
tool is introduced on Figure 5 and contains controls which allow to select an input
file, underlying reasoner, output file and output format for resulting ontology (if
needed). The consistency check for an input ORM2 schema is performed after
loading the input file and the result of the check is communicated by visual flag
as well as by a detailed log in the corresponding window.

Checking the consistency of a given ORM2 schema. In order to il-
lustrate the functionality of the consistency check we will consider the ORM2
schema obtained by merging two conceptual models (e.g.A andB) and depicted on
the Figure 4. This schema contains the following set of conflicting business rules:

(RA
1 ) Each car rental is insured by exactly one credit card.

(RB
1 ) Each luxury car rental is a car rental.

(RB
2 ) It is obligatory that each luxury car rental is insured by at least

two credit cards.

Fig. 4. Inconsistent ORM2 Schema

The given set of constraints can be fully expressed in ALCQI description
logic, therefore we can use the developed reasoning support tool for consistency
check. The schema on Figure 4 is internally inconsistent with respect to obli-
gation (RB

2 ) since the latter clearly contradicts the structural constraint (RA
1 )



which, together with is-a constraint on luxury car rental, simply does not sup-
port more than one credit card. Therefore, for any luxury car rental the obligatory
cardinality constraint cannot be satisfied. The same conclusion is indeed inferred
by the implemented tool on Figure 5.

Fig. 5. The Graphical User Interface

8 Conclusion
In this paper we introduced a logical formalization of the Semantics of Business
Vocabulary and Rules standard (SBVR) by defining a first-order deontic-alethic
logic (FODAL) with its syntax, semantics and complete and sound axiomatiza-
tion, that captures the semantics of and interaction between business rules.

We also showed that satisfiability in FODAL logic may be reduced to a stan-
dard first-order satisfiability for a class of formulas restricted to atomic modal
sentences. Moreover, in order to establish a relationship with a standard logical
formalism, we defined a truth-preserving translation from a fragment of bimodal
FODAL into quantified monomodal logic QK, that can be used to facilitate the
transfer of decidability results from well-studied fragments of predicate modal
logics to FODAL.

Finally we presented the ORM2 reasoning tool which provides an automated
support for consistency checks of the conceptual model along with its translation
to OWL2 ontology. The main functionality of the tool is a consistency check of
a set of ALCQI-expressible deontic and alethic business rules. Another impor-
tant task supported by the tool is translation of the aforementioned fragment
of an ORM2 schema into an OWL2 ontology, which, however, does not sup-
port any modalities except necessity due to lack of notions representing deontic
constraints in OWL2.

The future research in the field of logical formalization of SBVR aims at
studying the problem of entailment with respect to possible interaction of alethic
and deontic modalities. Another future course of work includes defining an ap-
proach to translate an ORM2 schema with its alethic and deontic rules to SWRL
or some other extension of OWL2.
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