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1 Introduction

Harter’s 2-Poisson model of Information Retrieval is a univariate model of the raw term
frequencies, that does not condition the probabilities on document length [2]. A bivariate
stochastic model is thus introduced to extend Harter’s 2-Poisson model, by conditioning the
term frequencies of the document to the document length. We assume Harter’s hypothesis:
the higher the probability f(X = x|L = l) of the term frequency X = x is in a document
of length l, the more relevant that document is. The new generalization of the 2-Poisson
model has 5 parameters that are learned term by term through the EM algorithm over term
frequencies data.
We explore the following frameworks:

– We assume that the observation 〈x, l〉 is generated by a mixture of k Bivariate Poisson
(k-BP) distributions (with k ≥ 2) with or without some conditions on the form for the
marginal of the document length, that can reduce the complexity of the model. We here
reduce for the sake of simplicity to k = 2. In the case of the 2-BP we also assume the
hypothesis that the marginal distribution of l is a Poisson. The elite set is generated by
the BP of the mixture with higher value for the mean of term frequencies, λ1.

– The covariate variable Z3 of length and term frequency λ3 could be learned from co-
variance [3, page 103]. Instead, we here consider Z3 a latent random variable which is
learned by extending the EM algorithm in a standard way.

– Our plan is to compare the effectiveness of the bivariate 2-Poisson model with respect to
standard models of IR, and in particular with some additional baselines that are obtained
in our framework as follows:
• applying the Double Poisson Model, which is the 2-BP with the marginal distribu-

tions that are independent.
• Reducing to the univariate case (standard 2-Poisson model) by normalizing the term

frequency x to a smoothed value tfn. For example, we can use the Dirichlet smooth-
ing:

tfn =
x + µ · p̂
l + µ

· µ′

where µ and µ′ are parameters and p̂ is the term prior.



2 The Bivariate 2-Poisson distribution

In order to define the bivariate 2-Poisson model we need first to remind the definition of
a bivariate Poisson model, that can be introduced in several ways, for example as limit of a
bivariate binomial, as a convolution of three univariate Poisson distributions, as a compound-
ing of a Poisson with a bivariate binomial. We find that the trivariate reduction method of the
convolution more convenient to easily extend Harter’s 2-Poisson model to the bivariate case.
Let us consider the random variables Z1, Z2, Z3 distributed according to Poisson distribu-
tions P (λi), that is:

p(Zi = x|λi) = e−λi
λxi
x!

and the random variables X = Z1 + Z3 e Y = Z2 + Z3 distributed according to a bivariate
Poisson distribution, BP (Λ), where Λ = (λ1, λ2, λ3):

p(X = x, Y = y|Λ) = e−(λ1+λ2+λ3)
λx1
x!
λy2
y!

min(x,y)∑
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The corresponding marginal distributions turn out to be Poisson

p(X = x|Λ) =
∞∑
y=0

p(X = x, Y = y|Λ) = P(λ1 + λ3)

p(Y = y|Λ) =
∞∑
x=0

p(X = x, Y = y|Λ) = P(λ2 + λ3)

with covariance Cov(X,Y ) = λ3.
Let us now consider the mixture 2BP (Λ1, Λ2, α), where Λ1 = (λ1

1, λ
1
2, λ

1
3) and Λ2 =

(λ2
1, λ

2
2, λ

2
3), of two bivariate Poisson distributions

p(x, y|Λ1, Λ2, α) = α·BP(Λ1) + (1− α) · BP(Λ2)

The corresponding marginal distributions are 2-Poisson

p(x|Λ1, Λ2, α) = α · P(λ1
1 + λ1

3) + (1− α) · P(λ2
1 + λ2

3) = 2P(λ1
1 + λ1

3, λ
2
1 + λ2

3, α)

p(y|Λ1, Λ2, α) = α · P(λ1
2 + λ1

3) + (1− α) · P(λ2
2 + λ2

3) = 2P(λ1
2 + λ1

3, λ
2
2 + λ2

3, α)

In our case, we consider the random variables x, number of occurrences of the term in the
document, and L− = l − x, document length out of the term occurrences, and set X = x
and Y = L− = l − x (hence, Y could possibly be 0): as a consequence, we have x = X =
Z1 + Z3, L− = Y = Z2 + Z3, and l = X + Y = Z1 + Z2 + 2Z3.
Moreover, we want x to be distributed as a 2-Poisson and L− to be distributed as a Poisson.
By assuming λ1

2 = λ2
2 = λ2 and λ1

3 = λ2
3 = λ3 we obtain

p(x|Λ1, Λ2, α) = α · P(λ1
1 + λ3) + (1− α)·P(λ2

1 + λ3) = 2P(λ1
1 + λ3, λ

2
1 + λ3)

p(L−|Λ1, Λ2, α) = α · P(λ2 + λ3) + (1− α)·P(λ2 + λ3) = P(λ2 + λ3)



This implies that, apart fromα, we assume five latent variables in the model,Z1
1 , Z

2
1 , Z2, Z3,W

each Z is Poisson distributed with parameters λ1
1, λ

2
1, λ2, λ3 respectively and W is a binary

random variable Bernoulli distributed with parameter α. The resulting bivariate distribution
is

p(x, L−|Λ1, Λ2, α) = α · p1(x, L−|λ1, λ2, λ3) + (1− α) · p2(x, L−|λ2
1, λ2, λ3)

= α·BP(λ1
1, λ2, λ3) + (1− α) ·BP (λ2

1, λ2, λ3)

3 EM algorithm for the Bivariate Poisson

Given a set of observations X = {x1, . . . ,xn}, with xi = (xi, li), we wish to apply maxi-
mum likelihood to estimate the set of parametersΛ of a bivariate Poisson distribution p(x|Θ)
fitting such data. We wish to derive the value of Θ by maximizing the log-likelihood, that is
computing

Θ∗ = arg max
Θ

logL(Θ|X ) = arg max
Θ

log
n∏
i=1

p(xi|Θ)

In our case (see also [1]), we are interested to a mixture of 2 Bivariate Poisson with latent
variables Z1

1 , Z
2
1 , Z2, Z3, since with respect to the general case we have now Z1

2 = Z2
2 = Z2

and Z1
3 = Z2

3 = Z3. Then, for each observed pair of values xi = (xi, li), wi = 1 if xi is
generated by the first component, and wi = 2 if generated by the second one. Accordingly:

zi = (z1
i1, z

2
i1, zi2, zi3) are such that xi =

{
z1
i1 + zi3 if wi = 1
z2
i1 + zi3 if wi = 2

and li = zi2 + zi3

EM algorithm requires, in our case, to consider the complete dataset

(X ,Z) = {(x1, z1, w1) , . . . , (xn, zn, wn)}

and the set of parameters is Θ = Λ1 ∪ Λ2 ∪ {α}, with Λk =
{
λk1 , λ2, λ3

}
. Let also Λ =

Λ1 ∪ Λ2.

3.1 Maximization

Let us consider the k-th M-step for Θ. We can show the following estimates:

α(k) =
1
n

n∑
i=1

p
(k−1)
i where p(k−1)

i =
α(k−1)p(xi|Λk−1

1 )

α(k−1)p(xi|Λ(k−1)
1 ) + (1− α(k−1))p(xi|Λ(k−1)

2 )

and p is the Bivariate Poisson with parameters Λi, and
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where bjhi
(k)

= E[Zjh|W = j,xi, Λ
(k)] and bhi(k) = E[Zh|xi, Λ(k)] with h = 1, 2, 3.

3.2 Expectation

We can show that the expectations bj1i
(k)

and bhi(k) are:

b3i
(k) =

min (xi,li)∑
r=0

r · p(Z3 = r|xi, Λ) where Λ(k) = Λ
(k)
1 ∪ Λ(k)

2

=
min (xi,li)∑
r=0

r
(1− α)p(Z3 = r,xi|W = 2, Λ(k)) + αp(Z3 = r,xi|W = 1, Λ(k))

p(xi|Λ(k))

b11i
(k)

= E[X1|W = 1,xi]− E[Z3|W = 1,xi] = xi − b13i
(k)

b21i
(k)

= E[X|W = 2,xi, Λ(k)]− E[Z3|W = 2,xi, Λ(k)] = xi − b23i
(k)

b2i
(k) = E[Y |xi, Λ(k)]− E[Z3|xi, Λ(k)] = li − b3i(k)

where

p(Z3 = r,xi|W = j, Λ(k)) = P0(r|λ3
(k)) · P0(x− r|λj1

(k)
) · P0(l − r|λ2

(k))

and P0 is the univariate Poisson, p(xi|Λ(k)) is the mixture of the bivariate Poisson. Efficient
implementation of the bivariate Poisson through recursion can be found in [4].

4 Conclusions

We have implemented the EM algorithm for the univariate 2-Poisson and we are currently
extending the implementation to the bivariate case.
The implementation will be soon available together with the results of the experimentation
at the web site http://tinyurl.com/cfcm8ma.
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