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Relevance and importance are the main factors when humans build net-
work  connections.  We  propose  an  evolutionary  network  model  based
on  preferential  attachment  (PA)  considering  these  factors.  We  analyze
and  compute  several  important  features  of  the  network  class  generated
by  this  algorithm,  including  scale-free  degree  distribution,  high  cluster-
ing  coefficient,  small-world  property  and  core-periphery  structure.  We
then compare this model with other network models and empirical data
such as intercity road transportation and air traffic networks. 
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Introduction1.

Preferential attachment (PA) is the key ingredient in the growth/evolu-
tion of many scale-free social, biological and ecological networks. The
linking of new nodes to older nodes of highest degrees is essentially a
topological,  or  more  precisely,  a  graph-theoretical  algorithm  for  net-
work growth. It does not depend on the geographic/geometric proper-
ties of the nodes in the networks. At the other end of the spectrum of
networks,  there  are  geometric  ones  such  as  the  random  geographic
graphs (RGG) and the online nearest-neighbor graphs (ONGs). In the
case  of  the  ONGs,  the  algorithm  consists  of  randomly  (by  a  Poisson
process)  locating  a  new  node  within  a  compact  subset  of  some
Euclidean  space  and  then  linking  it  to  the  nearest  older  node.
Recently,  the  topological  PA  algorithm  has  been  modified  geometri-
cally  to  yield  a  family  of  so-called  geometric  preferential  attachment
networks.  The  geometric  or  metric  component  of  this  algorithm
forms  a  combination  with  varying  weights  to  the  topological  PA
component  [1],  where  the  location  of  a  new  node  remains  random
Poisson-like in the ONGs, and the linkages to older nodes are chosen
according  to  a  probability  distribution  that  depends  on  a  weighted
combination  of  the  degrees  of  the  older  nodes  and  their  distances
from  the  new  node  [2].  The  rigorous  analysis  of  the  geometric  PA
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networks  consisted  of  results  on  their  expected  degree  sequence  and
their  moments,  departures  from  the  ONGs  as  a  function  of  the  rela-
tive  weighting  of  the  metric  component  versus  the  topological  PA
component, ultimately leading to a phase transition. The introduction
of  the  geometric  PA  networks  by  [2]  and  their  proofs  of  convergence
to the power-law degrees distribution under certain conditions on the
strength of the metric component depended on a parameter α > 0 that
controlled the presence of self-loops. Their results on the small-world
property,  and  the  existence  of  small  separators,  were  obtained  under
similar  conditions.  Jordan  [1]  provided  proofs  in  the  α  0  case.
Partly  due  to  the  technical  difficulty  in  the  proofs  of  these  results  for
the  family  of  geometric  PA  networks,  and  also  due  to  their  depen-
dence  on  certain  unnatural  conditions  in  parameters,  we  are  moti-
vated  to  seek  a  precise  modification  to  that  family  of  algorithms  for
generating  random  social  networks,  which  would  yield  an  algorithm
(RIPA)  that  is  substantially  simpler  to  analyze  and  of  equal  if  not
greater utility to the understanding of social networks. The main aim
of  this  paper  is  to  show  that  such  modifications  exist  and  are  simply
prescribed by adding a metric component to the first stage of the algo-
rithms—instead  of  the  random  Poisson  process,  the  location  x  of  the
new  node  is  chosen  in  a  compact  subset  of  a  metric  space  according
to a probability distribution that depends only on the centrality of the
new site x relative to the older nodes. Details and a formal definition
of the centrality measure in terms of the same metric as in the second
stage of the algorithm for the linkages to the older nodes will be given
in the following.

There  is  another  reason  for  us  to  invent  this  modified  model,  in
which  the  probability  measure  of  the  emergence  of  a  new  node  is
adaptive  to  the  current  network  state.  In  many  real-world  networks,
it is more reasonable to consider the new node as the offspring of the
old  nodes  than  as  spontaneous growth  in  the  blank  space.  For  exam-
ple,  an  influential  research  article  may  trigger  many  relevant  articles,
while  the  opposite  case,  a  new  article  not  motivated  by  any  previous
research, is very rare. Following this philosophy, we assume the prob-
ability measure of the emergence of a new node at a specific location
is  proportional  to  the  superposition  of  the  influences  of  all  previous
nodes  at  that  point.  This  assumption  leads  to  an  equivalent  presenta-
tion of our model described in Section 7, the RIIP model. 

For many complex networks in society, it is arguable that relevance
and importance are two of the main factors influencing how new net-
work connections are formed in existing dynamic networks. One typi-
cal  scenario  is  in  scientific  research  and  the  publication  process.  In
choosing  references,  authors  are  more  likely  to  cite  articles  with  high
impact  (importance)  and  also  those  using  similar  methods  or  dis-
cussing  relevant  issues  (relevance).  Another  example  is  in  the  design
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and organic growth of intercity transportation networks. Traffic engi-
neers  and  city  designers  prefer  to  connect  a  given  city  to  big  cities
with  high  connectivity  (importance)  but  also  want  to  reduce  the
expense  by  giving  priority  to  the  connections  between  nearby  cities
(relevance).  Complex  networks  involving  both  relevance  and  impor-
tance also include aspects of the World Wide Web (WWW) and many
social networks. An interesting and ironic point is that people are still
striving  to  understand  the  properties  of  these  complex  networks,
which are largely manmade. As a related point, we emphasize that the
network  evolutions  studied  here  are  governed  by  a  distributed  deci-
sion-making system rather than centrally organized. For each agent in
the networks that makes local decisions, the rule of adding or deleting
links  may  be  simple  and  clear.  Intuitively,  the  complexity  of  the  net-
works  arises  from  some  other  reasons,  such  as  cooperative  and  bulk
properties of large systems consisting of many similar subunits. While
this  complexity  is  not  explicit  in  the  local  design  rules  and  is  often
beyond  the  total  control  of  the  network  designers,  human  society
nonetheless  seeks  to  understand  and  manage  this  complexity.  Hence,
the  current  scientific  and  technological  interests  in  studying  the  ori-
gins  and  properties  of  these  dynamic  complex  systems.  In  this  paper,
we  study  systematically  one  of  the  origins  of  this  complexity—an
underlying  metric  space  defining  the  relevance  structure,  which  we
will introduce and discuss in detail later. 

In the past few decades, several evolutionary network models have
been proposed with respect to one or both of the two factors, impor-
tance  and  relevance.  For  importance  alone,  the  most  famous  model
was invented by Barabasi, known as the BA network model [3] or the
“preferential  attachment”  (PA)  algorithm.  The  standard  preferential
attachment  starts  with  a  network  with  N0  vertices  and  m0  edges.  A

new vertex is successively added and attached to m < N0  pre-existing

vertices.  The  probability  of  attaching  to  a  vertex  i  is  proportional  to
its  degree  ki.  This  algorithm  generates  the  network  with  power-law

degree  distribution  pk ~ k-γ  with  γ  3.  There  are  many  variations

of  the  PA  algorithm  in  the  literature  [4–6],  all  of  which  have  similar
complexity and other values of γ. The rigorous network algorithms in
[2] generate networks in a wide range of γ values by varying the rele-
vant parameters δ and α. 

There  are  also  well-known  network  models  based  purely  on  the
notion  of  relevance.  The  simplest  evolutionary  network  model  based
on relevance is the random geometric graph (RGG). In this model, we
successively add vertices at random locations in a unit square and link
each  new  vertex  to  all  the  nearby  vertices  within  a  given  radius  r.
Here  the  relevance  is  measured  by  the  geometric  distance.  Another
model  based  on  the  notion  of  relevance  is  given  in  [7],  in  which  the
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relevance  is  determined  by  a  hierarchical  structure  and  tree  distance.
In  these  models,  a  natural  way  to  measure  relevance  is  through  an
underlying  metric  space.  We  will  show  later  in  this  paper  how  this
metric  space  affects  the  global  properties  of  the  network.  Briefly,  due
to  the  triangle  inequality  in  metric  spaces,  the  corresponding  rele-
vance relationship satisfies the following important property: the rele-
vance of any two objects or nodes has a lower bound that is a simple
function  of  the  pair  of  relevance  values  between  these  objects  and  a
third  one.  Therefore,  network  models  based  on  the  notion  of  rele-
vance  should  have  high  clustering  coefficients.  Another  way  of  think-
ing  about  the  notion  of  relevance  in  complex  networks  is  to  use
geometric embedding [8–10], which is not to provide an evolutionary
model  but  to  find  the  most  suitable  underlying  metric  space  for  the
known network. We will not dwell on this here. 

In this paper, we propose an evolutionary network model that con-
tains  a  specific  modification  to  the  geometric  preferential  attachment
models in [1, 2]. Like these models, the probability of links between a
new node and the older nodes depends on the product of the degrees
of  older  nodes  and  a  geometric  factor  that  depends  on  their  distance
under  a  given  metric.  Unlike  these  models,  the  placement  of  the  new
node is not uniformly random, but is rather based on a natural proba-
bility  measure  on  the  metric  space  defined  by  a  local  partition  func-
tion  that  is  weighted  by  the  degrees  of  older  nodes  and  the  same
metric  as  in  the  attachment  phase.  Next,  we  will  introduce  our  rele-
vance and importance preferential attachment (RIPA) model given by
an evolution process, analyze several network properties and compare
this model with other network models and some empirical data. 

Model2.

In this section, we describe the algorithm called relevance and impor-
tance  preferential  attachment  (RIPA),  which  generates  a  class  of
complex  networks.  The  RIPA,  like  the  classical  preferential  attach-
ment,  starts  with  a  initial  connected  graph  G0  {V0, E0, X0},  with

n0  nodes and m0  edges. V0  is the set of nodes, E0  is the set of edges,

and  X0  is  the  sequence  of  the  locations  of  the  nodes  in  the  metric

space Ω. The distance between two points x, y ∈ Ω is given by d(x, y).
We introduce the relevance ρ(x, y) as a non-increasing function of the
distance d(x, y),

ρ(x, y)  fd(x, y),

satisfying f0  1, f(∞)  0, f(r) ∈ 0, 1 for all r > 0. A typical exam-

ple  is  f(r)  e-r.  f(r)  can  also  have  a  power-law  tail,  for  example,
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f(r)  min1, r-β with β > 0. In each time step, we add one new node

to the graph and have the new node attach to the old nodes m times.
The graph at time step n (after the attachment) is Gn  {Vn, En, Xn}.

At  the  nth  step,  the  index  of  the  new  node  is  j  n + n0.  The  location

of the node j, xj  is randomly picked following the probability measure

μn(x)  on  Ω.  μn(x)  is  adaptive  to  the  previous  graph  Gn-1.  Then  we

select  m  old  nodes  denoted  by  Wn, 1, … , Wn,m ∈ Vn-1  and  attach

the  node  j  to  these  nodes.  The  selections  of  nodes  Wn, v  are  indepen-

dent, so multi-links (i.e., Wn, v Wn, u  for 1 ≤ v ≠ u ≤ m) are possible

and  allowed,  but  self-loops  are  prohibited.  For  given  v,  we  select  the
old node i as Wn, v by probability 

Πij 
ki, n-1 + qρij

zn-1xj
.

Here ki, n denotes the degree of node i in Gn; ρij is the shortening of

ρxi, xj. The probability Πij  is proportional to the degree of i in Gn-1

plus  a  constant  q ∈ (-m, ∞)  and  the  relevance  between  i  and  j.

zn-1xj  is  the  normalization  constant.  Since  ∑i Πij  1,  we  define  the

local partition function zn(x) by 

zn(x)  
i1

n+n0

ki, n + qρ(xi, x).

The summation here goes over all nodes in Gn. A location x ∈ Ω with

higher  local  partition  zn-1(x)  has  more  overall  relevance  to  the  old

nodes in Gn-1, therefore may attract more interest of a new node. So

we  suggest  μn(x),  the  probability  measure  of  the  location  of  node

i  n0 + n, is proportional to zn-1(x),

μn(x) 
zn-1(x)

Zn-1

,

where Zn is the global partition function of Gn:

Zn
Ω

zn(x)dx  
Ω

j1

n0+n

kj, n + qρxj, xdx

 
j1

n0+n

kj, n + qCxj.

Here  C(x)  ∫Ω
ρ(x, x′)dx′  is  the  centrality  of  x,  which  measures  the

total  influence  of  any  one  degree  node  at  x  on  the  whole  space.  The
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centrality  actually  gives  the  “importance”  of  a  location  in  the  metric
space Ω instead of the importance of a node in Gn. In the scenario of

between-city  transportation,  centrality  measures  the  physical  geo-
graphical transportation condition of a location. In the scenario of sci-
entific  research,  a  research  topic  with  high  centrality  means  it  is  a
bridge between many other fields and therefore is important by itself,
regardless  of  how  it  is  recognized  by  citations.  Homogeneous  metric
spaces  have  constant  centrality  C(x) ≡ C.  Examples  are:  (1)  unit
square  or  cube  with  periodic  boundary  condition;  (2)  n-sphere  in
n + 1  dimensional  space;  and  (3)  n-dimensional  binary  vector  space
with metric induced by the L1 norm.

In a metric space with constant centrality C, we further have 

Zn  (Kn + (n0 + n)q)C  2m + qn + 2m0 + n0qC,

where Kn  ∑j1
n0+n kj,n  2(m0 +mn) is the total number of degrees in

the network.
We summarize the algorithm of RIPA as follows:

Begin with a initial graph G0. 1.

For n  1 to N:2.

Add  a  new  node  j  at  the  location  x  with  probability

μn(x)  zn-1(x)  Zn-1. 

(a)

Attach  j  to  the  old  node  i  with  probability

Πij  ki, n-1 + qρij  zn-1xj and repeat m times. 

(b)

Growth Rate of Degree2.1

For  the  node  i,  the  expected  increment  of  degree  at  time  step  n  is
given by

Eki, n - ki, n-1 Gn-1

 
Ω

Eki, n - ki, n-1 Gn-1, xj  xμn(x)dx

 
Ω

E 
v1

m

Wn, v  i Gn-1, xj  x μn(x)dx

 
Ω

mΠijμnxjdxj

 
Ω

m
ki, n-1 + qρij

zn-1xj

zn-1xj

Zn-1

dxj

 m
ki, n-1 + qC(xi)

Zn-1

.
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The  preceding  equation  shows  that  the  degree  of  a  node  grows  at
an expected speed proportional to the current degree, which is exactly
the  relation  we  have  in  the  classical  preferential  attachment.
Therefore,  we  expect  the  RIPA  to  have  the  same  asymptotic  degree
distribution. 

Asymptotic Behavior of zn(x)2.2

To analyze the asymptotic behavior of zn(x), we require that the met-

ric  space  Ω  be  bounded,  that  is,  supx, y∈Ωd(x, y)  exists.  In  bounded

metric  spaces,  we  show  inf zn(x) ~ O(n).  But  in  unbounded  metric

spaces like n, with probability 1, we have inf zn(x)  0.

Lemma 1. In  bounded  metric  space  Ω  with  constant  centrality  C,
zn(x) ~ O(n)  uniformly  as  n → ∞;  that  is,  there  exist  positive  con-

stants C1, C2, N independent of x such that when n ≥ N, for ∀ x ∈ Ω,

C1 ≤ zn(x)  n ≤ C2. 

Proof.  Ω  is  bounded,  so  dmax  supx, y∈Ωd(x, y),  and

ρ(x, y) ≥ ρ0  fdmax > 0. Combined with ρ(x, y) ≤ 1, we have 

2(mn +m0) ≥ zn(x)  
i1

n+n0

ki, n + qρ(xi, x) ≥ 2(mn +m0)ρ0.

Therefore C1  2mρ0, C2  2m + ϵ, ϵ > 0 is arbitrarily small.

When the centrality is constant C, the expected change of the local
partition comes from two parts: the growth of degree of the old nodes
and the new node j, 

Ezn(x) - zn-1(x) Gn-1

 
i1

n0+n-1

Eki, n - ki, n-1 Gn-1ρ(xi, x) +Ekj,n + qρxj, x Gn-1

 
i1

n0+n-1

m
ki, n-1 + qC

Zn-1

ρ(xi, x) + (m + q)
Ω

ρxj, x
zn-1xj

Zn-1

dxj


m

Zn-1

Czn-1(x) +
m + q

Zn-1

Ω

zn-1(x
′)ρ(x′, x)dx′


1

n +
2m0+n0q

2m+q

zn-1(x) +
(m + q)

2m + qn + 2m0 + n0q
zn-1(x) - zn-1(x),

where  zn(x)  1 C∫Ωzn(x
′)ρ(x′, x)dx′,  is  the  average  of  zn(y)

weighted by ρ(x, y). The last line of the preceding equation shows the
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asymptotic behavior of E[zn(x)]. When n → ∞, the first term indicates

a linear growth of E[zn(x)] with respect to n; the second term is a dif-

fusion  term  that  makes  zn(x)  get  close  to  its  global  average  Zn  S.

S  ∫Ω
dx is the volume of the whole space.

We further consider 

E
zn+1(x)

n + 1
-
zn(x)

n
Gn


1

n + 1
Ezn+1(x) - zn(x) Gn +

1

n + 1
-

1

n
zn(x)


n(m + q)

n + 12m + qn + 1 + 2m0 + n0q
zn(x) / n - zn(x) / n +O

1

n2
.

Taking  the  expectation, let un(x)  E[zn(x) / n], un(x)  Ezn(x) / n;

we have

un+1(x) - un(x)  ηnun(x) - un(x) +O
1

n2
,

where ηn ~ O1  n.

Neglecting  the  O1  n2  term,  the  equation  shows  that  un(x)  con-

verges  to  a  fixed  point  u(x)  u0.  Using  the  perturbation  method,  we

obtain  un(x)  u0 +O1  n,  and  zn(x)  nu0 +O1.  Since

∫Ω
zn(x)dx  Zn  2m + qCn, we conclude 

zn(x) 
2m + qC

S
n +O1.□

Degree Distribution3.

In  this  section,  we  investigate  the  degree  distribution  of  the  RIPA
model.  We  follow  the  approach  in  [1]  and  use  Lemma  2  proved
in [1]: 

Lemma 2. For n ∈ ℕ, let xn, yn, ηn, rn be real numbers such that

xn+1 - xn  ηn(yn - xn) + rn

and 

◼ lim
n→∞

yn  x 

◼ ηn > 0 and lim sup
n→∞

ηn < 1 
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◼ ∑n1
∞ ηn  ∞ 

◼ lim
n→∞

rn / ηn  0; 

then xn → x as n → ∞.

Then we prove our main theorem about the degree distribution. 

Theorem 1. In  bounded  metric  space  Ω  with  constant  centrality,  as
n → ∞, the expected fraction of nodes with degree d:

αd, n →
2 +

q
m

m + q + 2 +
q
m

Γd + qΓm + 3 + q + q
m


Γ(m + q)Γd + 3 + q + q
m

.

Proof.  The  probability  for  the  new  node  j  n0 + n + 1  attaching  to

node i exactly k times is 

Pki, n+1 - ki, n  k Gn 


Ω

 m 

 k 

ki, n + qρ(xi, x)

zn(x)

k

1 -
ki, n + qρ(xi, x)

zn(x)

m-k
zn(x)

Zn

dx.

We  denote  the  number  of  nodes  with  degree  d  at  time  n  (after
attachment)  by  Ad, n,  which  has  a  recursive  relation.  In  the  following

derivations,  we  use  ρ, zn  as  the  shortenings  of  ρ(xi, x), zn(x),

respectively: 

EAd, n+1 Gn 


k0

m

Ad-k, n
 m 

 k 


Ω

d - k + qρ

zn

k

1 -
d - k + qρ

zn

m-k zn

Zn

dx + 1{dm}.

A

d, n  Ad, n  (n + n0) is the fraction of nodes with degree d at time n.

Let d′  d + q, 

EA

d, n+1 Gn -A


d, n 

n + n0

n + n0 + 1

Ω

1 -
d′ρ

zn

m zn

Zn

dx - 1 A

d, n

+
n + n0

n + n0 + 1
m

Ω

d′ - 1ρ

zn
1 -

d′ - 1ρ

zn

m-1 zn

Zn

dx A

d-1, n

+
n + n0

n + n0 + 1

 m 

 2 


Ω

d′ - 2ρ

zn

2

1 -
d′ - 2ρ

zn

m-2 zn

Zn

dx A

d-1, n

+⋯ +
1

n + n0 + 1
1{dm}.
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Let αd, n  E[A

d, n+1];  the  expectation  of  the  preceding  equation

gives 

αd, n+1 - αd, n 
n + n0

n + n0 + 1

Ω

1 -
d′ρ

zn

m zn

Zn

dx - 1 αd, n

+
n + n0

n + n0 + 1
m

Ω

d′ - 1ρ

zn
1 -

d′ - 1ρ

zn

m-1 zn

Zn

dx αd-1, n

+
n + n0

n + n0 + 1

 m 

 2 


Ω

d′ - 2ρ

zn

2

1 -
d′ - 2ρ

zn

m-2 zn

Zn

dx αd-1, n

+⋯ +
1

n + n0 + 1
1{dm}.

Since zn ~ O(n) and ρ ≤ 1, for fixed d, dρ  z ~ O1  n uniformly.

For the first term 

n + n0

n + n0 + 1

Ω

1 -
d′ρ

zn

m zn

Zn

dx - 
Ω

zn

Zn

dx αd, n


αd, n

n + n0 + 1

Ω

(n + n0) 1 -
d′ρ

zn

m

- n + n0 + 1
zn

Zn

dx


-αd, n

n + n0 + 1

Ω

(n + n0)m
d′ρ

zn
+ 1 +O

1

n

zn

Zn

dx


-αd, n

n + n0 + 1

(n + n0)md + q

2nm + 2m0 + nq + n0q
+ 1 +O

1

n2
.

The second term: 

n + n0

n + n0 + 1
mαd-1, n

Ω

d′ - 1ρ

zn
+O

1

n2

zn

Z
dx 

(n + n0)md + q - 1  n + n0 + 12nm + 2m0 + nq + n0q

⨯ αd-1, n +O
1

n2
.

The third to the m + 1th  terms only involve higher-order terms of

dρzn, hence are no greater than O1  n2. 

For  the  d < m  case,  only  the  nodes  in  the  initial  graph  can  have

degree d. So αd, n ≤ n0 / (n0 + n) ~ O1  n → 0. 

For  the  d  m  case,  the  second  term  corresponds  to  the  degree

m - 1 and has the order O1  n2:
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αm,n+1 - αm,n 
-αm,n

n + n0 + 1

(n + n0)m(m + q)

2nm + 2m0 + nq + n0q
+ 1

+
1

n + n0 + 1
+O

1

n2


1

n + n0 + 1

m + q + 2 +
q
m

2 +
q
m

2 +
q
m

m + q + 2 +
q
m

- αm,n

+O
1

n2
.

According to Lemma 2, when n → ∞, we have 

αm,n →
2 +

q
m

m + q + 2 +
q
m

.

For the d > m case, let cn  2nm + 2m0 + nq + n0q; we have 

αd, n+1 - αd, n 

(n + n0)md + q + cn

n + n0 + 1cn

(n + n0)md + q - 1

(n + n0)md + q + cn
αd-1, n - αd, n +O

1

n2
.

Invoking Lemma 2 again, we have 

αd, n →
d + q - 1

d + q + 2 +
q
m

αd-1, n,

and

αd, n →
2 +

q
m

m + q + 2 +
q
m


lm+1

d l + q - 1

l + q + 2 +
q
m


2 +

q
m

m + q + 2 +
q
m

Γd + qΓm + 3 + q + q
m


Γ(m + q)Γd + 3 + q + q
m

.

Particularly, when q  0, we have 

αd, n →
2mm + 1

dd + 1d + 2
.□

Edge Length Distribution4.

In this section, we discuss the length of a randomly picked edge. This
is  a  very  important  property  for  all  the  geometrically  embedded
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networks. We define the shell volume integral

σl, x  
Ω

1{d(x, x′)l}dx
′.

In  spaces  where  σl, x  does  not  depend  on  x,  we  use  the  notation

σl  σl, x.

Theorem 2. In the space Ω, C(x)  C, σl, x  σ(x), l0  is the length of

an  edge  randomly  picked  from  En.  Then  the  distribution  of  l0  con-

verges to flσl C as n → ∞.

Proof. {i, j} is an edge randomly picked from En\E0, and by this nota-

tion,  we  always  assume  i < j.  One  way  to  pick  the  edge  {i, j}  with
equal  probability  is  to  randomly  pick  two  integers  s, v  satisfying
1 ≤ s ≤ n  and  1 ≤ v ≤ m,  so  that  j  is  the  node  added  to  Gn  at  time

step  s,  and  j  attaches  to  i  by  the  vth  attachment;  that  is,  Ws, v  i.

Then  lij(s, v),  the  length  of  {i, j}  with  specific  choices  of  i, s, v.  Note

that i < j  n0 + s, so xi, ki is known at Gs-1: 

li,j(s, v)  l Gs-1, Ws,v  i


Ws,v  i, l(s, v)  l Gs-1

Ws,v  i Gs-1


∫Ω

ki,s-1ρxi,xj

zs-1xj

zs-1xj

Zs-1
1li,j(s,v)l

dxj

∫Ω
ki,s-1ρxi,xj

zs-1xj

zs-1xj

Zs-1
dxj


flσl, xi

C(xi)
.

In the space Ω, σl, x and C(x) do not depend on x, so we have 

li,j(s, v)  l Gs-1, j  n0 + s, i Ws,v 
flσl

C
.

This probability distribution is independent of the choices of i, s, v, so
the  length  of  a  random  edge  {i, j} ∈ En\E0  with  random  parameters

i, s, v also follows flσl C. Assuming l0 is the length of an edge ran-

domly picked from En, since the size of E0  is fixed as n → ∞, the dis-

tribution of l0 converges to flσl C for large n. □

According  to  Theorem  2,  we  observe  a  phase  transition,  which  is
also mentioned in a similar case by [11]. For the large l, the behavior
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of fl  changes  from  a  power  law fl ~ l-γ  to  exponential  decay;  the

phase  transition  happens  at  γ  dim - 1,  where  dim  is  the  dimension
of  the  space.  When  γ ≤ dim - 1,  the  average  edge  length  grows  to
infinity  as  the  space  extends  to  infinity,  while,  when  γ > dim - 1,  the
average edge length converges to a constant. 

Clustering Coefficient5.

In  this  section,  we  show  that  the  clustering  coefficient  of  the  RIPA
model  is  significantly  higher  than  non-geometric  models  like  the  BA
network  model.  First,  we  prove  a  slightly  different  version  of  Theo-
rem 2, considering the relative location of two neighboring nodes.

Theorem 3. For  given  node  i,  j  is  a  node  randomly  picked  from  the
younger neighbors of i; that is, j > i and {i, j} ∈ En\E0. As n → ∞, the

probability measure of xj converges by the L1 norm, 

μixj  x j → i →
ρ(x, xi)

C(xi)
,

where j → i denotes the event that the node j attaches to the node i at
least once.

Proof. We first consider this probability measure of xj  under the con-

dition that j  n0 + s: 

μixj  x Gs-1, j → i, j  n0 + s


μixj  x, j → i Gs-1, j  n0 + s

μij → i Gs-1, j  n0 + s

 
Ω

1 - 1 -
ki,s-1ρ(xi, x

′)

zs-1(x
′)

m zs-1(x
′)

Zs-1

δ(x - x′)dx′ 


Ω

1 - 1 -
ki,s-1ρ(xi, x

′)

zs-1(x
′)

m zs-1(x
′)

Zs-1

dx′


ρ(xi, x)

C(xi)
+O

1

s
.

For arbitrarily small ϵ > 0, there exists a large enough N such that
for n > N, 

μixj  x Gs-1, j → i, j  n0 + s -
ρ(x, xi)

C(xi)
L1

< ϵ.
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Consider  the  expectation  of μixj  x Gs-1, j → i, j  n0 + s  over

all possible j > N; we have 

μixj  x GN, j → i, j > N -
ρ(x, xi)

C(xi)
L1

< ϵ.

As  n → ∞,  the  node  i  will  be  attached  to  by  younger  nodes  infinite
times. Therefore

μixj  x GN, j → i, j > N - μixj  x j → iL1

is also arbitrarily small. So we prove 

μixj  x j → i →
ρ(xi, x)

C(xi)

by the L1 norm. □

Theorem  3  shows  a  distinct  feature  of  the  RIPA  model.  It  works
even  for  the  metric  spaces  with  nonuniform  C(x).  Consider  the  sub-

graph  Hi, sn
 Vi, sn

, Ei, sn
, Xi, sn

,  which  consists  of  the  node  i  and  all

its younger neighbors, that is, 

Vi, sn
 {i}⋂ j n0 + 1 ≤ j ≤ n0 + n, j > i.

sn is the number of nodes in Hi, sn
 and acts as the time variable for the

subgraph.  According  to  Theorem  3,  for  large  enough  sn,  we  can

simulate  the  evolution  of  the  subgraph  Hi,sn
 without  knowing  any

information  about  the  other  parts  of  the  network.  This  property  of
localization brings a lot of convenience in analysis.

The classical definition of a clustering coefficient is 

cGn 
3⨯number of triangles

number of wedges
.

A wedge is three nodes i, j, k linked as i - j - k with i, k either linked
or unlinked. This definition is equivalent to

cGn   a randomly picked wedge belongs to a triangle.

We  denote  the  set  of  all  wedges  in  Gn  by  Wn,  and  the  set  of  wedges

containing  at  least  one  edge  from  E0  by  Wn
0.  Obviously

Wn
0  Wn → 0,  as  n → ∞.  So  for  large  n,  we  only  consider  the

wedges  randomly  picked  from  Wn
′ Wn\Wn

0.  Regarding  the  order  of

the  three  nodes,  there  are  three  types  of  wedges  in  Wn
′ .  Assuming

i < j < k,  the  three  types  of  wedges  are:  (1)  j - i - k,  (2)  i - j - k,  (3)
i - k - j.
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We first analyze the type (1) j - i - k case. Define 

wi(x) 
ρ(xi, x)

C(xi)
.

Under the condition that j, k both attach to i, the probability mea-
sures of xj, xk are 

μj(x)  wi(x) +O
1

j

and

μk(x)  wi(x) +O
1

k
,

respectively.  Note  that  the  dependence  of  xk  on  xj  has  already  been

counted  in  the  error  term  O1  k.  The  probability  for  a  randomly

picked  type  (1)  wedge  to  belong  to  a  triangle  is,  at  time  step
n  k - n0,

i → j Gn-1, k → i, j → i

  
Ω2
1 - 1 -

ki, n-1 + qρxj, xk

zn-1(xk)

m

dμjxjdμk(xk)

 ki, n-1 + qm 
Ω2

ρxj, xk

zn-1(xk)

+O
1

n2
d wixj +O

1

j
d wi(xk) +O

1

k

 ki, n-1 + qm 1 +O
1

j
 

Ω2

ρxj, xk

Zn-1

S
+O1

dwixjdwi(xk)


ki, n-1 + qmS

Zn-1

1 +O
1

j
 

Ω2
ρxj, xkdwixjdwi(xk).

For  the  classical  preferential  attachment,  the  probability  for  the
same event is

′i → j Gn-1, k → i, j → i 
ki, n-1 + qm

Kn-1 + n + n0 - 1q
1 +O

1

n
.

With C(x) ≡ C, we calculate the ratio of these two probabilities: 

i → j Gn-1, k → i, j → i

′i → j Gn-1, k → i, j → i
~
ρ1

ρ0

,
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where ρ0  C  S and

ρ1   
Ω2
ρxj, xkdwixjdwi(xk).

Next,  we  give  a  heuristic  argument  to  show  ρ1 ≫ ρ0  in  most  cases.

Consider  l0  is  the  distance  between  two  independent  random  loca-

tions  with  uniform  distribution,  and  l1  is  the  distance  between  two

independent random locations with distribution

wi(x) 
ρ(xi, x)

C(xi)
.

Because  ρ0  Efl0  and  ρ1  Efl1,  we  estimate  ρ0  and  ρ1  by

ρ0 ~ fEl0  and  ρ1 ~ fEl1.  El0  is  the  typical  length  scale  of  the

whole  metric  space.  El1  is  the  typical  length  scale  of  the  neighbor-

hood  of  a  node  containing  most  of  its  neighbors.  For  most  of  the
location-based real-world networks, there is a local-global scale sepa-

ration;  that  is,  El1 ≪ El0,  which  leads  to  ρ1 ≫ ρ0.  The  opposite

case,  El1 ~ El0,  actually  implies  that  the  effect  of  location  is  not

significant on the network topology.
The  type  (2)  i - j - k  case  is  similar  to  the  type  (1)  case,  given  that

the  space  Ω  is  isotropic.  In  isotropic  spaces,  the  relative  locations
xi - xj  and  xj - xi  have  the  same  probability  distribution.  Then  in  the

probability condition, we can replace the event i → j by j → i. 
Finally,  we  analyze  the  type  (3)  i - k - j  case.  When  the  node  k  is

added  to  the  graph  and  attaches  to  the  old  nodes  m  times,  it  always

brings  exactly  mm - 1  2  number  of  type  (3)  wedges.  At  the  same

time,  with  probability  1,  it  brings  at  least  m2
 number  of  type  (1)  or

(2)  wedges.  So  the  fraction  of  type  (3)  wedges  in  Wn
′

 is  at  most  1  3

for large n. Therefore we conclude, for large n, 

cGn ≥
2ρ1

3ρ0
cGPA(n)

where  GPA(n)  is  the  network  generated  by  the  classical  preferential

attachment by time step n started with the same initial graph G0.

Average Path Length6.

In  the  area  of  complex  networks,  we  say  a  network  is  a  “small
world”  if  the  average  path  length  of  two  arbitrary  nodes  in  the  net-

work  is  no  more  than  the  order Oln(N)  as  the  network  size  N
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grows.  There  are  two  different  large  N  limits  of  a  geometrically
embedded  network  model.  One  is  the  non-extensive  limit,  for  which
the  metric  space  stays  the  same  and  the  density  of  nodes  increases  to
infinity.  The  other  is  the  extensive  limit,  for  which  the  density  of
nodes  stays  the  same  and  the  metric  space  extends  to  infinity.  In  the
latter case, an equivalent way is to keep the metric space the same and
rescale the metric. For instance, on the unit square, the metric d(x, y)

should be rescaled as dN(x, y)  N d(x, y), so that the average den-

sity of nodes stays constant as N grows. 
According  to  Figure  1,  the  RIPA  under  a  non-extensive  limit  is

always  a  small  world.  The  average  path  length  even  lightly  decays  as
N grows. This observation can be interpreted as: the transportation in
a fixed area becomes more convenient when you have more choices of
transition  points.  We  also  observe  that  the  RIPA  under  an  extensive
limit  is  a  small  world  when  the  relevance  function  f  has  the  power-

law  decay  (fd  d-2),  but  is  not  when  f  has  a  exponential  decay

(fd  e-λd). From the physics aspect, the two relevance functions are

analogs  of  long-range  and  short-range  correlations.  The  RIPA  net-
work  is  a  small  world  when  the  relevance  function  represents  a  long-
range correlation. 

Figure 1. Average  path  length  L  in  the  RIPA  network  as  network  size N
grows. Red plots are for the RIPA under the non-extensive large N limit. Blue
and  green  plots  are  for  the  RIPA  under  the  extensive  large  N  limit.  The  blue
plot  is  for  the  relevance  function  with  power-law  decay;  the  green  one  is  for
the relevance function with exponential decay.

The  following  theorem  gives  a  criterion  for  the  RIPA  network  in
two-dimensional space that is not a small world. 
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Theorem 4. The network is not a small-world network if the

lim
a→∞

a2
La

∞

Lf(L)dL  0. (1)

Proof.  First,  we  show  that  the  probability  distribution  p(L)  of  L,  the
length  of  the  links,  is  proportional  to  Lf(L).  For  a  fixed  vertex  i  at
location  xi  at  an  arbitrary  time  step,  consider  the  length  of  the  next

link  attached  to  it.  Ignoring  the  boundary  effect  of  the  two-dimen-

sional  space  (for  unit  square  it  means  L < 1  2),  the  probability  that

the  new  vertex  j  appears  at  xj,  which  is  apart  from  xi  with  the  dis-

tance L and attaches to the vertex i, is 


R(xi,L)

zxj

Z

kiρxi, xj

zxj
dxj  

R(xi,L)

kif(L)

Z
dxj ~ Lf(L)

where  R(xi, L)  is  the  circle  centered  at  xi  with  radius  L.  Since  for  all

of  the  pre-existing  vertices,  the  distribution  of  the  length  of  the  next
new  link  is  the  same,  so  is  the  overall  length  distribution  of  the  next
new  link  at  an  arbitrary  time  step.  So  except  for  the  m0  initial  links,

which  can  be  neglected  in  the  large  N  limit,  the  length  distribution
p(L) is proportional to Lf(L).

Then  we  divide  the  two-dimensional  space  into  blocks  with  edge
length  a.  In  the  extensive  large  N  limit,  the  density  of  vertices  ρ0
remains  constant,  so  the  expected  number  of  links  that  are  attached
to the given block and longer than a is 

ρ0a
2

La

∞

Lf(L)dL.

If equation (1) holds, for big enough a, the probability of finding a
link  longer  than  a  in  a  given  block  can  be  controlled  by  arbitrarily
small  ϵ > 0;  that  is,  with  probability  1 - ϵ,  one  can  only  move  to  its
neighboring blocks by one step along the path. Therefore, the shortest
path  length  between  two  vertices  with  distance  D  has  a  lower  bound

of D / a1 - ϵ
D/a, which obviously is not a small world. A similar crite-

rion is easy to establish for Rn
 space. □

Equivalent Model: The Invitation Process7.

In  this  section,  we  propose  an  equivalent  model  of  RIPA  called  the
relevance and importance invitation process (RIIP). The RIIP model is
much faster than RIPA as a computer algorithm and is useful in ana-
lyzing  some  important  network  properties,  especially  the  degree-
degree correlation. The algorithm of RIIP is described as follows: 
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Begin with an initial graph G0. 1.

For n  1 to N:2.

Pick  a  node i  as  the  generator  with  probability

ki, n-1 + qC(xi)  Zn-1. 

(a)

Locate  the  new  node  j  at  location  x  with  probability  ρ(x, xi)  C(xi),

and attach j to i. 

(b)

Attach  j  to  preexisting  nodes  for  m - 1  independent  times  with

probability Πij  ki, n-1 + qρij  zn-1xj.

(c)

The  notations  like  Zn,  zn(x)  are  defined  the  same  as  in  RIPA.  The

crucial  difference  between  RIIP  and  RIPA  lies  in  the  arrival  of  new
nodes.  For  RIPA,  the  arrival  of  new  nodes  follows  a  global  probabil-
ity distribution μn(x) that is affected by all the existing nodes and thus

is  very  complicated.  For  RIIP,  the  arrival  of  new  nodes  is  more  like
what happened in some private clubs: the membership of a new guest
requires  the  invitation  of  an  existing  member  and  there  is  a  default
social  link  between  the  new  member  and  his/her  inviter.  The  RIIP  is
more  parallelizable  because  each  existing  node  invites  new  nodes  to
join  the  network  independently  and  the  location  of  the  new  node  is
only  affected  by  its  inviter.  When  implementing  RIIP  on  the  com-
puter, instead of μn(x), we only need to evaluate ρ(x, xi), whose com-

putational complexity does not depend on n. 
As we will show, by carefully choosing the rate of the invitation for

each  node,  we  build  up  the  RIIP,  which  is  essentially  a  different
stochastic process from RIPA but generates the same random network
ensemble. 

To  prove  the  equivalence,  we  consider  the  process  of  network  Gn.

At  time  step  n + 1,  Gn  is  known.  G′
 is  a  specific  realization  of  Gn+1.

RIPAGn+1  G′ Gn  is  the  probability  for  Gn+1  G′
 under  the fil-

tration  Gn  using  the  RIPA  algorithm.  RIIP  is  defined  in  the  same

way. We just need to prove 

RIPAGn+1  G′ Gn  RIIPGn+1  G′ Gn.

For  simplicity,  we  first  consider  the  m  1  case.  Without  loss  of
generality, let G′

 be the network state that the last new node j locates
at x0 and attaches to the node i. Therefore 

RIPAGn+1  G′ Gn  μ(x0)Πij 
zn(x0)

Zn

ki, n + qρ(xi, x0)

zn(x0)


ki, n + qρ(xi, x0)

Zn

.
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RIIPGn+1  G′ Gn 
ki, n + qC(xi)

Zn

ρ(xi, x0)

C(xi)

ki, n + qρ(xi, x0)

Zn

.

More  generally,  when  m ≥ 1,  G′
 is  the  network  state  that  the  last

new node j locates at x0 and attaches to the nodes i1, i2, … , im: 

RIPAGn+1  G′ Gn  μn+1(x0)m !Πi1j
…Πimj


m !

Znzn
m-1(x0)


ii1…im

ki, n + qρ(xi, x0).

To  calculate  RIIPGn+1  G′ Gn,  we  first  consider  the  case  that  i1
is the generator. The probability for this case is

i1

ki1,n

+ qCxi1


Zn

ρx0, xi1


Cxi1

m - 1 !Πi2j

…Πimj


m - 1 !

Znzn
m-1(x0)


ii1…im

ki, n + qρ(xi, x0).

Summing up the probabilities of all such cases, we have

RIIPGn+1  G′ Gn  mi1
 RIPAGn+1  G′ Gn.

Degree-Degree Correlation7.1

When  m  1,  it  is  easy  to  show  that  all  the  degrees  ki, n  are  indepen-

dent by the construction of the RIIP model. 
When  m ≥ 2,  calculate  the  probability  that  the  new  node  k

attaches to both nodes i and j at the time step n + 1: 

P1  k → i, k → j Gn

 
2

Znzn(x0)
ki, n + qρ(xi, x0)kj,n + qρxj, x0dx0


2ki, n + qkj,n + q

Zn

ρ(xi, x0)ρxj, x0

zn(x0)
dx0.

As  a  baseline,  we  also  calculate  the  probability  for  the  same  event
under the assumption that ki, n, kj, n are independent: 

P2  k → i Gnk → j Gn

 2
ki, n + qρ(xi, x0)

Zn

dx0
kj, n + qρxj, x0

Zn

dx0


2ki, n + qkj,n + q

Zn
2

C(xi)Cxj.
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We define 

Δ  P1 - P2  k → i Gnk → j Gn, k → i -k → j Gn.

Δ implies the correlation between ki  and kj. When Δ > 0, ki  and kj
are correlated; when Δ < 0, ki and kj are anti-correlated: 

Δ 
2ki, n + qkj,n + q

Zn

ρ(xi, x0)ρxj, x0

z(x0)
dx0 -

C(xi)Cxj

Zn

.

Assume n is large enough and C(x) ≡ C, 

zn(x) 
Zn

S
+O1;

we obtain

Δ  B〈ρ(xi, x)ρ(xi, x)〉Ω - 〈ρ(xi, x)〉Ω ρxj, xΩ +O1,

where  B > 0,  〈 · 〉Ω  is  the  average  over  the  space  Ω.  In  this  case,  we

conclude  the  degree-degree  correlation  between  i, j  goes  along  with

the  correlation  between  ρ(xi, x), ρxj, x,  which  mainly  depends  on

the  distance  between  the  two  nodes.  For  two  close-enough  nodes  i

and j, ρ(xi, x) and ρxj, x are positively correlated. For two nodes far

apart  enough  such  that  relevant  to  one  means  irrelevant  to  the  other,

ρ(xi, x0) and ρxj, x0 are negatively correlated.

Between-City Transportation8.

In  this  section,  we  focus  on  RIPA  on  a  two-dimensional  surface  with
respect  to  the  case  of  between-city  transportation.  First,  we  consider
networks  generated  by  RIPA  on  the  unit  square  D  with  periodic

boundary  conditions.  The  relevance  ρ(x, y)  fd(x, y)  is  given  by

f(x)  exp(-λx). In this case, the total partition function is:

Zn  
x∈D


j1

n0+n

kj, n + qe
-λdxj, xdx.

Figure 2 represents a special realization of the network. Each circle
in  the  figure  represents  a  city,  the  center  of  the  circle  indicates  the
locations  of  the  city,  and  the  radius  indicates  the  degree;  the  color
(brightness) in the background indicates the logarithm of the local par-
tition  function  z(x).  In  Figure  2,  we  observe  the  phenomenon  that
cities  tend  to  gather  but  big  cities  tend  to  separate.  For  example,
around the most important city (the capital), we can find a bigger city
in  the  area  further  from  the  capital.  This  is  because  a  huge  city  has
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two effects: (1) the local partition in its neighbor area is bigger, there-
fore it attracts more new cities; and (2) it will attract more links from
new  cities,  therefore  inhibit  the  nearby  cities  from  growing.  The  sec-
ond effect is the more significant when we choose smaller m. 

Figure 2. Network generated on a unit square with periodic boundary condi-
tion.  m  1,  N  5000,  q  0,  λ  10.  The  circles  are  centered  at  the  loca-
tions of the cities and the radii represent their degrees. The background color
indicates the logarithm of local partition.
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