The Role of Roles:
Physical Cooperation between Humans and Robots

Alexander Mortl, Martin Lawitzky, Ayse Kucukyilmaz,
Metin Sezgin, Cagatay Basdogan and Sandra Hirche

Draft: March 15, 2012

Abstract

Since strict separation of working spaces of humans
and robots experiences a softening due to recent
robotics research achievements, close interaction of
humans and robots comes rapidly into reach. In
this context, physical human-robot interaction raises
a number of questions regarding a desired intuitive
robot behavior. The continuous bilateral information
and energy exchange requires an appropriate contin-
uous robot feedback. Investigating a cooperative ma-
nipulation task, the desired behavior is a combination
of an urge to fulfill the task, a smooth instant reactive
behavior to human force inputs and an assignment
of the task effort to the cooperating agents. In this
paper, a formal analysis of human-robot cooperative
load transport is presented. Three different possibili-
ties for the assignment of task effort are proposed.
Two proposed dynamic role exchange mechanisms
adjust the robot’s urge to complete the task based
on the human feedback. For comparison, a static role
allocation strategy not relying on the human agree-
ment feedback is proposed as well. All three role
allocation mechanisms are evaluated in a user study
that involves large-scale kinesthetic interaction and
full-body human motion. Results show tradeoffs be-
tween subjective and objective performance measures
stating a clear objective advantage of the proposed
dynamic role allocation scheme.

1 Introduction

A variety of physical tasks require the cooperation
of two or more agents and demands for haptic joint
action of multiple partners, robots together with hu-
mans. In such kind of tasks, humans interact and
communicate in different modalities: wverbally e.g.
through speech and also non-verbally e.g. through
gestures and the sense of touch. The twofold fea-
ture of haptic interaction is particularly challenging:
Physical coupling allows the agents to negotiate and
accomplish the joint action task simultaneously. This
means that intuitive interaction is mediated by task
oriented actions. Additionally, the strong implicit na-
ture of the haptic communication channel requires
sophisticated interpretive capabilities to understand
the partners’ behavior on a fast time scale. One key-
point to be negotiated is the necessary effort to ac-
complish cooperative physical tasks which must be
continuously allocated among all contributors. Ob-
servable effects of negotiation are emerging strategies
in terms of temporally consistent haptic interaction
patterns called specialization (Reed et al., 2006). In
physical cooperation, these patterns refer to a self-
organized distribution of the agents’ individual con-
tributions. Forming patterns of interaction seems to
ease mutual understanding of partners, as improved
task performance has been observed repeatedly in
cooperative settings (Feth et al., 2009; Reed et al.,
2005). As soon as autonomous physical assistants
are able to produce their own task-directed behavior,
the question of role assignment arises similarly. Ob-
servations from human-human cooperation or motion



planning techniques can be used by the robot to cal-
culate its own necessary force contribution to achieve
task progress. However, the assignment and possible
re-allocation of roles can evolve during task execu-
tion and cannot be pre-computed. The resulting chal-
lenge is the synthesis of a robotic assistant that takes
the human habit to establish and dynamically change
roles into account and renders an intuitive behavior
to the human partner. Therefore an understanding
of the physical meaning of roles in human-robot co-
operative manipulation helps to develop a framework
for role allocation.

Some work on the derivation of guidelines for the
synthesis of a robotic role allocation from observa-
tions of human-human behavior exists. However, re-
lated existing approaches towards autonomous phys-
ical robotic helpers target mainly the smooth and
intuitive reactive behavior of robots in physical inter-
action with humans rather than situation-dependent
active task contribution. Only little related research
on the topic of role adaptation in physical human-
robot interaction exists.

Oguz et al. (2010) proposed a haptic negotiation
framework for blending between dominant and reces-
sive control states in a dynamic virtual task. Their
system realizes dynamic role exchange by granting
control to one of the operators regarding the inten-
tions of the human, who was assumed to display the
intention of gaining control by applying large forces
to the system. Later, Kucukyilmaz et al. (2011)
showed that this dynamic role exchange scheme im-
proved task efficiency significantly when compared to
an equal control guidance scheme and constituted a
personal and subjectively pleasing interaction model.

In a similar scenario, Passenberg et al. (2011) in-
troduced adaptable haptic assistance in a shared con-
trol setup. They used human effort and task perfor-
mance criteria to find static optimal assistance levels
for certain tasks and outlined possibilities for imple-
menting on-line adaptation. Abbink et al. (2012) pro-
vide a comprehensive review on haptic shared control
accompanied by design guidelines to be considered
for such interactive systems. Despite many inspiring
affinities between haptic shared control and human-
robot physical role allocation, differences emerge
from human interaction with a physical entity: In

shared control scenarios, approaches rely on the pos-
sibility to adjust either the coupling between the hu-
man operator and the virtual object, or the coupling
between the operator and the virtual assistant both
acting on the same control interface. In scenarios
involving physical robotic assistants, the missing op-
tion to control the human partner’s coupling with
the object as well as the varying coupling of partners
through the object impose additional challenges.

The main contribution of this work is a set of
strategies for static and dynamic role allocation in
haptic human-robot cooperation and an experimen-
tal evaluation of the proposed strategies. The task
of cooperative human-robot object manipulation is
analyzed in redundant and non-redundant degrees of
freedom. The meaning of effort sharing along the
redundant degrees of freedom is derived. A user
study shows the effects of three different effort shar-
ing strategies on task performance and subjective ac-
ceptance in a realistic large-scale scenario.

1.1 Related Work

The synthesis of physical robotic assistants for coop-
erative load sharing tasks reaches back to the early
1990’s when Kosuge et al. (1993) deployed an object-
centered impedance control scheme similar to Schnei-
der and Cannon (1992) for a set of robots cooperating
with a number of humans.

Successful hardware implementations named MR
Helper and the distributed variant DR Helpers (Hi-
rata and Kosuge, 2000) encouraged a number of
groups to research synthesis methods for coopera-
tive human-robot object manipulation strategies. An
overview of the achievements of Hirata and Kosuge
in this field is given in Kosuge and Hirata (2004).
The application of cooperative load transport has
also been targeted by Gillespie et al. (2001) using
the rather different Cobot approach. While Kosuge’s
robotic helpers could actively render a virtual ob-
ject impedance behavior with features such as col-
lision avoidance, Cobots cannot move on their own
— they are inherently passive. However, motion in-
duced by a human operator is projected along virtual
curvatures by arranging counter-acting forces in the
Cobots. This approach focuses on desired paths or



workspace constraints rather than desired virtual dy-
namic object behavior, similar to the virtual fixtures
introduced by Rosenberg (1993) as overlays such as
virtual rulers guiding the operator’s effector motion
in telepresence setups. An approach combining de-
sired virtual constraints and desired virtual object
dynamics was proposed by Takubo et al. (2002). In
their work, a robotic partner renders a virtual non-
holonomic constraint — namely a virtual wheel — that
prohibits sideway slipping motion and thus simplifies
operation similar to a wheelbarrow. This simplifica-
tion however, inhibits maneuvering of bulky objects
in narrow passages. The group of Tkeura investigated
the feedback behavior of a following manipulator dur-
ing cooperative object transport. Human impedance
characteristics were found to be the best in terms of
subjective scores (Tkeura et al., 1994) and to enable
natural movement profiles (Ikeura et al., 2002). All
of these approaches consider robotic partners that
react on user operation which certainly limits these
devices’ capabilities.

In order to overcome such limitations, a significant
body of work was dedicated to fundamentally model
human behavior in cooperative haptic tasks and to
transfer findings to cooperative robotic partners. The
popular concept of jerk minimization in human arm
movements as proposed by Flash and Hogan (1985)
for pointing has been transferred to cooperative ma-
nipulation by Maeda et al. (2001). This enabled a
robotic partner to not just react to a human operator
input but also to predict human intentions and act
accordingly. Reed et al. (2005, 2006) investigated the
effects of specialization in human-human interaction
and successfully transferred their results to a human-
robot setup so well that participants could not dis-
tinguish between the robotic partner and an actual
human partner (Reed and Peshkin, 2008). Reed’s
findings on evolving specialization were further inves-
tigated by Groten et al. (2009) who showed that users
prefer a dominance difference among collaborating
partners in contrast to equally shared control. In this
context, dominance refers to the actual achievement
of influence or control over another and therefore re-
flects the individual share of the overall contribution
to task success.

In order to decide on the necessary overall contri-

bution, first, the desired trajectory must be known.
Miossec and Kheddar (2008) discovered a motion
model for cooperating humans that outperforms the
minimum-jerk model used by Maeda et al. (2001).
Based on this trajectory generation method for co-
operative object moving tasks, Evrard and Khed-
dar (2009) developed a controller blending scheme
that allow a leader/follower role allocation with
one single blending parameter. Recent insights on
leader /follower assignment from this group can be
found in (Kheddar, 2011) which suggests that blend-
ing of stable leader and follower controllers will not
necessarily result in a stable overall behavior. Hu-
man following behavior as a response to a leading
robotic manipulator has been investigated in a co-
operative vertical lifting task by Parker and Croft
(2011). Behavioral hallmarks such as different fre-
quency domains of human visual and haptic response
could be discovered. An overall system architecture
that comprises a confidence-based role adaptation,
implemented on a very small scale humanoid robot
was recently presented by Thobbi et al. (2011).

An emerging interest in smart physical robotic as-
sistants for human workers in industrial settings is
visible for a few years. Wojtara et al. (2009) devel-
oped a basic physical assistant for the well defined
task of precise positioning of windshields during car
manufacturing processes. Their framework proposes
a strict geometrical separation of the degrees of free-
dom and weighs the assistant’s force contribution to
the task according to haptic cues.

1.2 Contribution

The main contribution of this work is an investiga-
tion of the objective and subjective effects of dy-
namic role allocation for a physical robotic assistant.
Therefore, the task of cooperative load transport is
analyzed and decomposed into two components for
steering and progressing. Meaningful decomposition
parameterizations are derived such that the necessary
effort resulting from a desired task progress is allo-
cated among the cooperating partners. Therefore we
propose three different strategies: First, a constant
role allocation disregarding the human’s haptic ex-
pression of the desire to accelerate or decelerate the



task progress. Secondly, a continuous adjustment of
the allocated roles depending on human feedback and
thirdly, a discretized version of the second approach.
Within a user study involving large-scale kinesthetic
interaction in a realistic scenario with human full
body motion, the proposed approaches are evaluated
in terms of task performance and user acceptance.

1.3 Notation

In this article, bold characters are used for denoting
vectors and matrices. Ker(A) denotes the kernel or
nullspace of matrix A. Ker;(A) denotes the j vec-
tor spanning A’s nullspace. A matrix’s nullity is the
dimension of its nullspace. Superscripts are used to
denote the reference frame of the respective matrix
and vector quantities, whereas quantities referring to
the inertial frame are written without superscripts.

The remainder of this article is structured as fol-
lows: The problem is stated and confined in Section 2
where also our conceptual approach is presented. Sec-
tion 3 gives a systematic analysis of the envisaged
task and explains the meaning of roles. The deployed
control scheme is presented in Section 4. Our experi-
mental setup is depicted in Section 5. The evaluation
methods used are explained in Section 6 and the re-
sults are presented in Section 7. A discussion of the
results is given in Section 8 and we conclude and give
an outlook in Section 9.

2 Problem definition and ap-
proach

Our work addresses the cooperative task of jointly
manipulating a rigid bulky object by human-robot
teams. In the following, we concisely define our prob-
lem and outline our conceptual approach.

2.1 Definition of the effort sharing
problem
The envisaged scenario allows the cooperation be-

tween a human and an assistive robot. Parker (2008)
and Olfati-Saber et al. (2007) define cooperation as

Figure 1: The cooperative manipulation scenario and
the experimental setup: human and robot jointly
transporting a bulky table.

the willing participation of all agents towards a com-
mon goal along a shared plan. In line with this, we
focus on manipulation tasks which require physical
cooperation between partners through close coupling
with an object, see Fig. 1. When two or more agents
cooperate through jointly manipulating a common
object, the problem of sharing the task’s physical ef-
fort arises. The physical coupling imposed by the
task’s geometrical and dynamical properties has to
be addressed and exploited such that each agent’s ef-
fort in terms of input wrenches allow for a smooth
and efficient cooperation. We confine the effort shar-
ing problem to the following conditions:

e One human cooperates with one robot / sys-
tem of robots with centralized communication
towards achieving a common known goal (e.g.
reaching certain configuration(s) when jointly
manipulating an object).

e Constraints of the environment are such that the
task is achievable (e.g. a feasible path to the goal
exists).

e All participants tightly grasp a single rigid object
with commonly known shape and dynamics.

e Object dynamics are holonomic, i.e. the ma-
nipulated system does not have any velocity-
dependent constraints.
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Figure 2: Overview of the modeling approach: A dyad consisting of agent 1 and agent 2 cooperatively
manipulates a common object according to a shared plan. Both agents employ an inverse object model

and impedance control loop (a) generating desired object-centered wrenches (b).

The effort-role behavior

determines the control inputs applied at the agents’ grasp points (c¢) which compose the object-centered
wrench (d) required for motion tracking. Roles are allocated by mutual feedback of the control inputs.

e The grasp points are such that the task is
controllable and its control inputs are redun-
dant (Lawitzky et al., 2010).

e The partners interact with each other only
through the haptic channel provided by the
physical coupling.

2.2 System-theoretic modeling ap-

proach

A dynamic modeling approach of the task is em-
ployed to define the physical and geometrical prop-
erties of the manipulation task under environmental
constraints. Through this approach, we model the
dynamics of the manipulated object including the
agents’ contact points, see Fig. 2. Starting from an
object-centered viewpoint, the agents’ contributions
to the task can be defined by spatially distributed
control inputs, i.e. forces that affect the object’s mo-
tion towards the goal.

Results on the cooperation of human dyads suggest
an object-centered formulation of the desired path, as
they achieve better tracking performance in a coop-
erative task when they have common visual access to
the central part of a manipulated object (Salleh et al.,
2011). Thus, the desired motion of the manipulated

object can be intuitively represented by an object-
centered trajectory as a result of a priori negotiation
between the agents. Impedance control loops closed
on motion feedback and employed by each agent en-
sure tracking of the desired object trajectory. In this
article, we assume shared goals in terms of known in-
termediate configurations of the manipulated object.
A path for the cooperating dyad can be precomputed
by the robot from planning as proposed by Kirsch
et al. (2010) or from human demonstration (Medina
et al., 2011).

Furthermore, the object model is assumed to be
known to all agents, and in order to obtain the re-
quired individual control inputs for motion tracking,
each agent applies an inverse dynamics model of the
object. While the human motor control system is
known to accomplish haptic tasks by a combination
of impedance control and inverse dynamics model of
the task (see e.g. Franklin et al., 2003), automatic pa-
rameter acquisition for rigid body loads is a difficult
problem, which has been frequently discussed in the
literature since Atkeson et al. (1986). Also state-of-
the-art methods require structural knowledge of the
friction phenomena involved. Therefore, we address
the manipulation of objects known to the robot in
terms of their geometry, grasp points and relevant



dynamical properties.

This is where the demand for an effort sharing
strategy comes into play: redundancies of the con-
trol inputs, which are usually present if two or more
agents are manipulating a single object (Lawitzky
et al., 2010), span a subspace of the control inputs
which can be deliberately distributed between the
agents without affecting the motion.

Effort sharing describes the distribution of volun-
tary force inputs among agents. Each agent can be
assigned a certain input behavior in terms of an ef-
fort sharing policy. The behavioral patterns of the
agents due to a certain effort sharing policy can be
referred to as roles that the agents take on in the
redundant task space. The effort-role behavior syn-
thesized in this paper is embedded in the interaction
control loop and mediates the robotic agent’s control
inputs to the task.

While a feedforward assignment of roles in a cen-
tralized manner works well for robotic agents, such
an assignment is inappropriate for humans. Inves-
tigation of human cooperative behavior in a dyadic
tracking task provides evidence for role distribu-
tions, which are partly person-specific and partly
interaction-dependent (Groten et al., 2009). If we
assume persistent validity of the agents’ shared plan
which holds true for a static environment, the ap-
plied input of a single human agent can be estimated
based on the object dynamics and fed back to allo-
cate the agents’ roles on-line. Assuming a manipu-
lation system which allows for measurements of the
human input forces, multiple human agents may be
considered to contribute to the task. In this arti-
cle, we develop concepts for role allocation within a
human-robot dyad and evaluate these concepts with
an experimental study.

3 Synthesis of role behavior

This section presents the object model and a param-
eterization method for effort sharing policies. Dif-
ferent sharing policies and the definition of roles we
adopt in the experiments are explained. Our method
to parameterize effort sharing policies generalizes to
multiple cooperating partners. Therefore in the first

Figure 3: Haptic human-robot joint action task: Co-
operative manipulation of a rigid object by multiple
agents acting at different grasp points.

part of the derivations we will keep the method as
general as possible and later specialize to the dyadic
case.

3.1 Object model

The general problem of joint transfer of an object
in free space involves the contribution of N agents
that tightly grasp a rigid object of arbitrary shape
as shown in Fig. 3. In the figure, a body frame C'
is attached to the object and the inertial frame is
denoted by I. Besides a collision-free trajectory in
compliance with the environment, the dynamical and
geometrical model of the manipulated object — the
coupling between the agents — is crucial to a system-
theoretic analysis of the task.

We assume that the rigid-body dynamics of the
object can be described by

M &+ f (X, &) = U, (1)
where x. is the configuration of the object with iner-
tia M., f, is the sum of environmental forces such as
friction and gravitation, and u. denotes the ezternal
wrench applied by the agents to the object.

Agent ¢ contributes to the manipulation task via
input wrench w; applied at the grasp point x; on the
object, 7 =1, ..., N. In order to formally represent the
type of grasp and to consider only the efficient input
wrench components of the agents, we introduce the
applied wrench w; as

@; = RB;R" u;, (2)



where R denotes the rotation of frame C' w.r.t. [
and B; is a selection matrix referred to the body
frame C' with elements by; = {0,1} determining
which independent torque and force components an
agent can effectively apply at the grasp point. Note
that B; is also known as wrench basis in grasp anal-
ysis (Murray et al., 1994). Thus, the external wrench
on the object is composed by

N
U, = E Giu;,
i=1

where matrix G; (dim(@;)xdim(u.)) denotes the
partial grasp matrix (Prattichizzo and Trinkle, 2008).
It is given by the Jacobian of the kinematic con-
straints ¢, (x.) which describes the position of the
rigid grasp point with respect to the object frame.
The kinematics comprising position x; and veloc-
ity @; of the grasp point of agent i are

(3)

T .
G; x..

(4)
(5)
In the following, the dynamics and kinematics of the

object grasped by the agents serve as a basis for anal-
ysis of the effort sharing problem.

T

3.2 Effort sharing by input decompo-
sition
In this section, we develop a strategy for effort shar-
ing which utilizes redundant degrees of freedom that
naturally arise from actuation redundancy. Accord-
ing to our system-theoretic approach outlined in Sec-
tion 2.2, with the inverse dynamical system model (1)
a desired external wrench 4. can be calculated, which
is to be imposed on the object to track a shared
plan given as a desired trajectory of the object con-
figuration x.4. Note that in general, only parts of
the applied wrenches cause the object’s motion and
hence constitute the external wrench. The remaining
component of the applied wrench is called internal
wrench and causes squeeze forces on the object. In
the next step, we aim for solutions of each agent’s
applied wrench u;, in order to compose a desired ..

By substituting (3) into (1), we obtain for the ob-
ject model

M .+ f.(xe, ) = Ga, (6)

with the complete grasp matrix G composed by the
block diagonal matrix

G =diag{ G1, ..., Gn },
and the stacked applied wrench
a=[ an "

Let us introduce now

(7)

where A denotes a decomposition matrix from de-
sired external wrenches to applied wrenches. Us-
ing (7), the dynamical object model depending on
the desired external wrench yields

@ = Ad,,

M.+ f,(.) = GAil.

In order to achieve tracking of the desired trajectory
through feedforward control of the inverse dynamics,
matrix A has to be chosen to sustain u. = ., i.e. A
has to be an inverse of G, fulfilling

GA=1 (8)
Note that dim(u.) is equal to the dimension of the
object’s configuration space dim(x.), since the task
is required to be controllable and holonomic. In our
setting, we further assume that the number of actual
inputs is larger than the required number of inputs
for task completion,

dim(@) > dim(u.).

A minimal example of such actuation redundancy is
the movement of an object in one-dimensional space
by two agents, each applying an input wrench. The
task is redundant as one agent’s input would be suf-
ficient for controlling the object, and arbitrary com-
positions of the agent’s input forces are possible, see
Fig. 4. Therefore, the choice of A in (8) is not unique.



Figure 4: Illustrative example of input decomposition
in a one-dimensional redundant task. (a) minimum-
norm solution. (b) possible, but inefficient solution.

We can show that a particularly interesting solu-
tion for the effort-sharing matrix A is the generalized
Moore-Penrose pseudoinverse G of the complete
grasp matrix G, which yields the minimum-norm so-
lution for ||| (Doty et al., 1993). Since we are solv-
ing for wrenches, there is particular physical meaning
of the minimum-norm solution: The applied wrench
obtained with G represents an efficient decomposi-
tion, because the external wrench is composed by a
minimum magnitude of the applied wrench’s compo-
nents, see Fig. 4 (a). Hence, the applied wrench has
no components which could cause ineffective internal
wrenches.

Additionally, the nullspace of G defined as

Ker(G) = {a|Ga = 0}

provides a solution space for . Note that in a physi-
cal meaning, the null-space component causes no mo-
tion of the object, as it does not affect the external
wrench. When we replace A by G in (7), the family
of all solutions for u is given by

nullity (G)
=G+ Y AKer(G),

j=1

(9)

with parameter A\; € R. Depending on the choice
of Aj, the solution @ potentially produces internal
wrenches, as depicted in Fig. 4 (b). In fact, solu-
tion (9) provides an effort sharing strategy by in-
put decomposition: In redundant degrees of free-
dom where effort sharing between the agents can
take place and which are affected by A;, and in non-
redundant degrees of freedom where each agent’s in-
put is uniquely defined by a necessary contribution.

In the following section we show how A; can be used
to parameterize the effort sharing strategy between
the agents in a single redundant direction.

3.3 Policies for effort sharing

In this section we show how the agents can be as-
signed meaningful policies regarding their effort be-
havior in a single redundant degree of freedom. With
reference to the experiment conducted in this study
and for intuitiveness of analysis, we consider from
this section on a planar cooperative manipulation
task involving two agents for the design of effort shar-
ing policies without loss of generality. The presented
strategy may be conducted in multiple redundant de-
grees of freedom.

3.3.1 Analysis of a planar dyadic task

An example planar dyadic task is shown in Fig. 5,
which satisfies the requirements from Section 2.1.
The joint transport of a large table on ball casters,

I 1,y U2,y
Tl UL,z T2
Ixc

L

Figure 5: Illustrative scenario of planar cooperative
manipulation: one human (left) and one robot (right)
jointly move a bulky object in the x-y-plane.

or the joint movement of any other heavy object by
sliding it on a surface can be such a task. Both, the
human (i=1) and the robotic agent (i=2) could pro-
vide input wrenches u; of dimension dim(zx.) with

T
T = [ Tep Teax Tey } 5

which generally include torques. However, a common
property of bulky objects regarding their handling is
the lack of sensitivity of object dynamics to certain
torque components, meaning that these torques can-
not be applied effectively at the grasp points (see also



Wojtara et al., 2009). This can be explained within
our illustrative scenario. Assume a beam-like bulky
object with a long geometrical axis, which is manip-
ulated by two partners using a single-handed grasp
on the respective end of the object, see Fig. 5. In
order to induce a desired rotational motion around
the 2%-axis, from experience the reader might agree
that it is rather cumbersome to apply the required
torque component through the wrist. It is much eas-
ier to apply an appropriate force component through
the whole arm which induces turning by translational
motion of the grasp point.

Since our analysis focuses on the primary effects of
the system’s redundant degrees of freedom for effort
sharing, the wrench basis

010
0 0 1 }

is chosen in our illustrative scenario. Putting it
into (2) reduces the input wrench to the effectively
applied wrench

B, = {

1" o)

=[us uiy U2z Uy

The kinematic constraints (4) of the system can be
written as

T
zi = [ T Tey | — RrE,
with
| cos¢p —sing
R= { sing  cos¢ ]

denoting the rotation of object frame C' w.r.t. inertial
frame I by angle ¢, and

c _
Tic = [ Tic,e  Tic,y

]T
being the vectors from the grasp point of agent i to
the origin of C. According to (5), the 4 x 3 transpose

of the grasp matrix

SINPTicy +COsSPric, 1
—COSPTricy +singric, 0
SN Procy +COSPTocy 1
—COSPTacy +singra., 0

G" = (11)

= O = O

can be derived. Since we can calculate

V¢ dim(z.) =rank(G) =3

for different grasp constraints ri . # r2. # 0, our
planar system is redundant regarding the applied
wrench (10) since dim(u) = 4.

Thus, parts of the task effort in terms of applied
wrenches can be shared arbitrarily among the con-
tributing agents within the redundant degree of free-
dom without influence on the external wrench of the
object. In the following, we introduce effort shar-
ing policies which are described by a certain choice
of the parameter A in (9) characterizing meaningful
shares. In a first step, we will investigate static shar-
ing policies yielding constant role behaviors, while in
Section 3.4 our notion of roles is extended to encom-
pass a dynamic allocation within dyads.

3.3.2 Identification of meaningful policies

In the given planar example, the only redundant de-
gree of freedom is intuitively represented by the y©-
axis of the object frame C' (c.f. Fig. 5), hence compo-
nents of the external input wrench along this axis
can be arbitrarily shared among the two agents.
Let us recall now decomposition (9) leading to the
agents’ applied wrenches @. The nullspace Ker(G) is
spanned by the family

Ker(G) =
Ker(G)° =

diag (R, R) Ker(G)%, with

(010 —1]", (12)
allowing one degree of freedom for the design of dif-
ferent effort sharing policies through the choice of the
scalar parameter A in (9). Three extreme policies of
particular physical meaning are discussed below:

e Balanced-effort policy: By choosing the policy

Tbal - A= O, (13)
we obtain the min-norm solution for @. The ef-
fort in terms of magnitude of the applied wrench
is to be equally shared among the agents, see
Fig. 6(a).

o Mazimum-robot-effort policy: If we want to have
the robot to take over all of the sharable effort,
then the applied human force in the y©-direction
would be zero, i.e. af, = 0. Hence, A is chosen
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Figure 6: Given exemplary external wrench realized
by three different effort policies.

such that the human does not contribute any vol-
untary effort to the task, which yields the policy

Tmaz :A=—[0 1 0 0 a5, (14
with the min-norm applied wrench
al, = diag (R, R)" GT . (15)

The required human effort in terms of the Eu-
clidean norm

[ay | )?

is minimized now, since a{’, refers to the nec-
essary input contribution, see Fig. 6(b). Intu-
itively spoken, the human has to apply wrenches
only in those degrees of freedom, which simply
can not be accomplished by the robot alone, i.e.
rotation, and motion in z%-direction.

af ¢

1Ly

2)? + (@

10

e Minimum-robot-effort policy:  Dual to pol-
icy Tmaz, the human has to take over all of the
sharable effort, if we satisfy 1120 y = 0 through the
policy

Tmin :A=[0 1 0 0]ag,, (16)
where @ is given by (15). Using this policy re-
sults in a minimum-effort robot assistance, i.e.
in each degree of freedom, the human has to ap-
ply wrench components to accomplish the task,
see Fig. 6(c).

When we introduce the family of effort sharing poli-
cies

TiA=—a[0 1 0 0]af,, (17)

with policy parameter a € R, obviously the poli-
cies Tpaly Tmaz and m,;, are parameterized by set-
ting a = 0, @« = 1 and a = —1 respectively.

Note: Policies (17) with o € [—1;1] and the ker-
nel family parameterized by (12) are efficient, since
no counter-acting internal wrench on the object is
generated. Fig. 6(b)—(c) depict the extreme, yet still
efficient cases for |o| = 1, which are obtained intu-
itively from Fig. 6(a) by shifting the voluntary effort.
Setting |a| > 1 generates counter-acting wrenches,
c.f. Fig. 4 (b).

3.4 Dyadic allocation of roles

The effort sharing policies (17) with constant policy
parameter « imply a static role in terms of the ef-
fort sharing ratio among the dyad in the redundant
direction, resulting from a feedforward calculation of
the agents’ applied wrenches. In contrast, a dynamic
role allocation strategy as investigated here varies the
policy parameter « over time depending on the mea-
sured wrench feedback of the partner. In the dyadic
case, the robotic agent may compute an estimation
of its partner’s applied wrench, if the object’s dy-
namics (1) and kinematics (4), (5) is known to the
robot. In Section 4.1 we provide details on such an
estimation strategy.

Note: The roles and the allocation strategy refer
to a task’s redundant degree of freedom. With mul-
tiple redundant degrees of freedom, role allocations
between the partners may differ.



The resulting robot behavior in terms of its urge to
complete the task is influenced by the velocity pro-
file of the configuration trajectories planned by the
robot. Velocity profiles can be taken from observa-
tions in human-human experiments, can describe the
technical limitations of the robotic system in its envi-
ronment, or can be a mixture of both. Kinodynamic
motion planning techniques can be alternatively used
to produce trajectories with bounds on velocities and
accelerations (Donald et al., 1993) in order to gen-
eralize the approach to arbitrary feasible transport
tasks.

3.4.1 Constant role allocation

As a baseline strategy, we propose a constant alloca-
tion of roles during the task. Any arbitrary choice
of a constant parameter « directly affects the robot’s
urge to accomplish the task.

Given a certain velocity profile, following the in-
verse dynamics a choice of a = 0 results in an equal,
feedforward composition of the external wrench in
the redundant degree of freedom. In the performed
human user studies we investigate this case as it
is symmetric: A human partner applying the same
wrench as the robot in the redundant degree of free-
dom moves the object according to the robot’s veloc-
ity profile. In contrast, a human partner who applies
the same wrench in the opposite direction cancels the
robot’s applied wrench.

3.4.2 'Weighted proactive role allocation

For the realization of the weighted role allocation
strategy developed in this work, we propose a con-
tinuous, first order dynamical system with the policy

parameter
t
a=ap+ / adt,
to

(18)

bounded within the interval [—1, 1] by an anti-windup
saturation to obtain only the efficient policies. The
derivative

T—w ’ﬁgy,est| ) if € =0
v = u¢ f &= =C ~C
= Ttw uy,thr’ lff =1A ’uLy,est‘ < uy,thr
Thw |1~L1C,y,est| otherwise

11

ime |s
(b) Discrete proactive! role allocation.

Figure 7: Policy parameter « over time for a simu-

~C
lated profile of the human wrench component afy,, .,
and an expected wrench component ﬂ?y > 0.

is weighed by the feedback of the human wrench
component ﬂgy,est in the redundant direction, which
yields a role allocation with a progressively changing
policy depending on the magnitude of the partner’s
contribution, and the agreement indicator

8

Note that the initial value oy = —1 produces ini-
tially a minimum-robot-effort behavior. Either zero
human force input or force input &€y7est in the ex-
pected direction sgn(ﬂfy) produces an agreement
value of ¢ = 1 and lets the policy parameter «
rise which leads to emerging robot effort. A thresh-
old ﬁithT is used to define a neutral human force
input which is treated as silent agreement. The con-
stants 7_ ,, and 7y ,, weigh the human’s agreement

or disagreement force input. A faster reaction to dis-

0, if sgn(ﬂgy) # sgn(ﬂﬁy,est) # 0

. (19)
1, otherwise.



agreement signals (i.e. —7_ ., > T4, > 0) is con-
sidered to be a reasonable option. This choice lets
the robot rapidly fall back to minimum effort if the
human signals discomfort by applying a counteract-
ing force. The qualitative dynamical behavior of the
weighted role allocation scheme is illustrated by a
simulation example in Fig. 7(a).

3.4.3 Discrete role allocation

In order to investigate whether role allocation with a
small number of distinct meaningful steps is more un-
derstandable for the human partner and hence ben-
eficial for cooperation, a discrete version of the con-
tinuous role allocation mechanism is developed. A
chattering-free output discretization of the weighted
role allocation mechanism to three distinct values
¢ ={-1,0,1} is achieved by an output quantization
with hysteresis. The rate of change of the internal
continuous policy parameter & is also chosen depend-
ing on the agreement indicator £ from (19) with

y

A quantization with hysteresis maps the internal con-
tinuous policy parameter & onto the discrete value (,
replacing the continuous output (18). A smooth tran-
sition between the three discrete levels is achieved by
a bang-bang-like ramp generating mechanism

if&=1

otherwise.

T+,d>
T—,d>

& =Tpsen (( —a)

where 7, denotes a blending time constant. The
qualitative behavior of the discrete role allocation
scheme is also illustrated by simulation, see example
in Fig. 7(b).

4 Robot interaction control

In order to embed the role behavior developed in
Section 3 in a robotic agent, we present an archi-
tecture for feedback interaction control, see Fig. 8.
The robot’s applied wrench wy is realized by an
admittance-type force controller imposing motion at
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the robot’s grasp point @ on the object. The effort-
role behavior (grey box) consisting of three modules,
role allocation, sharing policy and sharing strategy
generates the robot’s input behavior for given exter-
nal wrenches 4. and estimates of the human applied
wrench @; ¢s¢. A given object-related trajectory . q
is reference to the system’s inverse dynamics com-
prising a model of the object as well as the robot,
and generates a feedforward component of the exter-
nal wrench @ qyn. A feedback component @ jmp as
output of an impedance control law ensures track-
ing of the object configuration under model uncer-
tainties and unexpected human behavior. In the fol-
lowing section, the interaction control architecture is
explained in detail.

4.1 Estimation of the partner’s input

The robotic agent may compute an estimate of the
applied wrench of a single human partner. If the
robot’s kinesthetic feedback available through its end
effector with a rigid grasp at xs is sufficiently ac-
curate, i.e. it provides measurements (x2,®s, &)
of the grasp point’s configuration, the object’s mo-
tion (x., ., &.) can be inferred by the robot’s partial
grasp matrix G’QT, which is invertible for a rigid grasp.
In the dyadic case, the external wrench is superposed
by the partners’ wrench components according to (3),
cf. ue = ue 1 + uc2 in Fig. 8. Thus, we obtain the
estimated applied wrench

al,est = Gfl (uc - GQ'&'Z,m) 5 (20)

where the external wrench w, is calculated using the
inverse dynamics' (1), @, is the measured applied
wrench of the robot and G; is the human’s partial
grasp matrix. Due to the superposition of exter-
nal wrench components (3), only a single agent’s un-
known input can be determined uniquely by (20).

4.2 Admittance-type force control

An admittance-type force control law is utilized to
impose the robot’s applied wrench wy. The controller

LCertain non-linearities such as static friction prevent in-
vertibility of the object dynamics and therefore the partner’s
input estimation.
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Figure 9: Inertial admittance-type control scheme including manipulator-base coordination.

renders the dynamics

U2 — U2,m = M»,-fl:'z + Dribz, (21)

where us ,, is the measured input wrench, matrix M,
and D, are a rendered virtual robot’s mass and fric-
tion respectively. Note that for a rigid grasp, (21)
has to be formulated in dim(usy). Zeroing ineffective
components of us (e.g. us 4 = 0) yields the robot’s
applied wrench uy. In order to make use of the ex-
tended workspace of a mobile robot composed by a
manipulator-base system, the admittance control law
is calculated in the inertial frame similar to Unterhin-
ninghofen et al. (2008). The control scheme depicted
in Fig. 9 compensates for repositioning of the mo-
bile base through transformations between the local
robot frame R and the inertial frame, which are de-
noted by /T'» and T '; respectively, so that the grasp
pose of the manipulator is not affected.

Following of the mobile base is ensured by the ve-
locity command iff ( To.e Toa Thy )T gener-
ated according to the control law

:ibR = dlag (Khdga deta Ktng) ( €hdg €dst C€tng )T .

(22)
Three independent proportional controllers with
gains Kpqg, Kqs¢ and Ky, move the mobile base con-
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trolling heading error epq4, distance error eqs: and
tangential error e,  to zero with respect to a desired
relative configuration of the manipulated object and
the robot base, as illustrated in Fig. 10. The desired
pose of the end-effector f w.r.t. the robot frame R
is chosen to meet a certain lower bound fi,,;, of the
manipulability measure

det (JTJ) > pimin V|28 — 28| < Azh,

where J is the Jacobian of the manipulator and Azx®
describes required workspace bounds during manip-
ulation. Assuming a rigid grasp of the robot’s ma-
nipulator on the object, the errors epqq, €qse and
€ing can be determined as a function of w(lf and wﬁ.
The control gains in (22) are tuned to achieve a
smoothly-damped, spring-like following behavior of
the platform that keeps the manipulator within its
workspace bounds during mobile manipulation. The
resulting motion command :bf is then executed by
an omni-directional velocity control law as proposed
in Nitzsche et al. (2003).



(a)

Figure 10: (a) Desired and (b) actual configuration of
the base w.r.t. the object, described by a desired and
measured pose of the manipulator’s end-effector, :r,fi%
and =2 respectively.

4.3 Object-centered motion tracking

In addition to the capability to apply input
wrenches us on the manipulated object, the mobile
robotic agent needs the capability to impose a desired
trajectory of the object configuration . 4 as a result
of the shared plan. The tracking behavior is synthe-
sized in an object-centered representation by means
of an external wrench

(23)

Ue = Uc,dyn + Uc imp

decomposed by the underlying effort-behavior.
Wrench component . g4y, compensates in a feed-
forward branch for the dynamics of the combined
manipulator-object system with

ﬁfc,dyn - M(mca a‘:c,d):ic,d + f(:L’C, "bc,d)7 (24)

where mass matrix M (x.,&.q) and friction
term  f(x., &cq) comprise the mass and friction
terms from (1) and (21). An object-centered
impedance-type control law acting on the tracking
error of the configuration x. generates the external
wrench component

ﬂ'c,imp = Kp(wc,d - 1130) + Kd(i:c,d - j:c) (25)

Stiffness gain K, and damping gain K, render a
compliant behavior, if the object configuration de-
viates from the expected.

The external wrench (23) guaranteeing object-
centered motion tracking feeds the effort-role behav-
ior, which can be regarded as a selective wrench fil-
ter. Depending on the estimated human’s applied

wrench % .5+ and the policy parameter « of the role
allocation scheme, the robot’s applied wrench s re-
flects the robot’s voluntary contribution to the task
effort as a result of the effort-role behavior. The
admittance-type force control law (21) imposes the
applied wrench on the object and renders the robot’s
input behavior.

5 Experiment

In order to evaluate our effort sharing strategy and
the effects of the role allocation schemes developed
in Section 3.4, we conducted a user study at Mu-
nich Multi Joint Action Laboratory of CoTeSys re-
search center. A human-robot interaction scenario
was designed for this study in a unique large-scale
setup, involving the joint manipulation of a real-sized
bulky object. The participants were asked to maneu-
ver jointly with a human-sized mobile robot through
our cluttered lab area (see Fig. 1) in order to collab-
oratively transport a table. The realization of such a
joint action task serves as the proof of concept for our
approach and provides valuable observations through
a real scenario. In this section, we describe the exper-
imental setup, conditions, design, and the procedure.

5.1 Experimental setup

The mobile robot used in the experiment con-
sists of an omni-directional mobile base developed
by Hanebeck et al. (1999), two admittance-controlled
anthropomorphic manipulators (Stanczyk and Buss,
2004) using 6-degrees-of-freedom wrench sensors
(JR3 6TM25A3-140-DH) on each end effector. A two-
finger parallel gripper of type Schunk PG70, which is
mounted at the robot’s right manipulator, provided a
rigid grasp of the flange attached to the table. A de-
tailed description of the robot’s system hardware and
software architecture can be found in (Althoff et al.,
2009; Medina et al., 2011). During the experiment
all data collection was done by the mobile robot at
a sampling frequency of 1 kHz. The wrench sensor
at the human-side was identical to those attached to
the end effectors of the robot and it was connected to
a PC on the robot. The table configuration as well
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Figure 11: Cooperatively manipulated table
equipped with a handle and wrench sensor for
the human (left) and a grasp flange for the robot
(right), both mounted at a height of 0.925m over
the ground.

as the grasp points were tracked using the robot’s in-
verse kinematics, transformed by the mobile base’s
odometry readings. The interaction control architec-
ture was implemented in MATLAB Simulink and exe-
cuted at 1 kHz under Ubuntu Linux utilizing Matlab’s
Real-Time Workshop.

During the experiment, the subjects were asked
to move a wooden table weighing 44 kg that was
mounted on an aluminum frame standing on ball-
caster feet (see Fig. 1). The ball casters provided
low-friction, holonomic maneuverability of the table.
A handle and a flange were rigidly attached to the ta-
ble at facing sides for the grasp points of the human
and the robot, respectively (see Fig. 11). The flange
was a solid wooden plate that provided slippage free
zero-backlash grasp for the robot.

The parameters used by the robot’s interaction
control architecture (21) and (25) in Section 4 were
set to the following values regarding the task-relevant
degrees of freedom:

M, = diag(0.4kgm?, 20kg, 20kg)

D, = diag(10Nmsrad ™', 100 Nsm ™!, 100 Nsm™*)
K, = diag(200Nrad~' 200 Nm ™" 200 Nm ™)
K, = diag(50 Nmsrad*,50 Nsm™*, 50 Nsm™*)
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An off-line estimation of the object dynamics used
in (24) revealed the parameters of the table mass ma-
trix

M, = diag(13.5kgm?, 44 kg, 44kg),

the table friction f,. was considered as a Coulomb-
type friction of 14 N in total, acting at the table feet.

5.2 Conditions

We designed three conditions implementing different
behaviors of the robot:

1. Constant Role Allocation (CRA): As explained
in Section 3.4.1, the robot contributes to the task
without changing its role, i.e. it uses a balanced-
effort policy a = 0 at all times.

Weighted Proactive Role Allocation (WPRA):
As explained in Section 3.4.2, as long as the
force applied by the human is in the expected
direction, or the human is inactive, the robot in-
creases the policy parameter o gradually with
time. Otherwise, it decreases o. During the ex-
periment, we used 74 ,, = 0.02 (Ns)fl, T— w
—0.04(Ns)™*, and @', = 10N.

. Discrete Proactive Role Allocation (DPRA):
Similar to WPRA, the robot changes its role
by increasing or decreasing o« gradually. We
defined three discrete roles in this condition
(see Section 3.4.3). During the experiment, we

= 0.2s71, T_d = —2s71 and 7,

5.3 Participants, procedure and de-
sign

18 subjects (6 female and 12 male), aged between
19 and 44, participated in our study. All the sub-
jects were right handed and used their right hands
for moving the table. We conducted a within sub-
jects experiment, in which each subject experimented
with all conditions in a single day. The conditions
(CRA, WPRA, and DPRA) were presented to the
subjects in permuted order using a balanced Latin
Square design to avoid learning effects. The subjects



Figure 12: Bird’s eye view of the lab area used for
the experiments. The outer box corresponds to the
boundary of the environment and spans a square
of approximately 8 m x 8 m. The regions marked
as gray are occupied by obstacles. The positions
of the table and the interacting dyad (i.e. the hu-
man and the robot) in each of four designated park-
ing configurations, p;,i = 1..4, are depicted. The
paths, s;,7 = 1..4, connecting the parking configura-
tions are represented by dotted lines.

were given detailed instructions about the task and
the conditions before the experiment.

In the experiment, a trial consisted of moving the
table jointly with the robot to four parking configu-
rations and then coming back to the initial configura-
tion, as shown in Fig. 12. The subjects were allowed
to apply pushing and pulling forces using only their
dominant hands by holding the handle of the table;
lifting the table off the ground and talking during
the experiment were prohibited. The positions of the
human and the robot in each of the parking configu-
rations were clearly marked on the floor of the area.
These marks were shown to the subjects before the
experiment. The free space available for maneuver-
ing the table between the parking configurations was
constrained by obstacles in such a way that ambi-
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guities and possible alternative common paths were
avoided. Extension 1 provides the reader with a video
of an experimental trial’s course.

For each condition, the subjects performed the task
three times (i.e. three trials). After each trial, a small
break was given to initialize the table and robot pose.
After performing these three trials successfully, the
subjects were given a questionnaire to comment on
their experience. Afterwards, they were presented
with a new condition.

6 FEvaluation

In this section, quantitative as well as subjective mea-
sures used for the evaluation of the user study are
introduced.

6.1 Quantitative measures

This section presents details on the quantitative mea-
sures we adopt in analysis. The data collected in
the first 300 ms of each trial is discarded to eliminate
possible discrepancies encountered at the beginning
of the trials. Also data collected at the final leg of
segment sy (see Fig. 12) is discarded since the final
parking procedure was difficult for some of the par-
ticipants, and we had to cut some trials early due
to impending collisions with obstacles. The data is
low-pass filtered using a first-order filter with 15 Hz
cut-off frequency.

Task performance is quantified in terms of task
completion time. We also examine the individual in-
teraction forces applied by the agents, the work done
by the partners, and the total work done on the table
as indication of the physical effort. Also, the degree
of cooperation under each condition is investigated
with respect to the amount of disagreement in the
dyad’s operation and the distribution of the robot’s
effort policy.

6.1.1 Task performance

The completion time (CT') of each trial is taken as a
measure of performance.



6.1.2 Effort

The average of the human’s and robot’s applied
wrenches and the work done by them are considered
to be indications of the effort made by the agents.
Work done by the agents during a trial is calculated
by

cT
0

where u; ,, denotes the measured wrench exerted by
the agent and &; the velocity of the grasp point. The
total work done on the table by the partners during a
trial considers the accumulated energy transfer on the
table, i.e. how efficiently the table could be moved to
the parking configurations. It is calculated by

cT
Wtable - / |uc N $c‘ dta
0

where the motion-causing external wrench u. is ob-
tained by evaluating (3) for @; ,,. Note that the ab-
solute energy flow is accumulated, since the human
partner is assumed not to recoup by absorbing en-
ergy, i.e. through breaking actions.

6.1.3 Amount of disagreement

In our experiment, a disagreement is assumed to oc-
cur when two partners pull or push the table in op-
posite directions along the y©-axis. Instead of con-
tributing to the movement of the object, part of the
forces in this axis are wasted for compressing the ta-
ble (i.e. squeeze force) or resisting the other part-
ner (i.e. tensile force). Groten et al. (2009) call these
forces interactive forces defined as

ﬂfy, if sgn(ﬁfy) #+ sgn(ﬁgy)
Alag,| < Jag|
uy = —ﬂgy, if sgn(ﬁfy) % sgn(ﬂgy)
Alag,| > Jug,|
0, otherwise.

In order to come up with a metric of disagreement,
the interactive forces during the disagreement peri-
ods are weighed with the time spent in disagreement.
Since we are not interested whether the agents dis-
agree by pushing or pulling against each other (which

is indicated by sign of uj), the amount of disagree-

ment
cT
ADI = / |url dt,
0

is calculated based on the magnitude of the interac-
tive forces.

6.1.4 Role allocation

The frequency distribution of the policy parameter «
is investigated to provide a better understanding of
the dynamic role allocation behaviors in different con-
ditions.

6.2 Subjective measures

At the end of each condition, the subjects are asked
to fill in a questionnaire, which is designed with
the technique that Basdogan et al. (2000) have used
in the past for investigating haptic collaboration in
shared virtual environments. The questionnaire con-
sists of 20 questions taken from NASA-TLX task load
index (Hart and Stavenland, 1988) as well as those
developed by Kucukyilmaz et al. (2011). The sub-
jects indicate their level of agreement or disagreement
on a 7-point Likert scale for a series of questions,
some of which are rephrased and asked again within
the questionnaire in an arbitrary order. The average
of the subjects responses to the rephrased questions
is used for the evaluation. NASA-TLX evaluates the
degree to which each of the following six factors con-
tribute to the task workload:

o Mental Demand: One question asks how much
mental and perceptual activity was required for
achieving the task (e.g. thinking, deciding, cal-
culating, remembering, looking, searching, etc.).

e Physical Demand: One question asks how much
physical activity was required for achieving the
task (e.g. pulling, pushing, turning, calculating,
remembering, looking, searching, etc.).

e Temporal Demand: One question asks how much
time pressure the subjects felt during the task.
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e Performance: One question asks the subjects
to assess their self-performance in accomplishing
the goals of the task.

Effort: One question asks how hard the subjects
had to work to accomplish their level of perfor-
mance.

Frustration Level: One question asks how much
irritation, stress or annoyance the subjects felt
during the task.

The remaining questions are asked in the following
categories:

Collaboration: Two questions investigate the ex-
tent to which the subjects had a sense of collab-
orating with the robot during the task.

Interaction: Two questions explored the level
of interaction the subjects experience during the
task.

Comfort: One question asks how comfortable
the task was.

Pleasure: One question asks how pleasurable the
task was.

Degree of Control: Two questions ask the sub-
jects about their perceived degree of control on
the movement of the table.

Predictability: Two questions investigate how
predictable the robot’s movements were during
the task.

Trust: Two questions investigate whether the
subjects trusted their robotic partner on control-
ling the table or not.

Human-likeness: Two questions ask the subjects
whether the robot’s actions (movement patterns)
resembled those of a human being acting in a
similar real-life scenario.
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Figure 13: Average completion time of the task. The
bars represent standard errors of the means.

7 Results

This section presents the results of the experiment
in terms of the quantitative and subjective measures
defined in Section 6. Statistically significant differ-
ences between conditions were investigated using one
way repeated measures ANOVA and multiple com-
parisons were performed via post-hoc t-tests with
Bonferroni correction. Mauchly’s test was conducted
to check if the assumption of sphericity was violated.
If so, the degrees of freedom were corrected using
Huynh-Feldt estimates of sphericity.

7.1 Quantitative analysis

In this section, we present the quantitative results
according to the measures introduced in Section 6.1.

7.1.1 Task performance

Fig. 13 illustrates the mean completion time under
each condition and the standard error of the means.

According to ANOVA results, we observe a statis-
tically significant effect of the condition on comple-
tion time (p < 0.001). Specifically, the subjects
completed the task significantly faster under WPRA
than they did under the other two conditions. While
the completion time is slightly smaller in DPRA than
it is in CRA, the difference between these conditions
is not significant.
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Figure 14: The averaged applied wrenches of the hu-
man and the robot. The bars represent standard er-
rors of the means.

7.1.2 Effort

Fig. 14 illustrates the mean individual wrenches ap-
plied by the agents and the standard error of the
means.

According to ANOVA results, the experimental
condition has a significant effect on interaction forces
of both the human and the robot (p < 0.001). We
observe that the average wrench applied by the hu-
man under WPRA is significantly smaller than it is
under the other conditions (p < 0.001), whereas it
is significantly higher under DPRA (p < 0.001). On
the other hand, the applied wrench of the robot is
significantly higher under WPRA and DPRA than it
is under CRA (p < 0.001).

Fig. 15 illustrates the average work done by the
individual agents and the dyad under each condi-
tion. The error bars denote the standard error of the
means. The results are in parallel to those observed
for the wrenches applied by the agents.

We consider the work done as an indication of
physical effort. ANOVA results suggest that there
is a significant effect of the experimental condition
on the individual work done by the agents and the
work done on the table (p < 0.001). We observe
that the subjects put the least effort under WPRA
(p < 0.001) and the most under DPRA (p < 0.001).
Similarly, we observe that the total work done on the
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Figure 15: Average work done by individual agents
and average work done on the table. The bars repre-
sent standard errors of the means.

table under WPRA is smaller than that under CRA
(p < 0.05) and DPRA (p < 0.001). The total work
is the largest under DPRA (p < 0.001). The robot
showed significantly more effort under WPRA and
DPRA than it did under CRA (p < 0.001). Even
though we observe the highest robot effort in DPRA,
the difference between the WPRA and DPRA condi-
tions is not statistically significant.

7.1.3 Amount of disagreement

The amount of disagreement under each condition is
illustrated in Fig. 16. The ANOVA results indicate
a significant effect of the condition on the amount of
disagreement (p < 0.05). The multiple compari-
son results imply that the amount of disagreement is
similar under CRA and WPRA, whereas it is lower
under DPRA than CRA (p < 0.001) and WPRA
(p < 0.001). Note that we consider only the signs
of the applied wrenches to decide whether there is a
disagreement between the partners. Also we check
for interactive forces that are smaller than 1N, and
do not treat these as disagreements.

7.1.4 Role allocation

Fig. 17 illustrates how the role allocation behavior
changes for the WPRA and DPRA conditions. For
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Figure 16: The averaged amount of disagreement un-
der each condition. The bars represent standard er-
rors of the means.

each condition, a sample trial is selected showing the
human’s wrench profile and the resulting profile of
the policy parameter . Upon examining the plots,
we observe that even though the human’s wrench pro-
file is similar under WPRA and DPRA, the resulting
robot behavior is drastically different. In particular,
the discrete state transitions under DPRA become
obvious in contrast to the continuous blending under
WPRA.

The frequency distributions of the policy param-
eter & under the WPRA and DPRA conditions are
illustrated in Fig. 18. We observe that under WPRA
the robot acted towards maximum effort. On the
other hand, we see a almost uniform distribution be-
tween the three discrete states of effort sharing be-
haviors (also due to transitions, we notice values in
between these three states).

7.2 Subjective evaluation

The key results of the subjective evaluation are as
follows:

e The subjects thought that the task was phys-
ically and mentally less demanding under
WPRA. The physical demand for DPRA was
significantly higher than it was for WPRA
(p < 0.005) and CRA (p < 0.05).
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Figure 17: Sample trials for conditions WPRA (top)
and DPRA (bottom). The straight lines denote the
policy parameter «, and the dashed lines denote the
component ﬁfy’est of the human’s wrench profile.
Task segments are separated by vertical bold lines.

e The subjects felt significantly less comfort-
able under DPRA than they felt under CRA
(p < 0.01) and WPRA (p < 0.005).

e The subjects believed that their control over
the table’s movements under DPRA was signifi-
cantly more than that under WPRA (p < 0.05).

e Under DPRA, the predictability of the robot
was significantly lower than it was under CRA
(p < 0.05).

Fig. 19 shows the mean values of the subjects’ re-
sponses to the questionnaire and the standard error
of the means.
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Figure 19: Means of the subjective measures in each condition. The bars represent standard errors of the

means.

8 Discussion

In this study, we investigate the benefits of using a dy-
namic role allocation scheme for cooperative human-
robot interaction. We implemented two different
dynamic role allocation schemes, i.e. WPRA and
DPRA, and compared them to a scheme with con-
stant role allocation, i.e. CRA. The evaluation of
cooperative physical human-robot interaction is es-
pecially tricky due to the diversity of real life appli-
cations and target domains. In such systems, opti-
mizing for the human’s collaborative experience as
well as the task performance is desired. In order to
present a broad analysis, we utilized quantitative and
subjective measures as explained in Section 6, each
of which is designed to evaluate a different aspect of
the cooperative task. Along with performance mea-
sures, we propose quantitative measures for evaluat-
ing the effort and efficiency of the partners in the
dyadic task. Subjective measures are presented to
discover the acceptability of the proposed schemes

by the humans. However, our results indicate that
no single interaction scheme can satisfy every aspect
of interaction. Hence, the domain and task knowl-
edge should be considered carefully.

The subjective evaluation, when considered along
with the quantitative results presents insight about
the users’ perception of different effort sharing poli-
cies. During the experiments, we observed that, un-
der DPRA, the subjects accelerated and decelerated
from time to time as an effect of adaptation to the
changing policy a. We infer that such movements
might have caused the subjects to finish the task in
a longer time. The average wrench of the robot is
significantly higher under WPRA and DPRA than it
is under CRA, which indicates a possible tendency
towards maximum effort in the robot’s behavior un-
der both conditions. As a consequence of the smooth
blending, under WPRA, the maximum effort policy
that was dominantly employed by the robot made
the subjects think that the task required them to be
faster (i.e. the task had a higher temporal demand).
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Figure 18: The frequency distribution of the policy
parameter a under each condition.

Eventually this perception could be responsible for
the lower completion time under WPRA.

We observed that the level of agreement during the
task was the highest under DPRA. Reed et al. (2005)
mention that sometimes force oscillations may be ob-
served during interaction for negotiation purposes or
in an effort to adapt to the varying velocity enforced
by the robot. Since the states were discrete under
DPRA, the behavior of the robot was observable.
Hence the users might have needed to use force os-
cillations less for adaptation, but acted in a more de-
terminate way through their applied forces, resulting
in an increased level of agreement during the task.

Under DPRA, the subjects were able to observe the
operation of the robot more clearly and infer that dif-
ferent behaviors were displayed by the robot. On the
other hand, WPRA resulted in smooth role blending,
which was not consciously perceived by the subjects
for most of the time. We also observe that the mental
and physical demand of task, as well as the frustra-
tion level and the physical effort were higher under
DPRA. This may be an artifact of the pronounced
role switching behavior faced during the task under
DPRA.

The subjects thought that the robot was acting
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less collaboratively under WPRA and DPRA. A pos-
sible reason for this is that the changing effort role
of the robot made the interaction more complex,
and the subjects favored a constant role allocation
scheme. The subjects found the level of interaction
to be higher under DPRA. Under WPRA, the role ex-
changes were probably too smooth to be observable,
hence the subjects failed to perceive the interactive
nature of the task.

The subjects felt in control of moving the table
under DPRA significantly more than they did un-
der WPRA. They also thought that they spent more
effort in DPRA, which agrees with our effort mea-
sures. Also since the robot displayed greater effort
under WPRA, the perception of the relative control
level of the subjects might have dropped. Addition-
ally, the subjects felt significantly less comfortable
under DPRA and they thought that the predictabil-
ity of the robot was significantly lower than it was
under CRA. Since the behavior of the robot was less
smooth under DPRA, the subjects might have felt
discomfort due to abrupt role transitions and experi-
enced a difficult time in inferring the robot’s actions
in advance. However, in WPRA, as the behavior was
smooth, the subjects were able to predict the robot’s
actions better. As the subjects could not infer the ac-
tions of the robot clearly under DPRA, they may be
driven to being more dominant in pulling and pushing
the table, which eventually increases their perceived
control level during the task.

The subjects’ belief that the robot would perform
the task correctly was the highest under CRA, in
which the subjects observed no unexpected behav-
iors as the robot’s effort sharing policy was constant
at all times. Finally, the human-likeness of the robot
was lower under DPRA than it was under WPRA
and CRA. As mentioned above, we observed that the
smooth operation under CRA and WPRA provides
a more comfortable experience for the subjects, in
which the subjects reported that they could trust the
robot and predict its actions. Even though we have
not yet discovered the salient features that make the
communication with a robot more human-like, obvi-
ously subjective sensations such as smoothness, com-
fort, predictability, and trust adds to higher human-
likeness scores.



The aforementioned points draw a clear distinc-
tion between two different implementations of a dy-
namic role allocation scheme. Although in essence
both WPRA and DPRA realize dynamic role allo-
cation based on the wrench acquired from the same
human partner, the discretized version of the scheme
invoke more distinct role transitions. However, these
defined transitions increase the visibility of the un-
derlying scheme, and allow the users of the system to
observe it better. This makes a DPRA-like scheme
a viable alternative for interactive training applica-
tions. In training, it is necessary for the users to
observe the role of the trainer (i.e. the robot) so
that they can adapt to it. When the trainer’s role
is not perceived, the users typically tend to obey the
guiding system and do not learn the dynamics of the
system (Forsyth and Maclean, 2006). This effect can
clearly be observed when we examine the frequency
distribution of the policy parameter in Fig. 18. As
indicated in the figure, under WPRA, the users tend
to go along under the supervision of the robot most
of the time. Since the robot puts its maximum effort
into the task most of the time, the users would only
seldom take initiative and hence fail to gain training
experience.

On the other hand, in many applications, users
would prefer comfort over having a better sense of in-
teraction. For instance, when working with an assis-
tive robot in a cooperative manipulation task, users
would prefer to finish the task in the fastest and the
least tiring way. In such a setting, WPRA would be
the better alternative as it optimizes for task perfor-
mance and human effort. Finally, in some settings
such as physical interaction with the elderly or the
children, subjective sense of comfort, pleasure, and
trust could matter the most, making CRA a better
choice.

9 Conclusion

In this paper we present a systematic analysis of co-
operative human-robot manipulation and introduce
three different schemes for the allocation of effort
resulting from the task. The envisaged cooperative
load transport task is decomposed into the subtasks
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of steering and progressing according to the objects
geometrical and dynamical properties. Meaningful
decompositions are derived in order to parameterize
policies to distribute the effort among the contribut-
ing partners. The effort along the direction of redun-
dant inputs is allocated among the agents in terms of
roles following three proposed strategies. The experi-
mental evaluation revealed the interesting effect that
a continuous dynamic role allocation policy is objec-
tively superior over a constant role strategy whereas
the human partners subjectively preferred the con-
stant role which was more obvious.

Our next steps include the application of our dy-
namic role allocation scheme to more complex tasks
involving dynamically changing environments with
a stronger emphasis on different capabilities of the
partners. Furthermore, possibilities to generate the
underlying reference object trajectory will be investi-
gated in more detail. We are convinced that the abil-
ity of a robotic system to adjust its own role within
a cooperation is a relevant factor for the usefulness
of future physical robotic assistants. The decrease of
subjective acceptance of a dynamically changing role
in spite of the performance increase leaves a number
of interesting research questions.
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