
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 2 5 5e2 7 3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/cose
Profiling user-trigger dependence for Android
malware detection*
Karim O. Elish a, Xiaokui Shu a, Danfeng (Daphne) Yao a,*,
Barbara G. Ryder a, Xuxian Jiang b

a Department of Computer Science, Virginia Tech, 2202 Kraft Dr, Blacksburg, VA 24060, United States
b Department of Computer Science, North Carolina State University, Raleigh, NC 27606, United States
a r t i c l e i n f o

Article history:

Received 29 May 2014

Received in revised form

25 August 2014

Accepted 1 November 2014

Available online 14 November 2014

Keywords:

Malware detection

User-intention

Static program analysis

Android malware

User-trigger dependence
* A preliminary version of the work appe
conjunction with the IEEE Symposium on Se
supported in part by Security and Software E
Cooperative Research Center (I/UCRC), NSF
* Corresponding author. Tel.: þ1 (540)231 778
E-mail addresses: kelish@vt.edu (K.O. Elis

ncsu.edu (X. Jiang).
http://dx.doi.org/10.1016/j.cose.2014.11.001
0167-4048/© 2014 The Authors. Published
creativecommons.org/licenses/by-nc-nd/3.0/
a b s t r a c t

As mobile computing becomes an integral part of the modern user experience, malicious

applications have infiltrated open marketplaces for mobile platforms. Malware apps

stealthily launch operations to retrieve sensitive user or device data or abuse system re-

sources. We describe a highly accurate classification approach for detecting malicious

Android apps. Our method statically extracts a data-flow feature on how user inputs trigger

sensitive API invocations, a property referred to as the user-trigger dependence. Our evalu-

ation with 1433 malware apps and 2684 free popular apps gives a classification accuracy

(2.1% false negative rate and 2.0% false positive rate) that is better than, or at least

competitive against, the state-of-the-art. Our method also discovers new malicious apps in

the Google Play market that cannot be detected by virus scanning tools. Our thesis in this

mobile app classification work is to advocate the approach of benign property enforcement,

i.e., extracting unique behavioral properties from benign programs and designing corre-

sponding classification policies.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Malicious mobile apps and vulnerable mobile computing

platforms threaten the confidentiality of personal and orga-

nization data and device integrity Davi et al. (2010); Enck et al.

(2010). Malicious applications can exfiltrate sensitive data,

abuse of system resources, and disrupt the normal usage of

the device. With the increased connectivity to organizational
ared in the Proceedings
curity and Privacy. San Fr
ngineering Research Cent
grant CAREER CNS-095363
7.
h), subx@vt.edu (X. Shu), d

by Elsevier Ltd. This is a
).
networks, vulnerable smartphones increase the attack sur-

face of organizations, threatening the security of systems and

data at a grand scale. Recent studies show that there exist

hundreds of thousands of unique Android malware samples

belonging to over 300malware families forti-guard. Because of

the pervasive use of Android as a mobile operating system

(over 50%market share in western and some Asian countries),

solutions for detecting malicious applications in the Android

marketplace are urgently needed. Our work presents a new
of the IEEE Mobile Security Technologies (MoST) workshop, in
ancisco, CA, USA. May 2012 Elish et al. (2012). This work has been
er (S2ERC), an NSF sponsored multi-university Industry/University
8, and ONR grant N00014-13-1-0016.

anfeng@vt.edu (D.(D. Yao), ryder@cs.vt.edu (B.G. Ryder), jiang@cs.

n open access article under the CC BY-NC-ND license (http://

https://core.ac.uk/display/82192146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.�0/
mailto:kelish@vt.edu
mailto:subx@vt.edu
mailto:danfeng@vt.edu
mailto:ryder@cs.vt.edu
mailto:jiang@cs.ncsu.edu
mailto:jiang@cs.ncsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2014.11.001&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001
http://creativecommons.org/licenses/by-nc-nd/3.�0/
http://creativecommons.org/licenses/by-nc-nd/3.�0/

1 https://www.virustotal.com/.

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 2 5 5e2 7 3256
quantitative program analysis approach for detecting mali-

cious Android applications that achieves a higher accuracy

than previously reported classification methods.

Classification solutions have been proposed to model and

approximate the behaviors of Android apps and distinguish

malicious apps from benign ones. Classification decisions are

made by analyzing apps' static (e.g., Grace et al., 2012b) or

dynamic (e.g., Amos et al. 2013) behavior features. Static fea-

tures can be extracted from intermediate code representa-

tions obtained through decompiling Android Dalvik bytecode.

Dynamic features are collected by observing the run-time

behaviors of the program. Various types of features can be

extracted fromAndroid permission, code, or execution for app

classification.

The detection accuracy of a classification method depends

on the quality of the features, e.g., how specific the features

are. The accuracy of existing Android classification solutions

is still far from ideal. The state-of-the-art classification with

pure static features gives a false negative rate (i.e., missed

detection, FN) of 9% Grace et al. (2012b). These features are

extracted through data- and control-flow analyses. Hybrid

features (i.e., a combination of static and dynamic features)

extracted from programs give a better FN rate 4.2% Zhou et al.

(2012) (e.g., dynamic features related to dynamic code loading

and native code invocation). Most of the dynamic classifica-

tion solutions give 10% or higher false positive rates (FP) while

trying tomaintain a reasonable FN rate, e.g., 10% FP in Shabtai

et al. (2012) and 15% FP in Amos et al. (2013). The false positive

rate tells the percentage of benign apps wrongfully classified

as malicious.

This work presents a high-precision Android app classifi-

cation method based on one complex feature that leverages

the dependence effects of program behaviors. Specifically, we

extract the definition-and-use (i.e., def-use) data dependence

properties related to sensitive operations and their user trig-

gers in the app. Smartphone apps (Android, iOS, or Windows

Phone) are unique in their user-centered and interaction-

intensive design, in which operations typically require initia-

tion by users' specific actions (or triggers). Our classification

leverages the dependence relations between user inputs/ac-

tions and sensitive API calls providing critical system func-

tions. Our feature extracted from programs reflects the

expected causal relations in the execution.

Our classification recognizes legitimate and desirable

behavioral patterns in programs, as opposed to identifying

malicious patterns. Those behaviors are commonly found in

trustworthy programs, but not in malware. Our classification

is based on whether or not a program possesses these benign

properties.

Specifically, we analyze the def-use graph to extract a

TriggerMetric feature for each API call. The TriggerMetric

feature statically approximates whether or not the occur-

rences of the call (i.e., call sites) are triggered by the user.

Specifically, the TriggerMetric value represents the number of

valid call sites among all the call sites of a specific API. The

validity of an API call is defined based on def-use semantics; a

call is valid if at least one of the call's arguments depends on

some user input(s). In other words, the TriggerMetric values of

an app reflect the degree of sensitive operations that are

triggered or intended by the user. The classification decision is
made based on TriggerMetric values (i.e., an app is classified

as malware if it has an overwhelming number of triggerless

sensitive operations).

Our contributions are summarized as follows.

� We present a new Android app classification method that

uses one complex feature rather than multi-feature as in

the existing malware detection methods which focus on

the presence of simple features such as permission or API

call. The TriggerMetric feature captures the static depen-

dence relations between user inputs/actions and sensitive

operations providing critical system functions in pro-

grams. This feature is extracted through nontrivial

Android-specific static program analysis and is used in

several quantitative analytical methods.

� Our experimental evaluations on 2684 free popular apps

and 1433 malicious apps suggest that our rule-based clas-

sification with the single feature of user-trigger depen-

dence is very effective. It detects 97.9% of themalware apps

with a low (2.0%) false positive rate.

� Our analysis reveals hundreds of malicious apps in the

Google Play market, some of which were previously unre-

ported and were not detected by any of the 48 VirusTotal1

scanners.

The purpose of our work is not to advocate the use of fewer

features in program classification. Multiple classification tools

and features should be utilized to paint a comprehensive

picture about a program.

Rather, our thesis in this mobile app classification work is

to advocate the approach of benign property enforcement.

Our analysis verifies whether or not a program is in compli-

ance with our benign-property standards. In the face of rapid

malware evolution, this type of benign-property enforcement

may yield a more proactive defense than the malware-

oriented detection approaches.
2. Overview and definitions

Our classification methodology aims at exposing possible

privileged actions of apps that are not intended by the user

and lack proper dependences in the code. In this section, we

give the description of how the trigger-based dependence feature

is extracted from programs through static program analysis.

We also discuss several metrics formed from our feature

analysis.

2.1. Data dependence graph

A data dependence graph (DDG) is a common program anal-

ysis structure which represents inter-procedural flows of data

through a program Horwitz et al. (1990). The DDG is a directed

graph representing data dependence between program in-

structions, where a node represents a program instruction

(e.g. assignment statement), and an edge represents the data

dependence between two nodes. The data dependence edges

are identified by data-flow analysis. A direct edge fromnode n1

https://www.virustotal.com/
http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

void onCreate()

void sendsms(“1066156686”, “8”, “ ”)

void sendsms(Str p0, Str p1, Str p2)

r0 = @p0: String r1 = @p1: String r2 = @p2: String

android.telephony.SmsManager.sendTextMessage(r0, r1, r2, …)

Fig. 2 e Partial abstract dependence graph for HippoSMS

malware. There is no direct path showing a dependency

between user triggers and sendTextMessage().

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 2 5 5e2 7 3 257
to node n2, which is denoted by n 1 / n2, means that n2 uses

the value of variable x which is defined by n1.

Formally, let I be the set of instructions in a program P. The

data dependence graphG for program P is denoted byG¼ [I, E],

where E represents the directed edges in G, and a directed

edge Ii / Ij 2 E if there is a def-use path from instructions Ii to

Ij with respect to a variable x in P.

We show two DDG examples to motivate our data-flow

analysis based on the dependence relations. The first

example is a legitimate app for sending SMS messages. Fig. 1

shows its partial def-use dependence graph. The graph in-

dicates that the API call sendTextMessage() depends on the

some inputs from the user, as one of its argument is entered

by the user via text fields, through getText() API. There are

direct dependence paths between user inputs (e.g., data and

actions) and the sendTextMessage() API.

Another example is about a real-world Android malware

HippoSMS, which affects Android smartphones by subscribing

to premium SMS services. The malware sends SMS messages

to a hard-coded premium-rated number without the user's
knowledge. Fig. 2 shows a partial def-use dependence graph

for HippoSMS. It shows the dependence relations associated

with the arguments to a sensitive API call sendTextMes-

sage(). Specifically, Fig. 2 shows that sendSMS(p0, p1, p2)

method is called with a hard-coded premium-rated number

1066156686 as its p0 argument. The subsequent sendSMS

method calls a sensitive API sendTextMessage() with the

same hard-coded value p0 as its phoneNum argument. There is

no direct dependence path between the sendTextMessage()

API call and any user inputs (e.g., data and actions).

We accurately extract these types of dependence proper-

ties and quantify them for classification. Existing program

analysis solutions cannot be directly applied to solve the

problem, in part because of the lack of proper handling of

Android-specific features such as Intents. In our work, we

formalize the security problem of dependence-based app

classification, and design efficient algorithms for parsing large

specialized dataedependence graphs for extracting the

trigger-based dependence feature. We refine our data-

edependence graph with reachability analysis obtained from
$r3.setOnClickListener(…)

android.telephony.SmsManager.sendTextMessage(r6, null, r8, null, null)

r6 = android.widget.EditText.getText()

void onCreate()

void onClick(…)

r8 = android.widget.EditText.getText()

$r3 = android.widget.Button button

Fig. 1 e Partial abstract dependence graph for a legitimate

app. sendTextMessage() has the required user

dependence property. User triggers are shown in green

nodes.
control-flow analysis. The reachability analysis prunes un-

used code for high program analysis accuracy. The workflow

of our analysis is shown in Fig. 3.

2.2. TriggerMetric tuple per operation

In this section, we give the definitions for the terminology

used in our classification, including operation, trigger, depen-

dence path, and valid call site. For each operation in a program,

we give our definition for the TriggerMetric tuple, which rep-

resents properties associated with call sites of the operation.

An operation is an API call which refers to a function call

providing system service such as network I/O, file I/O, tele-

phony services in the program. We focus on a subset of

function calls e the critical API calls that can be used for

accessing private data and utilizing system resources.

Examples of the operations in our analysis are send/receive

network traffic, create/read/write/delete operations for files,

insert/update/delete operations in database and content pro-

vider, execute system commands using java.lang. Runti-

me.exec, access and return private information such as

location information and phone identifiers, and send text

messages in telephony services.

A trigger refers to a user's input or action/event on the app.

A trigger is a variable defined in the program. For example, the

user's input may be text entered via a text field, while the

user's action/event is any click on UI element, such as a but-

ton. Relevant API calls in UI objects that return a user's input

value or listen to user's action/event are defined as triggers.

Our classification is based on analyzing unauthorized

privileged operations that are not intended by the user.

Because the analysis is automated (i.e., without any user

participation), user-intention needs to be approximated. In

our analysis user-intention is embodied in the trigger vari-

ables. We specify the names of functions corresponding to

triggers and operations in the program analysis.

A valid dependence path is a (directed) dependence path

between a trigger and an operation in a data dependence

graph (DDG). In our static data-flow semantics, the path

specifies a definition-and-consumption (def-use) relation,

where a trigger is defined and later used as an argument to an

operation. The existence of a valid dependence path means

that the operation depends on a user trigger.

http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

Android
Application

(.apk)

Preprocessing Construct Dependence
Graph

Identify Dependence
Paths

Benign App

Reachability
Analysis

Identify User
Triggers &

Sensitive APIs

Backward Depth-
First Search

Data Dependence
Analysis

Android-specific
Control-flow

Analysis

Extract
AndroidManif-

est.xml

Java Bytecode
(.class)

Aggregate for
DPVC Vector

Aggregate for
Assurance

Score

Compute TriggerMetric

Feature Extraction

Classification
Rule 2

Classification
Rule 1

Rule-based Classification

Malicious App

Fig. 3 e Workflow of our analysis.

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 2 5 5e2 7 3258
Fig. 4 illustrates two different operations c and c0 in a pro-

gram, each having two call sites (i.e., each call occurs twice in

the program), s1 and s2 for c, s01 and s02 for c
0. Three dependence

paths are valid, with proper user triggers on the paths,

whereas a valid dependence path for call site s02 does not exist.
The trigger may be transformed before being used as an

argument in the operation, thus the dependence path be-

tween themmay be long. In Section 3 we present our detailed

program analysis and graph algorithms.

A valid call site s of an operation c is a call site that has a

valid user-trigger dependence path. A call site is the occur-

rence of an operation. An operationmay have one ormore call

sites in a program.

Definition 1. TriggerMetric feature is a two-item tuple <k, l> for an

operation c in a program, where.

� k is the number of valid call sites of operation c, and

� l is the total number of call sites of operation c.

For the example in Fig. 4, the TriggerMetric values for op-

erations c and c0 are <2, 2> and <1, 2>, respectively. For an app

with n distinct operations, there are n TriggerMetric tuples
Fig. 4 e Illustration of dependence paths and various metrics fo

operation has two call sites s1 and s2 and s01 and s02, respectively
from some user trigger to a call site. A dashed line represents t

trigger.
associate with it, <k1, l1>, …, <kn, ln>, one corresponding to

each operation.
2.3. Aggregated metrics

One can compute several useful values aggregated from the n

TriggerMetric tuples of a program. These aggregated metrics

provide a behavioral summary of the program. Intuitively, the

assurance score V is a single value for an app representing the

portion of call sites that are intended by the user across all

operations in the app.

Definition 2. Assurance scoreV 2 [0%, 100%] of a program is the

percentage of valid call sites out of the total number of call sites

across all the operations.Given the n TriggerMetric tuples {<ki, li>} of
a program, where ki is the number of valid call sites and li is the

number of total call sites for operation i, and n is the total number of

distinct operations, V is computed as follows.

V ¼
Pn

i¼1kiPn
i¼1li

(1)
r a program having two distinct operations c and c′. Each

. A solid line represents the existence of a dependence path

hat none of the call site's dependence paths has a user

http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 2 5 5e2 7 3 259
For the example in Fig. 4, V ¼ 3/4, as there are total 4 call

sites in the program, among which 3 are valid.

One can also compute the distribution associated with

TriggerMetric values in a program, which provides useful in-

sights into the program's behaviors.

Definition 3. DPVC Vector W of a program is the normalized Dis-

tribution of the Percentages of Valid Call sites per operation. For

operation i, the percentage of valid number of call sites is defined as

ki/li,where ki is the number of valid call sites and li is the number of

total call sites for the operation i. Let n be the total number of distinct

operations in the program.

Each percentage value determines the bin whose contents are

augmented by one. After all percentage values are distributed, the

value of each bin is divided by n, the total number of operation in the

program. This yields a normalized distribution. Specifically, the

distribution of the n percentage values {k1/l1,…, kn/ln} is represented

by the following 12 bins: 0%, (0%, 10%), [10%, 20%), [20%, 30%),…,

[90%, 100%), 100%.

For the example in Fig. 4 (n ¼ 2), the percentages of valid

number of call sites for the two operations (c and c0) are 100%

(2/2) and 50% (½), respectively. Thus, most of the corre-

sponding DPVC vector is 0, except for bins (50%, 60%) and

100%, i.e., one count in the [50%, 60%) bin, and one count in the

100% bin. After normalization, the entry for both the 100% bin

and [50%e60%) bin is 0.5. Therefore, the final normalized

distribution vector is {0, 0, 0, 0, 0, 0, 0.5, 0, 0, 0, 0, 0.5}, whose

components are summed to 1.

The DPVC vector is computed from the TriggerMetric

feature. Intuitively, it provides the in-depth statistics on the

dependence-based validity of the calls in the program. The

vector is used in our classification in Section 4, where we

compare the DPVC vector of an unknown app with ones of

known malware apps to infer their behavior similarities.

2.4. Program analysis for feature extraction

The TriggerMetric feature is extracted from programs through

static program analysis. In this section, we justify our use of

data-flow analysis (as opposed to control-flow analysis) for

this purpose. Our method tracks how a user's input propa-

gates throughout the program using data-flow analysis. Alter-

natively, one may attempt to capture how the user control

action leads to a sensitive API call, which requires control-flow

analysis.

For our trigger-based dependence analysis, data-flow

analysis is more appropriate than control-flow. For example,

control-flow analysis cannot be used to track the user's input

(data) that is used as arguments in sensitive API calls. How-

ever, data-flow analysis alone may overestimate the de-

pendences due to the lack of the control analysis on branches

(e.g., if). In this work, our feature is extracted from data-flow

dependence analysis, which is coupled with event-specific

control-flow dependence analysis. Our approach can be

generalized to comprehensive control-flow analysis for

improved accuracy.

Our dependence analysis tracks the propagation of triggers

through events, including Android Intent. Intent is an event-

based mechanism for communication between applications
or components (Activity, Service, Receiver) in Android. For

example, information entered by the user in one Activity may

be passed through an Intent to another Activity or Service for

processing. Therefore, the dependence graph needs to be

augmented in order to obtain the complete set of operations

that depend on trigger variables through events. Without this

expansion, the dependence analysis may underestimate the

dependence relations (i.e., fail to report legitimate trigger-

operation dependence relations). Because of our focus is on

dependences related to user activities, we perform Intent-

specific control-flow analysis, as opposed to general control-

flow analysis.

Next, we give a detailed description of the techniques used

in our program analysis. The program analysis outputs Trig-

gerMetric values for all the sensitive operations in the pro-

gram. Then in Section 4, we present our classification method

based on the TriggerMetric values. Our evaluation results are

given in Section 5.
3. Feature extraction using dependence
analysis

We present in detail our technique used for extracting the

TriggerMetric feature from Android applications. To that end,

we generate and analyze the data dependence graph,

including i) the general data-flow dependences, ii) the event-

specific data dependence analysis for handling Android

Intent and gathering comprehensive data dependence infor-

mation, iii) reachability analysis for pruning unused code, and

iv) backward depth-first search for finding dependence paths

and computing a TriggerMetric for each operation.

Our programanalysis takes as inputs the trigger set and the

operation set, which are manually selected based on their

semantics. The output of the program analysis is a set of

TriggerMetric values {<kc, lc>}, one value for each sensitive

operation c, e.g., sendTextMessage().

The pseudocode of our procedure for computing Trigger-

Metric values of a program is shown in Algorithm 1.

We first describe our construction of the dependence graph

based on explicit def-use relations. The basic DDG graph is

then augmented in order to capture def-use relations due to

events.

3.1. General-purpose data-flow dependence

We use data-flow analysis to construct the data dependence

graph (DDG) with intra- and inter-procedural call connectivity

information to track the dependences between the definition

and use of user-generated data in a given program. The intra-

procedural dependence edges are identified based on local

use-def chains. On the other hand, the inter-procedural

dependence edges are identified based on constructing a

call-site context-sensitive call graph supported by points-to

analysis to build accurate call graphs. Context-sensitive analysis

differentiates calling contexts of a function during analysis.

Context-insensitive analysis analyzes a function summarizing

over all calling contexts.

Thus, a context-insensitive analysis may not provide as

accurate a solution.

http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 2 5 5e2 7 3260
The above general-purpose data-flow analysis does not

cover the data-flow associated with events, as Android event

communications are usually implicit. To achieve a compre-

hensive dependence coverage, we describe our technique for

the necessary event-specific dependence analysis next.

3.2. Augmentation with event-specific data dependence

Our augmented analysis handles two types of events e i) im-

plicit method invocation (e.g., through listeners in GUI) and ii)

Android-specific Intent-based inter-app or inter-component

events. Our approach is to perform necessary control-flow

analysis, which finds bridges between disjoint graph compo-

nents, so that one can obtain the complete reachability of
triggers. We describe our Android Intent-based dependence

analysis that tracks the control-flow among Intent-sending

methods in intra- and inter-application communication.

This Intent-specific control-flow analysis is necessary for

capturing data dependence relations between triggers and

operations across multiple apps and their components.

Android Intent can declare a component name, an action

and optionally includes data or extra data. For example, an

Intent can be used to start a new activity by invoking the

startActivity(Intent i) or startActivityForResult

(Intent i, …) methods. An Intent should be sent to a target

component by matching the Intent's fields with the declara-

tion of the target component in the manifest. Android Intents

can be used for explicit or implicit communication. An explicit

http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

2 We augmented Soot libraries to support the inter-procedural
call dependence analysis.

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 2 5 5e2 7 3 261
Intent specifies that it should be delivered to a particular

component specified by the Intent, whereas an implicit Intent

requests the delivery to any component that supports a

desired operation.

For explicit Intent, where the target component name is

specified,wefirst identify the source componentand the target

component that are linked through an Intent object. This step

pinpoints the Intent creation and sending methods (e.g.,

startActivity(Intent i) and sendBroadcast(Intent i))

to capture the control-flow dependences between the source

and target components. In particular, we analyze the Intent

object constructor to extract thenameof the target component

if it is provided. If it is not provided, we search the parameters

in the setClass(), setComponent() or setAction()

methods on the Intent object, which specify the target's name

to obtain the target component. Given this information, the

dependence graph is augmented by adding a directed edge

from the Intent-sending method of the source component to

the entry point of the target component. This analysis is per-

formed for all explicit Intents created in a given application.

For an implicit Intent, the target component can be any

component that declares its ability to handle a specified ac-

tion. The target component is determined by the Android

system based on the manifest file. We handle the implicit

Intent by analyzing the AndroidManifest.xml file to extract a

list of components with their actions to identify the target

component. Implicit method invocation, such as those in the

GUI, must be accounted for in the dependence graph. Our

approach is to connect the dependent calls to the relevant API

calls related to threads and listeners with their callee in the

graph. For example, Button.setOnClickListener() is

linked with an implicit call to its event handler implementa-

tion onClick(). We identified a list of all event handlers from

Android developer documentation for our analysis. These

methods effectively augment the general-purpose data

dependence graph with the necessary Android event-specific

data-flow information.

Obfuscation, Java reflection, and dynamic code loading

cannot be analyzed statically. Dynamic analysis approaches

(e.g., Newsome and Song, 2005; Yin et al., 2007) are needed to

extract related runtime behavioral features.

3.3. Reachability analysis

The above operations produce a flow- and context-sensitive

data-flow dependence graph with intra- and inter-procedural

dependence analysis, and intra-and inter-application Intent-

based dependence analysis. We then perform a reachability

analysis for the app in order to removeunreachable code “dead

code”. Unreachable code is a portion of the program which

contains classes/methods that are not executed. To that end,

we construct an inter- and intra-procedural control-flowgraph

which shows all the possible execution paths. Given this

control-flow graph and the list of user triggers and sensitive

API calls, we perform reachability analysis to identify reach-

able user triggers and sensitive API calls from the entry points

of the app. Specifically, we trace forward from the given entry

point looking for the identified user triggers and sensitive API

calls. For example, we perform reachability analysis to check

whether a certain user trigger, e.g. click button, is reachable
from the main activity. An activity is a visible portion of an

application which handles user interaction.

There might be some user triggers inside other activities,

but these activities never get executed or called from the

main/parent activity. Hence, there is no reachable path from

the entry point and these user triggers, and they can be safely

ignored to increase the precision of our analysis. Similarly,

some sensitive API calls may not be reachable from the entry

points and never get executed. For example, a sensitive API

getLastKnownLocation() in a tool app is unreachable from

the apps entry points, and therefore will not be executed.

Thus, we ignore and call it unreachable sensitive API call.

On the other hand, we call user trigger or sensitive API call

reachable if there is a reachable path from thegivenentry point

to this user trigger or sensitive API call. For example, assume

that there is a sensitive API sendTextMessage() identified in a

service component in app SendSMS. A service is an invisible

portionofanapplicationwhichperformsbackgroundtask.This

servicewill be called from themain activity upon user clicks on

a button. In this case, the sensitive API identified inside the

service component will be executed. Thus, there is a reachable

path from the main activity entry point to this sendTextMes-

sage(), and hence we call it reachable sensitive API call.

As explained above, some user triggers and sensitive API

calls may not be reachable and hence can be ignored in our

analysis. Our subsequent dependence analysis will only be

performedon reachable components. The reachability analysis

increasestheanalysisprecisionbyexcludingunreachablecode.

3.4. Finding user-trigger dependence paths

Once the dependence graph is constructed, the next step is to

identify paths between user trigger and sensitive API call

pairs. We scan the graph for the occurrences of call sites of

sensitive operations. In Algorithm 1, checkPath Existence()

performs this task by performing backward depth-first

traversal. For each call site si of an operation c, we perform

the backward tracing from si on the dependence graph

searching for any user triggers on the dependence paths. For

each c, we record the valid number kc of call sites, and the total

number lc of call sites. <kc, lc> is output as the TriggerMetric of

the call c, according to Definition 1.

Our implementation of the static analysis framework uti-

lizes libraries in Soot, a static analysis toolkit for Java soot. Our

framework analyzes Java bytecode or source code.

Our DDG construction improves the def-use analyses pro-

vided by Soot.2 Our prototype propagates def-use relations

across the boundaries of methods. Our current prototype dose

not analyze native libraries. Yet, our approach can be gener-

alized to analyze native code.
4. Classification method

The classification decisions are based on the assurance score

V and DPVC vector W of an app. An app is classified as either

benign or malicious. These values are computed from the

http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 2 5 5e2 7 3262
extracted TriggerMetric tuples (<ki, li>) of the app, according to

Definitions 2 and 3. Because of the simplicity of our feature,

our classification is based on rules. In addition to classification

decisions, our analysis also reports the names of operations

with invalid call sites in the program.

Specifically, given the TriggerMetric values obtained from

the program analysis, our classification has three steps: i)

computing V and W, ii) preliminary classification based on V

with respect to a pre-defined threshold T, and iii) further

classification based on the weighted similarity analysis be-

tween vector W and those of known malware samples. In the

next section, we present our two classification rules.
4.1. Our classification rules

4.1.1. Classification with assurance score
The threshold-based classification Rule 1 aims to detect apps

that have low assurance scores, indicating the existence of a

large portion of invalid call sites without proper user triggers.

Rule 1. Given the assurance score V of an Android app and an

assurance threshold T2 (0, 100%], if V < T, then the app is classified

as malware. Otherwise, it is classified as benign.

Clearly, the choice of T affects the accuracy of the classi-

fication. In our experiments in Section 5, we found that a

threshold of 75% gives a proper balance between the false

positives (FP) and false negatives (FN). Probable malware

needs to be further inspected.

For each app, we also applied the similarity-based classi-

fication rule.

4.1.2. Weighted similarity analysis on DPVC vector
This classification compares the DPVC vector of an app with

the DPVC vectors of known malware samples. The purpose is
Fig. 5 e Averaged DPVC vectors representing a fine-grained dis

apps (top) and 2684 free popular apps (bottom).
to detect the apps who have similar distributions with malware

in terms of the valid call sites. To that end, we first computed

the DPVC vector Wi for each malware i 2 [1, m] in a known

malware sample set of sizem. Then, we computed the average

DPVC vector, which is denoted byM; that is, for each itemMj in

vector M, Mj is computed as in Equation (2).

Mj ¼
Pm

i¼1W
i
j

m
(2)

Vector M represents the average distribution of the per-

centage of valid call sites per operation among the known

malware.

Rule 2. Given the DPVC vector W of an app, the average malware

DPVC vector M, a similarity function f, and a threshold T0, if f(W,

M) � T0, then the app is classified as malware. Otherwise, it is

classified as benign.

Any similarity function may be used on DPVC vectors. In

our experiments, we used a weighted cosine similarity func-

tion Tan et al. (2006). The function computes the cosine sim-

ilarity between vectors W and M, while applying weights to

the ranges with smaller percentage values, namely 0% and

(0, 10%). The weights are computed based on an exponential

function 2x and then are normalized.

The reason for choosing the exponential weight function

for this similarity measure is that we observed that the

malware apps have a distinct distribution pattern from the

legitimate apps towards the low percentage region, as shown

in Fig. 5. The weights amplify this distinction in the

classification.

Definition 4. A program is classified as benign if it is classified as

benign by both Rule 1 and Rule 2. Otherwise, it is classified as

malicious.
tribution of per-operation valid call sites for 1433 malware

http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 2 5 5e2 7 3 263
Our evaluation indicates the effectiveness of the above

classification rules on the thousands of apps studied. We also

painstakingly performed necessary manual inspections on

some apps to validate our results and identified the causes of

inaccuracies.

In the next section, we present category of features derived

from our TriggerMetric value which can be used for classifi-

cation as well.

4.2. Variations of classification rules

Our classification rules are based on aggregated statistics on

valid call sites of a program. One can define other classifica-

tion rules using the TriggerMetric values {<k, l>} of a program.

These rules may reflect different degrees of user-trigger

dependence that is required in a trustworthy application.

To demonstrate the generality of the TriggerMetric feature,

in this sectionwe describe two examples of such classification

rules, namely All-Valid-Call-Sites Rule and Any-Valid-Call Site

Rule. Both rules defined below are based on the number of valid

call sites kiwith respect to the total number of call sites li for an

operation i in the program.

Rule 3. All-Valid-Call-Sites Rule. A program is classified as

benign, if and only if all the call sites of all the sensitive operations

are valid, i.e., having user-trigger dependence. If ki ¼ li c sensitive

operation i, then the program is benign. Otherwise, the program is

classified as malicious.

This above rule is equivalent to setting assurance

threshold T to 100% in our classification Rule 1. In our exper-

iments, there are 80.5% (2162) of apps that have 100% assur-

ance scores. We conjecture that such a rule leads to low or

zero missed detection, but many false positives.

A more relaxed classification rule can be defined below,

which only requires at least one valid call site per sensitive

operation.

Rule 4. Any-Valid-Call-Site Rule. A program is classified as

benign, if for each sensitive operation there is at least one valid call

site. If ki� 1c sensitive operation i, then the program is classified as

benign. Otherwise, the program is classified as malicious.

For the example in Fig. 4, this program is classified as

malicious by Rule 3 and benign by Rule 4. In-depth compari-

son of the impact of these various classification rules and

thresholds on Android security will be our future work.

In our experimental evaluation, the classification decisions

are based on Rule 1 and Rule 2.
3 http://virusshare.com/.
4 The malware naming convention follows Zhou and Jiang

(2012).
5. Experimental evaluation

The objective of our evaluation is to answer the following

questions:

1. Do the distributions of the assurances scores of malware

and benign apps significantly differ?

2. What is the false negative (i.e., missed detection) ratewhen

classifying known malware samples?
3. Can our method discover new malware apps that have not

been previously reported?

4. What are the reasons for false positives?
5.1. Experiment setup

We performed an evaluation with 1433 Androidmalware apps

collected by Zhou and Jiang (2012) and VirusShare.3 The

known Android malware apps perform malicious functional-

ities, such as sending unauthorized SMS messages (e.g.,

FakePlayer), subscribing to premium-rate messaging services

automatically (e.g., RogueSPPush), listening to SMS-based

commands to record and upload the victim's current loca-

tion (e.g., GPSSMSSpy), stealing users' credentials (e.g., Fake-

Netflix), and granting unauthorized root privilege to some apps

(e.g., Asroot and DroidDeluxe).4

We also evaluated 2684 free popular real-world Android

apps from Google Play market, covering various application

categories. These free apps include those with different levels

of popularity as determined by the user rating scale. In

particular, we used 1039 high popularity apps, 713 interme-

diate popularity apps, and 932 low popularity apps. We

assumed that the trustworthiness of these free apps is un-

known and they may be malware or may contain malicious

components. We converted Android app code (apk) from the

.dex format to .class files using the Dare tool Octeau et al.

(2012) and extracted features from the Java bytecode.

5.1.1. Averaged DPVC vector of known malware
We computed the DPVC vector for each of the 1433 malware

samples, and then computed their average DPVC vector ac-

cording to Equation (2). The average malware DPVC vector ap-

proximates thedistributionof valid call sites inmalicious apps.

It was used for the similarity test of unknown apps in Rule 2.

5.1.2. Thresholds for classification rules
For our two classification rules (Section 4), we choose the

assurance threshold T to be 75% for Rule 1 and the similarity

threshold T' to be 0.8 for Rule 2. Empirical results showed that

these values provide a high detection rate without producing

excessive false alerts.

5.2. Known malicious apps

Assurance Scores of Known Malware. Most of the malware apps

have low assurance scores, indicating that a significant

number of sensitive API calls are made without proper user

triggers. Invalid call sites that we observed include those for

writing and sending information through the network,

sending unauthorized SMS messages, executing system

commands, and accessing user's private data. E.g., Asroot and

BaseBridge use Runtime.exec() to execute system commands

without valid user triggers.

We found that 479 malware apps out of 1433 apps have 0%

assurance scores. The rest of the 954 apps have positive

http://virusshare.com/
http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

Fig. 6 e Distinct distributions of assurance scores (V) for known malicious apps and free popular apps.

Table 1 e Summary of classification results on 1433
known malware apps. Rule 2 is applied to the apps that

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 2 5 5e2 7 3264
assurance scores. Among them, many malware apps are

repackaged from benign apps,5 e.g., ADRD, DroidDream, and

Geinimi. Malware writers bundle malicious code with existing

benign apps. Repackaging explains our observation that a

significant number of malware apps (954 out of 1433) have

non-zero assurance scores. Positive assurance scores indicate

that a portion of the sensitive operations in these malware

apps exhibit the required dependences on user triggers.

FakeNeflix is the only malware app that has a 100%

assurance score. FakeNetflix is a phishing app, which pro-

vides a fake user interface to trick the user to enter her or his

Netflix credential. This type of phishingmalware circumvents

virtually all behavior-based detection approaches, including

ours. App certification and user education are more effective

defenses than program analysis for this type of social engi-

neering malware.

The detailed distribution of the assurance scores for the

known malicious apps can be found in Fig. 6.

5.2.1. Classification results on known malware
The classification results on knownmalware apps are given in

Table 1. Using assurance scores, Rule 1 labels most (92.5%) of

the samples as malicious, as they have lower-than-75% V

values. Rule 1 labels 108 apps (7.5%) as probably benign. Using

DPVC vectors, Rule 2 labels malicious for 5.4% (77) apps out of

the 108 probably benign cases, as these apps have low per-

centages for valid call sites per operation. Thus, we correctly

detect 97.9% of the 1433malware samples. The false negative

rate is 2.1%, i.e., 31 malware apps are misclassified as benign.
5 The problem of detecting repackage apps (e.g., Crussell et al.
(2012)) has a more specific goal from our general app classifica-
tion. It typically requires graph-based pair-wise app similarity
analysis.
The main reason for misclassification is malware repack-

aged from existing benign code, resulting in malware with

profiles similar to benign apps. For example, one of the 31

undetected malware apps is DroidKungFuSapp, which con-

tains malicious code bundled with com.aijiaoyou.an-

droid.sipphone (an app for learning Chinese). As a result,

this malware app has a high assurance score V of 85.7% and a

low similarity value (0.015) with known malware.

There are two possible countermeasures to combat the

misclassification of repackaged malware apps. The first

countermeasure is to adjust the rules thresholds used for the

classification. For example, we set a threshold for rule 1

(assurance score V) to 75% in our evaluation. One can raise

this threshold to be 90% or more. In this case, the repackaged

malware such as DroidKungFuSapp with assurance score V of

85.7% will be detected.

A more advanced countermeasure is to separate and

identify the original benign portion of the app and the injected

malicious code. In any repackaged app, the malicious com-

ponents are highly communicated/connected together and

loosely connected with other benign components. Hence, one

possible way to identify this is to analyze the connectivity of

the call graph of a repackaged app to identify the loosely

connected or disconnected graph components. Then, one can
are classified as benign by Rule 1. The false negative (FN)
rate refers to the portion of malware apps classified as
benign by both rules and is 2.1%.

Rule 1 (V) Rule 2 (DPVC)

Malicious Benign Malicious Benign (FN)

92.5% 7.5% 5.4% out of 7.5% 2.1% out of 7.5%

http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

Table 3 e Assurance scores of subset of selected benign
apps including or excluding the ads/analytics libraries.

App name Including
ads libs

Excluding
ads libs

com.canadadroid.fantasy 75.0% 100.0%

com.canadadroid.penguinskiing 79.2% 100.0%

com.CalcFinalProgress 85.2% 96.3%

AzureNightwalker.ContactList 89.7% 97.4%

Table 4e Summary of classification results after applying
both rules on 2684 free popular apps.

Rule 1 (V)

Malicious Benign

7.2% 92.8%

Rule 2 (DPVC) Rule 2 (DPVC)

Malicious Benign Malicious Benign

6.5% 0.7% 1.7% 91.1%

Table 2 e Assurance scores for the benign and malicious
components in some repackaged malware apps.

Repackaged malware
name

Assurance
score of benign
component

Assurance score
of malicious
component

com.noisysounds 90% 26%

com.miniarmy.engine 100% 35%

com.chenyx.tiltmazs 78% 20%

com.craigsrace.

headtoheadrcing

86% 28%

Table 5 e Average feature-extraction time for an app.

Procedure Average time (sec)

Reachability Analysis 14.17

Finding Dependence Paths 54.30

AndroidManifest.xml Parsing 0.01

Graph Construction using Soot 89.53

Total Time 158.01

6 Out of the 240 apps, 137 apps triggers at least one alert in
VirusTotal.

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 2 5 5e2 7 3 265
compute features separately for each graph components and

observe the imbalance. Table 2 shows the results of our

assurance scores V for the benign and malicious components

separately for some of the repackaged malware apps. The V

scores for the benign components are much higher than the

malicious components which show the validity of our pro-

posed feature.

5.3. Free popular apps

Because the ground truth on trustworthiness of the free

popular apps are not known, our analysis on them is more

complex. Some of the classification decisions are validated

through significantmanual inspection of the code.We present

our results on the i) assurance score computation, ii) classifi-

cations using two rules, and iii) new malware discovery.

5.3.1. Assurance scores of free apps
Among the 2684 free popular apps, 80.5% of them have 100%

assurance scores, indicating that all the call sites of all the

sensitive operations have valid user-trigger dependence. The

detailed distribution of the assurance scores are shown in

Fig. 6. For the 80.5% of the apps that have 100% assurance

scores, we utilized a signature-based malware scanning tool

VirusTotal for additional validation. VirusTotal has 48

signature-based scanners (e.g., McAfee, NOD32, BitDefender).

We found that only one scanner out of 48 scanners in Viru-

sTotal triggers an adware alert for 13 free popular appswhich

have 100% assurance scores (true positives). The rest of the

free popular apps with 100% assurance scores are benign (true

negatives), none of them trigger any alert by VirusTotal.

Through manual inspection, we find that the use of adver-

tisement and analytics libraries is one main reason for sensi-

tive operations to be called without proper user triggers. We

selected several apps with less-than-100% V scores and

computed their assurance scores with and without the ad/an-

alytics libraries. TheV scores are boosted significantly without

the ad/analytics libraries. The results are shown in Table 3.

We also found a few malicious apps with high enough

assurance scores (e.g., V is 89%) to pass our classification

threshold (i.e., false negative), e.g., a spyware wallpaper app

com.ysler.wps.d3d available on Google Play market.

5.3.2. Classification results of free popular apps
Our classification results are summarized in Table 4. Most of

these free popular apps fromGoogle Playmarket are classified

as benign by both rules. Rule 1 labels 7.2% (193) of the 2684 apps

asmalicious.We thenappliedRule 2 to both categories of apps.
For apps classifiedasmaliciousbyRule 1.WeappliedRule 2

to these 7.2% of the apps. Rule 2 labels 6.5% of the total (175 of

193) as malicious. The other 0.7% (18) are labeled benign.

For apps classified as benign by Rule 1.We applied Rule 2 to

these 92.8% of the apps. Rule 2 labels 1.7% (47) of them as

malicious, and classifies the rest 91.1% as benign.

There are 240 apps that are labeled as malicious by both or

either one of the rules. Their popularity distribution is as fol-

lows, with higher concentrations of suspicious apps in me-

dium and low popularity categories.

� High popularity category: 70 apps (29.2%)

� Medium popularity category: 87 apps (36.3%)

� Low popularity category: 83 apps (34.5%)

To confirm the correctness of our results, we then per-

formed various code inspection on them, the detail of which

are described next.

5.3.3. New malicious apps found
To confirm that the apps classified as malicious are truly

malicious, manual code inspection was performed. We also

utilized the VirusTotal for additional validation.

Our method discoveredmany newmalicious Android apps

that cannot be detected by the VirusTotal tool.6 These new

malware apps did not trigger any alerts in VirusTotal. A subset

of these new malicious apps is shown in Table 6 with

http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

Table 6 e Malicious activities of a subset of new malware found by our method.

App name Access IMEI/Device Info Access user ID Access geolocation Access IP address Access bookmark Load code dynamically Send SMS

com.pougamefree.cheatsa getDeviceId() e getLongitude() e getAllBookmarks() e e

getLatitude()

com.canny.FishHunter getDeviceId() e getLongitude() e getAllBookmarks() e e

getLine1Number() getLatitude()

getSimSerialNumber() getLastKnownLocation()

getSubscriberId() getAccuracy()

getLatitude()

getLastKnownLocation()

com.hd.peliculashda getDeviceId() e getLongitude() getIpAddress() e e e

getLatitude()

getLastKnownLocation()

getAccuracy()

oms.cj.kobodl getDeviceId() e getLongitude() e e e e

getLine1Number() getLatitude()

getSimSerialNumber()

com.canny.RankSwap getDeviceId() e getLongitude() e getAllBookmarks() e e

getLine1Number() getLatitude()

getSimSerialNumber() getLastKnownLocation()

getSubscriberId() getAccuracy()

com.via3apps.relation958 getDeviceId() e getLongitude() e e e e

getLatitude()

getLastKnownLocation()

com.berobo.android.scanner getDeviceId() getAccounts() getLongitude() getIpAddress() e loadClass() sendTextMessage()

getLine1Number() getLatitude()

getLastKnownLocation()

getAccuracy()

com.Amazing***BibleFree e e getLongitude() e e e e

getLatitude()

getAccuracy()

a App has been removed from Google play market by 12/05/2013.

c
o
m
p
u
t
e
r
s

&
s
e
c
u
r
it

y
4
9

(2
0
1
5
)
2
5
5
e
2
7
3

2
6
6

http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

7 Google later took somemalware apps off the Play market, e.g.,
Us-Obesity-And-You-Teenagers.

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 2 5 5e2 7 3 267
examples of their sensitive function calls that lack of valid

user-trigger dependence. All of them are confirmed by our

manual analysis to have malicious functionalities. In Table 6,

each column is a category of malicious action, e.g., unjustified

dynamic code loading and unnecessary accessing of user in-

formation. Names of call sites without valid user-trigger

dependence are given. All the apps shown in this table fail

both of our classification rules, yet do not trigger any alerts in

VirusTotal.

We highlight a few of the newmalware that we discovered

in the free popular apps. Our method detects a malicious app

Time Machine, which is repackaged from an ebook app. The

malware invokes many sensitive APIs (in Jslibs library) to

perform unjustified operations, such as recording sound,

retrieving phone state, and exfiltrating geolocation informa-

tion. We find that an organizer app com.via3ap-

ps.usobesit618 is bundled with a piece of malware

collecting private information, such as device ID, email

address, latitude and longitude, phone number, and user-

name, and it uploads the details to a remote server. Another

malware app is a game-guide app com.bfrs.krokr, which is

bundled with adware AndroidApperhand (aka Android.-

Counterclank). AndroidApperhand is a piece of aggressive

adware. It attempts to modify the browser's home page, copy

bookmarks on the device, shortcuts, push notifications, and

steal build information (brand, device, manufacturer, model).

This adware also attempts to connect to a remote host.

For the apps that are labeled as malicious by only one rule

(2.4% out of 2684 apps), we have confirmed that most of the

apps (2.2% of 2.4%) contain aggressive advertisement libraries,

such as Mobclix, Tapjoy, and Waps. These libraries invoke

sensitive operations without any user triggers. Unlike regular

ad libraries, these aggressive ad libraries contain an over-

whelming amount of invalid call sites. Most of them have a

large number (>50%) of sensitive operations with zero valid

call sites, which is consistent with known malware. Other

researchers have also confirmed the potential security issues

raised by these aggressive ad libraries Grace et al. (2012a).

5.3.4. False positive rate (FPR)
FPR is computed as FP/FP þ TN, where TN stands for true

negative (benign apps). 240 apps are classified as malicious

by our method. VirusTotal scanning confirms 137 of them

are malicious. For the rest of 103 apps, we randomly

selected 21 apps out of these 103 apps and perform a

thorough manually code inspection. We found that 11 of

the 21 apps have definitive malicious or aggressive code

behaviors that threaten the system assurance and data

confidentiality in Android (described in Section 5.3.3 and

Table 6). These behaviors were found in either the main

components or adware. In the other 10 apps we did not find

any threats, thus concluded that they are benign (false

positives). The total false positives are estimated at 103 * 10/

21 ¼ 49. Since the trustworthiness of the free popular apps

is unknown, we used VirusTotal to check all the free

popular apps classified as benign by our method (true

negatives). We found that only one scanner out of 48

scanners in VirusTotal triggers an adware alert for 27 apps

(true positives). The true negatives (TN) are

2684 � 240 þ 49 � 27 ¼ 2466, yielding a 2.0% FPR.
5.4. Performance evaluation

The experiments were conducted on a computer which has

3.0 GHz Intel Core 2 Duo CPU E8400 processor and 3 GB of RAM.

We measure the time for parsing the AndroidManifest.xml

file, Soot execution for constructing the dependence graph,

the reachability analysis, and finding the dependence paths by

traversing the graph. The average processing time for an app

is about 158.01 s. This processing time does not include the

time required to convert the dex format to jar. Table 5 shows

the average time required by each analysis phase.

5.5. Summary

These experimental results suggest that our rule-based clas-

sification with a single complex feature is quite effective. We

summarize our major experimental findings.

1. There are an overwhelming number of malware apps with

zero or low assurance scores, indicating that a large portion

of sensitive call sites in these programs are invalid. The

DPVC vectors (representing a fine-grained distribution of

per-operation valid call sites) of malware and benign apps

have significantly different distributions (shown in Fig. 5).

Malware has a high concentration of zero or low per-

operation valid call sites.

2. We obtained a low false negative (i.e., missed detection)

rate of 2.1% when classifying 1433 known malware sam-

ples based on their assurance scores and DPVC vectors,

suggesting the effectiveness of our detection.

3. Our method identified 240 free popular apps (8.9%) as sus-

picious from Google Play market.7 These malware exces-

sively access device resources and personal information

without anyuser knowledge. Our programanalysismethod

effectively pinpoints these problematic call sites. Our

method detects many malware that cannot be detected by

VirusTotal scanning. Some of them are shown in Table 6.

We confirmed them by manual code inspection. Our false

positive rate (FP/FP þ TN) is estimated at 2.0%. Our method

identified more suspicious apps from the medium and low

popularity categories than the high popularity category.

4. We observed several types of triggerless operations that are

benign.Sensitiveoperationsduring i)applaunchingactivities

(e.g., default_app_set.main.ver1), ii) background service

components (e.g., com.monotype.android.font.dev.-

comic), or iii) benign ad/analytical libraries (e.g., rappsd.v1)

are typically automatically completed without user triggers.

These factors result in lower assurance scores and skewed

DPVC vectors, which may cause false positives. The classifi-

cation accuracy is also affected by the accuracy of Dare in

translating Dalvik bytecode to Java bytecode.
6. Discussion

In this section, we discuss the security guarantees provided by

our app classification work, and sources of inaccuracy in our

http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

8 http://proguard.sourceforge.net/.

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 2 5 5e2 7 3268
program analysis. We also describe possible extensions to the

feature definitions.

6.1. Security analysis

Our app classification can be used to detect malware that in-

vokes sensitive operations. Sensitive operations typically

involve accessing system resources and sensitive data. Infer-

ring their user-intention dependences enables the detection

of potential data confidentiality and authorization issues.

Examples of malicious patterns that can be detected by our

analysis include:

� Resource access: executing sensitive operations without

proper user triggers, such as sending unauthorized SMS

messages, subscribing to premium-rate services automat-

ically, or granting unauthorized root privilege to apps.

� Data access: accessing sensitive data items without proper

user triggers, such as recording and uploading the victim's
current location. Our static analysis does not track sensi-

tive data variables. Instead, the function calls that may be

used to access sensitive data are labeled (as operations)

and analyzed.

In our model, the accuracy of the analysis is closely related

to the accuracy of the data dependence analysis. Intra-

procedural analysis captures fine-grained def-use relations

within a function. The intra-procedural def-use relations can

prevent a superfluous user input attack, thusly. One possible

attack scenario is where themalwaremay require superfluous

user inputs (before making function calls to conduct unau-

thorized activities) attempting to satisfy the dependence, but

the user inputs are not consumed by the calls. For example,

the user enters a phone number and a message to send SMS.

The phone number entered by the user can be ignored and

replaced with other number inside sendTextMessage()

function. This type of data flow can be detected by tracking the

dependence between the user inputs entered and the sensi-

tive API calls, thus the superfluous user inputs can be

identified.

Social engineering app is an application that provides fake

user interface to look legitimate in order to circumvent the

user and perform malicious activities (e.g., stealing money).

Social engineering apps may demonstrate proper trigger-

operation dependences, because of the seemingly conform-

ing dependence paths between user triggers and sensitive

operations. Therefore, due to the intrinsic nature of our user-

intention analysis, it is not suitable for detecting social engi-

neering apps. Possible solutions for this could be using app

certification and user education.

The legitimate apps which require few user interactions

may raise false alarm. For example, a calendar app can send

an automatic reminder email message of a calendar event

that previously scheduled by the user. Hence, the sensitiveAPI

that sends the email messagemay raise an alarm according to

our security model since it is not explicitly triggered by the

user. For example, the user has previously entered this event

into the calendar. This action can be used as a trigger that

justifies the operation of sending reminder emails. Our

approach can be extended to address this problem by
expanding and generalizing the definition of user triggers. The

analysis for this calendar problem will be more complicated

than our current solution. The reason is that the information

entered by the user is stored in a data structure or file to be

read back when it is needed. Hence, there is no direct

dependence between sending reminder email operation and

the original user triggers used to store the information. One

needs to expand and include this type of indirect dependence

relation.

For the rule-based method, it is easy for the malware

writers to game with the analysis than the machine learning-

based classification. This is because the machine learning

techniques utilize a large number of features compared to the

rule-based method. So, it is harder for the attacker to

compromise since she/he has to deal with many features in

order to circumvent the security solution. On the other hand,

the rule-based method might be easy for the attacker to

compromise since she/he has to deal with a one/fewer num-

ber of features.

Precisely modeling a program's semantics and intention is

in general challenging and open problem. In the seminal work

on computer virus Cohen (1987), Cohen described the seminal

impossibility result on malware analysis. The defense is still

an open problem and similar arm-race issue exists in virtually

all security solutions.

6.2. Sources of inaccuracy in feature extraction

Overestimation of trigger-operation dependence may cause

false negatives in the analysis report (i.e., failing to detect

potentially malicious operations in the app). Certain depen-

dence paths may only exist under specific data or control

conditions. These branch conditions may not be statically

predictable, resulting in overestimation. Some data depen-

dence overestimation may be mitigated by identifying the

specific conditions for certain dependence paths to be valid

(e.g., by symbolic execution).

Conversely, underestimation of triggers may cause false

positives. For instance, legitimate API calls can be triggered by

runtime events such as clock-driven events from the calendar

(e.g., the calendar app sends a reminder email message of a

calendar event), or triggered by incoming network events.

These runtime events may not be explicitly triggered by the

user and thus lack the proper dependence according to our

security model. One mitigation to the problem is to generalize

and expand our definitions of triggers to include other legiti-

mate triggering events. However, because triggers may be

generated at runtime, static analysis alone may not be suffi-

cient for feature extraction. Hybrid features extracted from

both static and dynamic analyses are needed for complete

dependence properties in a program. Its realization remains

an interesting open problem.

Static program analysis has difficulty in performing the

analysis on programs that employs obfuscation or encryption

techniques. Obfuscation is mainly used to make the programs

code difficult to understand.

Some Android apps use obfuscation to protect intellectual

property Enck et al. (2011). ProGuard8 is a recommended

http://proguard.sourceforge.net/
http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 2 5 5e2 7 3 269
obfuscation tool by Google to protect against readability and

does not obfuscate control flow. Hence, its impact is limited

on static program analysis.

As indicated by Enck et al. (2011), it is easy to recognize

some forms of the obfuscated code in Android apps. In

particular, class, method, variable, and Java filename names

are converted to single letters (e.g., a.java). However, several

ads and analytics libraries are obfuscated to protect their

intellectual property Enck et al. (2011). To obtain a rough

estimate of the number of apps whose main code is obfus-

cated not the ads or analytics libraries, we used the same

approach proposed in Enck et al. (2011) to search for a single

letter Java filename (e.g., a.java) within a file path of the

package name. This heuristic is used to obtain insight for

finding obfuscation code in apps, but it is not a solid char-

acterization.We found only 40malware apps (2.8%) out of the

1433 apps have this code obfuscation. Moreover, we found

250 free popular apps (9.3%) out of the 2684 apps have this

code obfuscation in part of their main code. Hence, we can

infer from this statistics that the majority of the apps do not

heavily employ code obfuscation. We applied our analysis on

the reversed engineering Java bytecode using Dare tool to

translate Dalivk bytecode to Java bytecode. The accuracy of

our analysis is constrained by the accuracy of the reverse

engineering tools.

There are several obfuscation techniques:

� Renaming technique: it renames classes, variables, and

methods usingmeaningless names. This type of technique

can not affect our approach since it just renames classes,

variables, and methods without changing the content or

the control flow structure.

� String encryption technique: it encrypts the string data.

� Control flow obfuscation technique: it reorders the code

and inserts additional code statements while preserving

the code semantic.

The latter two techniques can affect our approach since

they change the data and the structure of the program. On

possible solution is to use dynamic analysis Newsome and

Song (2005); Yin et al. (2007) to provide insights about the

programs runtime execution. As a future work, we plan to

utilize the dynamic analysis with our user trigger dependence

approach to get insights on which sensitive APIs are triggered

by user inputs/actions. On way to do this is to label the user

inputs/actions and to interpose the sensitive APIs in .apk file

and insert monitoring code to get the sensitive API call logs

during the app execution.
7. Related work

We categorize related Android app analysis work into i) clas-

sification with static features and ii) classification with dy-

namic or hybrid features. Both approaches are necessary for

evaluating app security, providing complementary behavioral

profiles.9 We compare some of the existing mobile app clas-

sification solutions in Table 7.
9 Not all related papers report both FP and FN rates.
7.1. Classification with static features

In order to infer the trustworthiness of mobile applications,

multiple approaches have been proposed to statically extract

properties of a program from its code and/or its requested

permissions (e.g., Peng et al. (2012); Sanz et al. (2012)). One of

the earliest such work is SCanDroid Fuchs et al. (2009).

SCanDroid Fuchs et al. (2009) proposed to extract security

specifications from the app's manifest and check whether the

data-flows through the app are consistent with the stated

specifications.10

The solution by Peng et al. (2012) calculated risk scores

from the permissions requested by Android apps and found

the hierarchical mixture of naive Bayes to be the best classifier

for the risk score based app classification. The work by Sanz

et al. (2012) also extracted permission-usage based features,

and evaluated several classifiers including random forests,

naive Bayes, and Bayesian network. The false positive rate in

Sanz et al. (2012) is higher than 11%.

DroidAPIMiner Aafer et al. (2013) extracted features related

to API calls, and evaluated severalmachine learning classifiers

including k-nearest neighbor (KNN), decision tree, and sup-

port vector machines. It achieves a 97.8% detection rate of the

malware samples and a false positive rate of 2.2% with KNN.

Drebin Arp et al. (2014) analyzed AndroidManifest.xml and

disassembled code to extract features on requested permis-

sions and API calls, and used support vector machines (SVM)

as a classifier. Drebin achieves 94% detection rate of the

malware samples at a false positive rate of 1%. Bothwork used

multiple sets of features as opposed to our work. A recent

paper Wolfe et al. (2014) on Android malware classification

utilizes the assurance score feature and dozens of other

manifest-based features. The solution by Wolfe et al. (2014)

achieves similar accuracy as ours. It utilizes a significant

number of features than our work. It employs machine

learning techniques, as opposed to our simple rule-based

classification.

In comparison to the above permission-based classifica-

tion, features extracted from code analysis are more fine-

grained and specific. We highlight several such solutions

next. The security goal in AndroidLeaks Gibler et al. (2012),

SCANDAL Kim et al. (2012), and PiOS Egele et al. (2011) for iOS

is focused on detecting data leak vulnerabilities, specifically

on information flow for confidentiality analysis. The methods

label sensitive data/sources and potentially risky sinks (typi-

cally network API calls) and report when there are data-

leaking dependence paths between them. PiOS reports a 13%

false negative rate.

Although using dependence-path based analysis, our def-

initions for the path have different semantics. As a result, our

analysis with a complete coverage of sensitive operations

provides comprehensive app profiling, which offers more

protection than data confidentiality. For example, our analysis

also detects system-assurance-related operations such as

unauthorized camera access or recording, which is out of the

scope the data leak solutions.

Multiple features were utilized to make classification de-

cisions in RiskRanker Grace et al. (2012b). The classification is
10 No experimental results were reported in SCanDroid.

http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

Table 7 e Comparison with related mobile app classification work.

Solution Aim Feature
type

Featuresa Feature
Categoryb

Classification
policy/Algorithm

Evaluation scale Apps collected from Classification
Accuracy

AndroidLeaks

Gibler et al.

(2012)

Confidentiality Static S DS Rule: sensitive data used

by risky APIs

24,350 apps various Android markets FP ¼ 35%

Crowdroid

Burguera et al.

(2011)

Malware classification Dynamic M DI k-means clustering 3 self-written malware and

2 real malware

VirusTotal FP ¼ 20%

Amos et al. (2013) Malware classification Dynamic M DI naive Bayes, Bayes nets,

MLP, logistic regression,

RF, DT

training (408 benign, 1330

malware), testing

(24 benign, 23 malware)

Android malware genome

project, VirusTotal, Google Play

FP ¼ 15%

PiOS Egele et al.

(2011)

Confidentiality Static S DS Rule: sensitive data used

by risky APIs

1407 apps Apple's iTunes, BigBoss FN ¼ 13%

Sanz et al. (2012) Malware classification Static M DI logistic regression, naive

Bayes, Bayes nets, SVM,

KNN, DT, RF

1811 benign, 249 malware Google Play, VirusTotal FP ¼ 11%

Andromaly

Shabtai et al.

(2012)

Malware classification Dynamic M DI naive Bayes, Bayes nets,

histograms, k-means,

LR, DT

4 self-written malware,

40 benign

Google Play FP ¼ 10%

RiskRanker

Grace et al.

(2012b)

Detection of abnormal

code/behavior patterns

Static M DS Rule: multiple malware

behavior signatures

118,318 apps various Android markets FN ¼ 9%

Peng et al. (2012) Risk assessment Static M DI different probabilistic

generative models

model generation & testing

(71,331 apps) validation

(136,534 apps), 378 malware

Google Play, Android malware

genome project

FP ¼ 4%

DroidAPIMiner

Aafer et al.

(2013)

Malware classification Static M DI KNN, DT, SVM 16,000 benign, 3987 malware Google Play, Android malware

genome project, McAfee

FP ¼ 2.2% FN ¼ 2.2%

Drebin Arp et al.

(2014)

Malware classification Static M DI SVM 123,453 benign, 5560 malware various markets, malware

forums and security blogs,

Android malware genome

project

FP ¼ 1% FN ¼ 6%

Ours Identification of

unauthorized API calls

Static S DS Rule: trigger-based

dependence for privileged

API calls

2684 benign, 1433 malware Google Play, VirusShare,

Android malware genome

project

FP ¼ 2% FN ¼ 2.1%

a Number of features: single feature (S) or multiple features (M).
b Feature category: domain-specific (DS) or domain-independent (DI).

c
o
m
p
u
t
e
r
s

&
s
e
c
u
r
it

y
4
9

(2
0
1
5
)
2
5
5
e
2
7
3

2
7
0

http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 2 5 5e2 7 3 271
based on several types of suspicious behavior signatures

extracted through control-flow and intra-method data-flow

analyses. An example of such suspicious behaviors include

accessing sensitive data in a dependence path that also con-

tains decryption (usually for deobfuscation) and execution

methods. RiskRanker reports a 9% false negative rate. In

comparison, our method enforces benign properties of trust-

worthy programs (as opposed to detecting malicious proper-

ties). Our results also show better classification accuracy

compared to the existing approaches.

DroidSIFT Zhang et al. (2014) is a recent Android malware

classification system that is based on constructing depen-

dence graphs to model the dependences between API calls. Its

feature vector is extracted from the graphs. The work built

graph databases for known benign and malicious Android

apps, and performed graph similarity queries (based on graph

edit distance) for unknown apps. Its approach correctly clas-

sifies 93% of known malware samples (with naive Bayes

classifier). Their anomaly detector based on the benign graph

database achieves a false negative rate of 2% and a false

positive rate of 5.15%. The semantics of dependence proper-

ties in our work and DroidSIFT are different. Our work models

the data dependency between user-input functions and sen-

sitive APIs. Consequently, the classification mechanisms are

different. Our solution e based on rules e does not rely on

graph similarity computation, which might be expensive for

large graphs.

7.2. Classification with dynamic or hybrid features

Solutions in this category detect malware apps by their run-

time execution patterns (i.e., dynamic features), sometimes

together with statically extracted features. Andromaly

Shabtai et al. (2012) and Amos et al. (2013) extract dynamic

features including memory activity and CPU load to classify

Android apps. They apply several classifiers including deci-

sion trees, naive Bayes, and Bayesian networks. The best

classifier in Andromaly Shabtai et al. (2012) achieves a 10.4%

false positive rate. In Amos et al. (2013) the false positive rate is

over 15%. The work by Liu et al. (2009) detected malicious

behaviors on mobile devices by monitoring abnormal power

consumption due to malware activities, and reports a false

positive rate that ranges from 4.3% to 10%.

Crowdroid Burguera et al. (2011) performs k-means clus-

tering algorithms on dynamic features collected fromAndroid

apps. The features are the frequencies of occurrences for

system calls (e.g., open(), kill()) executed by an app. The

proposed solution successfully identifies all of the author-

created malware, while it reports a 20% false positive rate on

the real-world repackaged malware.

The features in DroidRanger Zhou et al. (2012) are hybrid. It

statically extracts behavioral signatures of known malware

samples. Examples of static features include sequences of

APIs being called, package names, and class hierarchies. It

also has a dynamic execution monitor that inspects the sus-

picious runtime behaviors of the app, such as loading dy-

namic code. The method reports a false negative rate of 4.2%.

These dynamic analysis provides useful information on

runtime program behaviors and complements our static anal-

ysiswork.Bothapproachesarenecessary forappclassification.
7.3. Non-classification work

Several validation and verification solutions have been pro-

posed for mobile platforms to enhance the assurance of

execution. These tools gather contextual information associ-

ated with sensitive operation invocations. This information is

comparedwithmodels built through hybrid programanalysis.

For example, AppIntent Yang et al. (2013) defines privacy

leakage as user-unintended data transmission. It provides a

security analyst the context information associated with the

transmission. The human analyst then decides whether the

transmission is legitimate or not. Pegasus Chen et al. (2013)

proposes a Permission Event Graph abstraction in order to

detect sensitive operation invocations that are inconsistent

with the UI events. It automatically verifies the app's behav-

iors with respect to pre-defined app-specific policies. CHEX Lu

et al. (2012) identifies potentially vulnerable component in-

terfaces that are exposed to the public without proper access

restrictions in Android apps. The analysis detects apps that

are vulnerable, but not necessarily malicious. The authors

utilized data-flow based reachability analysis. CHEX reports a

false positive rate of 19%. ComDroid Chin et al. (2011) char-

acterizes security vulnerabilities caused by Android inter-app

communication. User-driven access control gadget (ACG) was

proposed in Roesner et al. (2012) to capture user authorization

actions (keyboard shortcut or mouse movement) for assured

resource access at runtime. Unlike ours, these solutions are

not for malware classification, thus have different security

goals and technical approaches from ours.
8. Conclusions and future work

Wedemonstrated the high classification accuracy achieved by

using a single well-prepared feature on Java programs. What

differs our feature from those used in existing work is that our

classification enforces carefully-chosen benign properties in

programs. These benign properties are observed in trust-

worthy programs, but not in malware. Our enforcement of

these benign properties through mobile app classification al-

lows defenders to stay ahead of the game in the eternal

armrace between attack and defense Cohen (1987).

For future work, we plan to generalize the dependence

definitions to include non-user triggers.We also plan to utilize

advanced program analysis techniques to further improve the

classification accuracy. For the deployment perspective, we

plan to provide and present informative and intuitive inter-

pretation of the multiple dimensional analysis results from

various tools to users.
r e f e r e n c e s

Aafer Yousra, Du Wenliang, Yin Heng. DroidAPIMiner: mining
API-level features for robust malware detection in Android. In:
Proc. of 9th International Security and Privacy in
Communication Networks (SecureComm); 2013. p. 86e103.

Amos Brandon, Turner Hamilton A, White Jules. Applying
machine learning classifiers to dynamic Android malware
detection at scale. In: Proc. of 9th the International Wireless

http://refhub.elsevier.com/S0167-4048(14)00163-1/sref1
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref1
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref1
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref1
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref1
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref2
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref2
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref2
http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 2 5 5e2 7 3272
Communications and Mobile Computing Conference, IWCMC.
IEEE; 2013. p. 1666e71.

Arp Daniel, Spreitzenbarth Michael, Hubner Malte, Gascon Hugo,
Rieck Konrad. Drebin: efficient and explainable detection of
Android malware in your pocket. In: Proc. of 17th Network and
Distributed System Security Symposium (NDSS); 2014.

Burguera Iker, Zurutuza Urko, Nadjm-Tehrani Simin. Crowdroid:
behavior-based malware detection system for Android. In:
Proc. of the 1st ACM workshop on Security and privacy in
smartphones and mobile devices (SPSM). ACM; 2011. p. 15e26.

Chen Kevin Zhijie, Johnson Noah M, Silva Vijay D’, Dai Shuaifu,
MacNamara Kyle, Magrino Tom, et al. Contextual policy
enforcement in Android applications with permission event
graphs. In: 20th Annual Network and Distributed System
Security Symposium (NDSS). The Internet Society; 2013.

Chin Erika, Porter Felt Adrienne, Greenwood Kate, Wagner David.
Analyzing inter-application communication in Android. In:
Proc. of the 9th Int'l Conference on Mobile Systems,
Applications, and Services. ACM; 2011. p. 239e52.

Cohen F. Computer viruses theory and experiments. Comput
Secur 1987;6:22e35.

Crussell Jonathan, Gibler Clint, Chen Hao. Attack of the clones:
detecting cloned applications on Android markets. In: Proc. of
the 17th European Symposium on Research in Computer
Security (ESORICS). Vol. 7459 of Lecture Notes in Computer
Science. Springer; 2012. p. 37e54.

Davi Lucas, Dmitrienko Alexandra, Sadeghi Ahmad-Reza,
Winandy Marcel. Privilege escalation attacks on Android. In:
Proc. of the 13th International Conference on Information
Security (ISC). Springer-Verlag; 2010. p. 346e60.

Egele Manuel, Kruegel Christopher, Kirda Engin, Vigna Giovanni.
PiOS: detecting privacy leaks in iOS applications. In: Proc. of
the Network and Distributed System Security Symposium
(NDSS). The Internet Society; 2011.

Elish Karim O, Yao Danfeng, Ryder Barbara G. User-centric
dependence analysis for identifying malicious mobile apps. In:
Proc. of the IEEE Mobile Security Technologies (MoST)
workshop, in conjunction with the IEEE Symposium on
Security and Privacy; 2012.

Enck William, Gilbert Peter, Chun Byung gon, Cox Landon P,
Jung Jaeyeon, McDaniel Patrick, et al. TaintDroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In: Proc. of the USENIX
Symposium on Operating Systems Design and
Implementation. USENIX Association; 2010. p. 393e407.

Enck William, Octeau Damien, McDaniel Patrick,
Chaudhuri Swarat. A study of Android application security. In:
Proc. of the 20th USENIX conference on Security. USENIX
Association; 2011.

Forti-guard. Fortinet FortiGuard labs reports. August 2013. https://
www.fortinet.com.

Fuchs Adam P, Chaudhuri Avik, Foster Jeffrey S. SCanDroid:
automated security certification of Android applications.
Technical report. University of Maryland; 2009.

Gibler Clint, Crussell Jon, Erickson Jeremy, Chen Hao.
AndroidLeaks: automatically detecting potential privacy leaks
in Android applications on a large scale. In: Proc. of the 5th
International Conference on Trust & Trustworthy Computing
(TRUST). Vol. 7344 of Lecture Notes in Computer Science.
Springer; 2012. p. 291e307.

Grace Michael C, Zhou Wu, Jiang Xuxian, Sadeghi Ahmad-Reza.
Unsafe exposure analysis of mobile in-app advertisements. In:
Proc. of the 5th ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WISEC). ACM; 2012a.
p. 101e12.

Grace Michael C, Zhou Yajin, Zhang Qiang, Zou Shihong,
Jiang Xuxian. RiskRanker: scalable and accurate zero-day
Android malware detection. In: Proc. of the 10th International
Conference on Mobile Systems, Applications, and Services
(MobiSys). ACM; 2012b. p. 281e94.

Horwitz Susan, Reps Thomas, Binkley David. Interprocedural
slicing using dependence graphs. ACM Trans Program Lang
Syst 1990;12:26e60.

Kim Jinyung, Yoon Yongho, Yi Kwangkeun, Shin Junbum.
SCANDAL: static analyzer for detecting privacy leaks in
android applications. In: Proc. of the IEEE Mobile Security
Technologies (MoST) workshop, in conjunction with the IEEE
Symposium on Security and Privacy; 2012.

Liu Lei, Yan Guanhua, Zhang Xinwen, Chen Songqing.
VirusMeter: preventing your cellphone from spies. In: Proc. of
the 12th International Symposium on Recent Advances in
Intrusion Detection. Springer; 2009. p. 244e64.

Lu Long, Li Zhichun, Wu Zhenyu, Lee Wenke, Jiang Guofei.
CHEX: statically vetting Android apps for component
hijacking vulnerabilities. In: Proc. of the ACM Conference on
Computer and Communications Security (CCS). ACM; 2012.
p. 229e40.

Newsome James, Song Dawn Xiaodong. Dynamic taint analysis
for automatic detection, analysis, and signature generation of
exploits on commodity software. In: Proc. of the Network and
Distributed System Security Symposium. The Internet Society;
2005.

Octeau Damien, Jha Somesh, McDaniel Patrick. Retargeting
Android applications to Java bytecode. In: Proc. of the 20th
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE). ACM; 2012.

Peng Hao, Gates Chris, Sarma Bhaskar, Li Ninghui, Qi Yuan,
Potharaju Rahul, et al. Using probabilistic generative models
for ranking risks of Android apps. In: Proc. of the ACM
conference on Computer and Communications Security (CCS).
ACM; 2012. p. 241e52.

Roesner Franziska, Kohno Tadayoshi, Moshchuk Alexander,
Parno Bryan, Wang Helen J, Cowan Crispin. User-driven access
control: rethinking permission granting in modern operating
systems. In: Proc. of the IEEE Symposium on Security and
Privacy; 2012. p. 224e38.

Sanz B, Santos I, Laorden C, Ugarte-Pedrero X, Bringas PG,
Alvarez G. Puma: permission usage to detect malware in
Android. In: Proc. of International Joint Conference CISIS'12-
ICEUTE'12-SOCO'12 Special Sessions; 2012.

Shabtai Asaf, Kanonov Uri, Elovici Yuval, Glezer Chanan,
Weiss Yael. Andromaly: a behavioral malware detection
framework for Android devices. J Intell Inf Syst
2012;38(1):161e90.

Soot: a Java optimization framework. http://www.sable.mcgill.ca/
soot/.

Tan Pang-Ning, Steinbach Michael, Kumar Vipin. Introduction to
data mining. Addison-Wesley; 2006.

Wolfe Britton, Elish Karim, Yao Danfeng. Comprehensive
behavior profiling for proactive Android malware detection.
In: Proc. of 17th International Information Security
Conference (ISC); 2014.

Yang Z, Yang M, Zhang Y, Gu G, Ning P, Wang XS. AppIntent:
analyzing sensitive data transmission in Android for privacy
leakage detection. In: Proc. of the ACM Conference on
Computer and Communications Security (CCS). ACM; 2013.

Yin Heng, Song Dawn, Egele Manuel, Kruegel Christopher,
Kirda Engin. Panorama: capturing system-wide information
flow for malware detection and analysis. In: Proc. of the ACM
Conference on Computer and Communications Security
(CCS). ACM; 2007. p. 116e27.

Zhang Mu, Duan Yue, Yin Heng, Zhao Zhiruo. Semantics-aware
Android malware classification using weighted contextual API
dependency graphs. In: Proceedings of the 21st ACM
Conference on Computer and Communications Security
(CCS'14); November 2014.

http://refhub.elsevier.com/S0167-4048(14)00163-1/sref2
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref2
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref2
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref3
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref3
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref3
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref3
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref4
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref4
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref4
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref4
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref4
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref5
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref5
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref5
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref5
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref5
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref6
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref6
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref6
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref6
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref6
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref7
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref7
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref7
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref8
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref8
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref8
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref8
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref8
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref8
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref9
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref9
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref9
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref9
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref9
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref10
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref10
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref10
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref10
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref11
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref11
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref11
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref11
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref11
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref12
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref12
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref12
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref12
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref12
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref12
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref12
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref13
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref13
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref13
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref13
https://www.fortinet.com
https://www.fortinet.com
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref15
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref15
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref15
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref16
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref16
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref16
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref16
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref16
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref16
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref16
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref16
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref17
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref17
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref17
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref17
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref17
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref17
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref18
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref18
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref18
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref18
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref18
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref18
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref19
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref19
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref19
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref19
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref20
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref20
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref20
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref20
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref20
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref21
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref21
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref21
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref21
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref21
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref22
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref22
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref22
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref22
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref22
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref22
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref23
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref23
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref23
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref23
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref23
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref24
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref24
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref24
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref24
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref25
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref25
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref25
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref25
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref25
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref25
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref26
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref26
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref26
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref26
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref26
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref26
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref27
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref27
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref27
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref27
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref28
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref28
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref28
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref28
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref28
http://www.sable.mcgill.ca/soot/
http://www.sable.mcgill.ca/soot/
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref29
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref29
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref30
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref30
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref30
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref30
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref31
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref31
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref31
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref31
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref32
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref32
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref32
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref32
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref32
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref32
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref33
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref33
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref33
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref33
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref33
http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 2 5 5e2 7 3 273
Zhou Yajin, Jiang Xuxian. Dissecting Android malware:
characterization and evolution. In: Proc. of the IEEE
Symposium on Security and Privacy; 2012. p. 95e109.

Zhou Yajin, Wang Zhi, Zhou Wu, Jiang Xuxian. Hey, you, get off of
mymarket: detecting malicious apps in official and alternative
Android markets. In: Proc. of the 19th Network and
Distributed System Security Symposium (NDSS); 2012.

Karim O. Elish is a PhD candidate in the Department of Computer
Science at Virginia Tech. He is a member of the Human-Centric
Security Laboratory at Virginia Tech, directed by Professor Dan-
feng Yao, where he is working as a graduate research assistant.
Karim obtained his MS degree in Computer Science from Virginia
Tech in 2011. Before joining Virginia Tech, he was working as a
lecturer in the Information and Computer Science Department at
King Fahd University of Petroleum and Minerals where he ob-
tained his first MS degree in Software Engineering in 2008. His
current research interests are focused on Android malware
analysis and detection.

Xiaokui Shu is a Ph.D. student in computer science at Virginia
Tech and his research is on network and system security. He
received his bachelor's degree from University of Science and
Technology of China (USTC) in 2010 majoring in information se-
curity. Being the top student in the class, he graduated with Guo
Moruo Award and was awarded SIMIT Chinese Academy of Sci-
ences Scholarship in 2008. He succeeded in his first real-world
penetration test at USTC and won the first prize in Virginia Tech
Inaugural Cyber Security Summit Competition.

Dr. Danfeng (Daphne) Yao is an associate professor and L-3 Fellow
in the Department of Computer Science at Virginia Tech, Blacks-
burg. She received her Computer Science Ph.D. degree from
Brown University in 2007. She was awarded NSF CAREER grant in
2010 for her work on human-behavior driven malware detection,
and ARO Young Investigator Award in 2014 for her insider-threat
detection work. She received the Outstanding New Assistant
Professor Award from Virginia Tech College of Engineering in
2012. Dr. Yao has several Best Paper Awards (ICNP 012, Collabo-
rateCom '09, and ICICS 006). She was given the Award for Techno-
logical Innovation from Brown University in 2006. She holds a U.S.
patent for her recent anomaly detection technology. Dr. Yao
currently serves as an associate editor of IEEE Transactions on
Dependable and Secure Computing. She has been the reviewer for
many security journals and recently served as a PC member of
ACM CCS 2014 conference. Her research has been supported by
NSF, ONR, ARO, and DHS.

Dr. Barbara G. Ryder is Head of the Department of Computer
Science at Virginia Tech, where she holds the J. Byron Maupin
Professorship in Engineering. She received her A.B. degree in
Applied Mathematics from Brown University (1969), her Masters
degree in Computer Science from Stanford University (1971) and
her Ph.D degree in Computer Science at Rutgers University (1982).
Dr. Ryder served on the faculty of Rutgers from 1982 to 2008. She
also worked in the 1970s at AT&T Bell Laboratories in Murray Hill,
NJ. Dr. Ryder's research interests on static and dynamic program
analyses for object-oriented systems, focus on usage in practical
software tools for ensuring the quality and security of industrial-
strength applications.

Dr. Ryder became a Fellow of the ACM in 1998, received the
ACM President's Award in 2008, was selected as a CRA-W Distin-
guished Professor in 2004, and received the ACM SIGPLAN
Distinguished Service Award in 2001. She has been an active
leader in ACM (e.g., Vice President 2010e2012, Secretary-Treasurer
2008e2010; ACM Council 2000e2008; General Chair, FCRC 2003;
Chair ACM SIGPLAN (1995e97)) and has served as a Member of the
Board of Directors of the Computer Research Association
(1998e2001). Dr. Ryder has served as an editorial board member of
ACM Transactions on Programming Languages and Systems, IEEE
Transactions on Software Engineering, IEEE Software, Software, Practice
and Experience and Science of Computer Programming.

Dr. Xuxian Jiang is an Associate Professor in the Computer Sci-
ence Department at the North Carolina State University, Raleigh,
NC. Over the last several years, Jiang and his team of students
have identified many zero-day Android malware in the official
and alternative mobile application marketplaces. Dr. Jiang
launched the Android Malware Genome Project (http://www.
malgenomeproject.org/) with the goal of facilitating Android se-
curity research. He received his PhD degree in Computer Science
from Purdue University in 2006. His research interests are mainly
in smartphones, hypervisors, and malware defense. He is a
recipient of the NSF CAREER Award in 2010.

http://refhub.elsevier.com/S0167-4048(14)00163-1/sref34
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref34
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref34
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref34
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref35
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref35
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref35
http://refhub.elsevier.com/S0167-4048(14)00163-1/sref35
http://www.malgenomeproject.org/
http://www.malgenomeproject.org/
http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.cose.2014.11.001

	Profiling user-trigger dependence for Android malware detection
	1. Introduction
	2. Overview and definitions
	2.1. Data dependence graph
	2.2. TriggerMetric tuple per operation
	2.3. Aggregated metrics
	2.4. Program analysis for feature extraction

	3. Feature extraction using dependence analysis
	3.1. General-purpose data-flow dependence
	3.2. Augmentation with event-specific data dependence
	3.3. Reachability analysis
	3.4. Finding user-trigger dependence paths

	4. Classification method
	4.1. Our classification rules
	4.1.1. Classification with assurance score
	4.1.2. Weighted similarity analysis on DPVC vector

	4.2. Variations of classification rules

	5. Experimental evaluation
	5.1. Experiment setup
	5.1.1. Averaged DPVC vector of known malware
	5.1.2. Thresholds for classification rules

	5.2. Known malicious apps
	5.2.1. Classification results on known malware

	5.3. Free popular apps
	5.3.1. Assurance scores of free apps
	5.3.2. Classification results of free popular apps
	5.3.3. New malicious apps found
	5.3.4. False positive rate (FPR)

	5.4. Performance evaluation
	5.5. Summary

	6. Discussion
	6.1. Security analysis
	6.2. Sources of inaccuracy in feature extraction

	7. Related work
	7.1. Classification with static features
	7.2. Classification with dynamic or hybrid features
	7.3. Non-classification work

	8. Conclusions and future work
	References

