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Through automated image collection and analysis, high-

throughput phenotyping (HTP) systems non-destructively

quantify a diversity of traits in large plant populations. Some

platforms collect data in greenhouses or growth chambers

while others are field-based. Platforms also vary in the number

and type of sensors, including visible, fluorescence, infrared,

hyperspectral, and three-dimensional cameras that can detect

traits within and beyond the visible spectrum. These systems

could be applied to quantify the impact of herbivores on plant

health, to monitor herbivores in choice or no-choice bioassays,

or to estimate plant properties such as defensive

allelochemicals. By increasing the throughput, precision, and

dimensionality of these measures, HTP has the potential to

revolutionize the field of plant–insect interactions, including

breeding programs for resistance and tolerance.
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Measuring plant defenses against insects
The importance of phenotyping

Plant phenotyping plays a critical role in developing

crop varieties with enhanced insect resistance or toler-

ance, which is among the most effective, economical,

and environmentally safe approaches to pest manage-

ment. Host plant resistance to insects encompasses

plant traits that suppress insect infestations; this

includes antixenotic traits that repel or deter herbivory

as well as antibiotic traits that reduce insect survival,

reproduction, and/or development. Tolerance on the

other hand does not directly impact insect population

growth or feeding rates, but instead modifies plant

responses to infestation, thereby limiting symptom
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development and yield [1]. Breeding for resistance or

tolerance requires quantifying these traits in heteroge-

neous plant populations (i.e. phenotyping) and geno-

typing the plants to identify the traits’ genetic bases.

Genetic engineering for insect resistance also requires

phenotyping to determine which transgenic lines dis-

play the strongest resistance and lack any negative

impacts of the transformation process on growth and

development [2]. In either case, plants can be pheno-

typed for defensive traits by measuring insect popula-

tions or their effects on plants. Indicators of infestation

on plants include direct evidence of insect activity such

as feeding scars, and also more systemic, indirect con-

sequences such as chlorophyll loss (Figure 1). Since

resistance and tolerance both limit the negative impacts

of insects on plants but differ in their influence on

insect populations, screening plant collections on the

basis of systemic symptoms could represent a useful

way to detect both resistance and tolerance in the

same assay. However, for studies that are designed to

identify the genetic loci responsible for plant defense,

assays that measure highly specific components of

defense may be more appropriate. Symptoms such as

chlorosis or reduced yields are the net outcome of a

multi-step infestation process that is influenced by

many different plant traits (Box 1), each of which

can have a different genetic basis. Lumping these traits

together into a single parameter such as yield may

result in a high proportion of missing heritability in

association mapping studies [3]. Therefore, the de-

tailed measurements of insect and plant performance

that are used to discriminate antixenosis, antibiosis, and

tolerance (Box 1) can also play a critical role in genome-

wide association studies and other genetic analyses of

plant defense.

The phenotyping bottleneck

As genome sequencing and molecular breeding techni-

ques have dramatically increased the speed at which

large populations can be genotyped, phenotyping has in

many cases become the rate-limiting step in breeding

efforts [4–6]. Whether sampling insect infestations in

the field or assaying plant–insect interactions in con-

trolled environments, screening for variation in host

plant defenses is a slow and labor-intensive process.

Furthermore, assays to measure defoliation, chlorosis,

or other markers of insect damage in plants often rely on

visual estimation of the extent of the damage, and apply

categorical rankings to parameters that show continuous

variation. These visual rating systems do not allow
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Signs of Insect Infestation. The direct effects of herbivore activity on

their hosts (a) include feeding damage, which varies among different

types of arthropods (a-i–a-iv), frass production (a-i), and oviposition (a-

v–a-vi). More systemic physiological consequences of infestation (b)

can include altered pigmentation (b-i–b-ii), malformation of new growth

(b-iii), and premature senscence (b-iv). Insect can also transmit

phytopathogens (b-v), and alter the spectral properties of plants within

and beyond the visible spectrum (b-vi). Panel bvi presents the

normalized difference vegetation index (NDVI) of a leaf with leafminer

damage; NDVI is a graphical indicator of vegetation greenness that is

calculated by comparing reflectance in the visible (red) and near-

infrared regions. Photos of insect damage were kindly provided by

Whitney Cranshaw, Colorado State University (a-i and a-v), Steven

Katovich, USDA Forest Service (a-ii and b-iii), the Clemson University

USDA Cooperative Extension Slide Series (a-iii and a-iv), the New York

State Agricultural Experiment Station (a-vi), David Riley, the University

of Georgia (b-i and b-iv), William M Ciesla, Forest Health Management

International (b-ii), and Keith Weller, USDA Agricultural Research

Service (b-v) (all from Bugwood.org). The estimate of NDVI based on

an infrablue photograph (b-vi) is courtesy of Chris Fastie, Middlebury

College, Vermont (Creative Commons).
precise quantification, and they can introduce subjectiv-

ity and inconsistency into the scoring process, all of

which hinders efforts to identify the genetic bases of

complex traits [7].
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The selection of measures to quantify host plant defense

To overcome the phenotyping bottleneck in breeding for

pest management, it is necessary to identify traits that are

good measures of resistance or tolerance but that can be

quantified quickly, consistently, and objectively. Some

assays for resistance are based on monitoring insects; for

example, Kloth and coworkers [3] propose to use auto-

mated video tracking of the green peach aphid (Myzus
persicae) on leaf discs to screen hundreds of ecotypes of

the model plant Arabidopsis thaliana for variation in levels

of antixenosis and antibiosis. Alternatively, bioassays may

measure the consequences of insect infestation for the

plant. In sorghum, a rapid method for screening large

numbers of accessions for greenbug (Schizaphis graminum)

tolerance has been developed using a hand-held spectro-

photometer (SPAD meter) to measure chlorophyll loss in

intact, infested leaves [8]. In Arabidopsis, virus transmis-

sion by aphids has also been used as an indirect measure

to screen for genetic variation in plant defenses against

the green peach aphid. A collection of mutagenized

Arabidopsis lines were exposed to viruliferous aphids

and then the plants were screened for virus infection

using a high-throughput antibody-based assay (ELISA)

that is less labor-intensive than measuring aphid popula-

tion levels. Plants that were negative for the virus were

identified as candidates for aphid resistance, and this

resistance was consequently validated with subsequent

measurements of aphid infestation levels [9]. Lastly,

another alternative to monitoring insects or their impacts

on plants is to screen for quantitative differences in plant

defenses or in traits that co-vary with these defenses.

Assays to measure many plant metabolites are increasing

in throughput and decreasing in cost, making it possible

to screen large mapping populations for allelochemicals

that contribute to insect resistance [10,11]. Moreover,

even when the source of insect resistance has not yet

been pinpointed or cannot be quantified in a high-

throughput manner, it may be possible to identify spectral

characteristics of the plant that co-vary with the source of

resistance. For example, near-infrared (NIR) reflectance

spectroscopy has been used as a high-throughput screen-

ing tool to select sugarcane cultivars with resistance to a

stem borer, Eldana saccharina [12], because insect resis-

tance in sugarcane is correlated with secondary metabo-

lites that increase the plant’s light absorbance in the NIR

range [13]. This example highlights the utility of imaging

technologies in plant phenotyping. In fact, although many

lab-based assays such as metabolite profiling and ELISAs

are widely used in plant phenotyping, image analysis is

currently front and center in the emerging field of plant

high-throughput phenotyping.

High-throughput phenotyping
High-throughput phenotyping defined

There is presently a major emphasis in the plant biology

community to develop better methods for high-through-

put phenotyping (HTP). By definition, HTP utilizes
www.sciencedirect.com



High throughput phenotyping for insect resistance Goggin, Lorence and Topp 71

Box 1 Phenotyping host plant resistance and tolerance

Insect damage is the net result of a multistep infestation process, and of the plant’s response to infestation. Plant defenses are classified as

antixenosis, antibiosis, or tolerance based on the stage at which they intercept the progress of damage (a). In order to discriminate among these

three forms of plant defense, investigators must observe multiple steps in the infestation process (b) using more than one type of bioassay (c). To

detect antixenosis, insect behavior is monitored in choice tests (c-i) in response to intact plants, detached plant parts such as leaf discs, or plant-

derived cues such as volatiles presented through an olfactometer. The behaviors most commonly tracked in these assays include directed flight,

walking, sampling, feeding, and oviposition. Alternatively, for insects that leave quantifiable signs of feeding or oviposition on their hosts, the

incidence or magnitude of this damage can be measured after the fact in lieu of tracking behavior. To detect antibiosis, investigators measure the

growth, survival, and reproduction of individuals or populations in caged no-choice tests in the field, greenhouse, or laboratory (c-ii). In vitro assays

that chart insect growth and development relative to food intake and excretion can be particularly useful in characterizing antibiotic effects. Lastly,

measuring tolerance requires measuring the impact of the insect on plant health or productivity (c-iii) in addition to quantifying insect populations

so that the relationship between insect pressure and insect damage can be compared among different plant genotypes. Plant productivity is most

readily quantified under field conditions, but in some cases tolerance can be measured in greenhouse or laboratory assays, particularly if early

indicators of damage such as chlorophyll loss can be used as predictors of potential yield losses. HTP approaches to automate data collection and

analysis (d-i through d-iii) have the potential to increase the throughput, sensitivity, and accuracy of all of these assay types. Photos kindly provided

by David Voegtlin, Illinois Natural History Survey (c-ii, left), Juan Manuel Alvarez, University of Idaho (c-ii, right), Alton N Sparks Jr., University of

Georgia (c-iii, left), and JS Quick, Colorado State University (c-iii, right) (all from Bugwood.org).
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methods of describing a plants’ phenotype that are

designed to speed up the phenotyping process and maxi-

mize the number of plants that can be processed per

experiment. This emphasis on throughput is driven by

the fact that the probability of detecting valuable traits
www.sciencedirect.com 
and identifying their genetic basis increases with the size

of the population that is screened. In fact, mapping

populations and diversity panels of thousands of recom-

binant inbred lines have recently been developed for

molecular breeding [14]. To facilitate the rapid screening
Current Opinion in Insect Science 2015, 9:69–76
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of large numbers of plants, HTP typically involves mech-

anization of data collection and automation of data analy-

sis. Another characteristic of HTP protocols is that they

usually utilize non-destructive sampling methods. This

allows investigators to collect seed after phenotyping;

also, it allows the same plants to be sampled over time

to track their development and measure responses to

changing variables such as insect infestation. Lastly,

many (but not all) HTP approaches are designed to

maximize the ‘dimensionality’ of the data, or the number

of different plant characteristics that can be measured at

one time. Enhanced dimensionality has several benefits.

From an applied standpoint, it allows scientists to: firstly,

screen for many known traits of interest at one time;

secondly, analyze the interactions among traits; and final-

ly, utilize post hoc analyses to identify variables that

correlate well with desirable traits like insect resistance,

and that could have predictive value in future studies.

From the perspective of basic science, HTP methods

with high dimensionality are also critical to the emerging

field of plant phenomics, which aims to help decode the

relationship between genotype and phenotype by de-

scribing all aspects of a plant’s structure and function

(i.e. its ‘phenome’) over its lifetime [4,6].

The role of imaging in HTP

Because of the need for automation and non-destructive

sampling in HTP, a majority of HTP platforms rely on

imaging to capture plant phenotypes. Moreover, because

of the emphasis on high dimensionality, many HTP

systems use multiple modalities for image capture in

order to increase the number and diversity of phenotypic

traits that are recorded [15,16]. Visible (a.k.a. RGB)

cameras are used to acquire high-resolution images that

allow the characterization of plant pigments and the

quantification of plant size, architecture, chlorosis, and

necrosis. Fluorescence cameras most commonly measure

chlorophyll fluorescence, which is in turn used to assess

the functioning of the photosynthetic machinery [17].

Multicolor fluorescence imaging can also compare levels

of chlorophyll fluorescence with fluorescence from other

compounds such as cinnamic acids in the cell walls. The

ratios of these different sources of fluorescence can be

used to estimate chloroplast abundance and detect plant

stress responses [18]. In addition, near-infrared and far-

infrared sensors are used to estimate water content, leaf

temperature, and stomatal conductance, and laser scan-

ners are used for 3D mapping of plants and observations

of leaf movement [19]. Certain HTP systems also include

hyperspectral cameras, which, along with multispectral

imaging and near-infrared reflectance spectroscopy

(NIRS), are widely used in the field of remote sensing.

These remote sensing techniques characterize plants’

reflectance in a broad range of bands within and beyond

the visible spectrum and then compare this spectral data

to other measures of plant health or productivity to

identify unique spectral signatures that are predictive
Current Opinion in Insect Science 2015, 9:69–76 
of important plant traits [14,19]. Hyperspectral imaging

or NIRS could also be applied in HTP to screen for

numerous traits such as biotic and abiotic stresses, nutri-

ent status, or protein content. In addition to the laser

scanners, RGB, fluorescent, infrared, and hyperspectral

cameras that are available on commercial HTP systems,

custom-built HTP platforms are experimenting with a

wide range of other modalities, such as time-of-flight

cameras [19] and light curtain arrays [20]. Together, all

of the imaging modalities used in HTP enable plant

scientists to detect important phenotypes that are not

always visible to the naked eye, and to measure both

visible and cryptic plant traits in quantitative units rather

than in purely comparative terms subject to human

biases. Moreover, these sensors can capture multiple

traits within a single image, and images can be stored

and reanalyzed when new research questions or new

improvements in image processing and analysis arise.

Platforms for HTP data capture

During the last decade, multiple automated or semi-

automated image-capture systems for plant HTP have

been developed in both the academic and private sectors

[21–27], as reviewed in [19,28]. While RGB and fluores-

cence cameras are the most common features of these

systems, HTP platforms can include varying numbers of

additional modalities such as laser scanners, near-infrared

or far-infrared sensors, and hyperspectral cameras (de-

scribed above). Automated HTP platforms also vary in

the portion(s) of the plant that are phenotyped, the spatial

scale and resolution at which plant traits are measured,

and the degree to which growth and imaging conditions

can be controlled. In general, most HTP systems are

designed to phenotype the above-ground portions of

intact plants. However, several platforms for phenotyping

roots have also been developed using growth conditions

that allow the roots to be examined [29–32], tomographic

techniques that can penetrate soil [33,34], or destructive

sampling of root systems (i.e. ‘shovelomics’) [35�]. In

addition, certain HTP systems can phenotype seeds or

other detached plant parts in multiwell plates. To opti-

mize the spatial resolution of the images and to maximize

the investigators’ ability to control experimental condi-

tions, most HTP systems visualize plants at close range in

environmentally controlled imaging chambers, to which

the plants are manually or mechanically transported from

adjacent growth chambers or greenhouses. Some of these

systems generate two-dimensional (2D) images taken

from a single perspective, while others photograph plants

from more than one angle or use scanners to generate

three-dimensional (3D) data on plant architecture. A

limitation of these systems, however, is that controlled

environments cannot fully replicate field conditions, and

the results of phenotyping in greenhouses or growth

chambers are not always predictive of plant performance

in real-world settings [14,36,37�]. Therefore, field-based

imaging HTP systems are also emerging, and can utilize
www.sciencedirect.com
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sensors mounted on harvesters or other ground-based

‘phenomobiles’, stationary ‘phenotowers’, small airplanes,

blimps, or unmanned aerial vehicles [14,19]. Investigators

have far less control over imaging conditions or plant

growth conditions in field experiments; however, outdoor

managed environment facilities for plant phenotyping can

be designed to control for variation in fixed factors like soil

type, and to monitor continuously for changing variables

like weather [38�]. Moreover, water conditions can be

controlled in the field using a combination of irrigation

and coverings that exclude rainfall (so-called drought

simulators or rainout shelters). These approaches enable

at least some sources of environmental variation to be

incorporated into the design and analysis of field pheno-

typing experiments.

Adapting HTP to the study of plant defenses
against insects: opportunities and obstacles
Applications of HTP to measure insect damage

Given that HTP systems are designed to measure plant

health and productivity, they have obvious applications to

measure feeding damage caused by herbivorous insects.

Defoliation by caterpillars, chlorosis and necrosis caused

by aphid infestation, and feeding scars caused by thrips

have all been quantified digitally using images captured

with RGB cameras or flat bed scanners [39–41]. HTP

platforms could be used to automate and standardize both

the capture and analysis of these RGB images. Further-

more, the additional modalities available on many HTP

systems could detect symptoms of infestation that are not

visible to the naked eye. Physiological studies indicate

that insect infestations can influence stomatal conduc-

tance and plant water balance [42,43], which could be

measured with near-infrared and far-infrared cameras.

Herbivores also alter photosynthetic efficiency, chloro-

phyll content, and the relative abundance of other fluo-

rescent compounds, all of which could be detected with

fluorescence cameras [18,42–44]. For example, multicolor

fluorescence imaging can be used to detect mite infesta-

tions on plants because mites cause a strong increase in

the ratio of blue (F440) to red (F690) autofluorescence

[18]. Similarly, HTP systems with hyperspectral cameras

could be used to visualize changes in plant reflectance

that result from arthropod infestation. Multispectral and

hyperspectral imaging allow remote sensing of numerous

insect pests, such as aphids [45]. If these diagnostic

spectral signatures can be correlated with the intensity

of pest damage, they could be used to quantify symptom

development and possibly even estimate pest abundance

in phenotyping studies; moreover, changes in plants’

spectral properties could potentially be used to detect

cryptic herbivores such as stem borers that hide within

plant tissues (Figure 1a-iv). Root phenotyping systems

could also be deployed to study plant interactions with

major root pests such as corn rootworms (Diabrotica spp.)

or grape phylloxera (Daktulosphaira vitifoliae).
www.sciencedirect.com 
Other applications of HTP

Besides quantifying the symptoms of insect infestation,

high-throughput imaging could also be applied to com-

pare base-line performance of different plant genotypes

in the absence of herbivory, monitor pathogen transmis-

sion by insects, visualize plant defenses, and quantify

herbivore behavior and performance. Many studies of

plant defenses utilize mutant plants to assess the effects

of specific plant genes on infestation levels. However, if

the mutations have pleiotropic effects, any observed

differences in insect infestations might be mediated by

differences in overall health or development rather than

by differences in plant defenses. HTP is therefore an

invaluable tool to confirm that the mutants used to study

plant–insect interactions have equivalent growth and

development with wildtype controls [46]. HTP can also

be used to monitor insect transmission of plant viruses,

since many plant pathogens induce diagnostic visible

symptoms or changes in fluorescence in their host plants

[47�]. This approach could expedite attempts to identify

the factors in insects and pathogens that control pathogen

acquisition and transmission [48]; it could also facilitate

high-throughput screens for insect resistance that use

virus transmission as an indirect measure of insect feeding

[9]. In addition, HTP systems can reduce the need for

time-consuming bioassays by screening for spectral traits

that co-vary with plant defenses, similar to the way in

which NIR reflectance spectroscopy has been exploited

to select for insect-resistant sugarcane varieties [12].

High-throughput imaging could also be applied to de-

crease labor and processing time for measurements of

insect behavior, survival and development — bioassays

that are critical to the characterization of host plant

resistance (Box 1). Certain 2D HTP platforms can image

detached plant materials in multi-well plates or petri

dishes, and can be programmed to scan the same samples

repeatedly at specified time points. These systems could

be used to quantify insects’ positions, food consumption,

and growth in choice and no-choice bioassays if the

resolution of the imaging system is adequate for the size

of the insect and if the assay arena allows the insect to be

visible at all times. More refined behavioral assays could

also be achieved by incorporating video cameras into a

high-throughput platform, similar to Kloth and co-

workers’ video analyses of aphid feeding on leaf discs

[49]. Ethovision and other video analysis software help

investigators automate the time-consuming process of

identifying behaviors and quantifying their durations

and frequency [50]. The field of host-plant interactions

could also exploit new tools for high-throughput behav-

ioral monitoring that ethologists have developed for the

fruit fly Drosophila melanogaster [51,52�,53]. Together,

these high-throughput approaches would allow scientists

to screen much larger plant populations for insect resis-

tance, and also to characterize resistance with more pre-

cision, depth, and comprehensiveness than has ever been

possible before.
Current Opinion in Insect Science 2015, 9:69–76



74 Pests and resistance
Obstacles to adoption of HTP

Although HTP has the potential to revolutionize the field

of plant–insect interactions, there are several significant

obstacles that must be overcome before it can be widely

adopted in this field. First of all, despite the widespread

adoption of HTP in industry, due to high equipment costs

there are few public sector HTP facilities in the US (e.g.

the Phenotyping Facility at Arkansas State University

[http://www.astate.edu/a/abi/about] and the Bellwether

Foundation Phenotyping Facility in St. Louis, MO

[http://www.danforthcenter.org/scientists-research/

core-technologies/phenotyping]) or worldwide (e.g. the

Australian Plant Phenomics Facility in Canberra [http://

www.plantphenomics.org.au/], the National Plant Phe-

nomics Center in the United Kingdom [http://www.

plant-phenomics.ac.uk/en/], and the Laboratory of Plant

Ecophysiological responses to Environmental Stresses in

France [http://www1.montpellier.inra.fr/ibip/lepse/

english/]). Moreover, controlled environment HTP facil-

ities typically have high fees, long waiting lists, and

restrictions against bringing insects into their facilities.

HTP systems also generate large data sets that pose

unique challenges for processing, analysis, and storage.

Data processing methods vary among different imaging

modalities, but typically require steps to: normalize vari-

ation in background levels within and among images;

distinguish the sample of interest from the background

(i.e. segmentation); extrapolate the 3D structure of the

sample from a 2D image; and identify and measure

features of interest (e.g. plant organs, morphological

features, etc.) [15]. Commercial 2D and 3D HTP systems

utilize expensive proprietary softwares to perform these

functions, and so laboratories that outsource image col-

lection to centralized HTP facilities typically also rely on

these facilities for data processing. The high-dimension-

ality of HTP data also requires multivariate and function-

valued statistical methods in order to identify the key

sources of genetic and environmental variance that shape

the observed phenotypes [54–56]. Lastly, unlike geno-

mics or transcriptomics, the field of phenomics does not

yet have well-established community standards for the

design, analysis, and reporting of experiments, nor are

there centralized data repositories to make large HTP

data sets available for data mining and meta-analysis [57].

Potential solutions

Fortunately, there are solutions to these problems on the

horizon. Public research networks and consortia such as the

International Plant Phenotyping Network (IPPN: http://

www.plant-phenotyping.org/), the European Plant Pheno-

typing Network (EPPN, www.plant-phenotyping-

network.eu/eppn/structure) and the Plant Imaging Con-

sortium (PIC, http://plantimaging.cast.uark.edu/index.

php/home) are a promising mechanism to offer training

in HTP, broaden access to shared-usage HTP facilities,

develop data repositories, and promote community stan-

dards for the design, analysis, and reporting of large HTP
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data sets. Several recent reports also suggest that HTP

systems can be built at a significantly lower cost than the

leading commercial systems [58–60]. Moreover, the ‘Mak-

er’ movement is ushering in a revolution in do-it-yourself

science and engineering projects (maker.danforthcenter.

org). Fueled by cheap microprocessors (Rasberry Pis and

Arduinos) and affordable 3D printers, phenotyping tools

can be custom-built on a modest budget and deployed in

field plots or controlled environment facilities that allow

insects. Since most insect bioassays requires cages or other

containment that can obstruct visibility (Box 1), the ability

to develop customized sensors and cages that are compati-

ble with each other will be critical. In addition, resources

for automated image analysis are rapidly proliferating.

Multiple academic groups have recently developed free

image processing and analysis pipelines for 2D and 3D

commercial HTP systems [27,61], and published the most

critical factors that need to be optimized for proper proces-

sing and analysis of HTP data [37�]. The Plant Image

Analysis website (http://www.plant-image-analysis.org/)

matches users’ needs to a list of over 120 free plant image

analysis tools [62�], and the iPlant Bisque Image Analysis

Environment provides an online platform to use existing

software or to integrate new customized tools (http://

www.iplantcollaborative.org/ci/bisque-image-analysis-

environment). Public domain, open architecture image

analysis programs like ImageJ (http://imagej.nih.gov/)

and open-source libraries of algorithms for automated

image analysis such as Point Cloud Library (pointclouds.

org) and OpenCV (opencv.org) also enable maximum

customization for each application. Furthermore, even

for investigators who do not have access to automated

HTP systems for data acquisition, these image analysis

tools can be applied to images taken with commodity

webcams, video cameras, cell phones, or even gaming

consoles [63�]. For example, Green and coworkers [7]

developed an open-source software for plant image analy-

sis that can be applied to any image source as long as it

contains a reference color chart that is photographed with

the plants. They demonstrated that this web-based soft-

ware could be used to quantify the leaf areas consumed by

cabbageworm larvae (Pieris rapae) on Arabidopsis plants or

beet armyworm larvae (Spodoptera exigua) on detached

soybean leaves; moreover, they found that automated

image analysis was more accurate than manual damage

rankings at estimating very high or very low amounts of

damage.

Conclusions
HTP vastly increases the population sizes that can be

screened for desirable traits like plant defenses, and the

precision and accuracy with which these traits can be

measured. By quantifying multiple physiological param-

eters in parallel, HTP could also advance our understand-

ing of plant responses to insect infestation, and the

influence of these changes on levels of host plant resis-

tance, tolerance, or susceptibility. In short, HTP is a
www.sciencedirect.com
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critical technology for the future of basic and applied

studies of plant–insect interactions.
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