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At over 40 years, the Landsat satellites provide the longest temporal record of space-based land surface observa-
tions, and the successful 2013 launch of the Landsat-8 is continuing this legacy. Ideally, the Landsat data record
should be consistent over the Landsat sensor series. The Landsat-8 Operational Land Imager (OLI) has improved
calibration, signal to noise characteristics, higher 12-bit radiometric resolution, and spectrally narrower
wavebands than the previous Landsat-7 Enhanced ThematicMapper (ETM+). Reflectivewavelength differences
between the two Landsat sensors depend also on the surface reflectance and atmospheric statewhich are difficult
to model comprehensively. The orbit and sensing geometries of the Landsat-8 OLI and Landsat-7 ETM+ provide
swath edge overlapping paths sensed only one day apart. The overlap regions are sensed in alternating backscat-
ter and forward scattering orientations so Landsat bi-directional reflectance effects are evident but approximate-
ly balanced between the two sensorswhen large amounts of time series data are considered. Taking advantage of
this configuration a total of 59 million 30 m corresponding sensor observations extracted from 6317 Landsat-7
ETM+ and Landsat-8 OLI images acquired over threewinter and three summermonths for all the conterminous
United States (CONUS) are compared. Results considering different stages of cloud and saturation filtering, and
filtering to reduce one day surface state differences, demonstrate the importance of appropriate per-pixel data
screening. Top of atmosphere (TOA) and atmospherically corrected surface reflectance for the spectrally corre-
sponding visible, near infrared and shortwave infrared bands, and derived normalized difference vegetation
index (NDVI), are compared and their differences quantified. On average the OLI TOA reflectance is greater
than the ETM+ TOA reflectance for all bands, with greatest differences in the near-infrared (NIR) and the short-
wave infrared bands due to the quite different spectral response functions between the sensors. The atmospheric
correction reduces the mean difference in the NIR and shortwave infrared but increases the mean difference in
the visible bands. Regardless of whether TOA or surface reflectance are used to generate NDVI, on average, for
vegetated soil and vegetation surfaces (0 ≤ NDVI ≤ 1), the OLI NDVI is greater than the ETM+ NDVI. Statistical
functions to transform between the comparable sensor bands and sensor NDVI values are presented so that
the user community may apply them in their own research to improve temporal continuity between the
Landsat-7 ETM+ and Landsat-8 OLI sensor data. The transformation functions were developed using ordinary
least squares (OLS) regression and were fit quite reliably (r2 values N 0.7 for the reflectance data and N0.9 for
the NDVI data, p-values b 0.0001).

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

At over 40 years, the Landsat satellites provide the longest temporal
record of space-based land surface observations, and the successful
2013 launch of Landsat-8 carrying the Operational Land Imager (OLI)
and the Thermal Infrared Sensor (TIRS) is continuing this legacy
(Irons, Dwyer, & Barsi, 2012; Roy, Wulder, et al., 2014). Multi-
temporal optical wavelength satellite data acquired under different
. This is an open access article under
acquisition conditions and by different sensorsmay have reflectance in-
consistencies introduced by factors including atmospheric and cloud
contamination (Kaufman, 1987, Masek et al., 2006), variable sun-
surface-sensor geometry (Roy et al., 2008, Nagol et al., 2015, Ju et al.,
2010), sensor degradation and calibration changes (Markham &
Helder, 2012), between sensor spectral band pass and spatial resolution
differences (Steven, Malthus, Baret, Xu, & Chopping, 2003; Tucker et al.,
2005), and data processing issues (Roy et al., 2002). The need for multi-
year consistent data records for both research and applications is well
established. For example, the global coverage Moderate Resolution
Imaging Spectroradiometer (MODIS) products have been generated
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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from 2000 to present (Justice et al., 1998) and have been reprocessed
several times using improved calibration and geometric knowledge
and refined product generation algorithms (Masuoka et al., 2011). Sim-
ilarly, substantial research effort has been developed to generate global
long term data records derived from coarse resolution Advanced Very
High Resolution Radiometer (AVHRR) observations available since
1981, although those that are publically available are subject to scientif-
ic debate (Myneni, Tucker, Asrar, & Keeling, 1998; Pedelty et al., 2007;
Beck et al., 2011; Fensholt & Proud, 2012; Pinzon & Tucker, 2014).
Unlike past AVHRR sensors, which carried no onboard reflective wave-
length calibration capability, the Landsat Thematic Mapper, ETM+ and
OLI sensors are well calibrated (Markham&Helder, 2012) and with the
free Landsat data availability the systematic generation of consistent
global long-term Landsat products has been advocated (Roy, Wulder,
et al., 2014).

The primary Landsat-8mission objective is to extend the Landsat re-
cord into the future and maintain continuity of observations so that
Landsat-8 data are consistent and comparable with those from the
previous Landsat systems (Roy,Wulder, et al., 2014). Because of the im-
portance of continuity, the Landsat legacy is one inwhich there has been
relatively consistent mission objectives, but with capabilities modified
by incremental improvements in satellite, sensor, transmission, recep-
tion and data processing and storage technologies (Irons & Masek,
2006; Irons et al., 2012). There is a need to define quantitative spectral
reflectance transformations between all the Landsat sensors to provide
consistent long term Landsat reflectance data. This paper is limited to
the Landsat-7 and Landsat-8 sensors and compares their spectrally
overlapping reflective wavelength bands and develops statistical func-
tions to transform between them. In addition, between sensor transfor-
mations for the normalized difference vegetation index (NDVI) are
developed as the NDVI is one of the most commonly used remote sens-
ing indices. The transformations are developed by statistical comparison
of contemporaneous sensor satellite observations which is quite a
common approach (Brown, Pinzón, Didan, Morisette, & Tucker, 2006,
Gallo, Ji, Reed, Eidenshink, & Dwyer, 2005, Miura, Huete, & Yoshioka,
2006). However, this is challenging for several reasons. First, spectral re-
sponse differences between the sensors mean that the observed sensor
radiances differ in away that is dependent on theobserved surface com-
ponents (Steven et al., 2003) except when the surface reflectance
changes linearly over the band passes which is not usually the case for
Landsat (Miura et al., 2006; Zhang & Roy, 2015). Second, top of atmo-
sphere (TOA) reflective wavelength differences between the sensors
depend on the atmospheric state and at reflective wavelengths at-
mospheric effects are coupled to the surface reflectance (Tanre,
Herman, & Deschamps, 1981). Third, Landsat atmospheric correction
algorithms are imperfect, particularly at shorter visible wavelengths
(Ju, Roy, Vermote, Masek, & Kovalskyy, 2012; Vermote, Justice,
Claverie, & Franch, 2016). Fourth, despite the relatively narrow 15°
Landsat sensor field of view, Landsat bi-directional reflectance ef-
fects occur (Roy et al., 2008; Li et al., 2010; Nagol et al., 2015; Gao
et al., 2014) and so comparison of Landsat data with different solar
and view zenith geometry may introduce differences when surfaces
are non-Lambertian. Fifth, unless the sensor data are observed close-
ly together in time, the surface state and condition may change due
to anthropogenic factors (e.g., land cover change and agricultural
harvesting) and natural factors (e.g., phenology, moisture changes
due to precipitation, fire and wind disturbances) which can be difficult
to detect reliably using Landsat data (Huang et al., 2010; Kennedy, Yang,
& Cohen, 2010; Hansen et al., 2014; Zhu & Woodcock, 2014). For these
reasons, reliable and representative determination of statistical
functions to transform between sensor bands requires a comparison
of data sensed over a wide range of surface conditions. Previous
researchers have reported comparisons between Landsat-7 ETM+
and Landsat-8 OLI data but considered only a relatively small (com-
pared to this study) amount of data in Australia (Flood, 2014) and in
China and Korea (Ke, Im, Lee, Gong, & Ryu, 2015) and did not take
into account the per-pixel spectral saturation status that we show is
important.

In this study, a total of 59 million 30 m corresponding sensor ob-
servations extracted from 6316 Landsat-7 ETM+ and Landsat-8 OLI
images acquired over three winter and three summer months for
all the conterminous United States (CONUS) are examined. Statisti-
cal calibrations are derived to document between sensor differences
for TOA and also surface reflectance and derived NDVI. The transfor-
mations are provided so that the user community may apply them in
their own research to improve temporal continuity of reflectance
and NDVI between the Landsat OLI and ETM+ sensors. First, the
Landsat data and pre-processing required to allow their meaningful
comparison are described, then the analysis methodology and results
are described, followed by concluding remarks with implications and
recommendations.

2. Data

The Landsat-8 OLI has narrower spectral bands, improved calibra-
tion and signal to noise characteristics, higher 12-bit radiometric resolu-
tion, and more precise geometry, compared to the Landsat-7 ETM+
(Irons et al., 2012). The OLI dynamic range is improved, reducing band
saturation over highly reflective surfaces, and the greater 12-bit quanti-
zation permits improved measurement of subtle variability in surface
conditions (Roy, Wulder, et al., 2014). The Landsat-7 ETM+ has a 5%
absolute radiometric calibration uncertainty (Markham & Helder,
2012) and the Landsat-8 OLI has a 3% absolute radiometric calibration
uncertainty (Markham et al., 2014). The OLI has two new reflective
wavelength bands, a shorter wavelength blue band (0.43–0.45 μm)
and a shortwave infrared cirrus band (1.36–1.39 μm), but these are
not considered in this study as they have no direct ETM+ equivalent.
Comparison of thermal wavelength sensor data is complex because
the processes controlling thermal emittance are highly variable
in space and time (Moran, Clarke, Inoue, & Vidal, 1994; Norman,
Divakarla, & Goel, 1995) and because of this, and the stray light contam-
ination in one of the two TIRS bands (Montanaro, Gerace, Lunsford, &
Reuter, 2014), the Landsat thermal bands are also not considered in
this study.

The OLI bands are defined at 30 m like the ETM+ but are spectrally
narrower and cover different spectral ranges (Fig. 1). The OLI and
ETM+ spectral band passes are tabulated in Roy, Wulder, et al.
(2014). The blue, green and red OLI band spectral response functions in-
tersect with 82.76%, 71.08% and 60.63% of the corresponding ETM+
band spectral response functions. Conversely, the blue, green and red
ETM+ band spectral response functions intersect with 98.83%, 98.30%
and 98.90% of the corresponding OLI band spectral response functions.
Notably, theOLI near-infrared (NIR) band (~0.85 μm) avoids awater ab-
sorption feature that occurs in the ETM+ NIR band (Irons et al., 2012).
The OLI NIR and the shortwave infrared band (~1.16 μm and ~2.11 μm)
spectral response functions fall entirely within the ETM+ spectral re-
sponse functions and occupy only 23.14%, 42.22% and 66.69% of the
ETM+ spectral response functions respectively.

The Landsat-8 is in the (now decommissioned) Landsat 5 orbit and
so Landsat-8 and 7 have the same approximately 710 km sun-
synchronous circular 98.2° inclined orbit and overpass every Earth
location every 16 days but are offset from each other by 8 days
(Teillet et al., 2001; Loveland & Dwyer, 2012). Both Landsat sensors
have 15° fields of view and their data are available in approximately
185 km × 180 km scenes defined in a Worldwide Reference System
(WRS) of path (groundtrack parallel) and row (latitude parallel) co-
ordinates (Arvidson, Goward, Gasch, & Williams, 2006; Loveland &
Dwyer, 2012). Every daytime sunlit Landsat-7 and 8 overpass of
the CONUS is ingested into the U.S. Landsat archive, located at the
United States Geological Survey (USGS) Earth Resources Observation
and Science (EROS), with an annual maximum of 22 or 23 acquisi-
tions per path/row. In May 2003 the Landsat-7 ETM+ scan line



Fig. 1. Landsat-7 ETM+ and Landsat-8 OLI spectral response functions for the approxi-
mately corresponding reflectance bands used in this research (sources WWW1 and
WWW2).
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corrector failed, reducing the usable data in each Landsat ETM+
scene by 22% (Markham, Storey, Williams, & Irons, 2004). The
Landsat-8 OLI has no suchmissing data issue. The Landsat-7 and 8 ac-
quisitions are precision terrain corrected (termed Level 1T) with
processing that includes radiometric correction, systematic geomet-
ric correction, precision correction using ground control, and the use
of a digital elevation model to correct parallax error due to local to-
pographic relief (Lee, Storey, Choate, & Hayes, 2004; Storey,
Choate, & Lee, 2014). Certain acquisitions may not have sufficient
ground control, typically due to cloud cover, and instead, the best
level of correction is applied to generate systematically terrain
corrected (termed L1Gt) processed acquisitions (Storey et al.,
2014). Unlike previous Landsat data, the Landsat-8 Level 1 data
product includes a spatially explicit 30 m quality assessment band
with cloud, cirrus cloud, and snow masks (USGS, 2012, 2015). The
snow mask is derived using the normalized difference snow index, de-
fined as the green minus shortwave infrared reflectance divided by
their sum (Hall, Riggs, & Salomonson, 1995), using OLI specific thresh-
olds (USGS, 2015). The cirrus cloudmask is also new to the Landsat sat-
ellite series and provides a pixel assessment of the presence of low or
high confidence cirrus found by thresholding the Landsat-8 OLI
1375 μm reflectance band (Kovalskyy & Roy, 2015).

In this study, to ensure that a representative range of reflectance
spectra were obtained (i.e., capturing land cover, land use, vegetation
phenology and soil moisture variations), all the Landsat-7 ETM+ and
Landsat-8 OLI acquisitions for three CONUS winter months (26th No-
vember 2013 to 4th March 2014) and three summer months (28th
May 2013 to 2nd September 2013)were obtained from the U.S. Landsat
archive. The most recent Version LPGS_2.3.0 OLI data (that were
reprocessed in February 2014 to fix a significant change in the OLI TIRS
band calibration and cloud mask product) and Version LPGS_12.4.0
ETM+ data were used. Only acquisitions processed to L1T and with
metadata GEOMETRIC_RMSE_MODEL values ≤30mwere used to ensure
high geolocation accuracy needed for pixel-level Landsat-7 and 8 data
comparison. In addition, only daylight acquisitions, defined as those
withmetadata SUN_ELEVATIONvalues N5°, were used. Thisfiltering re-
sulted in a total of 6317 acquisitions with 4272 Landsat-8 OLI (2752
summer and 1520 winter) and 2045 Landsat-7 ETM+ (1767 summer
and 278 winter) acquisitions. There were fewer ETM+ than OLI acqui-
sitions because a greater proportion of ETM+ scenes failed the geomet-
ric filtering criteria, most likely due to the presence of ETM+ scan line
corrector failure missing pixels combined with clouds (Roy et al.,
2010) and because the OLI has higher geolocation accuracy than the
ETM+ (Storey et al., 2014). There were fewer acquisitions for either
sensor inWinter due to the greater seasonal CONUS likelihood of clouds
at the timeof Landsat overpass (Ju& Roy, 2008; Kovalskyy &Roy, 2015).

Fig. 2 illustrates the geographic locations of a summer week of
Landsat OLI (blue) and ETM+ (red) data. There is an evident across-
track overlap of each Landsat acquisition that increases further north
due to the poleward convergence of the Landsat orbits. Because the
OLI and ETM+ are in the same orbit offset by 8 days the western and
eastern sides of a sensor acquisition are overlapped by the eastern and
western sides respectively of the other sensor, and are acquired with
only a one day separation. The one day separation between OLI and
ETM+ is advantageous as surface changes are less likely to occurwithin
such a short period, although atmospheric conditions may change. The
solar zenith changes in one day by a negligible amount at the time of
OLI and ETM+overpass (typically less than 0.2° for the data considered
in this study) and the between sensor overlap region is always acquired
in the forward scattering direction from one sensor and the backward
scattering direction from the other sensor. Consequently, backscatter
and forward scattering effects due to the reflectance anisotropy of the
land surface are present, although pronounced bi-directional reflec-
tance “hot-spot” effects observed by MODIS from a similar orbit as
Landsat (Vermote & Roy, 2002) will not occur because of the much
narrower field of view of Landsat (Zhang, Roy, & Kovalskyy, in press).
Across the CONUS there are typically more than 20 orbits of OLI and
ETM+ per week and bi-directional reflectance effects are captured by
both sensors in an approximately balanced way when many months
of data are considered, as in this study, due to the systematic overlap-
ping area backward and forward scatter sensor acquisition geometry.

3. Data pre-processing

3.1. Top of atmosphere reflectance computation

The data sensed by each Landsat-7 ETM+ detector are stored in the
L1T product as an 8-bit digital number (Markham, Goward, Arvidson,
Barsi, & Scaramuzza, 2006) and was converted to spectral radiance
using sensor calibration gain and bias coefficients derived from the
L1T file metadata (Chander, Markham, & Helder, 2009). The radiance
for the reflective bands was then converted to top of atmosphere
(TOA) reflectance using standard formulae (Roy et al., 2010) as:

ρTOA
λ ¼ π � Lλ � d2

ESUNλ � cos θs ð1Þ

where ρλTOA is the top of atmosphere (TOA) reflectance (unitless), some-
times termed the bi-directional reflectance factor, for ETM+ band λ, Lλ
is the TOA spectral radiance (W m−2 sr−1 μm−1), d is the Earth-Sun.
distance (astronomical units), ESUNλ is the mean TOA solar spectral ir-
radiance (Wm−2 μm−1), and θs is solar zenith angle at the center of the
Landsat acqusition (radians). The quantities ESUNλ and d are tabulated
by Chander et al. (2009) and θs is calculated from the solar elevation
angle stored in the L1T file metadata. The data sensed by each

Image of Fig. 1


Fig. 2. Geographic locations of Landsat-8 OLI (blue) and Landsat-7 ETM+ (red) acquisitions derived from their metadata latitude and longitude scene corner coordinates for a seven day
period, 28th July 2013 to 3rd August 2013, shown in the Web Enabled Landsat Data (WELD) Albers projection. See text for explanation of coverage differences.
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Landsat-8 OLI detector are stored in the L1T product as a 16-bit digital
number (the OLI detectors have 12-bit radiometric resolution) and
were converted to TOA reflectance using the scaling factors and dividing
by the cosine of the solar zenith angle that are stored in the OLI L1T
metadata. The 30 m ρλTOA for each ETM+ and OLI reflective band were
stored as signed 16-bit integers after being scaled by 10,000 and the
TOANDVIwas computed (as the NIRminus red TOA reflectance divided
by their sum) and stored as signed 16-bit integers after being scaled by
10,000.

3.2. Spectral saturation and cloud computation

Highly reflective surfaces, including snow and clouds, and sun-glint
over water bodies, may saturate the reflective wavelength bands, with
saturation varying spectrally and with the illumination geometry
(Dowdeswell & McIntyre, 1986, Oreopoulos, Cahalan, Marshak, &
Wen, 2000, Bindschadler et al., 2008, Roy et al., 2010). As the reflectance
of saturated pixels is unreliable the spectral band saturation status was
stored for each 30 m pixel. Saturated pixels are designated by specific
ETM+ L1T digital numbers (Roy et al., 2010) and for the OLI L1T are
straightforward to derive by comparison of the stored OLI digital num-
berswith OLI L1Tmetadata saturation values. TheOLI datawere expect-
ed to be saturated much less frequently than the ETM+ because of the
greater OLI dynamic range.

Optically thick clouds preclude remote sensing of the surface at re-
flective wavelengths and so cloud mask results were stored for each
30 m pixel. It is well established that cloud masking is complex. For
example, the boundary between defining a pixel as cloudy or clear is
sometimes ambiguous, and a pixel may be partly cloudy, or a pixel
may appear as cloudy at onewavelength and appear cloud-free at a dif-
ferent wavelength (Kaufman, 1987; Ackerman et al., 2008; Tackett & Di
Girolamo, 2009; Kovalskyy & Roy, 2015). In this study, the automatic
cloud cover assessment algorithm (ACCA) that takes advantage of
known spectral properties of clouds, snow, bright soil, vegetation, and
water, and consists of twenty-six rules applied to five of the ETM+
bands (Irish, 2000, Irish, Barker, Goward, & Arvidson, 2006), and a
decision tree (DT) cloud detection algorithm based on training using
approximately 13 million and 5.4 million unsaturated and saturated
ETM+ training pixels (Roy et al., 2010), were applied to the ETM+
data. The ACCA and DT cloud mask algorithms provide binary cloud de-
tection status information. The OLI already has per-pixel cloud informa-
tion available in the L1T product that indicates if the 30m pixel is either
(a) high confidence cloud, (b) medium confidence cloud, (c) low confi-
dence cloud, and if it is either (d) high confidence cirrus cloud, or
(e) low confidence cirrus cloud (USGS, 2012; Kovalskyy & Roy, 2015).
In addition, the OLI L1T product includes a 30 m low, medium and
high confidence snow flag thatwas also considered (USGS, 2012, 2015).

3.3. Surface reflectance computation

Surface reflectance, i.e., TOA reflectance corrected for atmospheric
effects, is needed because atmospheric gases and aerosols are variable
in space and time and may have significant impacts on Landsat data
(Ouaidrari & Vermote, 1999; Masek et al., 2006; Roy, Qin, et al., 2014).
In this study the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) atmospheric correction algorithm (Masek et al.,
2006) was used as it is developed for both ETM+ and OLI application,
and explicitly models their spectral response functions (Vermote et al.,
2016). The 30 m surface reflectance for each ETM+ and OLI reflective
band, and the surface NDVI derived from the surface reflectance NIR
and red bands, were stored as signed 16-bit integers after being scaled
by 10,000.

The LEDAPS uses the 6SV radiative transfer code (Vermote, Tanré,
Deuze, Herman, & Morcette, 1997; Kotchenova, Vermote, Matarrese, &
Klemm, 2006) with aerosol characterizations derived independently
from each Landsat acquisition, and assumes a fixed continental aerosol
type and uses ancillarywater vapor. Recently, Landsat-7 ETM+LEDAPS
atmospherically corrected data were validated by comparison with in-
dependent 6SV atmospherically corrected ETM+ data using AERONET
(Aerosol Robotic Network) atmospheric characterizations at 95
10 km × 10 km 30 m subsets located across the CONUS (Ju et al.,
2012). The reported mean reflectance normalized residual for the

Image of Fig. 2
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LEDAPS atmospherically corrected ETM+ data was 11.8% (blue band),
5.7% (green band), 5.9% (red band), 4.8% (NIR band), and 1.0% to 2.0%
for the two short wave infrared bands. Other LEDAPS assessment stud-
ies have been undertaken (Maiersperger et al., 2013; Feng et al., 2013).
Validation of Landsat-8 LEDAPS atmospheric correction is underway
and is more accurate than for ETM+ because of the improved OLI sen-
sor characteristics (Vermote et al., 2016). Aminority of atmospherically
corrected pixels may have values outside their theoretical limits,
i.e., ρλ

surface b 0 or ρλ
surface N 1, due primarily to “over correction” by the

atmospheric correction algorithm (Roy, Qin, et al., 2014). Therefore as
these out of range surface reflectance values are unreliable they were
removed from the analysis.

3.4. Reprojection and gridding

The Landsat TOA and surface reflectance data and cloud and satura-
tion data were reprojected and gridded for the ETM+ and OLI indepen-
dently. Fig. 2 illustrates that at CONUS latitudes over a 7-day period only
the edges of the OLI and ETM+ acquisitions overlap. Therefore the
ETM+ and OLI data acquired in the same consecutive weekly (7-day)
period were reprojected independently. The data were reprojected
into the Albers equal area projection with nearest neighbor resampling
into fixed 5000 × 5000 30 m pixel tiles using the Web Enabled Landsat
Data (WELD) processing software (Roy et al., 2010). In this way a tile of
ETM+ data and a tile of OLI data was generated for each week at each
WELD tile location.

3.5. Data sampling

To generate data for the analysis, pixelswere sampled systematically
in the row and column directions across each weekly OLI and ETM+
CONUS WELD tile. Pixel locations where there were corresponding
ETM+ and OLI data were extracted and by definition occurred in the
sensor acquisition overlap and were sensed one day apart. A sampling
density of every 20th pixel (i.e., every 600 m) across the CONUS was
used to ensure a very large systematically collected sample of corre-
sponding OLI and ETM+ pixel values.

4. Data analysis

Spectral scatter plots of the OLI versus ETM+ TOA reflectance, and
also for the surface reflectance, were generated considering all six
months of weekly sample data for each of the comparable OLI and
ETM+ reflective wavelength bands. Similarly, scatterplots for the TOA
and surface NDVI data were generated.

The correspondence between the comparable sensor bands and
sensor NDVI values was first examined using reduced major axis
(RMA) regression. The RMA regression results are symmetric so
that a single line defines the bivariate relationship, regardless of
which variable is the dependent (i.e., OLI or ETM+ data) and
which is the independent variable (Smith, 2009). The RMA regres-
sion allows for both the dependent and independent variables to
have error (Cohen, Maiersperger, Gower, & Turner, 2003, Smith,
2009) which is useful because of the sensor calibration uncertainty
and because the TOA and surface sensor reflectance data have non-
negligible atmospheric effects and residual atmospheric correction
errors respectively. Statistical functions to transform between the
comparable sensor bands and sensor NDVI values were then developed
using ordinary least squares (OLS) regression. The OLS regression re-
sults are asymmetric, so that the slope and resulting interpretation of
the data are changed when the variables assigned to the dependent
and independent variables are reversed. The OLS regressions were de-
rived for OLI versus ETM+ data, and conversely for ETM+ versus OLI
data, to provide transformation functions from OLI to ETM+ and from
ETM+ to OLI. The goodness of fit of the OLS regressions were defined
by the coefficient of determination (r2) and the significance of the OLS
regressions was defined by examination of the regression overall
F-statistic p-value.

To provide simple overall measures of similarity, the mean differ-
ence, the root mean square deviation, and the mean relative difference,
between the OLI and ETM+ data were derived as:

Δ ¼
Xn
i

vOLIi −vETMþ
i

n
ð2Þ

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i

vOLIi −vETMþ
i

� �2
n

vuuut
ð3Þ

Δ
� ¼

Xn
i

vOLIi −vETMþ
ið Þ.

0:5 vOLIi þvETMþ
ið Þ

� �
100

n
ð4Þ

where Δ, RMSD, and Δ
�
are the mean difference, the root mean square

deviation, and themean relative difference respectively between corre-
sponding Landsat-8 OLI (viOLI) and Landsat-7 ETM+ (viETM+) values
(TOA or surface spectral reflectance or NDVI) for n pixel values. The
mean relative difference values are easier to compare between spectral
bands as they are normalized for spectral reflectance differences,
whereby, for example, healthy vegetation has low red reflectance but
high near-infrared reflectance.

Scatterplots considering different levels of filtering, including re-
moval of the saturated and the cloudy pixel values, were generated to
provide insights into the impacts of the per-pixel data screening. The
ETM+ and OLI spectral band saturation information was used to dis-
card pixel values if either sensor values were saturated for the spectral
band considered. Saturated red or NIR band pixel values were used to
discard saturated NDVI values. The ETM+ and OLI cloud masks were
used to discard pixel values if either sensor value was flagged as cloudy.
Landsat-7 ETM+ pixels were considered cloudy if they were labeled as
cloudy in either the ACCA or the decision tree cloudmasks. This ensured
a generous cloud definition (Roy et al., 2010) but meant that cloud-free
pixels were sometimes flagged as cloudy and discarded. Similarly, a
generous Landsat-8 OLI cloud pixel definition was used and OLI pixels
were considered cloudy if they were labeled as high or medium confi-
dence cloud, or as high confidence cirrus cloud. The OLI cirrus cloud sta-
tus was included because a recent study reported for a year of CONUS
Landsat-8 data that about 7% of pixels were detected as high confidence
cirrus but low confidence cloud (Kovalskyy & Roy, 2015). The Landsat-8
OLI snow pixel state was also used to remove corresponding OLI and
ETM+pixel values thatwere labeled by theOLI as high ormediumcon-
fidence snow.

To remove land cover and surface condition changes that may have
occurred in the one day difference between OLI and ETM+pixel obser-
vation, a filter was applied to the TOA reflectance data:

ρTOA;ETMþ
blue − ρTOA;OLI

blue

��� ���
0:5 ρTOA;ETMþ

blue þ ρTOA;OLI
blue

��� ��� N1:0 ð5Þ

where ρblueTOA,ETM+ and ρblueTOA,OLI are the TOA blue reflectance for the
ETM+ (band 1: 0.45–0.52 μm) and the OLI (band 2: 0.45–0.51 μm) re-
spectively. Thus, only corresponding ETM+ and OLI values sensed one
day part that had a blue TOA reflectance difference greater than 100%
of their average were discarded. The blue band is the shortest wave-
length ETM+ band and is the most sensitive of the ETM+ bands to
atmospheric effects. In a recent study considering approximately 53
million 30 m pixel locations sampled systematically across the CONUS
for 12 months, the mean absolute difference between the surface and
TOA blue band ETM+ reflectance expressed as a percentage of the sur-
face reflectance was 45% (Roy, Qin, et al., 2014). Consequently, the filter
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[5] only rejects pixel values where the relative change between the
ETM+ and OLI blue reflectance in one day wasmore than twice the av-
erage effect of the atmosphere, i.e., only pixel values with significant
surface change will be removed. In addition, as cloud and snow have
much higher blue reflectance than soil and vegetated surfaces (Dozier,
1984; Ustin et al., 1998; Painter et al., 2009), the filter may remove
pixel values where either (but not both) of the OLI or the ETM+ obser-
vations was cloud or snow contaminated.

5. Results

A total of 59,490,068 30 m pixel values for each spectral band was
extracted from the six months of CONUS overlapping sensor data.
Fig. 3 shows ρλTOAscatter plots for the six comparable OLI and ETM+ re-
flective bands. No filtering was applied to the data, but regardless, the
higher dynamic range of the OLI (y-axis) compared to the ETM+ (x-
axis) is evident in the greater dispersion of theOLI TOA reflectance com-
pared to the ETM+TOA reflectance. The anomalously high frequency of
ETM+ visible band reflectance values at around 0.35 and 0.55 is due to
sensor saturation. Fig. 4 shows the same data as Fig. 3 but discarding
pixel values that were saturated (see Section 3.2) and these features
are gone. Of the 59,490,068 values only a very small minority of the
OLI values (1289)were saturated in any of the six reflective bands com-
pared to the ETM+ (8,210,656). The small incidence of saturated OLI
data has been documented previously (Morfitt et al., 2015). The
ETM+ shorter wavelength visible bands were more frequently saturat-
ed (12.1% of the blue band and 11.0% of the red band values were satu-
rated) compared to the longer wavelength bands and the NIR bandwas
the least saturated (1.4% of the NIR values were saturated). Comparison
of Figs. 3 and 4 indicate that the saturated ETM+ pixels have a wide
Fig. 3. Spectral scatterplots of Landsat-8OLI top of atmosphere (TOA) spectral reflectance plotted
threewinter and three summermonths of overlappingOLI and ETM+30mpixel locations sam
to 1.0 are illustrated. The six comparable reflective wavelength bands are illustrated, OLI bands
0.85–0.88 μm), 6 (shortwave infrared 1.57–1.65 μm), and 7 (shortwave infrared: 2.11–2.29 μm)
(0.77–0.90 μm), 5 (1.55–1.75 μm) and 7 (2.09–2.35 μm) respectively. The dotted lines are 1:1
flectance is illustrated by colors shaded with a log2 scale from 0 (white), 60 (green, log2(6) =
range of TOA reflectance values and not just high values. Initially this
seemed counter-intuitive. However, from [1] it is clear that large
(i.e., saturated) radiance values may have reducedρλTOA when observed
with lower solar zenith angles (i.e., when the sun is higher in the sky),
and this effect is has been documented previously (Dozier, 1984;
Karnieli, Ben-Dor, Bayarjargal, & Lugasi, 2004). Inspection of all the
ETM+ L1T acquisition metadata used in this study revealed that
(i) therewere only two sets of digital number to radiance calibration co-
efficients, and (ii) the solar zenith angles for the study data ranged from
20.85° to 74.76°. These two sets of calibration coefficients combined
with the solar zenith angle variations resulted in the apparent “folding”
of the saturated ETM+ reflectance values. For example, in the ETM+
blue band, which was themost sensitive to saturation, the first and sec-
ond saturation peaks appear close to 0.35 and 0.55 reflectance (Fig. 3)
and correspond to calibration gain and offset coefficients of 0.779 and
−6.97874 and of 1.181 and−7.38071 respectively. These results high-
light the need to take into account the reflective wavelength saturation
status when analyzing Landsat data. In particular, comparison of
Landsat-8 OLI and Landsat-7 ETM+ reflectance will be quite imbal-
anced if the saturation status is not taken into consideration due to
the improved radiometric resolution of the OLI sensor.

Fig. 5 illustrates the impact of removing cloudy and snow covered
pixel values. Clouds and snow typically have relatively high visible
and NIR reflectance compared to vegetation and soil and more similar
reflectance in the Landsat shortwave bands (Dozier, 1984; Ustin et al.,
1998; Painter et al., 2009). Evidently, from comparison of Figs. 5 and 4,
the filtering resulted in the removal of some non-cloudy and non-
snow contaminated data. However, given the large amount of Landsat
data considered and the study goals this is preferable to retaining
cloud and snow contaminated pixel values. A minority (less than
against comparable Landsat-7 ETM+TOAspectral reflectance bands. Data extracted from
pled systematically every 600m across the CONUS. Only reflectance values in the range 0.0
2 (blue: 0.45–0.51 μm), 3 (green: 0.53–0.59 μm), 4 (red: 0.64–0.67 μm), 5 (near infrared:
plotted against ETM+TOAbands 1 (0.45–0.52 μm), 2 (0.52–0.60 μm), 3 (0.63–0.69 μm), 4
lines superimposed for reference. The frequency of occurrence of pixels with the same re-
26 = 64), 4000 (orange, 212 = 4096), N250,000 (purple, 218 = 262,144).

Image of Fig. 3


Fig. 4. TOA spectral reflectance as Fig. 3 but after discarding saturated OLI and ETM+ pixel values.

63D.P. Roy et al. / Remote Sensing of Environment 185 (2016) 57–70
0.5%) of the pixels values illustrated in Fig. 5 have OLI visible andNIR re-
flectance values greater than approximately 0.6. A previous OLI cloud
study, that evaluated a year of CONUS OLI data, found a minority of
systematic cloud detection commission errors over highly reflective
Fig. 5. TOA unsaturated spectral reflectance as Fig. 4 but after discarding c
exposed soils/sands in New Mexico and Utah but did not examine
cloud omission errors (Kovalskyy & Roy, 2015). Detailed examination
of the OLI L1T images used in this study where the OLI visible and NIR
reflectance valueswere greater than 0.6 revealed rare but unambiguous
loudy ETM+ pixel values and discarding cloudy and snow OLI pixels.

Image of Fig. 4
Image of Fig. 5


Fig. 6. Illustration of Landsat-8 OLI cloud mask omission for a 500 × 800 pixel subset of an OLI image: (Left) TOA true color reflectance; (right) the same TOA true color reflectance image
with the high confidence cloud (blue) and medium confidence cloud (light blue) detections overlain. A minority of unambiguous interior cloud pixels are undetected by the OLI cloud
mask. OLI image sensed 31st July 2013 over Southern Georgia (WRS-2 path 18 and row 39).
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OLI cloud detection omission errors, typified by the example shown in
Fig. 6.

Fig. 7 shows the unsaturated cloud- and snow-free TOA reflectance
(ρλTOA) scatterplots with the filtering (Eq. (5)) to remove pixel values
where the relative one day change between the ETM+ and OLI blue re-
flectancewasmore than twice the average effect of the atmosphere. The
filtering removed the OLI omission errors evident in Fig. 5. Approxi-
mately 29.7 million pairs of Landsat 8 OLI and Landsat 7 ETM+ reflec-
tance values are plotted (Table 1). The range of the OLI and ETM+
ρλTOA values corresponds spectrally to a great variation in surface types
and conditions. Of the plotted data 11% were from the winter months
and the remainder was from the summer months. This is because, as
noted in Section 2, there were fewer winter acquisitions used for either
sensor due to the greater seasonal incidence of clouds at the time of
Landsat overpass. In addition, in the winter the CONUS is more snow
covered (Sheng et al., 2015) and this has been observed in CONUS cov-
erage Landsat 5 and 7 data sets (Roy et al., 2016).

The solid lines in Fig. 7 show RMA (black) and OLS (colored) regres-
sion fits that are summarized in Table 1. If the OLI and ETM+ sensors
were identical and sensed at the same time then all the data in each
Fig. 7 scatterplot would reside on the 1:1 line and the regression fits
would have zero intercepts and slopes of unity. Departures from the
1:1 line are due to the factors described in the introduction, namely
(a) spectral response differences between the sensors, (b) surface and
atmospheric changes over the onedayOLI and ETM+acquisition differ-
ence, and (c) bi-directional reflectance effects. Surface changes due to
the one day sensor acquisition difference are assumed to be removed
by the application of [5]. In addition, bi-directional reflectance effects
can be largely discounted. This is because, as explained in Section 2,
the sensor overlap region (Fig. 2) is always acquired in the forward scat-
tering direction from one sensor and the backward scattering direction
from the other sensor. Bi-directional effects are typified by higher re-
flectance in the backscatter direction than in forward scatter direction
due to shadow hiding (except for specular reflectance in the forward
scattering direction) (Roujean, Leroy, & Deschamps, 1992; Roberts,
2001; Kokhanovsky & Breon, 2012). These effects are apparent in the
scatterplots, with lobes of frequently occurring ρλTOA values (red tones)
that occur symmetrically around the RMA regression lines because the
forward and backscatter viewing geometry is approximately balanced
between the sensors. However, because of the bi-directional effects
the OLS r2 are likely decreased and the mean difference values inflated
(Table 1).

Among the six TOA reflectance bands there is a clear pattern (Fig. 7)
which is most easily summarized by consideration of the RMA regres-
sion fits. The RMA regression intercepts are close to zero for all the
bands. However, the RMA slopes are close to unity for the visible wave-
length bands and further from unity for the NIR and the two shortwave
infrared bands (Table 1, Fig. 7). This is likely due to the spectral response
differences between the OLI and ETM+ sensors. In particular, the NIR
and then the two shortwave infrared bands have RMA slopes furthest
fromunity because their spectral response functions are themost differ-
ent (Fig. 1). On average the OLI TOA reflectance is greater than the
ETM+ TOA reflectance for all bands, with positive but small mean dif-
ferences from 0.0001 to 0.0013 for the visible bands, the greatest posi-
tive difference for the NIR band (0.0194), and intermediate mean
differences of 0.0137 and 0.0180 for the shortwave infrared (SWIR)
bands. The RMSD differences show similar pattern with smaller values
for the visible than the NIR and SWIR bands. The mean relative differ-
ence values are easier to compare between Landsat bands as they are
normalized for spectral reflectance differences [4]. The mean relative
difference values increase almost monotonically with wavelength
from 0.69% (blue band) to 13.59% (~2.21 μm band).

TheOLS regression results provide between sensor spectral transfor-
mations of the form ρλTOA, OLI = offset + slope ρλTOA, ETM+(blue
lines, Fig. 7) and ρλTOA, ETM+ = offset + slope ρλTOA, OLI(green lines,
Fig. 7). The OLS regression lines fall symmetrically around the RMA re-
gression lines and they intersect at the mean of the plotted variable
values, which is expected from statistical theory (Smith, 2009). The

Image of Fig. 6


Fig. 7. TOA spectral reflectance as Fig. 3 but after discarding saturatedOLI and ETM+pixel values, cloudy ETM+, cloudy and snowOLI pixels (Fig. 5) and filtering as Eq. (5). The solid black
lines show reducedmajor axis (RMA) regression fits of these data, the blue lines show ordinary least squares (OLS) regression of the OLI against the ETM+data, and the green line shows
OLS regression of the ETM+ data against the OLI data. The dotted lines are 1:1 lines superimposed for reference.
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OLS r2 values are all greater than 0.7 and the regressions are all highly
significant with p-values b 0.0001, indicating that the between sensor
spectral transformations (Table 1) can be applied to transform ETM+
TOA reflectance from OLI TOA reflectance or vice versa.

Fig. 8 and Table 2 show the surface reflectance results. The impact of
the atmospheric correction is clearly evident, acting to increase the
range of the surface reflectance (Fig. 8) relative to the TOA reflectance
(Fig. 7). This occurs primarily because Rayleigh and aerosol backscatter
into the sensor adds to the TOA signal at low surface reflectance and
Table 1
Top of atmosphere reflectance sensor transformation functions (ETM+ toOLI andOLI to ETM+
major axis (RMA) regression coefficients, the number of 30m pixel values considered (n), the O
difference [2], the mean relative difference [4], and the root mean square deviation [3], betwee

Regression type Between sensor OLS transformation
functions and RMA regression coefficients

n

Blue λ
(~0.48 μm)

RMA OLI = −0.0029 + 1.0333 ETM+ 29
OLS OLI = 0.0173 + 0.8707 ETM+
OLS ETM+ = 0.0219 + 0.8155 OLI

Green λ
(~0.56 μm)

RMA OLI = 0.0014 + 0.9885 ETM+ 29
OLS OLI = 0.0153 + 0.8707 ETM+
OLS ETM+ = 0.0128 + 0.8911 OLI

Red λ
(~0.66 μm)

RMA OLI = 0.0009 + 1.0026 ETM+ 29
OLS OLI = 0.0107 + 0.9175 ETM+
OLS ETM+ = 0.0128 + 0.9129 OLI

Near infrared λ
(~0.85 μm)

RMA OLI = −0.0058 + 1.1007 ETM+ 29
OLS OLI = 0.0374 + 0.9281 ETM+
OLS ETM+ = 0.0438 + 0.7660 OLI

Shortwave infrared λ
(~1.61 μm)

RMA OLI = −0.0001 + 1.0659 ETM+ 29
OLS OLI = 0.0260 + 0.9414 ETM+
OLS ETM+ = 0.0246 + 0.8286 OLI

Shortwave infrared λ
(~2.21 μm)

RMA OLI = 0.0048 + 1.0983 ETM+ 29
OLS OLI = 0.0490 + 0.9352 ETM+
OLS ETM+ = 0.0075 + 0.8329 OLI
aerosol absorption attenuates the TOA signal at higher surface reflec-
tance (Tanre et al., 1981; Ouaidrari & Vermote, 1999). Most evidently,
the frequently occurring surface reflectance values (red tones, top
row) are shifted to lower reflectance values compared to the TOA reflec-
tance values. This pattern was also observed in a previous study that
considered CONUS Landsat ETM+ data (Roy, Qin, et al., 2014). There
were about 1% fewer surface reflectance than TOA reflectance pixel
values for each band (see n values in Tables 1 and 2). This is because
out of range surface reflectance values, i.e. ρλsurface b 0 or ρλsurface N 1,
) derived by ordinary least squares (OLS) regression of the data illustrated in Fig. 7, reduced
LS regression coefficient of determination (r2), the OLS regression F-test p-value, themean
n the OLI and ETM+ TOA reflectance data.

OLS
r2

(p-value)

Mean difference
OLI–ETM+
(reflectance)

Mean relative
difference
OLI–ETM+ (%)

Root mean
square deviation
(reflectance)

,697,049 0.710 (b0.0001) 0.0013 0.69 0.0259

,726,550 0.776 (b0.0001) 0.0001 0.11 0.0272

,678,433 0.838 (b0.0001) 0.0012 1.13 0.0302

,767,214 0.711 (b0.0001) 0.0194 6.45 0.0637

,725,068 0.780 (b0.0001) 0.0137 6.41 0.0543

,237,762 0.837 (b0.0001) 0.0180 13.59 0.0441

Image of Fig. 7


Fig. 8.Atmospherically corrected surface spectral reflectance equivalent of results shown in Fig. 7. Only surface reflectance values in the range 0.0 to 1.0 are illustrated. The solid black lines
show reduced major axis (RMA) regression fits of these data, the blue lines show ordinary least squares (OLS) regression of the OLI against the ETM+ data, and the green line shows OLS
regression of the ETM+ data against the OLI data. The dotted lines are 1:1 lines superimposed for reference.
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that occurred due to “over correction” by the atmospheric correction
algorithm were removed as they are unreliable. The bi-directional re-
flectance pattern, i.e., lobes of frequently occurring reflectance
values (red tones) that occur symmetrically around the RMA regres-
sion lines, remains apparent in the atmospherically corrected data.
The OLS r2 values for the surface reflectance bands are all greater
than 0.7, and similar to the TOA reflectance r2 values, and the regres-
sions are all highly significant with p-values b0.0001 indicating that
the between sensor spectral transformations (Table 2) can be applied to
Table 2
Surface reflectance sensor transformation functions (ETM+ to OLI andOLI to ETM+)derived b
(RMA) regression coefficients, the number of 30 m pixel values considered (n), the OLS regressi
[2], the mean relative difference [4], and the root mean square deviation [3], between the OLI

Regression
type

Between sensor OLS transformation
functions and RMA regression coefficients

n

Blue λ
(~0.48 μm)

RMA OLI = −0.0095 + 0.9785 ETM 29,60
OLS OLI = 0.0003 + 0.8474 ETM+
OLS ETM+ = 0.0183 + 0.8850 OLI

Green λ
(~0.56 μm)

RMA OLI = −0.0016 + 0.9542 ETM 29,67
OLS OLI = 0.0088 + 0.8483 ETM+
OLS ETM+ = 0.0123 + 0.9317 OLI

Red λ
(~0.66 μm)

RMA OLI = −0.0022 + 0.9825 ETM 29,50
OLS OLI = 0.0061 + 0.9047 ETM+
OLS ETM+ = 0.0123 + 0.9372 OLI

Near infrared λ
(~0.85 μm)

RMA OLI = −0.0021 + 1.0073 ETM 29,61
OLS OLI = 0.0412 + 0.8462 ETM+
OLS ETM+ = 0.0448 + 0.8339 OLI

Shortwave infrared λ
(~1.61 μm)

RMA OLI = −0.0030 + 1.0171 ETM 29,52
OLS OLI = 0.0254 + 0.8937 ETM+
OLS ETM+ = 0.0306 + 0.8639 OLI

Shortwave infrared λ
(~2.21 μm)

RMA OLI = 0.0029 + 0.9949 ETM 29,02
OLS OLI = 0.0172 + 0.9071 ETM+
OLS ETM+ = 0.0116 + 0.9165 OLI
transform ETM+ surface reflectance from OLI surface reflectance or
vice versa.

The RMSD difference between theOLI and ETM surface reflectance is
comparable for the visible bands, is greater in the SWIR bands and the
greatest for the NIR band (Table 2). On average the OLI surface reflec-
tance is smaller than the ETM+ surface reflectance in the visible and
NIR bands, with negative but small mean differences from −0.0110
(blue) to −0.0002 (NIR). Conversely, the OLI surface reflectance is
greater than the ETM+ surface reflectance for the two shortwave
y ordinary least squares (OLS) regression of the data illustrated in Fig. 8, reducedmajor axis
on coefficient of determination (r2), the OLS regression F-test p-value, themean difference
and ETM+ surface reflectance data.

OLS r2

(p-value)
Mean difference
OLI–ETM+
(reflectance)

Mean relative
difference
OLI–ETM+ (%)

Root mean square
deviation
(reflectance)

7,256 0.750 (b0.0001) −0.0110 −22.32 0.0313

0,363 0.790 (b0.0001) −0.0060 −7.34 0.0317

5,658 0.848 (b0.0001) −0.0041 −5.12 0.0333

8,412 0.706 (b0.0001) −0.0002 −0.19 0.0644

0,670 0.772 (b0.0001) 0.0009 0.03 0.0562

8,669 0.831 (b0.0001) 0.0021 1.52 0.0453

Image of Fig. 8
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infrared bands with small positive mean surface reflectance differences
of 0.0009 and 0.0021. The mean relative surface reflectance difference
values increase monotonically with wavelength, like the TOA reflec-
tance relative differences (Table 1), but from −22.32% (blue band) to
1.52% (~2.21 μm band).

The magnitude of the surface reflectance mean difference values
(Table 2) is greater than the TOA equivalents (Table 1) for the visible
bands and smaller for the NIR and shortwave infrared bands. The visible
band surface RMSD values are also greater than the TOA RMSD values,
but the NIR and SWIR RMSD values are comparable. This spectral pat-
tern is apparent in the RMA regression fits. The NIR and the two short-
wave infrared bands have RMA slopes closer to unity (Fig. 8, Table 2)
than the TOA reflectance slopes (Fig. 7, Table 1). Evidently, the impact
of atmospheric effects over the quite different NIR and shortwave
Fig. 9. TOA (left) and surface (right) NDVI comparisons derived from the filtered results shown
the range 0 to 1; the blue lines show ordinary least squares (OLS) regression of theOLI against th
and the dotted lines are 1:1 lines superimposed for reference.Middle and Bottom rows:mean (bl
contiguous 0.04 NDVI ranges. The number of NDVI values considered (log2 scale) is shown in b
infrared band spectral response functions is reduced by the atmospheric
correction. The red band TOA and surface reflectance RMA fits are sim-
ilar. However, the green and blue band surface reflectance RMA fits are
further from unity than the TOA equivalents. This is likely because the
ETM+atmospheric correction is less accurate than theOLI atmospheric
correction for these bands (Vermote et al., 2016). As has beennoted pre-
viously the accuracy of the blue and green surface reflectance is lower
than in the longer wavelengths, and these bands should be used with
caution (Vermote & Kotchenova, 2008, Ju et al., 2012, Roy, Wulder,
et al., 2014).

Fig. 9 and Table 3 summarize the results for TOA and surface NDVI.
There were different numbers of TOA and surface NDVI values because
they were derived independently from the TOA and the surface red and
NIR reflectance and any NDVI values less than zero were discarded. By
in Figs. 7 and 8 respectively. Top row: sensor NDVI scatterplots considering NDVI values in
e ETM+data, the green lines showsOLS regression of the ETM+data against theOLI data,
ack solid circles)±one standard deviation (black vertical lines) sensorNDVI differences for
lue (right Y-axis).

Image of Fig. 9


Table 3
Top of atmosphere and surface NDVI sensor transformation functions (ETM+ to OLI and OLI to ETM+) derived by ordinary least squares (OLS) regression of the data illustrated in Fig. 9,
reduced major axis (RMA) regression coefficients, the number of 30m pixel values considered (n), the OLS regression coefficient of determination (r2), the OLS regression F-test p-value,
and the mean difference [2], mean relative difference [4], and the root mean square deviation [3], between the OLI and ETM+ NDVI data.

Regression
type

Between sensor OLS transformation
functions and RMA regression coefficients

n OLS r2

(p-value)
Mean difference
OLI–ETM+
(reflectance)

Mean relative
difference
OLI–ETM+ (%)

Root mean square
deviation
(reflectance)

TOA NDVI RMA OLI = 0.0306 + 0.9824 ETM 27,763,483 0.906 (b0.0001) 0.0238 9.88 0.0765
OLS OLI = 0.0490 + 0.9352 ETM+
OLS ETM+ = − 0.0110 + 0.9690 OLI

Surface NDVI RMA OLI = 0.0149 + 1.0035 ETM 28,056,271 0.926 (b0.0001) 0.0165 4.86 0.0779
OLS OLI = 0.0235 + 0.9723 ETM+
OLS ETM+ = 0.0029 + 0.9589 OLI
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restricting the NDVI from 0 to 1 the results reflect typical vegetated soil
and vegetation surfaces. The impact of the atmospheric correction is to
increase the range of the surface NDVI relative to the TOA NDVI (Fig. 9).
In particular, the surface NDVI has generally higher values than the TOA
NDVI. This pattern was also observed in a previous study that consid-
ered CONUS Landsat-7 ETM+ data (Roy, Qin, et al., 2014) and it is
well established that the atmosphere acts to depress NDVI values over
land (Holben, 1986; Liu & Huete, 1995; McDonald, Gemmell, & Lewis,
1998; Roy, 1997).

On average the OLI NDVI is greater than the ETM+ NDVI by 0.0238
(TOA NDVI) and by 0.0165 (surface NDVI) with comparable RMSD
values (Table 3). The mean relative sensor NDVI differences are 9.88%
(TOA NDVI) and 4.86% (surface NDVI) respectfully. Although not
insignificant, these between sensor NDVI differences are considerably
smaller than the CONUS average 0.1 and 28% relative impact of the at-
mosphere on Landsat ETM+ NDVI over vegetated surfaces reported
by Roy, Qin, et al. (2014). The RMA intercepts and slopes are closer to
zero and unity respectively for the surface NDVI than the TOA NDVI
(Table 3). This is expected given that the atmospheric correction also
similarly improved the RMA regression fit for the NIR reflectance and
made relatively little difference to the red reflectance (Tables 1 and 2).

The middle and bottom rows of Fig. 9 illustrate the mean and stan-
dard deviation of the difference between sensor NDVI defined over 25
contiguous NDVI ranging from 0 to 1. The number of pixels in each
0.04 NDVI range is also illustrated (blue) and in each range there are
typically one to four million values, although for low and high NDVI
ranges fewer values are available. The bottom row of Fig. 9 illustrates
that for a given OLI NDVI value the ETM+ NDVI is lower usually than
the OLI NDVI except for near zero OLI NDVI values. The middle row of
Fig. 9 illustrates that for a given ETM+ NDVI the OLI NDVI is usually
greater for ETM+ NDVI values from 0 to about 0.7 (TOA) and from 0
to about 0.8 (surface). The reasons for these differences are complex
being dependent on the sensor differences in the red and NIR reflec-
tance used to derive the NDVI, and influenced by NDVI saturation
whereby NDVI values become similar over increasingly vegetated
(higher biomass, leaf area index, ground cover) surfaces (Huete et al.,
2002). The standard deviations of the surface NDVI differences vary
with respect to NDVI (Fig. 9 right column) in a more complex manner
than the TOA results (Fig. 9 left column) reflecting the different sensor
impacts of the LEDAPS atmospheric correction on the red and NIR
bands. We note that despite the apparent curvilinear pattern in the
mean NDVI sensor differences with respect to NDVI (black dots, middle
and bottom rows of Fig. 9) OLS regression of these data, similar to
Trishchenko, Cihlar, and Li (2002), provided insignificant first and sec-
ond order regressions (r2 values less than 0.07). Considering all the
NDVI data in the 0 to 1 range (Fig. 9, top row) provided highly signifi-
cant OLS regressions (r2 values N 0.9, p-values b 0.0001) for TOA and
surfaceNDVI (Table 3). TheNDVI ratio formulation tofirst order reduces
bi-directional reflectance effects (Gao, Jin, Xiaowen, Schaaf, & Strahler,
2002). This is perhaps one reasonwhy the NDVI OLS r2 values are great-
er than the r2 values for the red and NIR reflectance bands. The OLS re-
sults indicate that the NDVI between sensor spectral transformations
(Table 3) can be reliably applied to transform ETM+ NDVI from OLI
NDVI or vice versa.

6. Conclusion

Continuity between Landsat sensors is required so that long time se-
ries multi-sensor analyses can be undertaken in an unbiased way. The
multi-decadal continuity of the Landsat program, with consecutive,
temporally overlapping Landsat observatories and cross-sensor calibra-
tion, is a key reason the Landsat programhas value for climate and glob-
al change studies (Trenberth et al., 2013; Roy, Wulder, et al., 2014). The
Landsat-8 OLI and Landsat-7 ETM+ sensors are well characterized but
reflectance differences imposed by their different specifications will
also depend on the surface reflectance and atmospheric state that are
difficult tomodel comprehensively. Consequently, in this study a statis-
tical analysis of a very large sample of corresponding OLI and ETM+
30 m observations extracted systematically across the conterminous
United States (CONUS) from six months of weekly independently
gridded sensor observations was conducted.

A key requirement for this sensor comparison study was to capture
sensor differences and not differences due to surface and atmospheric
changes. The importance of appropriate data screening for analysis of
Landsat data was very evident when the spectral scatter plots of the
OLI versus ETM+ reflectance with different levels of per-pixel screen-
ing were compared. Notably, although the OLI was very infrequently
saturated the ETM+ bands were frequently saturated, particularly in
the shorter wavelength visible bands. Similarly, the impact of cloud
masks on both sensor data was evident and necessitated the generous
removal of cloudy pixels and all saturated pixels before meaningful sta-
tistical comparison of theOLI and ETM+sensor data could be undertak-
en. To remove any land cover and surface condition changes that may
have occurred in the one day difference between OLI and ETM+ pixel
observation, and to remove residual clouds particularly due to an infre-
quent OLI cloud commission error (affecting less than 0.5% of the OLI
data), a filter was applied to the TOA reflectance data. The filter rejected
pixel values when the relative change between the ETM+ and OLI blue
reflectance was more than twice the average effect of the atmosphere
quantified in a previous CONUS study (Roy, Qin, et al., 2014).

On average, considering all six months of CONUS data, the OLI TOA
reflectance was greater than the ETM+ TOA reflectance, with positive
but small mean differences for the visible bands, the greatest positive
difference for the near-infrared (NIR) band, and intermediate mean dif-
ferences for the shortwave infrared bands. Reducedmajor axis (RMA) of
the sensor data captured this spectral pattern. TheNIR, and then the two
shortwave infrared bands, had RMA slopes furthest from unity and the
visible bands had slopes close to unity. This is due to spectral response
functions differences between the sensors which are most different in
the NIR and then the shortwave infrared bands. The impact of the
LEDAPS OLI and ETM+ atmospheric correction was clearly evident,
acting to increase the range of the surface reflectance and NDVI. The
atmospheric correction increased the magnitude of the mean between
sensor reflectance differences in the visible bands and decreased the
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differences in the NIR and shortwave infrared bands. This spectral pat-
ternwas apparent in the RMA regression fits, the NIR and the two short-
wave infrared bands had RMA slopes closer to unity than the TOA
reflectance slopes, the red band RMA slopes were similar, and the
green and blue band surface reflectance RMA fits were further from
unity than the TOA equivalents. This is likely because at shorter visible
wavelengths the atmospheric correction is less reliable, and because
the ETM+ atmospheric correction is less accurate than the OLI atmo-
spheric correction for the shorter wavelength green and blue bands
(Vermote et al., 2016). The NDVI data were compared over the
range 0 to 1 to reflect typical vegetated soil and vegetation surfaces.
Regardless of whether TOA or surface red and NIR reflectance were
used to generate the NDVI, on average the OLI NDVI was greater
than the ETM+NDVI, and the RMA intercepts and slopes were closer
to zero and unity respectively for the surface NDVI than the TOA
NDVI.

Ordinary least squares regressions (OLS) were used to quantify line-
ar differences between the two Landsat sensors and the regression coef-
ficients provided so that the user community may apply them in their
own research. The TOA and surface reflectance OLS regressions had
good fits for all bands (r2 values N 0.7, p-values b 0.0001) indicating
that the between sensor spectral transformations can be applied to
broadly normalize the reflectance of one sensor to the other. The OLS
NDVI regressions had better fits (r2 N 0.9, p-values b 0.0001), indicating
that the NDVI between sensor spectral transformations can be reliably
applied to transformETM+NDVI fromOLI NDVI or vice versa. Although
sensor differences are quite small they may have significant impact
depending on the Landsat data application.
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