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Abstract 

Using the language of dynamical systems theory, a general theoretical framework for the 
synthesis and analysis of autonomous agents is sketched. In this framework, an agent and 
its environment are modeled as two coupled dynamical systems whose mutual interaction is 
in general jointly responsible for the agent’s behavior. In addition, the adaptive fit between 
an agent and its environment is characterized in terms of the satisfaction of a given 
constraint on the trajectories of the coupled agent-environment system. The utility of this 
framework is demonstrated by using it to first synthesize and then analyze a walking 
behavior for a legged agent. 

1. Introduction 

This paper is concerned with properly characterizing the interaction between an 
autonomous agent and its environment. By autonomous agent, I mean any 
embodied system designed to satisfy internal or external goals by its own actions 
while in continuous long-term interaction with the environment in which it is 
situated. The class of autonomous agents is thus a fairly broad one, encompassing 
at the very least all animals and autonomous robots. An animal, for example, may 
simply be trying to survive, while a robot might be designed to carry out specific 
tasks, such as keeping some designated area clean or exploring the surface of 
another planet. The task is thus to abstract over particular details of implementa- 
tion and embodiment (e.g., nerve cells vs. finite state machines or muscles vs. 
motors) in order to understand the essential character of this class of systems. 
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However short of this ambitious goal the present paper may fall, the long-term 

aim is nothing less than a general theoretical framework for the explanation and 
design of autonomous agents. 

The central problem for any autonomous agent, and thus the primary concern 

in this paper, is the generation of the appropriate behavior at the appropriate 
time as both its internal state and external situation continuously change. For an 
embodied agent, action must always take precedence over any other activity. 

Abstract reasoning, when it can be afforded at all, is profitable only insofar as it is 
ultimately reflected in improved behavior. This does not necessarily imply that an 
embodied agent must be purely reactive, reflexively responding only to its 
immediate situation. Rather, it means an autonomous agent must be able to 
flexibly combine its immediate circumstances with its long-term goals so as to 
continuously adjust its behavior in ways appropriate to both. An animal moving 
throughout its environment, for example, needs to adopt many different modes of 

behavior as it becomes hungry or tired and encounters potential food, predators 
and mates, all the while adjusting its posture and leg movements to the constantly 

changing terrain which it is traversing. 
Traditionally, such “low level” concerns of embodiment have not played a 

major role in AI research. Instead, work in AI has tended to emphasize “high 
level” intellectual skills, such as language, problem solving and abstract reason- 
ing. Embodied agents, when they have been considered at all, have been viewed 
as merely symbolic reasoning engines with sensors and effecters attached. 
Accordingly, the problems of embodied agents have usually been formulated as 
special cases of the problems of disembodied intelligent systems. Of course, it has 
long been realized that embodiment raises certain additional technical issues. 
Sensors, for example, introduce the problem of constructing, and maintaining the 
consistency of, internal representations of the environment from physical signals, 
while effecters introduce the problem of translating representations of action into 
actual motor commands. Furthermore, physical embodiment introduces real-time 

constraints on an agent’s action that limit the amount of time that can be spent 
reasoning. However, these technical problems are usually seen as merely 
complicating, rather than invalidating, the classical picture. 

In recent years, however, a growing number of AI researchers have begun to 
appreciate the fundamental importance of embodiment. There are a number of 
reasons for this change in perspective. Designing agents that can interact with the 
real world with the versatility and robustness of even simple animals has turned 
out to be considerably more subtle and difficult than originally realized, and 
approaches developed for disembodied agents have not in general translated well 
to the noisy, unpredictable, open-ended and dynamic nature of the real world. 
Furthermore, many problems that seemed intractable for disembodied systems 
have turned out to be considerably simplified by active participation in an 
environment. Work on animate vision, for example, has demonstrated that a 
number of visual problems are drastically simplified if the agent is given the ability 
to control its own gaze direction [8]. Likewise, work on situated agents has shown 
that the potentially brittle and combinatorially explosive nature of general 
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planning can be significantly alleviated by using the immediate situation to guide 
behavior [3,20]. Indeed, there is a growing realization that, far from being a mere 
complication for a disembodied intellect, embodiment may in fact be the more 
fundamental issue. Certainly, from an evolutionary perspective, the human 
capacity for language and abstract thought is a relatively recent elaboration of a 
much more basic capacity for situated action that is universal among animals. 

This reassessment of the importance of embodiment has led to an explosion of 
recent work on autonomous agents. Brooks, working in the area of mobile 
robotics, was one of the first AI researchers to point out the limitations of 
classical AI techniques in the face of real-world complexity and the need for a 
renewed emphasis on embodiment and situated action [18,20]. Agre and 
Chapman’s work on routine activity grew out of a similar frustration with the 
limitations of classical planning in realistic environments and led to similar 
conclusions [2,3,22]. Building on Rosenschein’s situated automata theory [56], 
Rosenschein and Kaelbling developed methods for deriving finite state machine 
controllers for an agent from a formal specification of its knowledge and goals 
[42]. My own work [ll, 141 and that of Cliff [24] has demonstrated the significant 
potential for interaction between autonomous agent research and work on the 
neural basis of animal behavior. Biological design principles have also been 
stressed by Arbib and Liaw [5]. Surveys of recent work in autonomous agents can 
be found in the collections edited by Maes [45] and Meyer and Wilson [49]. 

This body of work is loosely characterized by a number of shared ideas. It 
emphasizes the primacy of actually taking action in the world over the abstract 
descriptions that we sometimes make of it. It focuses on the development of 
complete agents capable of carrying out open-ended tasks in unconstrained 
environments rather than isolated cognitive skills in restricted task domains. It 
emphasizes behavior and the fundamental importance that the immediate situa- 
tion plays in guiding an agent’s behavior, ideas historically associated with 
behaviorism, over reasoning and symbolic models of the world. Another common 
theme of this work has been that a significant fraction of behavior must be seen as 
emerging from the ongoing interaction between an agent and its environment, an 
idea often associated with cybernetics. This work has also begun to question the 
central role that internal representation has been assumed to play in intelligent 
behavior by most work in cognitive science. 

In this paper, I will attempt to show that these and other ideas that are 
emerging from recent work on autonomous agents, as well as work on the neural 
basis of animal behavior, can be naturally cast into the language of dynamical 
systems theory. Furthermore, I will argue that this language can form the basis for 
a powerful theoretical framework for the explanation and design of autonomous 
agents in general. Section 2 reviews some of the basic concepts of dynamical 
systems theory that are required to present this framework. In Section 3, I sketch 
the theoretical framework itself and draw out some of its conceptual conse- 
quences. Section 4 demonstrates the utility of this framework by illustrating in 
some detail its application to the synthesis and analysis of a walking behavior for a 
simulated legged agent. Finally, Section 5 discusses the assumptions of the 



proposed framework, considers its broader implications, and suggests some 
directions for future work. 

2. Dynamical systems 

This section will briefly review the essential concepts and terminology of the 
qualitative theory of dynamical systems that will be required for the theoretical 
framework to be presented in Section 3. The presentation is necessarily informal 
and incomplete. The reader interested in a more thorough treatment should refer 
to one of the many available texts on dynamical systems including, in order of 
increasing mathematical sophistication, the books by Abraham and Shaw [l], 
Hale and KoGak [33] and Wiggins [66]. 

Consider the following three mathematical systems: 

X ,r+, =PX,,(l -“n) (1) 

2 

,nl$j+~~+mfisinB=Acos(w*) 

At first glance, these three systems may appear to have very little in common. 

The first equation is an example of an iterated map. The second system is a 

second-order differential equation describing the motion of a damped, 

(2) 

(3) 

sinusoidally-driven pendulum. The third system is a finite state machine with 
input. However, all of these systems are also instances of dynamical systems and 
the underlying similarity of many of the questions one might ask about each of 
these systems only becomes apparent in this formalism. 

For our purposes here, a dynamical system is characterized by a set of state 
variables x and a dynamical law 5 that governs how the values of those state 
variables change with time. The set of all possible values of the state variables 
constitutes the system’s state space. For simplicity, I will assume here that the 
state space is continuous (i.e., the state variables are real-valued), though most of 
the concepts that I will be introducing hold in some form for any metric space. 
Often the geometry of the state space is assumed to be simply Euclidean. 
Sometimes, however, other spaces arise. Perhaps the most common examples are 
cylindrical and toroidal state spaces, which occur naturally when some of the state 
variables are periodic (e.g., 0 in Eq. (2)). 

If the dynamical law depends only upon the values of the state variables and the 
values of some set of fixed parameters a, then the system is said to be 
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autonomous.’ In a continuous-time dynamical system, the dynamical law is given 
in terms of a set of differential equations: i = 9(x; u). In this case, the dynamical 
law defines a vector field on the state space. In a discrete-time dynamical system, 
the dynamical law is simply a map from current state to next state: x,+, = 
9(x,; u). A dynamical system is said to be linear or nonlinear according to the 
linearity or nonlinearity of 9 in the state variables. 

As a concrete example, consider the following system of equations, which 
describe the behavior of a fully-interconnected network of two simple model 
neurons: 

I;, = -Y I + wll4Yl- 4) + W2ldY2 - %I 7 

(4) 
Y, = -Y, + wlP(Y, - 4) + w224y2 - 4) ) 

where yi is the state of the ith neuron, a(t) = (1 + ee5)-’ is the standard 
sigmoidal (S-shaped) activation function, 0, controls the offset or threshold of the 
activation function and wj, is the weight of the connection from the ith to the jth 
neuron. This system is a simplification of a common neural network model that 
will be employed in Section 4. Note that this is a nonlinear system due to the 
nonlinearity of the activation function (+. 

Starting from some initial state x0, the sequence of states generated by the 
action of the dynamical law is called a trajectory of the system and is often 
denoted &(x0). A trajectory has the property that its tangent at each point is 
equal to the value of the vector field at that point. Some representative 
trajectories of the two-node network (4) are shown in Fig. 1. The set of all such 
trajectories through every point in the state space is called the flow, denoted &. 
In the classical theory of differential equations, one is typically interested only in 
individual solutions, which correspond to individual trajectories of the dynamical 
system. In contrast, in the qualitative theory of dynamical systems, one is usually 
more interested in the geometrical or topological structure of the entire flow. 

Of particular interest is the possible long-term behavior of a dynamical system. 
The state of some systems will simply diverge to infinity (e.g., the system ,’ = y), 
while others will eventually converge to limit sets. A limit set is a set of points that 
is invariant with respect to the dynamical law, so that if the state of a dynamical 
system ever falls on a limit set, the action of the dynamical law will keep it there 
indefinitely. The stable limit sets or &tractors are especially important. An 
attractor has the property that the trajectories passing through all nearby states 
converge to the attractor. This means that if the state of the system is perturbed a 
sufficiently small distance away from an attractor, the action of the dynamical law 
will bring the state back to the attractor. The open set of initial states that 
converge to a given attractor is termed its basin of attraction. Those portions of 
the trajectories through such points which do not lie on the attractor itself are 

’ This is a technical term in dynamical systems theory whose meaning is unrelated to its use in the term 

“autonomous agents”. 
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Fig. 1. Phase portraits for the two-neuron system (Eq. (4)) f or several parameter settings. All of these 

systems are structurally stable, that is, the qualitative structures of their phase portraits persist for 
small variations in the parameters. (A) H ere the system exhibits two stable equilibrium points near 
(-3,4) and (4, -3) with basins of attraction shown in gray and white respectively. The open point 

near (0,O) is a repeller and the inset of this repellor (dark diagonal line) forms the separatrix between 

the two basins of attraction. The parameter values are wl, = IV,, = 4, w,* = wzl = -3, 8, = 0, = 0. (B) 

Here the system exhibits a single equilibrium point attractor. The parameter values are wI1 = 2.75, 

w12 = -6, wz2 = w2, = 6, 8, = 6, 0, = 0. (C) Here the system exhibits a limit cycle (dark oval) and a 

repellor (open point near (6,O)). This phase portrait was derived from the one shown in B by 

increasing the single parameter wI1 from 2.75 to 6. 
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called transients. The solid point near (-3,4) in Fig. l(A) is an example of an 
attractor, and its basin of attraction is shown in gray. 

Repellers are limit sets that are unstable. Repellors have the property that at 
least some nearby trajectories diverge from them. Despite the fact that the 
repellor itself is invariant, if the state of the system is perturbed even an 
infinitesimal distance from the repellor, the action of the dynamical law will serve 
to carry it away. The open point near (0,O) in Fig. l(A) is an example of a 
repellor. Attractors are important because they govern the long-term behavior of 
any physical system. Regardless of the initial state, a physically embodied 
dynamical system will always be found near an attractor after transients have 
passed. Due to their instability, repellors can only be observed by starting a 
dynamical system on a repellor and then never perturbing it. Since any physical 
system has some noise, it could never stay on a repellor indefinitely. 

Four major classes of attractors are usually distinguished. Equilibrium point 
attractors are stable limit sets which consist of single points, such as the solid 
point near (4, -3) in Fig. l(A). An equilibrium point x* represents a constant 
solution to the system: 4,(x*) =x*. Periodic attractors or limit cycles are stable 
limit sets which are closed trajectories in the state space. These correspond to 
periodic or oscillatory solutions, with the property that 4,(x*) = 4t+T(~*) for some 
minimum period T > 0 and any point x* lying on the attractor. An example of a 
limit cycle is shown in Fig. l(C). 

The remaining two classes of limit sets, quasiperiodic attractors and chaotic 
attractors, are much more complicated than either equilibrium points or limit 
cycles. Chaotic attractors, for example, possess a fractal structure and they exhibit 
a sensitive dependence on initial conditions. No matter how closely two unequal 
initial states are chosen, their resulting trajectories can diverge exponentially even 
while remaining bounded on the attractor until they become completely uncorre- 
lated. For this reason, despite the underlying determinism of its dynamical law, 
the behavior of a chaotic attractor is in many ways indistinguishable from a 
random process. While I will not discuss quasiperiodic or chaotic attractors further 
in this paper, it is important to realize that such complicated behavior is quite 
common in higher dimensional nonlinear dynamical systems. 

In general, the state space of a dynamical system will contain multiple 
attractors, each surrounded by its own basin of attraction. These basins are 
separated by unstable manifolds called separatrices. The dark diagonal line 
separating the white and gray basins of attraction of the two equilibrium point 
attractors in Fig. l(A) is an example of a separatrix. Thus one can visualize these 
separatrices as dividing the flow of a dynamical system into a number of “cells” 
each containing an attractor of some type. A global characterization of this 
cellular structure is called the phase portrait of the system (Fig. 1). 

We have been holding the parameters u of the dynamical law 9 constant and 
considering the global structure of the resulting flow. What happens when these 
parameters are changed? Since 9 is a function of U, the vector field that it 
determines, and hence the resulting flow 4, that this vector field induces on the 
state space, will most certainly change as these parameters are varied. Thus a 



parameterized dynamical law actually defines a family of dynamical systems, with 

any particular flow corresponding to a single setting of the parameters. 
Just as we were previously interested in the structure of any given flow in state 

space, we can now inquire into the structure of a family of flows in parameter 
space. Most dynamical systems are structurally stable, that is, for most parameter 

settings, small changes in the parameter values will produce small changes in the 
flow. Limit sets and basins of attraction may deform and move around a bit, but 
the new flow will be qualitatively similar (i.e., topologically equivalent, or 
homeomorphic) to the old one. However, at certain parameter values, dynamical 
systems can become structurally unstable, so that even infinitesimal changes in 
parameter values can cause drastic changes in the flow, producing phase portraits 
that are qualitatively different from the original. These qualitative changes in the 

types of limit sets are called bifurcations. 
For example, as the parameter I+, , in our example system (4) is increased from 

2.75 to 6, the equilibrium point attractor shown in Fig. l(B) loses its stability and 
bifurcates into the repelling point and limit cycle shown in Fig. l(C) (the actual 
bifurcation, and therefore the structurally unstable flow that separates these two 
structurally stable flows, occurs around a w,~ value of 3.25). Much more 
complicated bifurcations can occur. Thus, just as we can visualize separatrices as 
dividing the state space of any given dynamical system into basins of attraction of 
different attractors, we can think of the sets of bifurcation points corresponding to 
structurally unstable flows as dividing the parameter space of a family of 

dynamical systems into different structurally stable flows. 
Up to this point, we have only considered autonomous dynamical systems, that 

is, systems in which the parameters have been held fixed for the duration of any 
particular trajectory. What happens when these parameters are allowed to vary in 
time as the trajectory evolves ? A nonautonomous dynamical system is one in 
which one or more parameters are allowed to vary in time: X = 9(x; u(t)). We can 

think of such parameters as inputs to the system. Because, as described above. 
the flow is a function of the parameters, in a nonautonomous dynamical system 
the system state is governed by a flow which is changing in time (perhaps 
drastically if the parameter values cross bifurcation points in parameter space). 
Nonautonomous systems are much more difficult to characterize than autonomous 
ones unless the input has a particularly simple (e.g., periodic) structure. In the 
nonautonomous case, most of the concepts that we have described above (e.g.. 
attractors, basins of attraction, etc.) apply only on timescales small relative to the 
timescale of the parameter variations. However, one can sometimes piece 
together a qualitative understanding of the behavior of a nonautonomous system 
from an understanding of its autonomous dynamics at constant inputs and the way 
in which its input varies in time. 

3. A theoretical framework 

The qualitative theory of dynamical systems allows one to build up a global 
understanding of both the possible behaviors of a dynamical system and the 
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dependence of those behaviors on external parameters even when the solutions 
have no closed-form expression in terms of elementary mathematical functions. In 
this section, I will use this formalism to sketch a theoretical framework for 
characterizing the interaction between autonomous agents and their environ- 
ments. Only the basic framework will be described here. Some sample applica- 
tions of the framework will be presented in Section 4, and Section 5 discusses the 
assumptions of the proposed framework and considers some of its broader 
implications and directions for future work. This framework owes a great debt to 
the perspective that the cybernetic tradition has long taken on many of these same 
questions. I have been particularly influenced by the work of Ashby [6] and 
Maturana and Varela [47,48]. 

3.1. Agents and their environments 

Following Ashby [6], I will model an agent and its environment as two 
dynamical systems ti and 8, respectively. I will assume that & and g are 
continuous-time dynamical systems: X& = L&(X,; Up) and i, = Z&; Up). In 
addition, I will assume that both & and % have convergent dynamics, that is, the 
values of their state variables do not diverge to infinity, but instead eventually 
converge to some limit set. Note that the division between an agent and its 
environment is somewhat arbitrary (e.g., is an artificial limb or a tool part of the 
agent or part of the environment?) and therefore our theoretical framework 
should not depend overly much on the exact nature of this division. Our first act 
as scientific observers is to partition the world into individual components whose 
interactions we seek to understand, and there are many different ways to do this. 
For example, it will sometimes be convenient to view an agent’s body as part of ti 
and sometimes as part of 8. 

An agent and its environment are in constant interaction. Formally, this means 
that ti and 8 are coupled nonautonomous dynamical systems. In order to couple 
two dynamical systems, we can make some of the parameters of each system 
functions of some of the state variables of the other. I will represent this coupling 
with a sensory function S from environmental state variables to agent parameters 
and a motor function M from agent state variables to environmental parameters. 
S(X,~) corresponds to an agent’s sensory inputs, while Mfx,) corresponds to its 
motor outputs. Thus, we have the following (Fig. 2): 

X.d = d(x<g; se, 1; u.$) 1 

r, =qx,;M(x,v,);u;) > 
(5) 

where ui and u; represent any remaining parameters of & and 8 respectively 
that do not participate in the coupling. I will assume that this coupled agent- 
environment system also exhibits only convergent dynamics. 

Note that I am using the terms “sensory input” and “motor output” in a fairly 
broad sense here. S, for example, is intended to represent all effects that 8 has 
on .Y&, whether or not this influence occurs through what is normally thought of as 
a sensor. This breadth of usage is justified by the observation that any such effect 
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Fig. 2. An agent and its environment as coupled dynamical systems 

can influence the subsequent trajectory of ~4. Likewise, M is intended to 
represent all effects that ~4 has on 8, whether or not they occur through what is 
normally thought of as an effector. 

I cannot overemphasize the fundamental role that feedback plays in this 
relationship. Any action that an agent takes affects its environment in some way 
through M, which in turn affects the agent itself through the feedback it receives 
from its environment via S. Likewise, the environment’s effects on an agent 
through S are fed back through M to in turn affect the environment itself. Thus, 
each of these two dynamical systems is continuously deforming the flow of the 
other (perhaps drastically if any coupling parameters cross bifurcation points in 
the receiving system’s parameter space), and therefore influencing its subsequent 
trajectory. Note that one dynamical system cannot in general completely specify 
the trajectory of another dynamical system to which it is coupled. Rather, a 
dynamical system follows a trajectory specified by its own current state and 
dynamical laws. By varying some of the parameters of these laws, a second 
dynamical system can certainly bias the intrinsic “tendencies” of the first (or even 
cause qualitative changes in behavior if bifurcations occur). However, one 
dynamical system cannot in general “steer” the trajectory of another dynamical 
system along any desired path. It is therefore perhaps most accurate to view an 
agent and its environment as mutual sources of perturbation, with each system 
continuously influencing the other’s potential for subsequent interaction. 

Given this tight coupling between an agent and its environment, we can equally 
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well view the two coupled nonautonomous systems ti and 8 as a single 
autonomous dynamical system % whose state variables are the union of the state 
variables of d and ‘$5’ and whose dynamical laws are given by all of the internal 
relations (including S and M) among this larger set of state variables and their 
derivatives. Neither of these perspectives is intrinsically better than the other, and 
one could switch between them as necessary. Given everything that has been said 
in Section 2, any trajectories observed in the interaction between the 
nonautonomous dynamical systems &? and 8 must be trajectories of the larger 
autonomous dynamical system 0%. Furthermore, after transients have died out, 
the observed patterns of interaction between & and E must represent an attractor 
of %!. 

We thus have the basis for a dynamical understanding of one of the central 
themes of recent autonomous agent research, namely the idea that an agent’s 
behavior arises not simply from within the agent itself, but rather through its 
interaction with its environment. Due to the higher dimensionality of its state 
space, a dynamical system formed by coupling two other systems can generate a 
richer range of dynamical behavior than either system could individually, and 
properties of the coupled system can therefore not generally be attributed to 
either subsystem alone. Therefore, an agent’s behavior properly resides only in 
the dynamics of the coupled system % and not in the individual dynamics of 
either Op or E alone. This suggests that we must learn to think of an agent as 
containing only a latent potential to engage in appropriate patterns of interaction. 
It is only when coupled with a suitable environment that this potential is actually 
realized through the agent’s behavior in that environment. 

3.2. Adaptive fit 

What constitutes an “appropriate” pattern of interaction between an agent and 
its environment? It is often said that the behavior of animals is amazingly well 
adapted to the environments in which they must live. While, strictly speaking, 
evolution directly selects only for reproductive success, it is only animals whose 
behavior “fits” the dynamical and statistical structure of their environments that 
survive long enough to reproduce. We would like the behavior of the autonomous 
agents that we design to be similarly well-adapted to the environments in which 
they must function. Thus, the notion of adaptive fit is crucial to understanding the 
relationship between an agent and its environment. But what does it mean for an 
agent to be adapted to its environment? 

Let us focus for the moment on animals, whose adaptive fitness is related to 
their survival. Then we can temporarily reformulate the question What does it 
mean for an agent to be adaptively fit to an environment? to the question What 
does it mean for an animal to survive? In order to answer this question, it will be 
useful to begin with a simple analogy to autonomous dynamical systems. As we 
have seen in Section 2, a dynamical law induces change on the state variables of a 
dynamical system. However, not all states are treated equally. While most states 
will be changed into other states through the action of the dynamical law, some 
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states will persist 
changes caused by 
system). Invariant 
change. 

indefinitely because they are invariant with respect to the 
the dynamical law (i.e., an equilibrium point attractor of the 
states “survive” in the same way that rocks do, by resisting 

Unlike rocks, animals actively engage their environments in order to stably 
maintain their existence. Similarly, we expect the agents that we design to 
accomplish particular tasks in their environments, not to sit immobile and ignore 
the world around them. In order to capture this more dynamic notion of survival, 
we can extend our analogy to periodic trajectories, which persist in a far more 
interesting way than do equilibrium points. In the case of a limit cycle, no single 
state is invariant with respect to the dynamical law. Rather, all of the states along 
a limit cycle have the property that the action of the dynamical law carries them 
to other states along the limit cycle, forming a closed curve which is itself 
invariant. Thus, the persistence of a limit cycle is achieved only by coordinating 
the effects of the dynamical law on all of the state variables of the system in such 
a way that a closed trajectory is formed. 

Even such a dynamically maintained invariant as a limit cycle does not quite 
capture the notion of survival that we are after. It falls short in two ways. First, as 
explained in Section 3.1, an animal is not an autonomous dynamical system, but 
rather a nonautonomous one which is constantly perturbed by its environment. 
Second, an animal does not really have to maintain any particular trajectory in 
order to survive, as suggested by the limit cycle metaphor. Rather, in order to 
survive, any living organism must maintain the integrity of the network of 
biochemical processes that keep it alive. Maturana and Varela [47,48] have 
termed this network of processes an autopoietic system.* If an animal’s autopoiesis 
is sufficiently disrupted, either as a result of its own internal dynamics or as a 
result of environmental perturbations that it cannot properly compensate for, 
then the animal will cease to exist. Thus, an animal’s autopoiesis serves as a 
crucial constraint on its behavioral dynamics. We can visualize this constraint as a 
(perhaps very complex and time-varying) volume in an animal’s state space (Fig. 
3; [6]). An animal is adaptively fit to an environment only so long as it maintains 
its trajectory within this constraint volume despite the perturbations that it 
receives from its environment. 

In order to elaborate this basic account of adaptive fit, the nature of the 
constraint volume would need to be more completely characterized. For any real 
animal, this volume must obviously be very complicated, varying in time with its 
internal state. Indeed, the separation between the animal’s behavioral dynamics 
and its constraint volume is fundamentally somewhat artificial, because any given 
animal’s behavioral dynamics is clearly related to the particular way in which its 
autopoiesis is realized and this itself changes through evolution [47,48]. However, 
for our purposes here, I take the existence of an agent (living or otherwise) for 

’ An autopoietic (lit. self-producing) system is a network of component-producing processes with the 

property that the interactions between the components produced generate the very same network of 

interactions that produced them. 
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Fig. 3. An illustration of adaptive fit. This simple example assumes that both the agent and its 
environment are one-dimensional dynamical systems. As the state of the environment xE moves up 
and down, the state of the agent x, must move back and forth accordingly so that the trajectory of the 
coupled system always remains within the constraint volume C. Here the two-dimensional coupled 
agent-environment system exhibits a limit cycle that satisfies the given constraint, but this is only one 
of an infinite number of possible agent-environment trajectories that satisfy C. 

granted and focus instead on the behavioral dynamics required to maintain that 
existence. This focus justifies the separation of behavioral dynamics from 
autopoietic constraints, and allows me to assume that the constraint volume is 
given a priori. 

The adaptive fit of natural animals to their environments results from an 
evolutionary process involving reproduction with heritable variation and natural 
selection. When animals reproduce, mutations and sexual recombination of their 
genetic material lead to variations in their design. Because the genetic material of 
those animals which do not survive long enough to reproduce is not passed on to 
descendants, inappropriate designs are pruned away, while successful designs 
proliferate. In terms of our framework, we can think of evolution as trying out 
many different agent dynamics and retaining only those that, on average, are 
capable of satisfying their autopoietic constraints long enough to reproduce. 

How might this notion of an autopoietic constraint apply to artificial agents? 
Homeostatic processes may be involved even for a robot. For example, an 
autonomous robot may need to regularly replenish its energy and avoid any 
potentially damaging situations. However, since the agents that we design are not 
living organisms, their existence does not strictly depend upon autopoiesis. 
Instead, the success of an artificial agent is typically measured in terms of its 



ability to accomplish some desired task in a given environment. For our purposes 
here, however, this external criterion plays the same role as autopoiesis in living 
animals, that is, it serves as a constraint on the admissible trajectories of the 
agent-environment dynamics. The only real difference is that, while autopoiesis is 
largely an intrinsic constraint on an animal’s own state, it is usually an artificial 
agent’s effects on its environment that are constrained by an external designer. 

Thus, we can immediately generalize the above notion of adaptive fit to an 
arbitrary constraint @ on the dynamics of a coupled agent-environment system 
(Fig. 3). I will say that an adaptive fit exists between an agent and its environment 

as long as the trajectory of the agent-environment dynamics satisfies this 
constraint. that is, as long as their interaction results in an adequate performance 
of the task for which the agent was designed. As a somewhat fanciful example, we 
might consider a robot vacuum cleaner to be adaptively fit to its environment as 

long as its interactions with its environment are such that the floor remains clean, 
despite the complicating factors found in a typical home (e.g., children, pets, 
rearrangement of furniture, and so on). 

4. A concrete example 

The basic theoretical framework sketched in the previous section is rather 

abstract in nature. In order to make the general framework that I have proposed 
more concrete, this section will show how it can be applied to examples of each of 
the two major problems in autonomous agents research, namely the synthesis 
problem and the unalysis problem. Loosely speaking, the synthesis problem is the 
problem of constructing an agent that does what we want in a given environment, 
while the analysis problem is the problem of understanding how a given agent 
does what it does in a given environment. I will show how a walking behavior for 
a simulated legged agent can be synthesized and analyzed from the dynamical 
systems perspective of this framework. Along the way, I will point out some of 
the distinct advantages of this approach. 

4.1. Synthesis of a walking agent 

A major concern of much of the work on situated agents has been how to 
design agents that engage in some desired interaction with their environments. In 
terms of our framework, we can state this synthesis problem somewhat more 

formally as follows: 

The Synthesis Problem. Given an environment dynamics 8, find an agent 
dynamics & and sensory and motor maps S and M such that a given constraint @ 
on the coupled agent-environment dynamics is satisfied. 

In order to illustrate the advantage of a dynamical systems perspective on the 
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synthesis of autonomous agents, let us consider the problem of designing a 
dynamical neural network that will make a simulated insect-like agent walk (Fig. 
4; [ll]). In terms of our framework, the dynamics of the agent’s body is ‘8 and the 
dynamics of the neural network that controls it is A?. M(x,) gives the transforma- 
tion from neural activity to body effecters, while the transformation from body 
sensors to neural inputs is given by S(X,). Here @ is a constraint on % only, 
namely that the average velocity of the body be greater than zero (where positive 
velocities correspond to forward motion and negative velocities correspond to 
backward motion). We will assume that S and M are given a priori in this example 
and the problem is to design a neural network controller whose dynamics are such 
that, when coupled to the agent’s body, they cause it to walk. Note that the 
design of locomotion controllers for hexapod robots is currently a problem of 
some practical interest [15, 19,261. For a complete description of this work, as 
well as additional examples, see [13]. 

The body operates as follows. There are six legs, each with a foot that may be 
either up or down. When its foot is down, a leg provides support to the body and 
any forces that it generates contribute to the body’s translation under Newtonian 
dynamics (the stance phase). When its foot is up, any forces generated by the leg 
cause it to swing (the swing phase). Each leg is controlled by three effecters: one 
governs the state of the foot and the other two determine the clockwise and 
counterclockwise torques about the leg’s single joint. Each leg also possesses a 
single sensor that measures its angle relative to the body. The body can only move 
when it is stably supported, that is, when the polygon formed by the supporting 
feet contains the body’s center of mass. 

The agent is controlled by a continuous-time recurrent neural network. Such 
networks were briefly introduced in Section 2. In their most general form, an 
interconnected network of N such neurons is described by the following system of 
equations: 

TJj; = -yi + 5 Wj,C7(Yj - Oj) + zi(t) i=l,2,. . . ,N (6) 
j=l 

Fig. 4. The body model of the simulated insect. The legs can swing about their single joint with the 

body. A supporting foot is denoted by a black square. The body can only move when it is statically 

stable, i.e., when the polygon formed by the supporting feet (dashed line) contains the center of mass 

(cross) of the body. 
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where y is sometimes interpreted as the mean membrane potential of the neuron, 
C( 5) = (1 + eeC)-’ is a sigmoidai (S-shaped) function which can be interpreted as 
its short-term average firing frequency, ej is a bias term associated with the cell’s 
firing threshold, r is a time constant related to the passive properties of the cell 
membrane, rv,; represents the strength of the connection from the jth to the ith 
neuron, and Z(t) represents a time-varying external input to the network (such as 
from a sensor). By restricting the matrix of connection weights to be zero- 
diagonal symmetric, Hopfield [38] demonstrated that such networks could be used 
as associative memories, with each pattern stored as a different equilibrium point 
attractor of the network dynamics. When no such restriction is placed on the 
connection weights, these networks are capable of exhibiting a much wider range 
of dynamical behavior. This is the form in which they will be used here. Note that 
no claim is being made about the general applicability of this particular neural 
model. It was merely selected to illustrate the framework due to its simplicity and 
widespread use. 

Each leg of the agent was controlled by a 5-neuron fully-interconnected 
network (Fig. 5(A)). Three of these neurons are motor neurons whose outputs 
drive the three effecters of the leg, while the other two neurons are interneurons 
whose role is unspecified. All five neurons received a weighted input from the 
leg’s angle sensor. Six copies of the single leg controller were combined in an 
architecture loosely based upon the organization of the neural circuitry underlying 
insect locomotion [ll] to form a full locomotion controller with 30 neurons (Fig. 
5(B)). Symmetry considerations were used to reduce the number of free 
parameters in this circuit to 50 (5 thresholds, 5 time constants, 25 leg controller 
weights, 5 sensor weights, 5 crossbody connection weights and 5 intersegmental 
connection weights). We wish to find settings of these 50 parameters such that the 
dynamics of the network causes the agent to walk when coupled to the body 
shown in Fig. 4. 

Regardless of the particular control mechanism used, the majority of current 
work on situated agents relies on a human designer to manually construct a 
controller that will cause the agent to engage in some desired interaction with its 
environment. However, a number of researchers have begun to realize that 
manual design may not be the best approach. What is difficult about the synthesis 
problem is that the constraint to be satisfied may be very complex and its 
specification may be very far removed from the actual agent dynamics required to 
satisfy it. For example, the constraint that the average velocity of the body be 
greater than zero does not immediately specify what signals need to be sent to the 
body’s eighteen effecters in order to satisfy this constraint. In addition, natural 
environments are rather complicated and somewhat unpredictable. Manual design 
often fails because designers, in trying to anticipate the possible opportunities and 
contingencies that might arise, build too many unwarranted assumptions into their 
designs. For these reasons, a number of researchers have begun to explore 
automated techniques for autonomous agent design, such as reinforcement and 
other forms of learning (e.g., [9, 10, 23, 41, 461) or genetic algorithms (e.g., [17, 
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Fig. 5. Network architecture of the locomotion controller. (A) A leg controller. (B) Coupling 
between adjacent leg controllers. 

40, 65, 671). We used a genetic algorithm to search the space of network 
parameters for networks whose dynamics make the body shown in Fig. 4 walk.3 

A genetic algorithm (GA) is a search technique whose operation is loosely 
based on natural evolution [31,37]. The basic cycle of a genetic algorithm 
operates as follows. The space to be searched (in our case, the 50 network 
parameters) is usually encoded as a binary string. An initially random population 
of such strings is maintained. At each iteration, the performance of each 
individual is evaluated. A new generation of individuals is then produced by 
applying a set of genetic operators to selected individuals from the previous 
generation. Individuals are selected for reproduction with a probability propor- 

3 We employed a public GA simulator known as GAucsd (version 1.1). At the time of this writing, the 
latest version of GAucsd is available by anonymous ftp from cs.ucsd.edu in the pub/GAucsd 
directory. All network parameters were encoded in four bits, with time constants in the range [0.5, lo] 
and both thresholds and connection weights in the range [ - 16,161. The crossover rate was set to 0.6 
and the mutation rate was set to 0.0001. Population sizes of 500 were used and good locomotion 
controllers typically took on the order of 100 generations to evolve. Full details of these experiments 
can be found in [13]. 
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tional to their fitness. The standard genetic operators are mutation (in which bits 
are randomly flipped) and crossover (in which portions of the genetic strings of 
two individuals are exchanged). By iterating the processes of selection, recombi- 

nation and mutation, the population accumulates information about the dis- 
tribution of fitness in the search space. This information focuses subsequent 
search into fruitful subspaces. 

In order to guide its search, a genetic algorithm requires a real-valued measure 
of performance rather than a rigid constraint to be satisfied. In this case, the 
constraint @ can be thought of as some minimum acceptable level of performance. 
We used the total forward distance traveled by the agent in a fixed amount of time 

as the performance measure to be optimized.’ Note that, by optimizing distance 

traveled in a fixed amount of time, we are not only demanding that the insect 
walk, but that it walk as quickly as possible. Because the insect can only make 
forward progress when it is statically stable, the GA must find a network 
dynamics that not only appropriately generates the three control signals required 
to operate each leg, but also properly coordinates the independent movements of 
the six legs so that stability is continuously maintained in order to satisfy the 
constraint that the average velocity of the body be greater than 0. 

There are two different ways that we can think about these experiments. 
Abstractly, we can think of continuous-time recurrent neural networks as simply a 
basis dynamics out of which to build whatever agent dynamics is required and we 
can think of GAS as simply a technique for searching the family of flows defined 
by the parameterized network architecture for one whose dynamics cause the 
agent to walk when it is coupled to the body. More concretely, we can think of 
our neural network as a simple model of a nervous system and the genetic 
algorithm as a simple model of evolution. This second perspective can actually be 
quite useful because it allows comparisons to be made between the model and 
biology. 

However, we must be careful not to lose sight of the many simplifications 
involved in this latter perspective. Both nervous systems and evolution are 
considerably more complicated than these simple models would suggest. To take 
just one example, while we have externally imposed a notion of fitness on the 
GA, no such external fitness measure exists in natural evolution. Indeed, because 
an animal’s environment includes many other animals that are simultaneously 
evolving, the relationship of a given behavior to reproductive success may change 
significantly over time. Fitness is something intrinsic to natural environments 
rather than being externally specified. The significance of this difference between 
extrinsic and intrinsic fitness is that, by favoring particular behaviors over others 
in a fixed, a priori fashion, extrinsic fitness functions limit the range of behaviors 
that can possibly evolve in a way that intrinsic fitness does not. 

We evolved eleven different locomotion controllers in all. Though the specific 

‘Because GAucsd is formulated to minimize an error measure rather than maximize a fitness 

measure, the actual measure used was the square of the difference between the maximum attainable 

distance and the actual distance covered in a given length of time. 
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parameter values found by the GA were quite different in these eleven networks, 
the dynamics of all of them have the property that, when coupled to the 
insect-like body shown in Fig. 4, they cause it to walk in such a way that stability 
is continuously maintained. The behavior of a typical controller is shown in Fig. 
6(A). All of these controllers generate a pattern of leg movements known as the 
tripod gait, in which the front and back legs on each side of the body swing in 
unison with the middle leg on the opposite side. The tripod gait is ubiquitous 
among fast-walking insects [32]. 

As the networks evolved, they passed through several more or less distinct 
stages. Very early on, agents appeared that put down all six feet and pushed until 
they fell. These agents thus exhibit roughly the proper phasing of the three signals 
controlling each leg, but lack the ability to recover a leg after a stance phase as 
well as the ability to coordinate the motions of the different legs. In the next 
stage, agents evolved the ability to rhythmically swing their legs in an uncoordi- 
nated fashion. Such agents made forward progress, but they fell quite often. 
Finally, agents utilizing statically stable gaits began to appear, but their coordina- 
tion was still suboptimal. Subsequently, the efficiency of locomotion slowly 
improved. 

During these experiments, we discovered that the nature of the environment in 
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Fig. 6. Behavior of a typical mixed locomotion controller with (A) and without (B) its sensors. Black 
bars represent the swing phase of a leg and the space between bars represents a stance phase. The legs 
are labeled L for the left and R for right and numbered from 1 to 3 starting at the front of the agent. 
Note that the stepping frequency is higher, the swings of the three legs in each tripod are more tightly 
coordinated and the velocity varies less when the sensors are intact (A). However, this controller can 
generate a reasonably good tripod gait even in the complete absence of any sensory feedback from the 
body (B). 
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which the locomotion controllers were evolved had a major impact on their 
functional organization. In particular, the relative contributions of & and 8 to the 
generation of a walking pattern varied according to the dependability of sensory 
feedback during evolution. Three different classes of locomotion controllers were 
found: 

(1) If sensors were enabled during the GA search, then reflexive patterns 
generators always evolved (5 trials). A reflexive controller is one which 
depends upon sensory feedback for its operation. If the sensors are later 
removed, reflexive controllers exhibit inappropriate phasing of motor 
outputs, and some cannot even oscillate in isolation. A reflexive controller 
is therefore not robust to sensor loss. Reflexive controllers take advantage 
of the fact that there is no point putting into the agent any dynamics that 
already appear to be in the environment. All that matters is that the 
coupled agent-environment system satisfy the given constraint. 

(2) If the sensors were disabled during the GA search, then no access is 
provided to 8. In this case, so-called centralpattern generators (CPGs; [25]) 
always evolved (4 trials). Even though the individual neurons are not 
oscillatory, a CPG is capable of generating the rhythmic control signals 
required for walking. The drawback of a CPG is that its output is 
stereotyped. It can make no use of sensory feedback to fine-tune its 
operation. 

(3) Finally, if the presence of sensors was unreliable during the GA search 

( i.e., sensors were sometimes available and sometimes not), then mixed 
pattern generators evolved (2 trials). A mixed locomotion controller is one 
that works better with its sensors intact, but is quite capable of generating 
the basic motor pattern required for walking even without its sensors (Fig. 
6). Though mixed controllers are robust to sensory damage, they are 
capable of using sensory feedback to improve their performance when it is 
available. Such mixed organizations are the most typical among biological 
pattern generators. 

In this section, I formulated the problem of designing a walking agent as a 
search through a space of dynamical systems for those that, when coupled to a 
given body, maximize the forward distance that the body travels in a fixed amount 
of time. This same general approach has also been used to evolve a variety of 
chemotactic agents that were capable of using chemical signals to find their way to 
a patch of food 1131. The most notable result from these chemotaxis experiments 
were agents that utilized a bifurcation in their network dynamics to switch 
between distinct strategies depending upon the intensity of the chemical signal 
(which in turn depended upon the agent’s distance from the food patch). 
Furthermore, I have demonstrated how manipulating characteristics of the 
environment (i.e., sensor dependability) puts selective pressure on the develop- 
ment of controllers with very different functional organizations. This ability to 
automatically tailor agent dynamics to fit the dynamical and statistical structure of 
a given environment is a significant advantage of automated agent design 
techniques. 
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4.2. Analysis of a walking agent 

Given that some agent already exists, we might like to explain its behavior in a 
given environment. This is in fact the major problem faced by Neuroethologists, 
who seek to explain an animal’s observed behavior in terms of its nervous system, 
its body and its environment. In terms of our framework, we can state this 
analysis problem somewhat more formally as follows: 

The Analysis Problem. Given an environment dynamics 8, an agent dynamics &, 
and sensory and motor maps S and M, explain how the observed behavior M(x&) 
of the agent is generated. 

In order to illustrate the utility of a dynamical systems perspective on the 
analysis of autonomous agents, we would like to understand the operation of the 
evolved locomotion controllers described in the previous section. Unfortunately, 
a dynamical analysis of these 30 neuron networks would be far too complicated 
for our illustrative purposes here. However, in a set of closely related experi- 
ments, we also evolved five-neuron controllers for single-legged insects [13]. Note 
that, for the purposes of evolving single leg controllers, we had to modify the 
stability criteria so that a single-legged insect could move whenever its single foot 
was down. Except for the lack of an interleg coordination problem to be solved, 
these experiments were in every way analogous to those described in the previous 
section. These leg controllers passed through similar evolutionary stages and we 
also found reflexive, central and mixed pattern generators depending upon the 
conditions under which they were evolved. Fig. 7 shows the activity of a mixed leg 
controller with and without its sensors. Because these five-neuron networks are 
much more amenable to a dynamical analysis, we will focus on them here. For 
additional information on this analysis, see [12,29]. 

4.2.1. Analysis of a central pattern generator 
Because they have no sensory input, central pattern generators are autonomous 

dynamical systems. For this reason, CPGs are in some sense the simplest leg 
controllers to understand. In the case of a CPG, the dynamics of the neural 
network simply exhibits a limit cycle whose motor space projection M(x~) causes 
the insect’s single leg to rhythmically stance and swing in a fashion appropriate to 
walking. The three-dimensional motor space projection of the five-dimensional 
limit cycle exhibited by one CPG is shown in Fig. 8. This limit cycle repeatedly 
takes the state of the system through the regions in motor space associated with 
stance phase (upper left-hand corner) and swing phase (lower right-hand corner). 
Since a limit cycle is a primitive concept in dynamical systems theory, there is 
really nothing more to be said at this level of discussion about the operation of a 
CPG (though there is of course much more that might be said about the way in 
which this limit cycle is realized in this particular circuit). 
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Fig. 7. Activity of a typical mixed leg controller with (A) and without (B) its sensor. Each group of 

plots shows the forward velocity of the body, the output of the foot, backward swing and forward 

swing motor neurons and the output of the two interneurons. The velocity ramps up to a maximum 

value during each stance phase and then drops to zero when the insect lifts its single leg each swing 

phase and falls. The top plot also shows the output of the leg angle sensor. In both groups of plots, the 

leg was initialized at 95% of its full backward position (i.e., near the point where a swing phase should 

begin). Note that, with its sensor intact (A), this controller almost immediately begins a swing phase. 

However, without its sensor, this controller inappropriately attempts to generate a stance phase, 

effectively wasting a step, because it has no access to the leg’s angular position. Note also that 

Interneuron A appears to play a much larger role in the walking pattern when the sensor is absent (B) 

than when it is present (A) 
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Fig. 8. A motor space projection of the five-dimensional limit cycle generated by a typical central 
pattern generator. The output of the foot, backward swing (BS) and forward swing (FS) motor 
neurons are plotted. Note that the foot is considered to be down when the output of the foot motor 
neuron is above 0.5 and up otherwise. A stance phase (foot and backward swing motor neurons 
active, forward swing motor neuron inactive) corresponds to a region near the back, upper left-hand 
corner of the state space, while a swing phase (forward swing motor neuron active, foot and backward 
swing motor neurons inactive) corresponds to a region near the front, lower right-hand corner of the 
state space. 

4.2.2. Analysis of Q reflexive pattern generator 
Due to the presence of a sensory feedback signal, reflexive leg controllers are 

nonautonomous dynamical systems. When coupled to the body, the motor space 
projection of the dynamics of a reflexive controller also exhibits a suitable limit 
cycle (Fig. 9). However, we already know that reflexive controllers do not 
produce appropriate rhythmic output when their sensory input is removed. Unlike 
a CPG, the limit cycle of a reflexive leg controller arises only when it is coupled to 
the body. Technically, this limit cycle is a three-dimensional projection of a higher 
dimensional trajectory of the coupled agent-environment system 021. How does the 
interaction between a reflexive controller’s autonomous dynamics and the sensory 
feedback that it receives from the body produce the observed limit cycle? 

One way to approach this question is to think of a reflexive controller as an 
autonomous dynamical system whose flow is parameterized by the sensory input 
that it receives from the leg’s angle sensor. At any given point in time, the 
network’s state is flowing toward the attractor in whose basin it finds itself. 
However, because the angle of the leg is constantly changing, the structure of the 
network’s flow is changing also, perhaps even undergoing bifurcations. We can 
visualize the instantaneous phase portrait of the autonomous network dynamics 
corresponding to any given leg angle. We can also visualize the network’s state 
and the trajectory that it is instantaneously following at any point in the limit 
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cycle. Of course, the system state generally never completely traverses these 
instantaneous trajectories because the phase portrait continuously changes as the 
leg moves. However, by piecing together these instantaneous pictures at many 

different points in time, we can build up a picture of the dynamics underlying the 
limit cycle observed when a reflexive controller is coupled to the body. Note that 
the leg actually passes through any given angle twice; once in swing phase and 
once in stance phase. While the phase portrait is the same in each case (since it 

depends only on the leg angle), the system’s state, and hence the trajectory that it 
is following, will in general be different. 

Such an analysis of one reflexive controller is presented in Fig. 9. The 
visualization of this particular controller is simplified by the fact that once 
transients have passed, the outputs of its two interneurons become constant. In 
other words, once the limit cycle is established, the dynamics of this network are 
essentially three-dimensional. The limit cycle that this reflexive controller exhibits 
when it is coupled to the body is shown at the center of Fig. 9. Surrounding this 

central plot are smaller plots showing the instantaneous autonomous dynamics of 
the network at different points in the swing/stance cycle. At (l), the foot has just 
been put down and a stance phase begun. At this point, the network’s state is 
flowing toward the equilibrium point attractor in the upper left-hand corner of the 

state space. The position of this attractor corresponds to a situation in which the 
foot and backward swing motor neurons are active and the forward swing motor 
neuron is inactive (i.e., a stance phase). Due to the dynamics of the body, this 
pattern of motor neuron activity means that the foot is down and the leg is 
applying a force to the body that causes it to move forward, changing the leg 
angle and thus the output of the leg angle sensor. As the leg continues to stance at 
(2), the system state has essentially reached the equilibrium point. As the leg 
passes from (2) to (3), however, this equilibrium point suddenly disappears and is 
replaced by another equilibrium point near the lower right-hand corner of the 
state space that now begins to attract the system state. The position of this 
attractor corresponds to a state in which the foot and backward swing motor 
neurons are inactive and the forward swing motor neuron is active (i.e., a swing 
phase). 

The system state now begins to flow toward this new attractor (3). Between (3) 
and (4), the output of the foot motor neuron falls below the activation threshold 
of the foot (0.5) and the foot is lifted, actually beginning a swing phase. As the 
leg passes from (4) to (5), the equilibrium point attractor in the lower right-hand 
corner of the state space disappears and the earlier equilibrium point attractor in 
the upper left-hand corner reappears. The network state now moves toward this 
attractor through (6) until the output of the foot motor neuron goes above the 
activation threshold for the foot at (1) and the foot is once again put down, 
beginning a new stance phase. Thus we can see how the limit cycle observed in 
the coupled network/body system arises as the network’s state is alternately 
attracted by the two equilibrium points. 

We can now explain the reason that this controller is a reflexive pattern 
generator by observing that, when its sensor is removed, the autonomous 
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Foot 

Fig. 9. Operation of a typical reflexive pattern generator. The output of the foot, backward swing 

(BS) and forward swing (FS) motor neurons are plotted. The limit cycle generated when this 

controller is coupled to the body is shown at the center. Surrounding this central plot are plots of the 

instantaneous autonomous dynamics of the network at different points in the step cycle. In each case, 

the solid point denotes an equilibrium point attractor, the gray point denotes the instantaneous system 

state, and the gray line shows the trajectory that the system would follow if the leg angle were to 

remain at its present angle. The top three plots roughly correspond to the beginning (l), middle (2) 

and end (3) of a stance phase, while the bottom three plots roughly correspond to the beginning (4), 

middle (5) and end (6) of a swing phase. Vertical columns of plots (i.e., (1) and (6), (2) and (5), and 

(3) and (4)) correspond to approximately the same leg angle and therefore the same phase portrait, 

though the system state and therefore the trajectory it is following differs between the upper and lower 

plots of each column. 
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dynamics of this controller is governed by an equilibrium point. By convention, a 
leg that is perpendicular to the long axis of the body is assigned a leg angle of 0. 
Since we modeled the removal of a sensor by setting its output to 0, the 
autonomous dynamics exhibited when the sensor is removed is identical to that 
exhibited when the leg is fixed in a horizontal position (i.e., plots (2) and (5) in 
Fig. 9). Thus, if the sensor is removed, the system state will flow toward the 
equilibrium point attractor in the upper left-hand corner of the state space and 
remain there, causing the leg to go into a permanent stance phase. 

The switch between equilibrium points that occurs between (2) and (3) in Fig. 
9, and again between (4) and (5), appears to be essential for the operation of this 
reflexive controller. How is this switch actually accomplished? This question is 
answered in Fig. 10, which shows a sequence of bifurcations that occur in the 
autonomous dynamics of this network as the leg moves from an angle of about 23 
degrees past horizontal to 16 degrees past horizontal during swing phase (between 
plots (4) and (5) in Fig. 9). The sequence begins with a single equilibrium point 
attractor at the bottom of the state space (1). At (2), a second equilibrium point 
attractor appears at the top. Note that, during swing phase, the system state is still 
in the basin of attraction of the lower attractor at this point. At (3), the lower 
equilibrium point bifurcates into a limit cycle, which then begins to expand (4). 
Eventually, this limit cycle disappears, leaving behind only a single equilibrium 
point at (5). Now the system state is attracted by this upper equilibrium point. 
This sequence of bifurcations is reversed during stance phase. A complete 
bifurcation diagram for this network can be found in [12]. 

Because these bifurcations take place in such a narrow range of leg angles 
(approximately 7 degrees), the system state never really “sees” the intermediate 
attractors. For example, the limit cycle that briefly appears plays no functional 
role whatsoever in the network’s dynamics because the system state never has a 
chance to get near it, let alone go around it. During the normal operation of this 
controller, this bifurcation sequence occurs in about 10 integration steps, during 
which the system state moves only an average Euclidean distance of 0.025 in the 
state space. However, the net effect of this sequence of bifurcations is to 
alternately switch the network’s phase portrait between the two equilibrium 
points that are crucial to its operation. This particular sequence of bifurcations is 
unique to this controller, and was not observed in any of the other controllers that 
were analyzed. 

From this dynamical analysis we can summarize the nature of the interaction 
between & and 8 that underlies the operation of this reflexive controller. The 
autonomous dynamics of &, and its parameterization by S, is such that ‘8 can 
deform it, via a series of intermediate bifurcations, into essentially two kinds of 
flows. In one of these flows, there is a single fixed-point attractor near the upper 
left-hand corner of the state space, while in the other there is a single fixed-point 
attractor near the lower right-hand corner. The nature of 8, and its parame- 
terization by M, is such that, when the network state is in the neighborhood of the 
upper left-hand attractor, the state of the body is changing in such a way that S 
will cause the lower right-hand attractor to appear in J& Likewise, when the 
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Fig. 10. A sequence of bifurcations underlying the operation of the reflexive pattern generator shown 
in Fig. 9. Only attractors are shown. During swing phase (between plots (4) and (5) in Fig. 9) the 
autonomous dynamics of the network undergoes the sequence of bifurcations shown here. During 
stance phase (between plots (2) and (3) in Fig. 9), this sequence of bifurcations is reversed. 
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network state is in the neighborhood of the lower right-hand attractor, the state of 
the body is changing in such a way that S will cause the upper left-hand attractor 
to appear in ~2. This reciprocal relationship between & and 8 is what gives rise to 
the observed rhythmic walking pattern. Therefore, both & and 8 play absolutely 
essential and deeply intertwined roles in the operation of this reflexive controller. 

4.2.3. Analysis of a mixed pattern generator 
As shown in Fig. 11, we can approach the analysis of a mixed leg controller in a 

fashion similar to our analysis of the reflexive controller. However, because the 
dynamics of this circuit is fundamentally five-dimensional, we only plot the 
three-dimensional motor space projection of this system’s trajectories. The limit 
cycle that this controller exhibits when it is coupled to the body is shown in the 
center. While the shape of this limit cycle is somewhat different from the one 
generated by the reflexive controller discussed above, they both exhibit the 

proper phasing of motor outputs necessary to make the leg walk. Surrounding this 
central plot are smaller plots that show the instantaneous autonomous dynamics 
at various points along this limit cycle. As for the reflexive controller, we can 
understand the dynamics of the coupled network/body system by piecing together 
these instantaneous snapshots. However, unlike the reflexive controller, the 

autonomous dynamics of this mixed controller exhibits limit cycles rather than 
equilibrium points through most of the cycle. When the mixed controller is 
coupled to the body. this limit cycle is continuously deformed as shown in Fig. 11 
as the leg angle changes, and the system state is constantly attracted by this 
deforming limit cycle. The reason that this mixed controller can tolerate the loss 
of its sensor is because the autonomous limit cycle that it generates when the 
sensory input is set to 0 (see plots (2) and (5) in Fig. 11) is appropriate to make 
the leg walk. In the absence of any sensory input, the system state would follow 
this limit cycle rather than the limit cycle shown in the center of Fig. 11. 

Since a mixed controller is capable of autonomously generating an appropriate 
limit cycle, what role if any is the sensory feedback it receives from the body 
actually playing in its operation ? In order to explore this question, we examined 
how the controller responds when it is artificially driven with sinusoidal sensory 

input whose frequency is higher or lower than normal. Under these conditions, 
we found that the motor output pattern that the controller generates speeds up or 
slows down accordingly (Fig. 12). The sensory signal is thus capable of entraining 
the intrinsic oscillation produced by the controller itself. Despite the fact that the 
activity pattern of the interneurons changes considerably throughout this range of 
operating frequencies, the amplitude, shape and phasing of the motor outputs 
remains appropriate for walking. Within a significant range about its normal 
operating frequency, the motor pattern remains 1: 1 phase-locked with the sensory 
signal. We have observed other ratios of phase-locking at higher or lower driving 
frequencies. Entrainment by sensory feedback is a common feature of biological 
pattern generators. For example, the pattern generator underlying locust flight 
can be entrained by rhythmic stimulation of wing stretch receptors [64]. 

This entrainment has an interesting functional consequence. Suppose that the 
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Fig. 11. Motor space projection of the operation of a typical mixed pattern generator. The layout of 
this figure is the same as for Fig. 9. 

legs of the agent were to grow during its “life”. For a given amount of applied 
torque, longer stancing legs will take more time to swing through a given angle 
than shorter legs. Thus, the sensory feedback signal from a longer leg will be 
spread out in time relative to that of a normal length leg. Since the mixed 
controller is entrained by the sensory feedback that it receives from the body, the 
sensory feedback from a longer leg will cause the leg controller to slow down its 
motor output pattern accordingly. Adapting their output to a changing periphery 
is a general problem that pattern generators have to deal with, for example in 
development or following peripheral damage. Note, however, that this adaptation 
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Fig. 12. Entrainment of the mixed pattern generator shown in Fig. 11 by sinusoidal sensory input. 

When the driving frequency is lower (A) or higher (B) than normal, the motor pattern slows down or 

speeds up accordingly. 
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does not come about through any structural change to the neural network itself, 
nor does it require a separate learning algorithm to modify the network 
parameters. Rather, it arises as a natural consequence of the dynamics of the 
mixed controller and its coupling with the body. This is a kind of functional 
plasticity which is quite different from what is normally thought of as learning. 
However, there are many examples of such plasticity in biology (for instance, the 
ability of an insect to immediately adjust its gait following the loss of a leg [32]). 

The dynamical sophistication of this mixed leg controller is truly remarkable. 
With only five neurons (three of which are motor neurons), this controller can (1) 
generate the basic swing/stance leg movements necessary for walking; (2) take 
advantage of sensory feedback if it is available but can tolerate its absence with 
only a slight degradation in performance; and (3) adapt its operation to 
morphological changes in the body without requiring a separate learning mecha- 
nism. The likelihood of anyone designing such a flexible and compact leg 
controller by hand is probably rather low. 

4.2.4. Conclusion 
This section has illustrated how some of the tools of dynamical systems theory 

can be applied to the analysis of an agent interacting with its environment. For 
example, we have been able to explain why some locomotion controllers are 
robust to loss of sensory feedback and others are not in terms of the appro- 
priateness or inappropriateness of their autonomous dynamics to the walking 
task. Furthermore, we have been able to gain significant insight into the specific 
nature of the interaction between the network dynamics and the body that gave 
rise to a walking pattern in each of the three controllers analyzed. For example, 
while the reflexive controllers make use of the body dynamics in a fundamental 
way in the generation of the limit cycle necessary for walking, the CPGs are 
capable of generating appropriate limit cycles completely autonomously and the 
mixed controllers use rhythmic sensory feedback to fine-tune autonomous limit 
cycles. Along the way, we discovered that, because it is entrained by sensory 
feedback, the mixed controller can adapt its motor output to a changing 
periphery. 

What general conclusions can we draw from this analysis? One is struck by the 
variety of agent dynamics which evolved. Not only are the actual network 
parameters of each controller different, but the underlying dynamics vary widely. 
Yet they all lead to virtually indistinguishable walking behavior when coupled to 
the body under normal conditions. Furthermore, lesion studies of these control- 
lers (not described here) have demonstrated that their operation is dynamically 
distributed, usually making it impossible to assign specific functional roles to 
individual interneurons. About the only thing that can be said about all of these 
controllers is that the coupled agent-environment systems in which they are 
embedded do what we asked them to do under the conditions in which they 
evolved. Indeed, as in natural evolution, this is all that they were selected for in 
the first place. We are thus led to conclude that it is simply inappropriate in 



204 R.D. Beer I Artificial Intelligence 7.2 (1995) 173-215 

general to attempt to impose our functional preconceptions on the organization of 
evolved systems. 

5. Discussion 

In this paper, I have attempted to use the language of dynamical systems theory 
to sketch a general theoretical framework for the design and analysis of 
autonomous agents. The framework focuses on the problem of generating the 
appropriate behavior at the appropriate time as both an agent’s internal state and 
its external environment continuously change. The two key ideas of this frame- 
work are (1) that an agent and its environment must be understood as two 
coupled dynamical systems whose mutual interaction is jointly responsible for the 
agent’s behavior and (2) that the adaptive fit between an agent and its environ- 
ment can be characterized in terms of the satisfaction of a given constraint on the 
trajectories of the coupled agent-environment system. I have particularly empha- 
sized that an agent’s behavior is, strictly speaking, a property of the coupled 
agent-environment system only and cannot in general be attributed to either the 
agent or environment individually. 

A concrete application of these ideas to the synthesis and analysis of a walking 
behavior for a six-legged agent was used to illustrate the framework. While I feel 
no particular commitment to either continuous-time recurrent neural networks or 
genetic algorithms, they represent at least one way in which agent dynamics 
satisfying a given constraint on the coupled agent-environment system can be 
designed. Such an “evolutionary” approach to agent design allows the agent’s 
organization to be tailored to the particular dynamical and statistical structure of 
its environment and leads to remarkably adaptive, robust and compact control- 
lers. I have also demonstrated that, despite the fact that they often exhibit no 
clean functional organization, the operation of these evolved systems can be 
understood from the perspective of interacting dynamical systems. Furthermore, 
this perspective can provide significant insight into the specific nature of the 
interaction between the agent and its environment that gives rise to the observed 
walking behavior in the various controllers. 

5.1. Related work 

There is currently a growing interest in dynamical explanations in the be- 
havioral and brain sciences. The central idea dates back at least to cybernetics 
[6,63]. More recently, concepts from dynamical systems theory have been making 
a substantial impact in such fields as neuroscience, cognitive science and mobile 
robotics. Within neuroscience, dynamical analyses have been applied to single 
neurons (e.g., [55]), small circuits (e.g., [62]) and complete brain systems (e.g., 
the model of olfactory cortex formulated by Skarda and Freeman [58], in which a 
chaotic attractor plays a central role). The concepts of dynamical systems are also 
beginning to play a major role in understanding the biological control of 



R.D. Beer I Artificial Intelligence 72 (1995) 173-215 205 

movement (e.g., [57]). Connectionism has made dynamics one of its founding 
principles [60] (though it is not clear that the full implications of this principle 
have yet been appreciated in connectionist research [36]) and has, for example, 
begun to propose theories of language in its terms [27,53]. Both van Gelder [61] 
and Giunti [30] have begun to formulate a dynamical conception of cognition in 
cognitive science more generally. Finally, Smithers [59] has recently argued for a 
role for dynamical ideas in mobile robot research. 

Within the autonomous agents literature, the theoretical framework that I have 
proposed is perhaps most closely related to Rosenschein’s work on situated 
automata [56]. He models an agent and its environment as two interacting 
automata and he has emphasized that knowledge need not be explicitly encoded 
within an agent in order for it to engage in sophisticated interactions with its 
environment. He has used concepts from automata and formal language theory to 
characterize the behavior of such systems. In a sense, I have generalized this 
perspective to arbitrary dynamical systems and demonstrated how concepts from 
dynamical systems theory can be used to characterize the behavior of such 
systems, especially emphasizing continuous systems. On the other hand, while 
Rosenschein’s major concern has been how propositional content can be assigned 
to correlations between an agent’s internal states and the states of its environ- 
ment, my interest is in how an agent can generate the appropriate behavior at the 
appropriate time. 

5.2. Assumptions and extensions 

This paper has focused on continuous, deterministic, convergent and low- 
dimensional dynamical systems as models for agents and their environments. In 
this section, I briefly consider the motivation behind these assumptions, their 
impact on the framework, and a number of ways in which they might be relaxed. 

5.2.1. Continuity 
The emphasis on continuous dynamics (i.e., continuous state spaces and 

continuous time) in this paper is motivated by the fact that the dynamics of both 
nervous systems and the macroscopic physical world are continuous in nature. For 
example, though many nerve cells fire action potentials (a seemingly discrete 
event), the current flows that underlie action potentials are continuous quantities. 
Furthermore, it has long been known that many nerve cells do not produce action 
potentials but instead communicate using graded potentials [52]. Likewise, the 
more discrete behavioral phenomena that we observe (e.g., decision making) 
must eventually be explained in continuous terms. In addition, it is my belief that 
the versatility and robustness of animal behavior resides in the rich dynamical 
possibilities of continuous state spaces. 

However, it should be noted that any system with finite state which evolves 
deterministically can be described using the concepts of dynamical systems. Most 
of the concepts we have used hold in discrete-time systems as well, and many also 
hold in systems defined on discrete state spaces. For example, the transition table 
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of a finite state machine defines a flow on a discrete state space. The lack of a 
metric on this state space limits the dynamical behavior that a finite state machine 
can exhibit, but such concepts as initial state, trajectory, flow, attractor, 
equilibrium point, limit cycle, basin of attraction, autonomous and nonautonom- 
ous still apply. Thus the present framework may still be useful even if the 
continuity assumption should turn out to be inappropriate. 

5.2.2. Determinism 
The theoretical framework sketched in this paper is purely deterministic in 

nature. This determinism derives from the common assumption in science that the 
macroscopic physical world is in principle completely determined by a knowledge 
of its state and the dynamical laws that govern its evolution. However, we often 
say that real environments, real sensors, etc. are somewhat unpredictable. What 

this usually means is that, because we have only incomplete knowledge of a 
system’s state and laws, we are forced to use stochastic models to describe its 
behavior. In other words, regardless of whether or not the macroscopic physical 
world is deterministic in principle, we must sometimes treat it as stochastic in 
practice. 

It should be noted that continuous-time recurrent neural networks show every 
sign of being robust in the face of unpredictable environmental contingencies. The 
locomotion controllers can often tolerate the loss of an interneuron or the loss of 
sensory feedback, and preliminary studies indicate that they are extremely robust 
to noise on the sensory feedback signal as well. However, regardless of the 
robustness of these controllers, the question naturally arises as to how the 
theoretical framework itself might be applied to unpredictable systems. 

As I see it, there are two possibilities, depending upon whether a deterministic 
or stochastic model of unpredictability is adopted. Recall that nonlinear dy- 
namical systems can exhibit dynamics that is completely deterministic in principle 
but unpredictable in practice (so-called chaotic dynamics). Significant progress has 
been made on extending the qualitative theory of dynamical systems to the 
analysis of chaotic dynamics [66]. If the unpredictability of a given system can be 
modeled with chaotic dynamics, then such techniques can be applied. 

Otherwise, we must deal with a fundamentally stochastic model of unpredic- 
tability. In this case, we must consider stochastic dynamical systems (see, for 

example, [7]). Typical concerns in stochastic dynamical systems are understanding 
how some probability density function over the states of the system evolves with 
time and determining the asymptotic form of this distribution. The application of 
such techniques to autonomous agent problems is clearly an important research 
direction for the future development of the framework. 

5.2.3. Convergence 
In this paper, I have assumed that both the agent and environment dynamics 

are convergent, that is, the values of their state variables eventually converge to 
limit sets rather than diverging to infinity. In fact, even a flow that contains 
divergent regions is acceptable as long as the dynamics of interaction between the 
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agent and environment never enters such a region. Divergent dynamical systems 
are a mathematical abstraction anyway. Due to resource limitations and satura- 
tion effects, no real physical system is truly divergent. Thus, the assumption of 
convergent dynamics is, I think, a fairly reasonable one. 

However, it is important not to confuse this convergence assumption with the 
claim that the dynamics of agents and environments must settle onto limit sets 
before the framework applies. Indeed, the dynamics of the reflexive and mixed 
pattern generators never settle on an autonomous attractor, but instead are 
always in a transient because their flow is constantly perturbed by the sensory 
feedback that they receive. Of course, the dynamics of the coupled agent- 
environment system in these examples does eventually settle into a limit cycle, but 
even this need not be the case in general. If either the environment or the agent 
contains dynamics on time scales that are long relative to the lifetime of the agent, 
then the entire trajectory of interaction between them will take place on an 
extended transient. 

Even in the case of an extended transient, however, the framework described in 
this paper still applies. The dynamics of interaction between the agent and its 
environment is still determined by the global structure of the flow of the coupled 
system and this structure is itself largely determined by the types and locations of 
its limit sets. Furthermore, in a system with multiple time scales, there may be a 
great deal of recurrence to the system’s behavior over sufficiently short time 
scales. Under such conditions, it is often possible to treat the slower state 
variables as being approximately constant parameters of the faster dynamics and 
to study the dynamics of this reduced system. Though the attractors of this 
reduced system are not true attractors of the full system (because the slower state 
variables are in fact changing), they represent patterns of interaction that may 
show up repeatedly over sufficiently short time scales (cf. Agre and Chapman’s 
notion of routines [3]). 

5.2.4. Low dimensionality 
Our ability to visualize the dynamics of the leg controllers described in Section 

4 depended strongly on their relatively low dimensionality. Clearly, we will often 
need to analyze systems whose dimensionality makes direct visualization of the 
complete flow impossible. In this case, we must find ways to simplify the dynamics 
or rely upon nonvisual techniques. One obvious approach (utilized in Section 4) is 
to visualize higher dimensional dynamics with a set of carefully selected lower 
dimensional projections. More generally, one can sometimes find a series of 
coordinate transformations that map the dynamics of a higher dimensional system 
to a lower dimensional system while preserving most of its global structure. For 
example, such a technique has been used to reduce the four-dimensional 
Hodgkin-Huxley model of action potential generation to a two-dimensional 
system that preserves not only the qualitative behavior of the original system, but 
most of its quantitative behavior as well [43]. 

A number of other techniques are available for simplifying dynamical systems 
by reducing either their dimensionality or complexity in some spatial or temporal 
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region of interest (e.g., Poincare maps, center manifolds, normal forms, symbolic 
dynamics and the use of symmetries [66]). In addition, many of the analytical 
techniques of dynamical systems theory (e.g., computing limit sets, stability 
analysis, computation of Lyapunov exponents, etc.) do not require a global 
visualization of the flow. Finally, it should be pointed out that some progress has 
even been made on extending the qualitative theory of dynamical systems to 
infinite-dimensional systems (e.g., those arising from sets of partial differential, 
delay-differential and integro-differential equations; [34]). These and other 
techniques will undoubtedly need to be explored as larger systems are studied. 

5.3. Modularity and design 

Because the only requirement on an agent’s dynamics is that the coupled 
agent-environment system satisfy a given constraint, there is a great deal of 
freedom both in how a desired dynamics of interaction is divided between the 
agent and its environment and in the internal organization of the agent’s 
dynamics. We saw examples of this freedom in our analysis of the evolved leg 
controllers where, despite the fact that both their individual dynamics and the 
nature of their interaction with the body vary widely, all of these leg controllers 
produce virtually indistinguishable walking behavior when coupled to the body 
under normal conditions. Likewise, there is a growing realization within neuro- 
science that the neural circuits mediating nontrivial behaviors in even simpler 
animals are highly distributed and nonhierarchical and that traditional engineering 
principles may not apply to their design [4]. 

Because evolution only directly selects against agent dynamics that do not 
satisfy their constraint (rather than selecting for some optimal design), evolution 
tends to produce designs that take full advantage of the available freedom. This 
can lead to designs whose organization is very different from engineered systems. 
When an engineer designs a complex system, he or she typically performs a 
hierarchical decomposition of the problem to be solved, resulting in simpler 
subsystems with clean, well-defined functions and interfaces. Such a modular 
decomposition is necessary to ensure a correct, reliable and maintainable 
implementation, and it also appeals to a certain aesthetic sense of parsimony on 
the part of the designer. Evolution, however, operates under no such constraints. 
Natural selection preserves those animals that, as a package, work and discards 
those that do not. Of course, this is not to say that evolved systems are completely 
unstructured. Certainly, evolved systems exhibit modularity and it is likely that 
evolution would be unable to produce systems with the complexity of animals 
without it. However, because the internal organization of an evolved system does 
not reflect the conceptualization of any designer, whatever modules do exist are 
under no requirement to exhibit the sort of clean functional organization that we 
expect from an engineered system. 

One might argue that this “messiness” is really just an implementation detail 
reflecting the blindness of evolution and not a fundamental part of the design. For 
example, we might be tempted to describe the leg controller dynamics as “really” 
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just implementing a simple finite state machine that switches between two states 
labeled “swing phase” and “stance phase”. However, it is important to realize 
that this is not a predictive explanation of these networks, but merely a 
descriptive summary of their normal operation. The predictive (and therefore 
explanatory) power of this summary is severely limited by the fact that it fails to 
capture the underlying dynamical laws that actually govern the system’s oper- 
ation. For example, the temporal patterns of motor neuron activations required to 
actually make the leg walk are not deducible from such a description. It also fails 
to capture how sensory feedback is capable of fine-tuning a walking pattern, or 
why some networks are robust to sensor loss while others are not. Yet these and 
other features are completely and succinctly explained by the qualitative dy- 
namical analysis summarized in Figs. 8, 9, 10 and 11. 

The fact that evolution can produce such messy designs is typically viewed as a 
shortcoming. However, it is also a source of freedom to cobble together 
counterintuitive but highly effective, versatile, robust and compact designs. 
Furthermore, this negative assessment overlooks a crucial difference between the 
task of an engineer and that of evolution. Engineers solve well-defined problems, 
and it is the detailed a priori specifications of those problems that allow modular 
solutions to be designed and their parsimony or optimality to be evaluated. In 
contrast, evolution has no clear specification of the “problem” that any given 
animal should solve. Even if such a specification existed, it would do little good 
since the “problem” itself is constantly evolving as the physical environment 
changes and the coevolution of conspecifics and other species modifies the 
relationship between behavior and reproductive success. Designing an artificial 
agent capable of autonomously accomplishing open-ended tasks in an uncon- 
strained real-world environment is much closer to the sort of “problem” solved by 
evolution than it is to the problems for which traditional engineering methods 
have been successful. 

While evolutionary design shows great promise as a practical method for 
designing autonomous agents, it is well known that the performance of the 
standard genetic algorithm does not scale well with the size of the parameter 
space using the direct encoding of neural network parameters employed here. 
These scaling problems will need to be addressed before such techniques can be 
applied to the design of more complicated agents. Toward that end, many 
different parameter encodings and many different variations of the basic genetic 
algorithm have been proposed (e.g., [16]) and their application to autonomous 
agent design needs to be explored. Where appropriate, other search techniques, 
such as simulated annealing and gradient techniques, should also be explored. 
When possible, biological data and symmetry considerations can be used to 
reduce the number of parameters to be searched, as in the adjacent coupling of 
the leg controllers in the full locomotion controller described in Section 4.1. 
Another strategy is to search not the parameter space of the agent’s dynamics 
directly, but rather the parameter space of a developmental process that 
constructs the agent’s dynamics (e.g., [35,50]). 

Yet another approach to the scaling problem is to evolve a complex agent 



dynamics incrementally. One possibility is to decompose a complex task into a set 
of simpler subtasks and to independently evolve solutions to these. A complete 
solution can then be obtained by evolving the coupling between these subnet- 
works on the original task. Another possibility is to evolve solutions to a simpler 
version of a difficult problem, successively increase the problem complexity, and 
then re-evolve the controllers to solve the harder versions of the problem. Finally, 
attempts to evolve controllers for physical robots instead of simulated agents 
introduce additional problems, since evolutionary search can only be carried out 

in simulation at present and there are nontrivial issues involved in transferring 
controllers from simulated to physical environments [21,40]. 

5.4. Internal state and representation 

Due to its emphasis on the unpredictable nature and real-time requirements of 
the real world, a great deal of recent work on autonomous agents has focused on 
the development of reactive agents whose actions are completely determined by 
their immediate situation. A purely reactive agent is a degenerate case of the 
present framework because it maintains no internal state. Rather, it is simply a 
function from sensory inputs to motor outputs. A reactive agent has no true 
autonomy because it is constantly pushed around by its environment. 

In contrast, a dynamical systems perspective on autonomous agents emphasizes 

the importance of internal state to an agent’s operation. Unlike a reactive agent, 
an agent with internal state can initiate behavior independently from its immedi- 
ate circumstances and organize its behavior in anticipation of future configura- 
tions of its environment. This ability relies upon the fact that, while it is true that 
the real world is complicated and somewhat unpredictable, natural environments 
also exhibit a great deal of structure that a properly designed agent can depend 
upon and even actively exploit [39]. As a simple example, consider the way in 
which the reflexive controllers exploit the structure of the body dynamics to 
achieve walking. 

The importance of internal state in the present framework raises an interesting 
question: Does the framework imply a commitment to internal representation? 
Much of the debate between proponents and critics of situated agent research has 
tacitly assumed the equation of internal state with representation, with propo- 
nents using criticisms of representation to argue the need for reactivity and critics 

using the limitations of state-free systems to argue the need for representation 
(e.g., [20,44]). B u are internal state and representation the same thing? Though t 
this question clearly deserves a more detailed treatment than I can give it here, let 
me briefly explain why I believe that the answer must be no. 

The problem with equating internal state and representation is that com- 
putationalism, the theoretical claim that a system’s behavior derives from its 
instantiation of appropriate representations and computational processes 
[28,51,54], then becomes a tautological theoretical position. A scientific hypoth- 
esis must be falsifiable, that is, it must be formulated sufficiently clearly to be 
empirically tested and it must be possible that the test will come out negative. But 
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all physical systems possess internal state on a variety of timescales. We would 
presumably hesitate in accepting, say, the temperature of the fuel-air mixture in a 
cylinder of an automobile engine as a representation of anything, or a thunder- 
storm as performing any computation. If, on the other hand, we did admit such a 
broad definition of representation and computation, then computationalism would 
become true by definition rather than by demonstration and would therefore be 
making no interesting theoretical claim about the nature of the processes 
underlying behavior. Similar problems exist with other commonsense notions of 
representation (e.g., correlation) and computation (e.g., systematicity of the 
relationship between input and output). For a more detailed discussion of these 
issues, see [12]. 

For this reason, representation must require additional conditions above and 
beyond the mere possession of internal state (or correlation, etc.) and computa- 
tional systems must therefore be special cases of dynamical systems more 
generally [30,61]. There is a great deal of controversy about the particular form 
of these extra conditions, but the details fortunately need not concern us here. 
What matters is that the framework’s emphasis on internal state, while allowing it 
to transcend the limitations of purely reactive systems, does not necessarily imply 
a commitment to internal representation. Rather, the question of whether or not 
the notion of representation is appropriate for understanding the operation of any 
particular agent must be settled by an empirical investigation of the internal 
organization of that particular agent’s dynamics. The framework is thus, strictly 
speaking, agnostic about the theoretical roles of representation and computation 
in the design and analysis of autonomous agents. 

5.5. Conclusion 

This paper has largely been presenting an argument about language, namely the 
language that we use to talk about autonomous agents and their environments. In 
particular, my primary goal has been to demonstrate that many of the ideas 
emerging from recent work on autonomous agents (as well as work on the neural 
basis of animal behavior, though I have not emphasized this aspect here) can be 
naturally cast into the language of dynamical systems theory. 

One must never underestimate the power of language in shaping the way we 
think about the world. Our theoretical languages provide the metaphors we use to 
conceptualize the very phenomena we seek to understand. A computational 
language invites us to think about representations and their manipulation. Using 
this language, we become concerned with the structure of representations, where 
they are stored, how they are retrieved, what they mean, etc. From a computa- 
tional perspective, observed regularities in an agent’s behavior become windows 
into its program. If, for example, an agent persistently acts toward some end, 
then, computationalism tells us, it must be by virtue of possessing an internal 
representation of that goal. From a computational perspective, perception 
becomes a problem of reconstructing an accurate internal representation of the 
external environment. Taking action becomes a problem of constructing and 
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executing representations of the actions to be performed. Learning becomes a 
problem of modifying existing representations and accumulating new ones. And 
so on. 

This paper has only just begun the difficult task of developing a dynamical 
language for these and other phenomena exhibited by autonomous agents. A 
great deal of work remains to be done in developing this framework into a 
full-fledged theory. If this framework is to succeed in providing a foundation for 
our understanding of autonomous agents, then specific dynamical accounts of 
perception, action, goal-oriented behavior, decision-making, sequential behavior, 
learning, etc. will need to be developed and these accounts will need to be applied 
to specific agents, both natural and artificial. I strongly suspect that a dynamical 
perspective on these phenomena will significantly change the way we think about 
them. 

Ultimately, like all work on embodied agents, the framework must face the fact 
that people can deliberately form and reason with conceptual representations. 
While I have taken the position that such intellectual capabilities are relatively 
recent elaborations of a far more fundamental capacity for situated action (and 
are therefore not nearly so crucial as is usually assumed for even highly complex 
but nondeliberative behavior), they must nevertheless eventually be explained. 
Will attempts to extend a dynamical perspective to such cognitive behavior as 
language and abstract reasoning turn out to require the implementation of 
computational processes on top of the dynamical substrate responsible for 
situated action? Or will the very way we think about such cognitive behavior, and 
the notions of representation and computation that currently seek to underwrite 
it, also have to change in the process? 
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