
Zero Knowledge Proofs:

Challenges, Applications, and Real-world Deployment
NIST Workshop on Privacy Enhancing Cryptography

September 26th, 2024

 Tjerand Silde & Akira Takahashi

2WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

This talk

1) Introduction to Zero Knowledge Proof (Akira)

2) Technical Challenges (Akira)

3) Real-World Applications (Tjerand)

4) Insights from ZKP Workshop (Tjerand)

5) Resources and Standards (Tjerand)

3WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

What is Zero Knowledge Proof?

• ZKP is a two-party protocol, consisting of
Prover and Verifier

•With ZKP, Prover can convince Verifier that
she has some secret information without
disclosing the secret

• Example: “I know sk corresponding to pk”

• Long history of research starting from the
‘80s [GMR85]. Lots of efficiency
improvements during the last decade

• cf. ZK-SNARK (Succinct Non-
interactive Argument of Knowledge)

Basics

https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Proof%20Systems/The_Knowledge_Complexity_Of_Interactive_Proof_Systems.pdf

4WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Syntax of ZKP

• If Prover and Verifier honestly follow the
protocol, then Verifier halts by outputting

Completeness

5WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Security Goals of Zero Knowledge Proof

?

• Protecting against malicious verifier

• Verifier learns nothing about Prover’s secret

• Formally, ZK is guaranteed by showing the existence of
“Simulator”

Zero Knowledge (ZK)

6WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Security Goals of Zero Knowledge Proof

• Protecting against malicious verifier

• Verifier learns nothing about Prover’s secret

• Formally, ZK is guaranteed by showing the existence of
“Simulator”

Zero Knowledge (ZK)

Knowledge Soundness (KSND)

• Protecting against malicious prover

• If Prover uses an invalid secret, then Verifier catches it
with high probability

• Formally, knowledge soundness is guaranteed by
showing the existence of “Knowledge Extractor”

7WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Non-interactive Zero Knowledge Proof (NIZK)

• Structured Reference String (SRS)

• Hash function modeled as Random Oracle

• Or both!

Types of Trusted Setup

Removing Interactions

• Ideally, Prover should create a one-shot
proof string π

• Verifier checks π asynchronously

• Such π is reusable and can be checked
by potentially many verifiers

8WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Non-interactive Zero Knowledge Proof (NIZK)

• Structured Reference String (SRS)

• Hash function modeled as Random Oracle

• Or both!

Types of Trusted Setup

Removing Interactions

• Ideally, Prover should create a one-shot
proof string π

• Verifier checks π asynchronously

• Such π is reusable and can be checked
by potentially many verifiers

9WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Non-interactive Zero Knowledge Proof (NIZK)

Types of Trusted Setup

Removing Interactions

• Ideally, Prover should create a one-shot
proof string π

• Verifier checks π asynchronously

• Such π is reusable and can be checked
by potentially many verifiers

• Structured Reference String (SRS)

• Hash function modeled as Random Oracle

• Or both!

10WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Non-interactive Zero Knowledge Proof (NIZK)

Types of Trusted Setup

Removing Interactions

• Ideally, Prover should create a one-shot
proof string π

• Verifier checks π asynchronously

• Such π is reusable and can be checked
by potentially many verifiers

• Structured Reference String (SRS)

• Hash function modeled as Random Oracle

• Or both!

11WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

• Step 1. Construct a “public-coin” interactive protocol
● Verifier does not require a secret state
● ZK against semi-honest Verifier (Honest-Verifier ZK)

• Step 2. NI Prover and Verifier obtain challenge by locally
hashing a partial transcript so far

• Bonus: By hashing the message, FS-NIZK gives rise to a
digital signature

• Example: Schnorr/EdDSA, CRYSTALS-Dilithium, PLONK
family, Bulletproofs, etc.

• Many modern SNARKs are constructed from (Polynomial)
Interactive Oracle Proofs converted to NIZK via Fiat-Shamir
[BCS16, CHMMVW19, BFS19, GWC19, CFFQR20,...]

Modular Design of NIZK

Paradigm of NIZK I: Fiat-Shamir [FS87]

https://eprint.iacr.org/2016/116.pdf
https://eprint.iacr.org/2019/1047.pdf
https://eprint.iacr.org/2019/1229.pdf
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2020/1069.pdf
https://mit6875.github.io/PAPERS/Fiat-Shamir.pdf

12WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Modular Design of NIZK

• Step 1. Construct a “public-coin” interactive protocol
● Verifier does not require a secret state
● ZK against semi-honest Verifier (Honest-Verifier ZK)

• Step 2. NI Prover and Verifier obtain challenge by locally
hashing a partial transcript so far

• Bonus: By hashing the message, FS-NIZK gives rise to a
digital signature

• Example: Schnorr/EdDSA, CRYSTALS-Dilithium, PLONK
family, Bulletproofs, etc.

• Many modern SNARKs are constructed from (Polynomial)
Interactive Oracle Proofs converted to NIZK via Fiat-Shamir
[BCS16, CHMMVW19, BFS19, GWC19, CFFQR20,...]

Paradigm of NIZK I: Fiat-Shamir [FS87]

https://eprint.iacr.org/2016/116.pdf
https://eprint.iacr.org/2019/1047.pdf
https://eprint.iacr.org/2019/1229.pdf
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2020/1069.pdf
https://mit6875.github.io/PAPERS/Fiat-Shamir.pdf

13WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Modular Design of NIZK

• Step 1. Construct a “public-coin” interactive protocol
● Verifier does not require a secret state
● ZK against semi-honest Verifier (Honest-Verifier ZK)

• Step 2. NI Prover and Verifier obtain challenge by locally
hashing a partial transcript so far

• Bonus: By hashing the message, FS-NIZK gives rise to a
digital signature

• Example: Schnorr/EdDSA, CRYSTALS-Dilithium, PLONK
family, Bulletproofs, etc.

• Many modern SNARKs are constructed from (Polynomial)
Interactive Oracle Proofs converted to NIZK via Fiat-Shamir
[BCS16, CHMMVW19, BFS19, GWC19, CFFQR20,...]

Paradigm of NIZK I: Fiat-Shamir [FS87]

https://eprint.iacr.org/2016/116.pdf
https://eprint.iacr.org/2019/1047.pdf
https://eprint.iacr.org/2019/1229.pdf
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2020/1069.pdf
https://mit6875.github.io/PAPERS/Fiat-Shamir.pdf

14WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Paradigm of NIZK I: Fiat-Shamir [FS87]

Modular Design of NIZKInteractive Oracle Proof

Interactive Zero Knowledge Proof

Non-interactive Zero Knowledge Proof

(No computational assumption)

(Often only secure against computationally bounded adversaries)

+ Cryptographic Commitment

+ Fiat-Shamir

• Step 1. Construct a “public-coin” interactive protocol
● Verifier does not require a secret state
● ZK against semi-honest Verifier (Honest-Verifier ZK)

• Step 2. NI Prover and Verifier obtain challenge by locally
hashing a partial transcript so far

• Bonus: By hashing the message, FS-NIZK gives rise to a
digital signature

• Example: Schnorr/EdDSA, CRYSTALS-Dilithium, PLONK
family, Bulletproofs, etc.

• Many modern SNARKs are constructed from (Polynomial)
Interactive Oracle Proofs converted to NIZK via Fiat-Shamir
[BCS16, CHMMVW19, BFS19, GWC19, CFFQR20,...]

https://mit6875.github.io/PAPERS/Fiat-Shamir.pdf
https://eprint.iacr.org/2016/116.pdf
https://eprint.iacr.org/2019/1047.pdf
https://eprint.iacr.org/2019/1229.pdf
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2020/1069.pdf

15WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Paradigm of NIZK II: Linear Interactive Proofs [GGPR13,BCI+13]

• Step 1. srs generator outputs a relation-dependent
vector

• Step 2. NI Prover applies linear transformation to
srs

• Step 3. NI Verifier derives a testing function,
allowing to check whether correct linear
transformation has been applied

• Example: [Groth16]

• Important: Prover and Verifier should never learn
internal randomness of Gen; otherwise, malicious
prover can easily prove a false statement

NIZK without Fiat-Shamir

https://eprint.iacr.org/2012/215.pdf
https://eprint.iacr.org/2012/718.pdf
https://eprint.iacr.org/2016/260.pdf

16WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Technical Challenges

1) Balancing Generality, Efficiency and Assumptions

2)Advanced Security

3)Interoperability

17WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Types of ZKP

General-Purpose ZKP

• Supports arbitrary NP relation R

• Relation is often described using an arithmetic circuit

• Pros:
● Can prove correct execution of any program
● Suitable for verifiable and outsourced computation

• Cons:
● circuit gets complex for certain non-linear computations
● E.g., elliptic curve arithmetic, comparison, table lookup, etc.

Specialized ZKP

• Designed for particular type of NP relation R

• Pros:

● Can prove and verify designated relations efficiently

● Sufficient for some useful applications, e.g., proof of
correct encryption, distributed key generation,
signatures, etc.

• Cons:

● Requires careful integration with general-purpose ZKP
to support more complex statements

18WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Types of ZKP

General-Purpose ZKP

• Supports arbitrary NP relation R

• Relation is often described using an arithmetic circuit

• Pros:
● Can prove correct execution of any program
● Suitable for verifiable and outsourced computation

• Cons:
● circuit gets complex for certain non-linear computations
● E.g., elliptic curve arithmetic, comparison, table lookup, etc.

Specialized ZKP

• Designed for particular type of NP relation R

• Pros:

● Can prove and verify designated relations efficiently

● Sufficient for some useful applications, e.g., proof of
correct encryption, distributed key generation,
signatures, etc.

• Cons:

● Requires careful integration with general-purpose ZKP
to support more complex statements

19WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Desiderata

Proof Size

• Smaller proof saves storage and communication
bandwidth

• Groth16 requires only 3 group elements from pairing-
friendly curves

• State-of-the-art Polymath [Lip24] and PARI [DMS24]
achieve even smaller proof sizes!

Assumptions

Setup, Prover and Verifier Cost Scalability

• To minimize a trust assumption, SRS should be avoided

• Better alternative: only trust the security of hash
function modeled as RO (aka transparent setup), e.g.,
Bulletproofs, Brakedown, STARK, LaBRADOR, MPC/VOLE-
in-the-Head, etc.

• Middle-ground solution: allows different parties to
update SRS (aka updatable SRS) [GKMMM18]

• Universal Setup: Setup outputs SRS once and for all
for arbitrary circuits [GKMMM18]

• Verifier sub-linear in

• Prover time linear in #non-linear gates

• Verifier sub-linear in

• Prover time linear in #non-linear gates

• How can we prove a large statement efficiently?
● Proof Aggregation: aggregate many,

asynchronously generated proofs, e.g., SnarkPack
● Incrementally Verifiable Computation [Valiant08]:

succinct proof of incremental computations via
recursion or folding, e.g., Halo2, Nova, etc.

https://eprint.iacr.org/2024/916.pdf
https://eprint.iacr.org/2024/1245.pdf

20WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Desiderata

Proof Size

• Smaller proof saves storage and communication
bandwidth

• Groth16 requires only 3 group elements from pairing-
friendly curves

• State-of-the-art Polymath [Lip24] and PARI [DMS24]
achieve even smaller proof sizes!

Assumptions

Setup, Prover and Verifier Cost Scalability

• To minimize a trust assumption, SRS should be avoided

• Better alternative: only trust the security of hash
function modeled as RO (aka transparent setup), e.g.,
Bulletproofs, Brakedown, STARK, LaBRADOR, MPC/VOLE-
in-the-Head, etc.

• Middle-ground solution: allows different parties to
update SRS (aka updatable SRS) [GKMMM18]

• Universal Setup: Setup outputs SRS once and for all
for arbitrary circuits [GKMMM18]

• Verifier sub-linear in

• Prover time linear in #non-linear gates

• Verifier sub-linear in

• Prover time linear in #non-linear gates

• How can we prove a large statement efficiently?
● Proof Aggregation: aggregate many,

asynchronously generated proofs, e.g., SnarkPack
● Incrementally Verifiable Computation [Valiant08]:

succinct proof of incremental computations via
recursion or folding, e.g., Halo2, Nova, etc.

https://eprint.iacr.org/2018/280.pdf

21WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Desiderata

Proof Size

• Smaller proof saves storage and communication
bandwidth

• Groth16 requires only 3 group elements from pairing-
friendly curves

• State-of-the-art Polymath [Lip24] and PARI [DMS24]
achieve even smaller proof sizes!

Assumptions

Setup, Prover and Verifier Cost Scalability

• To minimize a trust assumption, SRS should be avoided

• Better alternative: only trust the security of hash
function modeled as RO (aka transparent setup), e.g.,
Bulletproofs, Brakedown, STARK, LaBRADOR, MPC/VOLE-
in-the-Head, etc.

• Middle-ground solution: allows different parties to
update SRS (aka updatable SRS) [GKMMM18]

• Universal Setup: Setup outputs SRS once and for all
for arbitrary circuits [GKMMM18]

• Verifier sub-linear in

• Prover time linear in #non-linear gates

• Verifier sub-linear in

• Prover time linear in #non-linear gates

• How can we prove a large statement efficiently?
● Proof Aggregation: aggregate many,

asynchronously generated proofs, e.g., SnarkPack
● Incrementally Verifiable Computation [Valiant08]:

succinct proof of incremental computations via
recursion or folding, e.g., Halo2, Nova, etc.

22WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Desiderata

Proof Size

• Smaller proof saves storage and communication
bandwidth

• Groth16 requires only 3 group elements from pairing-
friendly curves

• State-of-the-art Polymath [Lip24] and PARI [DMS24]
achieve even smaller proof sizes!

Assumptions

Setup, Prover and Verifier Cost Scalability

• To minimize a trust assumption, SRS should be avoided

• Better alternative: only trust the security of hash
function modeled as RO (aka transparent setup), e.g.,
Bulletproofs, Brakedown, STARK, LaBRADOR, MPC/VOLE-
in-the-Head, etc.

• Middle-ground solution: allows different parties to
update SRS (aka updatable SRS) [GKMMM18]

• Universal Setup: Setup outputs SRS once and for all
for arbitrary circuits [GKMMM18]

• Verifier sub-linear in

• Prover time linear in #non-linear gates

• Verifier sub-linear in

• Prover time linear in #non-linear gates

• How can we prove a large statement efficiently?
● Proof Aggregation: aggregate many,

asynchronously generated proofs, e.g., SnarkPack
● Incrementally Verifiable Computation [Valiant08]:

succinct proof of incremental computations via
recursion or folding, e.g., Halo2, Nova, etc.

https://iacr.org/archive/tcc2008/49480001/49480001.pdf

23WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Technical Challenges

1) Balancing Generality, Efficiency and Assumptions

2)Advanced Security

3)Interoperability

24WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

ZK and Knowledge Soundness are not Enough: Malleability Attacks

25WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Combined Notion: Simulation-Extractability [Sah99]

SIM-EXT Security

• Intuitively, SIM-EXT guarantees non-malleability: a
cheating prover cannot maul existing proofs to create a
new one, without knowing a valid witness

• Cf. (S)EUF-CMA for signature and IND-CCA for PKE

• Crucial property NIZK should satisfy if used as a
subroutine of another protocol

• Many practical NIZK schemes turn out to be SIM-EXT [
GKKNZ22] [GOPTT22] [DG23] [FFKR23] [KPT23] [Lib24] [FFR24]

• Some schemes satisfy UC security [Canetti01] accepting
some idealized setup [CF24] [BFKT24]

http://www.ai.mit.edu/projects/ntt/projects/9807-12-26/documents/NMNIZK.pdf
https://eprint.iacr.org/2021/511.pdf
https://eprint.iacr.org/2023/147.pdf
https://eprint.iacr.org/2023/494
https://eprint.iacr.org/2023/569
https://eprint.iacr.org/2023/1067
https://eprint.iacr.org/2024/854
https://eprint.iacr.org/2024/721.pdf
https://eprint.iacr.org/2000/067.pdf
https://eprint.iacr.org/2024/724
https://eprint.iacr.org/2024/818

26WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Technical Challenges

1) Balancing Generality, Efficiency and Assumptions

2)Advanced Security

3)Interoperability

27WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Example: Anonymous Credentials (High Level)

• Issuer initially binds attributes and usk to secret credentials

• The owner of attributes produces a proof string in the form of
ZKP

• By examining the proof string, Verifier gets convinced that User
has valid attributes signed by Issuer

• Thanks to ZKP, the proof string only leaks minimum info about
Prover’s identity

• E.g., Verifier learns “User is => 21 years old” but nothing else

Protocol

28WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Example: Anonymous Credentials (High Level)

• Central ZKP for AC: Proof-of-Knowledge of valid signature

• Verification algorithms of widely deployed signatures, e.g, RSA-
PSS, ECDSA, EdDSA, etc. are not ZK-friendly

• Two directions:

● Design more specialized and efficient ZKP for existing
standardized schemes to retain interoperability

● Design and standardize “ZK-friendly” primitives: Cf. BBS(+)
signature

Interoperability

https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html

29WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Takeaways

•ZKP allows Prover to prove the knowledge of a secret, while Verifier learns nothing about the secret

•Basic Security Properties: Knowledge Soundness and Zero Knowledge

•What kind statement do you want to prove?
● General-purpose ZKP, Specialized ZKP, Composition of both

•Which setup assumption is suitable for deployment?
● Trusted, Transparent, Updatable, …

•What should you optimize?
● Proof Size, Assumptions, Setup/Prover/Verifier Costs, Scalability.

•Advanced Security: Does the application need SIM-EXT or UC security?

• Interoperability: Standardize ZK-friendly primitives, or design standardization-friendly ZK

Credits: icons have been retrieved from Flaticon.com

https://flaticon.com/

Zero-Knowledge Proofs: Technical

Challenges, Applications, and

Real-world Deployment

NIST Workshop on Privacy-Enhancing Cryptography

Tjerand Silde & Akira Takahashi, September 26 – 2024

N
o
rw

e
g
ia

n
 U

n
iv

e
rs

it
y
 o

f
S

c
ie

n
c
e

 a
n
d

 T
e
c
h
n
o
lo

g
y

Content

Introduction to ZKP

Technical Challenges

Real-World Applications

Insights from ZKP Workshop

Resources and Standards

Verifiable and Outsourced Computation

Ensure that computation
is conducted properly
(server is the prover)

Might include secret data
or algorithms, but does
not have to do so

Use ZKP for compliance

Efficient (Post-Quantum) Digital Signatures

Quantum computers can
break schemes based on
factoring and DLOG

Can design signature
schemes from zero-
knowledge proofs and the
Fiat-Shamir transform

Efficient (Post-Quantum) Digital Signatures

Dilithium is a NIZK

based on the quantum-

safe LWE/SIS-problems

Follows a similar

structure as Schnorr-

signatures for DLOG
https://eprint.iacr.org/2024/1287.pdf

Proof Systems in Electronic Voting

Need to break the

connection between votes

and voters by shuffling

Ensure correct encryption

and decryption of votes

Blockchain Rollup and Private Transactions

For privacy: encrypt to make
transactions private, use
ZKP to ensure correctness
and compliance to bank laws

For efficiency: batch many
transactions together and
prove that all were correct
without checking each

Content

Introduction to ZKP

Technical Challenges

Real-World Applications

Insights from ZKP Workshop

Resources and Standards

ICMS Workshop on Foundations and

Applications of Zero-Knowledge Proofs

A one-week workshop about ZKPs: going from the
basics to some of the most advanced applications.

All the slides and recordings are available online.

Organized w/ Elizabeth Crites and Markulf Kolweiss.

icms.org.uk/ZeroKnowledgeProofs

Speakers

Jonathan Katz (UMD)

Michele Ciampi (UoE)

Carsten Baum (DTU)

Peter Scholl (AU)

Carla Rafols (UPF)

Arantxa Zapico (Ethereum)

Anca Nitulescu (IOG)

Lisa Kohl (CWI Amsterdam)

Ngoc Khanh Nguyen (KCL)

Dario Fiore (IMDEA)

Topics

➢ Introduction to ZKPs and their Security

➢ Sigma-Protocols and their Applications

➢ MPC-in-the-Head Techniques for ZKP and Signatures

➢ Group/pairing-based zkSNARK Constructions

➢ Polynomial Commitments for zkSNARKs

➢ Lattice-Based ZKPs and Polynomial Commitments

➢ ZKPs for Blockchain Applications

➢ ZKP for Machine Learning and Verifiable Computation

Lessons Learned
Recent advances in ZKP rely heavily on earlier works, and it is
worthwhile to go in-depth on the foundations.

ZKP is a fast-moving field, and several invited speakers talked
about new constructions published after we reached out.

ZKP has until recently been considered a theoretical field, but
nowadays we see new and efficient implementations every week.

New constructions are quite complex, and it might be hard to
keep up with the technical details and get a proper overview.

Content

Introduction to ZKP

Technical Challenges

Real-World Applications

Insights from ZKP Workshop

Resources and Standards

Zero-Knowledge Proofs MOOC

zk-learning.org

ZKProof Standards

zkproof.org

Blog-posts by Matthew Green

blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer

Zero-Knowledge Podcast

zeroknowledge.fm

Zero-Knowledge Summit

zksummit.com

DARPA-Funded ZKP Research

darpa.mil/news-events/2019-07-18

ZKP in EU Digital Identity Wallet

github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework/discussions/211

Least Authority

leastauthority.com/blog/building-the-zero-knowledge-community-engagement-events-and-advocacy

zkSecurity

zksecurity.xyz

Trail of Bits

blog.trailofbits.com/2021/02/19/serving-up-zero-knowledge-proofs

Workshop at Simons Institute

simons.berkeley.edu/programs/cryptography-10-years-later-obfuscation-proof-systems-secure-computation

Thank you! Questions?

NIST Workshop on Privacy-Enhancing Cryptography

Tjerand Silde & Akira Takahashi, September 26 - 2024

N
o
rw

e
g
ia

n
 U

n
iv

e
rs

it
y
 o

f
S

c
ie

n
c
e

 a
n
d

 T
e
c
h
n
o
lo

g
y

	wpec2004-3b1-ZKP-Overview--slides-part1-akira
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

	wpec2004-3b1-ZKP-Overview--slides-part2-tjerand
	Slide 1: Zero-Knowledge Proofs: Technical Challenges, Applications, and Real-world Deployment
	Slide 2: Content
	Slide 3: Verifiable and Outsourced Computation
	Slide 4: Efficient (Post-Quantum) Digital Signatures
	Slide 5: Efficient (Post-Quantum) Digital Signatures
	Slide 6: Proof Systems in Electronic Voting
	Slide 7: Blockchain Rollup and Private Transactions
	Slide 8: Content
	Slide 9: ICMS Workshop on Foundations and Applications of Zero-Knowledge Proofs
	Slide 10: Speakers
	Slide 11: Topics
	Slide 12: Lessons Learned
	Slide 13: Content
	Slide 14: Zero-Knowledge Proofs MOOC
	Slide 15: ZKProof Standards
	Slide 16: Blog-posts by Matthew Green
	Slide 17: Zero-Knowledge Podcast
	Slide 18: Zero-Knowledge Summit
	Slide 19: DARPA-Funded ZKP Research
	Slide 20: ZKP in EU Digital Identity Wallet
	Slide 21: Least Authority
	Slide 22: zkSecurity
	Slide 23: Trail of Bits
	Slide 24: Workshop at Simons Institute
	Slide 25: Thank you! Questions?

