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Abstract 

The illegal use of compromised email accounts by adversaries can have severe consequences for enterprises and 
society. Detecting compromised email accounts is more challenging than in the social network field, where email 
accounts have only a few interaction events (sending and receiving). To address the issue of insufficient features, we 
propose a novel approach to detecting compromised accounts by combining time zone differences and alternate 
logins to identify abnormal behavior. Based on this approach, we propose a compromised email account detec-
tion framework that relies on widely available and less sensitive login logs and does not require labels. Our frame-
work characterizes login behaviors to identify logins that do not belong to the account owner and outputs a list of 
account-subnet pairs ranked by their likelihood of having abnormal login relationships. This approach reduces the 
number of account-subnet pairs that need to be investigated and provides a reference for investigation priority. Our 
evaluation demonstrates that our method can detect most email accounts that have been accessed by disclosed 
malicious IP addresses and outperforms similar research. Additionally, our framework has the capability to uncover 
undisclosed malicious IP addresses.
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Introduction
Email is one of the most widely used essential tools in 
modern enterprise settings. Email correspondence can 
reveal an enterprise’s personnel structure, and email con-
tent can reveal employees’ work content. Both of them 
are usually sensitive information in the interests of adver-
saries. Phishing emails and data breaches are the most 
significant causes of email account compromise. In the 
first half of 2022, cyberattacks against email increased by 
48%, and nearly 70% of those attacks included a credential 

phishing link (Corp 2022). Additionally, continuous data 
leakage provides adversaries with a large number of email 
accounts and passwords (UpGuard 2022), which can be 
automatically verified through scripts, enabling adversar-
ies to acquire many compromised email accounts. Once 
obtained, adversaries can easily steal an enterprise’s com-
mercial secrets and move laterally based on staff relation-
ships. The longer these compromised accounts exist, the 
more harmful they are to the enterprise. Therefore, it is 
essential to detect such compromised accounts promptly. 
For blue teams, it is crucial to attribute attacks and locate 
their source and organization.

Most research on detecting compromised accounts 
focuses on social network settings, where there are vari-
ous interaction events such as logging in, posting, and 
liking. These events provide numerous features, enabling 
researchers to detect compromised accounts using vari-
ous methods. However, for email accounts, there are only 
two interaction events: sending and receiving. These fea-
tures can be acquired from login behaviors (SMTP for 
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sending, IMAP/POP3 for receiving, and Webmail for 
both). Therefore, interaction features that can be used 
to detect compromised email accounts are all included 
in the login logs. On the other hand, the login logs con-
tain all the attack actions. EvilCohort (Stringhini et al. 
2015) uses login logs to detect malicious accounts, but 
its main detection objects are fake accounts in social 
networks rather than compromised email accounts of 
employees in enterprise settings.

To address this gap, we propose a Compromised Email 
Accounts Detection framework (CEAD), which can 
detect abnormal login behaviors of email accounts and 
output a list of account-subnet pairs for security teams. 
Compared to spam/phishing email detection, which 
marks abnormal results with specific labels, detecting 
compromised email accounts is more challenging due to 
the lack of personal confirmations from the account own-
ers or reliable credible Indicators of Compromise (IoCs). 
Determining whether an email account is compromised 
based on a single login is impossible. To overcome this 
challenge, CEAD narrows the scope requiring manual 
investigation as much as possible and provides suspicious 
lists and ranks instead of a specific diagnosis.

Our approach characterizes the login behavior of email 
accounts from both temporal and spatial perspectives. 
To characterize temporal behavior, we refer to the idea 
of building a Gaussian mixture model (GMM) (Reynolds 
2009). We treat login behavior as a mixture model com-
posed of the owner’s and potential attacker’s models. If 
the owner and attacker are in different time zones, their 
distribution in the mixture model will also differ, allowing 
us to use this feature to detect abnormal behavior. After 
fitting the login behaviors, if the weight of the owner’s 
model is small, we consider it more likely that there is an 
attacker. However, it is challenging to find data that can 
represent the owner in a large number of login events. 
Therefore, we propose the concept of subnet reputation. 
We first extend the basic unit of the login address from 
IP to subnet and then calculate subnet reputation based 
on three activity-related features. We use subnets with 
higher reputations to construct the owner’s model. If the 
weight of the owner’s model decreases after a new subnet 
joins the mixture model, it suggests that the newly joined 
subnet behaves differently from the owner’s, indicating 
that it may be suspicious.

When the owner and attacker log in to the same 
account together for a period of time, the login location 
will frequently change, and the accumulated distance 
between login locations will be very large. Therefore, 
we can use this feature to characterize abnormal spatial 
behaviors. However, if the owner also frequently changes 
the IP address (e.g., using a proxy), it is impossible to 
distinguish between the two situations. Hence, we use 

entropy to measure whether changes in login locations 
are common, i.e., a compromised email account may 
have a login series with drastic but not common location 
changes.

We evaluated the performance of our framework on 
nine datasets, consisting of over 109 million login events. 
Our approach effectively reduces the number of account-
subnet pairs that security teams need to investigate. We 
rank account-subnet pairs based on their likelihood of 
having abnormal login relationships, and performs better 
than DAS (Ho et al. 2017). An additional advantage of our 
framework is that it relies only on login logs, significantly 
reducing the exposure of other sensitive information, such 
as relationships and email content. This feature is particu-
larly relevant in enterprise settings where security services 
are outsourced. Moreover, our framework is self-sufficient, 
not requiring any labeled data or prior knowledge, and 
can work independently without other security detection 
measures. In addition, our framework provides flexibility 
as some of its components or mechanisms can be replaced 
or modified. For instance, if analysts have a more reli-
able reputation calculation mechanism, they can directly 
replace our reputation calculation method. Similarly, if 
analysts want to experiment with a new ranking algorithm, 
they can modify the corresponding formula with ease.

In summary, this paper makes the following 
contributions:

•	 We propose a new method of detecting abnormal 
login behavior, noting that the two main character-
istics, time zone differences and alternate logins, are 
difficult for an attacker to circumvent simultaneously.

•	 We present CEAD, a compromised email accounts 
detection framework that uses only login logs and 
does not rely on labeled data. CEAD detects both 
temporal and spatial behavior anomalies, signifi-
cantly reduces the burden of analysts when investi-
gating.

•	 We evaluated CEAD on email login logs from nine 
organizations. CEAD sorted account-subnet pairs 
by likelihood of having abnormal login relationships, 
successfully detected most compromised emails and 
undisclosed malicious IP addresses, and performed 
better than DAS.

Background
The illicit use of compromised email accounts by adver-
saries has grave consequences, including the propa-
gation of false information (CNN 2021) and political 
manipulation (Wikipedia 2022b). Advanced persistent 
threats (APTs) (Wikipedia 2022a) are often attributed to 
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nation-state or state-sponsored groups, with clear and 
specific objectives. These adversaries may target intelli-
gence after seizing control of email accounts. In the event 
that the victim is not the primary target or holds no sig-
nificant value, attackers may use the compromised email 
account to move laterally and expand their target.

Prior studies have predominantly concentrated on 
detecting spam and phishing emails. Among them, meth-
ods for detecting lateral movement phishing emails can 
be used to detect compromised email accounts. How-
ever, these techniques operate under the assumption 
that attackers engage in sending behaviors. In instances 
where adversaries aim to steal emails, such methods can-
not detect compromised email accounts. Our study per-
tains to detecting compromised user credentials (CUCs), 
and many related studies model and compare the usage 
behavior of compromised accounts, especially in the 
domain of social networks. Our work draws upon similar 
ideas to these studies.

Related works
Current research on email security has primarily centered 
on detecting and filtering spam/phishing emails (Ho et al. 
2017, 2019; Hu et al. 2016). Spam/phishing emails detec-
tion and compromised email accounts detection are dif-
ferent scenarios in the same field. The former focuses on 
identifying email content and real-time defense capabil-
ity, while the latter concerns detecting attack outcomes 
and providing support for attribution and forensics. Our 
work falls into the latter category.

Ho et al. (2017) presented a novel approach for detect-
ing compromised email accounts resulting from phishing 
attacks. Their methodology utilizes datasets including 
email samples, HTTP logs, and login logs to assess the 
likelihood of compromise based on both the sender’s 
and domain’s reputation. Through the use of HTTP logs, 
the authors track user behavior upon accessing phishing 
links and determine the status of the account based on 
whether the user entered their password.

Hu et  al. (2016) proposed a method for identifying 
compromised accounts through analysis of abnormal 
email correspondence relationships as indicated by send-
ing and receiving logs. However, this approach may fail 
to detect certain compromised accounts if the attacker’s 
sole objective is to steal emails without engaging in lat-
eral movement, as the correspondence relationship 
remains unchanged.

In essence, techniques designed to detect lateral move-
ment phishing attacks can also be applied to identifying 
compromised email accounts. Ho et  al. (2019) employ 
three key features, namely the similarity of email recipi-
ents, the reputation of senders, and the reputation of 

URLs, to detect lateral movement attacks. The authors 
determine the success of an attack by examining the cau-
sality between malicious email senders.

In addition to email accounts, other online web ser-
vices are also at risk of account compromise. Attackers 
may seek to illegally exploit social networks for signifi-
cant gains, leading to a rise in various attacks against 
social network accounts. Currently, there are numer-
ous approaches available for detecting compromised 
accounts on social networks (Ruan et al. 2015; Viswanath 
et al. 2014; Egele et al. 2015; Stringhini et al. 2015; Karimi 
et al. 2018; Egele et al. 2013; Pv and Bhanu 2020; Velayud-
han and Somasundaram 2019).

Ruan et  al. (2015), Viswanath et  al. (2014), and Egele 
et  al. (2015) have characterized the behavior of social 
network users to identify actions that deviate from the 
norm. Their approaches leverage temporal and spatial 
features, such as user operating time and application cli-
ents, to detect abnormal user behavior. Stringhini et  al. 
(2015) proposed a more generalized method for detect-
ing compromised accounts across various online network 
services. Their approach involves constructing relation-
ships between operating events and IP addresses using a 
bipartite graph, followed by clustering based on the one-
mode projection of the graph to identify communities of 
compromised accounts.

Challenges
Advanced persistent threat (APT) groups demonstrate 
a higher degree of sophistication and caution in their 
attacks compared to adversaries with profit-driven 
motives. APT groups are more likely to leverage dynamic 
IP addresses and minimize unnecessary attack actions. 
Consequently, detecting related compromised email 
accounts presents several challenges.

Challenge1: concealed access actions
In certain instances, adversaries may opt to steal their 
victims’ emails instead of leveraging their accounts for 
lateral movement. This strategy is particularly favored 
when targeting high-value victims, as it allows the adver-
sary to maintain long-term access to the compromised 
email accounts without being detected. For email-theft 
attack campaigns, the attack behavior will only manifest 
in the login logs, which typically contain limited informa-
tion. Consequently, detecting this type of attack can be 
highly challenging.

In our detection results, none of the malicious IP 
addresses have the behavior of sending emails, such as 
logging in via SMTP. This implies that features such as 
email correspondence, email headers, email bodies, and 
attachments can not be used to detect this type of the 
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attack. Consequently, the only available data to detect 
this type of attack is the login logs. Therefore, some pre-
viously employed methods for detecting spam/phishing 
emails are not applicable in this scenario.

To overcome this problem, we focus on login events. 
We utilize four common features (protocol, datetime, 
IP address, and email account) that are present in both 
information-stealing and lateral movement attacks to 
characterize the login behavior.

Challenge2: mixed benign and adversarial location‑changed 
logins
It is common for employees to log in to their business 
email accounts from non-frequently used places, particu-
larly in large international companies and organizations. 
For instance, an employee traveling for business purposes 
may use the local network or unintentionally or inten-
tionally use a proxy, such as logging in to webmail after 
visiting a website with a proxy-configured browser or 
setting up a proxy directly for the client due to network 
requirements. On the other hand, when APT groups log 
in to their victims’ accounts to steal emails or send lat-
eral phishing emails, they may use IoT bot-nets, compro-
mised hosts, and easily accessible and disposable cloud 
servers as their attack infrastructure or springboard. As 
depicted in Fig.  1, most accounts have a percentage of 
location-changed logins, which may be contributed by 
both the owner and the attacker.

To distinguish mixed behaviors and identify anoma-
lies, previous research has focused on characterizing the 
operating habits of different individuals, including their 
sessions and devices (Ruan et al. 2015). Similarly, in our 
scenario, we can detect anomalies by comparing the login 
behavior of previously unseen IP addresses with that of 
benign IP addresses.

Challenge3: limited indicators of compromise
Many existing methods rely on labels or prior knowledge 
when determining whether an IP address is malicious or 
not. For instance, Stringhini et al. (2015) employ a labeled 
dataset provided by an email service provider, while other 
researchers may use customized rules for manual labeling 
(Ho et al. 2019). However, manual labeling requires a suf-
ficient amount of features in the data to allow researchers 
to distinguish between malicious and benign behavior. 
Data from a single source, such as login logs, often has 
limited information and is challenging to label manually.

IoCs play a crucial role in attributing attack campaigns 
to APT groups. These IoCs are derived from the foren-
sic practices of numerous security researchers and pro-
vide reliable information. However, the number of IoCs 
available is far from sufficient. Threat intelligence can 
only disclose a portion of the IP addresses used by APT 
groups, and adversaries may use different IP addresses 
when attacking different targets. This limited availability 
of IoCs can leave security analysts with a dearth of refer-
ences when conducting investigations.

To address this problem, DAS (Ho et  al. 2017) gener-
ates a list of events ordered by their level of suspicion, 
instead of providing a conclusive decision. Similar to the 
this approach, we provide analysts with a priority when 
manually investigating.

Methodology
In this section, we introduce our two key ideas for detect-
ing compromised email accounts. First, we leverage the 
distributions of login times to construct a mixture model 
and utilize the weight of the benign model to determine 
whether the account has been compromised. Second, 
we identify suspicious login sequences in which there 
is a drastically but unusual change in the login loca-
tion. These two characteristics capture abnormal email 
usage from different perspectives, and we demonstrate 
that it is challenging for an attacker to circumvent both 
simultaneously.

Time zone difference
Attacks against transnational targets may result in login 
behaviors spanning two or more circadian cycles in dif-
ferent time zones. Figure  2 presents a typical exam-
ple, showing the distribution of both the owner and the 
attacker logging into the same email account from 0 to 
24 o’clock. We estimated their distributions via kernel 
density estimation (KDE) (Wikipedia 2022c) based on 
login logs, and for privacy reasons, we have hidden the 
specific time and shifted the distributions. The M-shape 
observed in the figure reflects the typical working time of 
approximately 8 h per day, with two peaks and a trough Fig. 1  The average percentage of location-changed logins for each 

login protocol in our datasets
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corresponding to morning work, afternoon work, and 
lunch break.

Mixture model: We consider the distribution reflected 
by all the data in the login logs as a mixture model com-
posed of the distributions of the email account owner and 
the potential attackers. Suppose we denote by MOwner 
the probability distribution of owner’s logins and by 
MPotentialAttackers the probability distribution of potential 
attackers’ logins. In that case, we can express the mixture 
model as

where ω denotes the weight, i.e., the probability that a 
particular login contributed by the owner. From a holistic 
perspective, ω represents the similarity between the own-
er’s model and the mixture model. Therefore, the smaller 
the weight of MOwner , the more likely there is an attacker, 
and vice versa. Note that the distribution of MOwner is not 
necessarily M-shaped as described above and may be any 
shape depending on one’s working habits and the login 
protocol used (Webmail, POP3, SMTP, IMAP). Figure 3 
shows an example of a mixture model. We hide the hori-
zontal coordinate scale in this figure for the same reason 
as in Fig. 2.

(1)MMixture = ωMOwner + (1− ω)MPotentialAttackers

Two-factor determination combining credibility and 
weight: Without prior knowledge or an IP address 
whitelist, it is challenging to select the data that can rep-
resent the owner from all the logins to build the MOwner . 
Thus, we select some IP addresses with more logins and 
use their logins to build a reference model and evaluate 
the model’s credibility based on the reputation of these 
IP addresses. Now the mixture model can be expressed as

There are two reasons for using two-factor determina-
tion: first, there may not be enough logins from high-
reputation IP addresses to build MOwner ; second, it is 
not reasonable to directly regard the model built based 
on the IP addresses with more logins as MOwner because 
the attacker may also contribute many logins (e.g., using a 
client or script that automatically steals emails).

Table  1 presents four possible cases of the mixture 
model. In the first case, where the reference model has 
high credibility and a large weight ω , the existence of 
an attacker is considered less likely. In the second case, 
where the reference model also has high credibility but 
a small weight ω , the mixture model appears suspicious 
as it no longer resembles the high credibility reference 
model after adding the login data of the remaining IP 
addresses. However, in the second case, it can only reflect 
a different login behavior from the reference model but 
not gives a definitive decision because both the attacker 
and the owner may contribute the remaining data. For 
instance, the reference model is based on login data from 
IP addresses in the employee’s workplace during the day, 
while the employee uses different IP addresses to check 
emails after work. Therefore, we will use other methods 
to filter further. We consider the third and fourth cases 
suspicious because the logins used to build the reference 
model (most of the logins) have low reputations.

Alternate logins
We can obtain a series if we sort all the logins by time 
and take the spatial attributes of logged-in IP addresses 
as elements. Figure 4 provides a simple example. If only 
the owner logs in to their email account over a cer-
tain period, we will observe a relatively stable series. In 

(2)MMixture = ωMReference + (1− ω)MOthers

Fig. 2  In a real case in our datasets, the account was logged in by 
both the owner and the attacker, who were in different time zones

Fig. 3  In a real case in our datasets, the weight of the MOwner is only 
0.64, which means that there is a different login behavior, represented 
in the figure as Potential Attackers 

Table 1  Four possible cases of the mixture model and the 
corresponding determination results

Low credibility reference 
model

High credibility 
reference 
model

Large ω 3.suspicious 1.normal

Small ω 4.suspicious 2.suspicious
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contrast, if both the owner and the attacker log in simul-
taneously during that period, we will observe a volatile 
series.

Distance series: We can use different IP address 
attributes to represent the IP space, such as the geo-
graphic location of an IP address or the Autonomous 
System (AS) to which an IP address belongs. However, 
if the IP addresses used by the attacker and the owner 
belong to the same AS or are geographically close, 
the extreme variation that should exist is lost. We 
believe that the former is more likely than the latter. 
For instance, both the attacker and the owner might 
use the cloud service of the same ISP, but it is relatively 
rare that the attacker uses an IP address close to the 
owner. Therefore, we opt to use the geographic loca-
tion of the IP address to represent spatial features. 
The latitude/longitude of an IP address constitutes a 
two-dimensional feature. By calculating the distance 
between geographic locations, we can obtain a one-
dimensional series convenient for measurement. There 
are several methods to convert the latitude/longitude 
series into a distance series, such as calculating differ-
ential distances or cumulative travel distances.

Anomaly evaluation: Various indicators can be 
employed to assess the volatility of a series, such as 
standard deviation and coefficient of variation (CV). 
Nonetheless, these indicators can only reflect the 
degree of extreme volatility in a series, and not its 
frequency. To evaluate the commonality of volatility, 
entropy can be utilized to determine the complexity 
of a series. A series with high complexity corresponds 
to a larger entropy value and vice versa. In the scenar-
ios under study, attackers are less likely to carry out 
attacks frequently to minimize exposure risk. Hence, if 
the volatility in a series is frequent, we tend to assume 
that the owner is responsible for it (e.g., using prox-
ies). Combining standard deviation and entropy, we 
can identify a series with extreme, yet uncommon, 

volatility. That is, when the login location is typically 
stable, but undergoes frequent changes during a par-
ticular time, we can infer that the account may have 
been compromised.

Complementarity
When the time zones of the attacker and the owner are 
close, it may be difficult to distinguish them based on 
temporal characteristics alone. In such scenarios, it is 
highly likely that the owner and attacker have alter-
nate logins. Therefore, spatial characteristics can still 
be used to detect compromised accounts. Conversely, 
if the attacker and the owner do not have alternate 
logins, they may be in different time zones. In this 
case, temporal characteristics can be used to detect the 
compromise.

As a result, both aspects mentioned above must be 
considered when detecting compromised accounts. We 
have designed a framework to characterize both tem-
poral and spatial behaviors, which we will describe in 
detail in the following section.

Framework design
Based on the above understanding, we propose CEAD, a 
compromised email accounts detection framework. As 
shown in Fig.  5, CEAD contains two main modules for 

Fig. 4  The alternating logins of the attacker and owner generate a 
login series with extreme volatility

Fig. 5  The architecture of CEAD
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characterizing logins’ temporal and spatial behaviors, 
two mechanisms for determining anomaly of characteri-
zation results. First, we introduce the method of building 
and fitting a mixture model and the method of screening 
suspicious subnets. Second, We introduce the method of 
measuring the spatial variation in login behavior. Lastly, 
we illustrate the use of CEAD.

Temporal behavior characterization
As previously mentioned, we expect to build a mix-
ture model to describe the temporal distribution of 
login behaviors and to evaluate the similarity between 
the reference model and the mixture model based on 
the weight. By incorporating the reliability of the refer-
ence model, we can estimate the likelihood of an account 
being compromised.

Application of GMM and EM
The Gaussian mixture model (GMM) (Reynolds 2009) 
can be applied to our work with minor modifications, as 
it is capable of fitting almost any distribution. Addition-
ally, the expectation maximization (EM) algorithm (Xu 
and Jordan 1996) is applicable in our scenario, as it is 
often used to estimate the parameters of GMMs.

GMM utilizes K Gaussian distributions with distinct 
parameters to fit the data, where each Gaussian dis-
tribution has its own ω , µ , and σ . Here, ω represents 
the weight of the Gaussian distribution in the mixture 
model, and µ and σ denote the mean and standard devia-
tion, respectively. In our scenario, we expect a mixture 
model like Eq. 2, so we use the MReference to replace the 
first Gaussian distribution and fit the MOthers with the 
remaining K − 1 Gaussian distributions. Thus the mix-
ture model can be expressed as

where K−1
k=0 ωk = 1.

Building the reference model: We use the logins from the 
most active IP addresses as the primary data and employ 
kernel density estimation (KDE) (Wikipedia 2022c) to 
estimate the reference model. Initially, we count the num-
ber of logins from each subnet for each account during a 
specified time period, such as one subnet’s lifetime. Next, 
we choose the most active subnets, based on the num-
ber of logins, and use their login events as the basic data. 
We convert the login time to seconds of a day, ignoring 
the date, to create a list L, where each element falls within 
the range of 0–86,400. KDE can estimate the probability 
distribution based on discrete data, and hence, we can 

(3)MMixture = ω0MReference +

K−1
∑

k=1

ωkN (µk , σk)

estimate the reference model using L as the input for 
KDE.

We chose to use subnets as the base unit because using 
individual IP addresses could result in too many small 
data fragments due to the use of DHCP, even if the IP 
addresses belonged to the same person, making it chal-
lenging to construct a model. In selecting the subnet size, 
we cannot directly determine it based on autonomous 
systems (AS) since some subnets may be too large, with 
over a million IP addresses. Nur and Tozal (2018) showed 
that the /24 is the most commonly used prefix, and the 
attacker and the owner are less likely to use the same 24/ 
subnet. Hence, we considered it reasonable to choose the 
/24 prefix as the subnet size.

Estimating the parameters: The advantage of utilizing 
Eq. 3 is that it does not alter the EM estimation process 
for the µ s, σ s, and ω s in GMM, even though the refer-
ence model does not include µ and σ . In our scenario, we 
are particularly interested in the results of ω0 rather than 
the µ s, σ s, and ω s for the other Gaussian distributions.

Initial parameters: The EM algorithm requires initial 
parameters before starting the iteration, including K, 
ω0...ωk , µ0...µk , σ0...σk . Different initial parameters may 
result in distinct final fitting results. However, since we 
are primarily concerned with the resulting weights rather 
than the model’s fitness, we will not excessively opti-
mize the model fit by adjusting these hyperparameters. 
Therefore, we provide a guideline for setting these initial 
parameters.

First, we consider K = 11 as sufficient, as we use K − 1 
Gaussian distributions to describe the MOthers , which 
only contains a small amount of data and does not require 
a large K. Second, ω0 should be set to a large value, such 
as 0.99, which assumes that all logins initially belong to 
the reference model, and may gradually decrease as the 
EM algorithm iterates if some of the logins do not belong 
to the reference model. Third, for K − 1 Gaussian distri-
butions, the weights are equally divided (1− ω0) , and µ s 
are uniformly spaced on the range of 0–86,400. Addition-
ally, all Gaussian distributions have the same σ , and the 
value should not be too small, as this may lead to a low 
probability of a certain login on a certain Gaussian dis-
tribution and cause the EM program to exit prematurely.

Subnet reputation
Since the reference model is built based on the logins of 
the most active subnets, it is important to comprehen-
sively consider the credibility of these subnets. Ho et al. 
(2017) proposed an evaluation method for sender reputa-
tion that uses two features about logins from a new city, 
which could be adapted for our scenario with appropri-
ate modifications. However, this method faces several 
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challenges in complex scenarios. First, the results may 
not be accurate since all previous data must be assumed 
to be benign at the beginning of the analysis. Second, it 
may not yield satisfactory results in certain special sce-
narios. For instance, if an employee uses a proxy that is 
only used by themselves, the number of users and logins 
may be relatively small, resulting in a lower reputation for 
an otherwise benign behavior.

We propose a method for evaluating subnet reputa-
tion based on three features: the average of the cumula-
tive ratio of logged-in days ( FeatureA ), the average of the 
cumulative ratio of logged-in times ( FeatureB ), and the 
coefficient of the number of login protocols(FeatureC).

Formally, Given a set {Ei : 1 ≤ i ≤ k , k ∈ Z
+} , where 

Ei represents the email account logged in by subnet ′ , the 
FeatureA can be calculated by

where dEisubnet′ denotes the number of days subnet′ has 
logged in to Ei . max(D

Ei
subnets) denotes the maximum 

number of the logged-in days of all subnets that have 
logged in to Ei . Similarly, the FeatureB can be calculated 
by

When a subnet uses a variety of login methods, we 
consider it to be more trustworthy because for legiti-
mate users, the login protocols are more random. Thus, 
FeatureC can be calculated by

We incorporate these three features into our method 
based on the following rationale: if a subnet logs in many 
accounts, it will be considered to have a high reputation 
only if the subnet has more active days and more logins 
in each account. Conversely, if a subnet logs in to many 
accounts but is inactive in all of them, it will receive a 
lower reputation. This is particularly relevant in sce-
narios where batch attack campaigns are targeting mul-
tiple accounts. Additionally, when a subnet uses more 
protocols, it is deemed more credible. This is because 
an attacker may not use too many login methods at the 
same time when trying to steal emails or move laterally, 
due to purposeful considerations. Furthermore, by using 
FeatureC , we can also filter out some DHCP subnets, as 
these users have a higher randomness of login protocols.
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1
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(6)FeatureC = 0.1× 2the_number_of _login_protocols−1

Based on these three features, we can construct a for-
mula to calculate reputation, as demonstrated in the 
configuration example in the evaluation section. Other 
calculation methods can be attempted, such as assigning 
different weights to each feature and summing them up. 
Considering the information represented by the features, 
the reputation result should be positively correlated with 
all these three features.

Lifetime of subnet
To tackle the issue of unbalanced login data between the 
owner and attacker, where the attacker’s data may be mis-
taken as noise, we introduce the concept of subnet life-
time. Specifically, we identify a subnet’s earliest and latest 
occurrence time in login logs and analyze the data within 
this period separately. This allows us to examine whether 
the behavior of the newly-appeared-subnet during the 
period of interest differs from the account’s primary login 
behavior.

There are three possible cases that we consider. The 
first case is when a newly-appeared-subnet has the high-
est number of logins throughout its lifetime, which leads 
us to speculate that the user may have changed their pri-
mary login method. The second case is when a newly-
appeared-subnet does not have the highest number of 
logins. In this case, we use the login data of subnets with 
more logins than the newly-appeared-subnet to build a 
reference model. The third case is when the lifetime of 
the newly-appeared-subnet is less than one day or the 
number of logins is too small to build a model. For the 
second case, we use two thresholds to determine whether 
the subnet is malicious. For the first and third cases, we 
assign corresponding labels.

Anomaly determination
After fitting, we obtain a series of ω0 s and reputations, 
as illustrated in Fig.  6. It should be noted that a single 
subnet may have multiple points within a subfigure, as it 
may log in to more than one email account. To classify 
the results, we use two thresholds, ω′ and rep′ , to divide 
the data into four areas, corresponding to Table 1. In the 
results of subnet reputation, high-reputation subnets are 
indeed trustworthy, but low-reputation subnets may not 
necessarily be suspicious. This may be due to inaccurate 
subnet division, resulting in smaller feature values for 
each subnet. Therefore, we designate the upper-right cor-
ner of a subfigure as the trusted area and the lower-right 
corner as the suspicious area.

Vertical and horizontal comparisons: We can obtain 
a list of potentially malicious subnets from the suspi-
cious area. However, this list can still be a significant 
burden for analysts to investigate, so we further filter the 
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Fig. 6  Temporal characterization result of 9 datasets
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suspicious list. First, if a subnet in the suspicious list has 
other results in the trusted area, we exclude it. In such 
cases, where a subnet appears abnormal in one account 
but normal in others, the anomaly may be caused by 
the user’s peculiar usage habit. Second, if a subnet in 
the suspicious list has a similar distribution to any other 
trusted subnet that has logged in to the same account, 
we exclude it. Trusted subnets include subnets with a 
reputation above the threshold and subnets in the trusted 
area. In such cases, the anomaly may be caused by the 
fact that the owner has multiple benign distributions, but 
the newly-appeared-subnet has been compared to only 
one of them. To compare whether the distributions are 
similar, we use Jensen–Shannon divergence (Wikipedia: 
Jensen–Shannon divergence 2022d).

Spatial behavior characterization
To identify login behaviors that exhibit drastic yet not 
common changes in IP addresses, we utilize the cumula-
tive travel distance as a metric to quantify the magnitude 
of the changes and the two-dimensional sample entropy 
( SampEn2D ) to determine their level of regularity. Specif-
ically, we focus on login behaviors with larger cumulative 
travel distances and smaller values of SampEn2D , as we 
suspect these behaviors to be indicative of email account 
compromise.

Cumulative travel distance
We require a series consisting of appropriate IP 
address attributes that adequately reflect the spatial 
difference between the owner and the attacker. Hao 
et al. (2009) treat IP addresses as a set of numbers from 
0 to 232 − 1 and uses the difference as distance, which 
is inaccurate in some networks. Therefore, we use IP 
address’s geolocation instead of other spatial attributes 
(such as AS), mainly because it is less likely that the 
attacker’s and the owner’s IP addresses are in a nearby 
geographic location compared to being in the same 
AS. In addition, the wide use of IP location services 
makes IP geolocation information easily available, and 
many websites provide such APIs (ipgeolocation 2022; 
MaxMind 2022).

We calculate the geographic distances between every 
two adjacent logged-in IP addresses over a certain 
period of time (e.g., one hour). By accumulating these 
distances, we obtain an indicator that measures the spa-
tial variation of the logins, which we refer to as cumu-
lative travel distance. A larger value of this indicator 
indicates a more drastic change in the login location 
during the specified time period, and increases the like-
lihood of an attacker.

Prevalence of spatial variation
Evaluating anomalies based solely on cumulative travel 
distance is not ideal, as the owner may use a frequently 
changing network, such as using a proxy pool or using 
multiple clients simultaneously. Hence, it is essential to 
assess whether such variations are common in other time 
periods. Various tools, such as approximate entropy and 
sample entropy, can be utilized to evaluate the complex-
ity of a one-dimensional series. In our scenario, we need 
to investigate the complexity of both hourly and daily 
variations.
SampEn2D (Silva et al. 2016) is well suited to our sce-

nario, which is usually used to assess irregularity in 
images. In short, SampEn2D has two parameters: m and 
r. Parameter m is responsible for setting the window size 
that is used to search the matching patterns all over the 
matrix; parameter r is responsible for setting tolerance, 
i.e., when r is larger, the matching criteria become more 
permissive.

We generate a two-dimensional matrix using the 
cumulative travel distances to visualize the spatial varia-
tion over time. Assuming the email account’s lifetime is 
N days, the matrix has a shape of N by 24, as illustrated 
in Fig. 7. If the entropy of the matrix is higher, it implies 
that the matrix’s complexity is greater, indicating that the 
spatial variation is more common. From Fig.  7, we can 
observe that the account rarely changes its IP address 
during regular times, but it frequently changes its IP 
address for consecutive days. The corresponding matrix 
has a lower entropy value and a larger cumulative travel 
distance, suggesting that the account might have been 
compromised.

Fig. 7  Spatial characterization result of an email account in Dataset-1
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Ranking
We introduce the scoring function s(std, en) to evaluate 
email accounts’ spatial behavior, where accounts with 
higher scores are more likely to be compromised. The 
function has two parameters: std, the standard devia-
tion of the cumulative travel distance series, which meas-
ures the extremeness of the spatial variation, and en, the 
SampEn2D value of the matrix constructed as described 
above, which measures the commonness of the spatial 
variation. The function is fuzzable and only needs to 
ensure that the score is positively correlated with std and 
inversely correlated with en. Similarly, we could use two 
thresholds to divide the results into four areas, but this 
requires additional processing of the cumulative travel 
distances due to their wide range of values and lack of a 
reference standard. Once we score all email accounts, we 
can obtain a ranked list of accounts based on their likeli-
hood of compromise.

Application architecture
When characterizing the logins’ temporal behavior, we 
propose the concept of lifetime of subnet, so the frame-
work does not need too many days of login logs as input. 
Meanwhile, when characterizing the logins’ spatial 
behavior, the number of days is used as a dimension of 
the matrix, and there is no over-reliance on historical 
logs when calculating the SampEn2D . Consequently, our 
framework would work fine for continuous input logs 
with a monthly or quarterly diagnosis window. In addi-
tion, we can use the framework to check for compromise 
immediately after a severe vulnerability is disclosed or an 
APT campaign is revealed.

The architecture of CEAD consists of a temporal 
behavior characterisation module and a spatial behav-
ior characterisation module. In detecting compromised 
email accounts, CEAD has four stages: preparation, char-
acterisation, determination, and diagnosis.

Preparation stage: In the preparation stage, we extract 
four basic features: protocol, datetime, IP address and 
email account, from the input login logs and store them 
in the database. Additionally, we need to establish an 
IP-Geo database to query geolocation according to IP 
address.

Characterization stage: In the characterization stage, 
we begin by assessing the reputation of the subnet based 
on the input logs and store the results in the database. 
Once the temporal behavior characterization module is 
completed, we obtain a corresponding result tuple (w, 
rep) for each subnet. Similarly, once the spatial behav-
ior characterization module is completed, we obtain 
a corresponding result tuple (std, en) for each email 
account. Notably, we build reference models for each 

login protocol individually as email account owners may 
have distinct usage patterns when using different proto-
cols (which could correspond to different clients). For 
instance, employees may use webmail during the day and 
mobile applications after work hours. To mitigate false 
positives for protocols that are used infrequently in char-
acterizing spatial behavior, we construct the cumulative 
travel distance matrix for each protocol first and then 
aggregate them.

Determination stage: For the temporal characterization 
results, we set two thresholds to obtain an initial list of 
suspicious subnets from the suspicious area. Then, we fil-
ter the initial list both horizontally and vertically and out-
put a subnet list, which is then sorted by their reputation. 
For the spatial characterization results, we use s(std, en) 
to score each account and output a list of accounts sorted 
by their score. Next, we convert the obtained subnet list 
and account list into the same form and merge them. 
Specifically, for each subnet output by the temporal char-
acterization module, we find all accounts that have been 
logged in to by that subnet and generate an ordered list 
L1, for example, [ (account1, subnet1) , (account2, subnet1)
... (accountn, subnetm) ]. Similarly, for each account output 
by the spatial characterization module, we find all suspi-
cious subnets that have logged in to that account and gen-
erate an ordered list L2, for example, [ (account1, subnet1) , 
(account1, subnet2)... (accountp, subnetq) ]. The determina-
tion of suspicious subnets is based on the following cri-
teria: we first identify the hourly blocks with cumulative 
travel distances greater than the mean value of the cumu-
lative travel distance matrix, and then locate the sub-
nets that appear in these blocks, which are subsequently 
sorted by their reputation values. Finally, we merge L2 to 
L1 to produce a final list of account-subnet pairs.

Diagnosis stage: At this stage, security analysts can 
select a number of top-ranked account-subnet pairs for 
analysis based on their workload. If an account is indeed 
compromised, they can assess the damage immediately 
and identify the corresponding IP address as an IoC. 
Based on the accuracy of the analysis results, analysts 
can investigate the reasons and make adjustments, such 
as modifying the subnet size and threshold. Analysts can 
also fine-tune the ranking method to find a suitable con-
figuration for their scenario.

Evaluation and analysis
In this section, we first introduce the datasets that we 
utilized and present the results of the data analysis using 
conventional methods. Next, we describe the configura-
tions that we used to evaluate CEAD. Finally, we analyze 
the evaluation results, compare them with DAS, and 
based on our findings, reveal some previously undis-
closed attack activities.
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Datasets
Our dataset consists of 9 organizations’ email logs. These 
organizations have different sizes and use the same email 
system hosted by a third party. Due to privacy concerns, 
the email service provider only provided login logs. 
Table  2 shows the basic statistics of our datasets. Data-
set-1, Dataset-5, and the rest of the datasets contain 
login logs for 113 days, 70 days, and 277 days, respec-
tively. As can be seen from Table 2, Web and SMTP have 
fewer logins than the other two protocols. In addition, 
the number of unique IP addresses and unique subnets 
may be positively correlated with the number of email 
accounts and the number of days of logs.

After we obtained these data, we conducted a prelimi-
nary investigation of the accounts’ security status using 
standard methods, including (1) making statistics on 
changes in the login location, (2) counting the number of 
IP addresses that have logged in to each account and the 
number of accounts that have been logged in by each IP 
address, and (3) matching IP addresses according to IoCs.

Location-changed logins: We consider a login to be a 
location-changed login if two consecutive logins have 
a geographical distance of more than 100 KM. We then 
calculate the percentage of location-changed logins 
among all logins. As shown in Fig. 1, all datasets contain 
location-changed logins, with the highest percentage 
reaching nearly 25%. However, it is not reliable to evalu-
ate an organization’s email account security solely based 
on the proportion of location-changed logins, as this sta-
tistical characteristic may vary depending on the industry 
and work style of the organization. In almost all datasets, 
Web and SMTP have more location-changed logins than 
the other two protocols. We speculate that the reason for 
this phenomenon is that Web and SMTP are usually used 
when users log in on their own. In contrast, POP3 and 
IMAP are usually used when clients log in continuously 
and automatically.

The number of IP addresses that have logged in to each 
account, and the number of accounts that have been 
logged in by each IP address: Intuitively, if an account is 
accessed from too many IP addresses, it is more likely 
to be compromised. Similarly, if an IP address logs into 
too many accounts, it is considered suspicious. Figures 8 
and 9 depict the statistical results of these indicators. The 
figures show that most email accounts have fewer than 
100 login IP addresses, and only a small fraction of IP 
addresses have accessed more than 10 email accounts. 
However, setting fixed thresholds for these indicators to 
make a determination would introduce a lot of false posi-
tives due to the complex usage scenarios such as the use 
of DHCP or proxy pools.

Identification based on IoCs: When lacking support 
from other labels, it is common to utilize IoCs to match 
suspicious IP addresses. In our study, we employed the 
open-source threat intelligence Alienvault-OTX (Alien-
Vault 2022) as a reference and considered the lag and 
timeliness of IoCs. We deemed an IP address malicious if 
its login time fell between the time when a related pulse 
was released or updated and half a year before the pulse 
was released. Regrettably, the initial matching results 
showed that no IP addresses were identified as malicious 
after matching all IP addresses in the nine datasets. This 
outcome highlights the constraints of relying exclusively 
on threat intelligence.

Therefore, we expanded the matching scope by using 
/24 subnet as the matching range. If there is a match-
ing result for the same subnet IP address as the login IP 
address, the /24 subnet is considered a malicious subnet. 
The matching results are shown in Table  3, where the 
malicious subnets have been anonymized. When identi-
fying malicious subnets, we ignore the matching results if 
the location of the malicious subnet is the common loca-
tion of the email account or if the account owner has a 
habit of using proxies.

Table 2  Statistics for 9 datasets

Unique 
accounts

Unique IP addrs Unique 
subnets 
(/24)

Account-
subnet pairs

Number of logins

Web SMTP POP3 IMAP Total

Dateset-1 323 15,371 2993 8632 25,875 47,642 320,971 1,682,202 2,076,690

Dateset-2 543 29,619 7876 17,580 119,269 24,227 259,891 5,523,264 5,926,651

Dateset-3 1356 84,522 16,709 46,695 312,523 237,120 981,876 19,139,990 2,0671,509

Dateset-4 1040 38,793 8179 21,886 143,113 82,473 3,212,183 7,392,472 10,830,241

Dateset-5 2910 68,924 17,383 40,035 99,755 23,427 691,813 13,900,911 14,715,906

Dateset-6 923 44,435 9018 23,246 149,160 196,680 4,813,528 7,417,580 12,576,948

Dateset-7 1445 86,592 17,490 45,442 274,772 91,222 1,364,399 16,358,601 18,088,994

Dateset-8 1799 61,992 13,727 47,939 207,303 351,734 1,794,550 14,626,653 16,980,240

Dateset-9 745 61,078 12,747 31,563 123,679 24,894 652,664 6,543,363 7,344,600



Page 13 of 21Zhao et al. Cybersecurity            (2023) 6:36 	

After manual analysis, we divide the final matching 
results into two categories: confirmed malicious subnets 
and uncertain ones. Confirmed malicious subnets are 
determined based on the existence of sufficient and obvi-
ous attack behavior features. If we cannot find sufficient 
evidence to determine a subnet as a malicious one or the 

login frequency of the subnet is too low, we mark it as 
uncertain. These results may be due to either the large 
matching scope or limited log data.

As shown in Table 3, we identified suspicious subnets 
in five datasets after expanding the matching scope. 
Based on the statistics, Dataset-1 suffered more severe 
attacks and was targeted by at least two attack groups. 
Notably, Subnet A in Dataset-1 and subnet K in Data-
set-6 both contained only one IP address, which was also 
the same IP address, and had a high number of logins in 
some email accounts in Dataset-1. This provided us with 
sufficient data to build the attacker’s model. Therefore, if 
CEAD can identify the malicious subnet A in Dataset-1, 
we can identify the corresponding IP address as a new 
IoC, which provides us with the opportunity to discover 
the malicious IP address in Dataset-6, even if that IP 
address has a low login frequency in Dataset-6.

Configuration
Our framework needs to specify some parameters, calcu-
lations and rules for detection, including (1) parameters 
and data selection of mixture model; (2) parameters of 
SampEn2D ; (3) measure function for subnet reputation; 
and (4) anomaly determination rules.

Parameters and data selection of mixture model: In 
our evaluation, we configure the following parameters 
to build a mixture model: (1) K, we set K = 11 , i.e., we 
use one reference model and 10 Gaussian models to fit 
the data; (2) ω s, we set the initial weight of the refer-
ence model to 0.99 and 10 Gaussian models share the 
remaining 0.01 equally; (3) µ s, we set different µ s for the 
10 Gaussian models, and these µ s divide 0–86,400 into 
11 equal segments; (4) σ s, we set the σ s of all Gaussian 
models to 20,000; (5) data, for logins during the lifetime 
of a newly-appeared-subnet, we use login data of sub-
nets with more logins than the newly-appeared-subnet 
to build the reference model, and use the average of the 
reputations of these subnets as the reference model’s 
reputation. Additionally, we ignore subnets with fewer 
logins than the newly-appeared-subnet, that is, we use 
10 Gaussian models to fit the distribution of the newly-
appeared-subnet. If the newly-appeared-subnet has the 
most logins during its lifetime, we mark it as max, and if 
it has less than one day of life or has less than 10 logins, 
we mark it as ne.

Parameters of SampEn2D : m and r are two necessary 
parameters of SampEn2D , representing the window size 
and the tolerance, respectively. In our evaluation, we use 
the default values of m ( 2× 2 ) and r ( 0.2× std).

Measure function for subnet reputation: As previously 
mentioned, we employ FeatureA , FeatureB , and FeatureC 
to assess the reputation of one subnet. We defined the 
calculation of the subnet’s reputation as:

Fig. 8  The number of IP addresses that have logged in to each 
account in our datasets

Fig. 9  The number of accounts that have been logged in by each IP 
address in our datasets

Table 3  IoCs matching results

Subnet In dataset Type IP addrs Associated 
accounts

Maximum 
login 
times

A Dateset-1 Malicious 1 129 24

B Dateset-1 Malicious 9 7 11485

C Dateset-3 Uncertain 1 2 11

D Dateset-3 Uncertain 1 1 14

E Dateset-5 Uncertain 1 1 2

F Dateset-5 Uncertain 1 1 9

G Dateset-5 Uncertain 1 1 1

H Dateset-5 Uncertain 1 1 1

I Dateset-5 Uncertain 1 1 2

J Dateset-5 Uncertain 1 1 1

K Dateset-6 Malicious 1 55 4

L Dateset-7 Uncertain 1 1 2

M Dateset-7 Uncertain 1 1 9
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Determination rules: We use two thresholds to outline 
trusted and suspicious areas. In our evaluation, we using 
different combinations of w′ and rep′ to summarize the 
threshold selection guidelines. Specifically, when rep′ was 
set to the lower bound of the top 30% of all reputation 
values, we set w′ to 0.85, 0.90, and 0.95. When w′ was set 
to 0.90, we set rep′ to the lower bound of the top 10%, 
30%, and 50% of all reputation values.

We score the results of the spatial behavior by 
score = std/en . The email accounts with higher scores 
are more likely compromised.

Detection result
We evaluated our framework on an Ubuntu 18.04 
server with 32 cores and 64 GB of memory. However, 
without ground truth, we are unable to confirm the 

(7)rep = log(FeatureC × (FeatureA + FeatureB))
account-subnet pairs ranked high by CEAD’s output. 
Therefore, we use the IoC matching results in Table 3 as 
a reference.

We first analyzed the detection results of the temporal 
behavior characterization module and the spatial behav-
ior characterization module separately, and then com-
pared the final merged results of CEAD with DAS. In 
addition, we manually analyzed several account-subnet 
pairs with high ranking output by CEAD, in an attempt 
to discover undisclosed attack activities.

Temporal behavior characterization result
Figure 6 shows the results of temporal behavior charac-
terization on the nine datasets. Based on these results, we 
select different combinations of thresholds for w′ and rep′ 
to calculate the detection rate, as shown in Tables 4 and 
5.

Table 4  Detection results of the temporal behavior characterization module for different values of w′ , with rep′ fixed

Dataset w′ Top % of all 
reputation 
values (%)

rep′ Subnets in 
suspicious 
area

Subnets 
after vertical 
filtering

Subnets after horizontal filtering 
(% decrease from the total count)

Associated 
accounts

Detection rate

Dataset-1 0.85 30 −1.83 100 49 22(99.26%) 31 15/132

Dataset-2 0.85 30 −1.87 203 127 78(99.01%) 100 –

Dataset-3 0.85 30 −1.79 649 259 106(99.37%) 135 0/3

Dataset-4 0.85 30 −1.93 529 275 107(98.69%) 142 –

Dataset-5 0.85 30 −1.27 427 240 141(99.19%) 217 1/6

Dataset-6 0.85 30 −1.69 420 216 77(99.15%) 109 4/55

Dataset-7 0.85 30 −1.86 676 300 102(99.42%) 136 1/2

Dataset-8 0.85 30 −1.79 679 302 150(98.91%) 193 –

Dataset-9 0.85 30 −2.06 164 68 35(99.73%) 94 –

Dataset-1 0.90 30 −1.83 134 65 31(98.96%) 153 130/132

Dataset-2 0.90 30 −1.87 265 168 100(98.73%) 117 –

Dataset-3 0.90 30 −1.79 790 346 139(99.17%) 184 0/3

Dataset-4 0.90 30 −1.93 641 360 142(98.26%) 181 –

Dataset-5 0.90 30 −1.27 534 318 194(98.88%) 299 1/6

Dataset-6 0.90 30 −1.69 517 288 117(98.70%) 154 7/55

Dataset-7 0.90 30 −1.86 834 394 145(99.17%) 178 1/2

Dataset-8 0.90 30 −1.79 825 399 197(98.56%) 248 –

Dataset-9 0.90 30 −2.06 243 105 62(99.51%) 119 –

Dataset-1 0.95 30 −1.83 178 91 43(98.56%) 170 130/132

Dataset-2 0.95 30 −1.87 366 255 146(98.15%) 148 –

Dataset-3 0.95 30 −1.79 1000 495 188(98.87%) 223 0/3

Dataset-4 0.95 30 −1.93 790 487 207(97.47%) 231 –

Dataset-5 0.95 30 −1.27 705 438 275(98.42%) 379 1/6

Dataset-6 0.95 30 −1.69 666 399 188(97.92%) 210 13/55

Dataset-7 0.95 30 −1.86 1053 544 215(98.77%) 236 1/2

Dataset-8 0.95 30 −1.79 1022 527 265(98.07%) 362 –

Dataset-9 0.95 30 −2.06 372 195 105(99.18%) 153 –
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Table  4 shows the effect of different values of w′ on 
the results when rep′ is fixed. It can be observed that as 
the threshold for w′ increases, the similarity judgement 
becomes more stringent, resulting in more suspicious 
subnets and associated email accounts. This increases 
the probability of successfully identifying compromised 
email accounts but also places a greater workload on the 
analysis team.

Table  5 shows the effect of different values of rep′ on 
the results when w′ is fixed. The reputation threshold 
mainly affects the initial output subnet count and filter-
ing strength. A lower reputation threshold yields more 
initial subnets but also means more subnets will be fil-
tered in the future. If analysts have a good understanding 
of subnet division and are confident in the subnet reputa-
tion, they should lower the reputation threshold, and vice 
versa.

Overall, CEAD’s temporal behavior characterization 
module significantly reduced the number of suspicious 

subnets that require investigation compared to the origi-
nal number of subnets, greatly reducing the workload of 
analysts and successfully detecting the confirmed mali-
cious subnet A. For other suspicious subnets that were 
not detected, we conducted manual analysis and summa-
rized the reasons into three points:

•	 The distribution of the subnet is similar to the refer-
ence model, that is, there is no obvious time zone dif-
ference between them, resulting in the subnet being 
classified into the trusted area. Subnets B, C, and D 
belong to this category. We will show in later sections 
that these subnets can be detected through the spa-
tial behavior characterization module.

•	 The subnet has too few login events to build a model. 
Subnets E, F, G, H, I, J, L, and M belong to this cat-
egory. Although some of the compromised email 
addresses were identified in the results, they were 
not detected through these targeting subnets. We 

Table 5  Detection results of the temporal behavior characterization module for different values of rep′ , with w′ fixed

Dataset w′ Top % of all 
reputation 
values (%)

rep′ Subnets in 
suspicious 
area

Subnets 
after vertical 
filtering

Subnets after horizontal filtering 
(% decrease from the total count)

Associated 
accounts

Detection rate

Dataset-1 0.90 10 −0.56 61 50 30(99.00%) 187 131/132

Dataset-2 0.90 10 −0.42 194 158 120(98.48%) 193 –

Dataset-3 0.90 10 −0.28 436 336 192(98.85%) 464 2/3

Dataset-4 0.90 10 −0.44 461 336 184(97.75%) 317 –

Dataset-5 0.90 10 −0.11 262 213 176(98.99%) 564 1/6

Dataset-6 0.90 10 −0.25 292 234 148(98.36%) 283 11/55

Dataset-7 0.90 10 −0.31 513 380 174(99.01%) 285 1/2

Dataset-8 0.90 10 −0.28 626 481 306(97.77%) 507 –

Dataset-9 0.90 10 −0.50 125 78 32(99.75%) 121 –

Dataset-1 0.90 30 −1.83 134 65 31(98.96%) 153 130/132

Dataset-2 0.90 30 −1.87 265 168 100(98.73%) 117 –

Dataset-3 0.90 30 −1.79 790 346 139(99.17%) 184 0/3

Dataset-4 0.90 30 −1.93 641 360 142(98.26%) 181 –

Dataset-5 0.90 30 −1.27 534 318 194(98.88%) 299 1/6

Dataset-6 0.90 30 −1.69 517 288 117(98.70%) 154 7/55

Dataset-7 0.90 30 −1.86 834 394 145(99.17%) 178 1/2

Dataset-8 0.90 30 −1.79 825 399 197(98.56%) 248 –

Dataset-9 0.90 30 −2.06 243 105 62(99.51%) 119 –

Dataset-1 0.90 50 −3.11 166 74 36(98.80%) 152 130/132

Dataset-2 0.90 50 −3.31 306 188 96(98.78%) 128 –

Dataset-3 0.90 50 −3.29 1012 393 164(99.02%) 177 0/3

Dataset-4 0.90 50 −3.43 741 356 133(98.37%) 165 –

Dataset-5 0.90 50 −2.42 811 417 234(98.65%) 273 0/6

Dataset-6 0.90 50 −3.13 617 302 106(98.82%) 126 6/55

Dataset-7 0.90 50 −3.42 1057 436 181(98.97%) 203 1/2

Dataset-8 0.90 50 −3.30 941 400 184(98.66%) 230 –

Dataset-9 0.90 50 −3.62 349 141 86(99.33%) 82 –
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will investigate these compromised email accounts in 
later sections to determine whether their associated 
subnets belong to undisclosed malicious subnets.

•	 Although the subnet has a small number of logins 
and cannot build a model, it can be identified 
through intelligence sharing. Malicious subnet K 
belongs to this category.

Comparison with Jensen–Shannon Divergence The 
CEAD’s temporal behavior characterization module uti-
lizes the weight of the reference model to measure the 
similarity between the reference model and the mixture 
model. To demonstrate the superiority of our method, we 
conducted additional experiments. In these experiments, 
we used Jensen–Shannon divergence to measure the sim-
ilarity between distributions and compared them in two 
ways: (1) by comparing the similarity between the refer-
ence model and the newly-appeared-subnet’s model, and 
(2) by comparing the similarity between the reference 
model and the mixture model.

Figure 10 illustrates the number of subnets with simi-
larity lower than a certain threshold for the three meth-
ods. ω-RM-MM represents the similarity between the 
reference model and the mixture model, calculated 
by our approach; js-RM-MM represents the similarity 
between the reference model and the mixture model, cal-
culated by Jensen–Shannon divergence; js-RM-Subnet 
represents the similarity between the reference model 
and the distribution of a newly-appeared-subnet, calcu-
lated by Jensen–Shannon divergence.

Since the more similar the distributions, the smaller 
the value of the Jensen–Shannon divergence. Thus, we 
use the value of 1− Jensen–Shannon divergence in the fig-
ure to be able to compare. The results in Fig. 10 are only 

shown for Dataset-1, and the results on other datasets are 
similar.

Based on the results, the majority of reference model 
and newly-appeared-subnet models are dissimilar. This is 
mainly because in most cases, the data used to build the 
reference model and the newly-appeared-subnet model 
are imbalanced and may differ greatly, resulting in treat-
ing noise data as an independent distribution for compar-
ison. In addition, the approximate linear results will pose 
a challenge in selecting the threshold. Even if we set a low 
threshold, this method will still output many subnets for 
analysis. Therefore, this similarity comparison method 
should not be used in practical implementation. It should 
be noted that the reason we are able to use Jensen–Shan-
non divergence for both horizontal and vertical filtering 
is that our objective is to identify subnets with similarity 
above a certain threshold (similar to the nonlinear part 
of the results in the upper right corner of Fig. 10), rather 
than those with dissimilarity below the threshold.

Comparing the similarity between the reference model 
and mixture model can avoid the aforementioned issue 
of data imbalance. This is because, after incorporating 
the data for constructing the newly-appeared-subnet’s 
model, the data sizes for the reference model and mixture 
model are not significantly different in most cases, mak-
ing the comparison more reasonable.

Based on Fig.  10, the performance of ω-RM-MM 
and js-RM-MM is almost identical when the similarity 
between the reference model and mixture model is very 
high or low. However, when the similarity falls within 
other ranges, ω-RM-MM is more discriminative. In other 
words, if we need to set a threshold to obtain a list of sus-
picious subnets, using the former method will yield fewer 
subnets.

Spatial behavior characterization result
Figure 11 shows the results of spatial behavior characteri-
zation on 9 datasets. Based on these results, we scored 
and ranked email accounts, and Table 6 shows the detec-
tion rate of compromised email accounts in the top 10%, 
20%, and 30% of ranked accounts by the spatial behavior 
characterization module.

From Table  6, it can be seen that when the top 30% 
ranked email accounts are taken as the analysis object, 
almost all compromised email accounts are detected, 
except for some compromised email accounts associated 
with malicious subnet A and K in Dataset-1 and Data-
set-6. Especially for the malicious subnet B, among the 7 
email accounts that were logged in by it, 3 of them are 
ranked in the top 10. For the malicious subnet A and K, 
the time zone difference between the subnet’s activity 
time and the owner’s activity time, or the fact that there 
are only a few login events in some email accounts, led to 

Fig. 10  The results of using three different similarity comparison 
methods on Dataset-1
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Fig. 11  Spatial characterization result of 9 datasets
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the lack of obvious alternating login behaviors, which was 
not reflected in the cumulative travel distance matrix as 
an anomaly. For the compromised email accounts associ-
ated with the other subnets in Table 3, even though the 
number of logins from the identified suspicious subnets 
was relatively small, CEAD’s spatial behavior analysis 
module successfully detected these accounts. Therefore, 
we speculate that the attackers may have used other IP 
addresses that have not been identified as IoCs, which 
ultimately led to anomalous login series being detected 
by our method.

Comparison with DAS
We compared the performance of CEAD and DAS  (Ho 
et  al. 2017) when using only login logs. DAS extracts 
two features from login logs when a login event 
E = (account ′, IP address′) occurs: (1) the number of 
users who have logged in from the city where IP address′ 
is located before this event, and (2) the number of times 
account ′ has logged in from that city before this event.

We made some modifications to DAS to make it appli-
cable to our scenario:

•	 We replaced all IP addresses used in feature extrac-
tion in DAS with the /24 subnet to which the IP 
address belongs.

•	 During the scoring and ranking process, we only 
used the features of the first occurrence of the 
account-subnet pair for calculation, rather than for 
all login events. There are three main reasons for 
this: (1)when using only login logs, the two feature 
values of a later login event for the same account-
subnet pair will always be greater than or equal to 
those of the first event, leading to a lower ranking 
for the later event; (2)as DAS’ features are based on 
statistical analysis of historical data, the features of 
the first occurrence of an account-subnet pair (a 

login from an unseen IP address) are most likely to 
indicate the likelihood of an email account being 
compromised; (3)DAS ranks N objects with a cal-
culation complexity of N 2 , thus ranking account-
subnet pairs rather than all login events signifi-
cantly reduces computational costs.

•	 As DAS requires training data, we selected the first 
eighth of the data in each dataset as the training 
data for DAS.

After making the above modifications to DAS, both 
CEAD and DAS output rankings of account-subnet 
pairs. To compare which ranking is more effective, or 
more helpful for analysts, we designed a comparison 
method. We select 10%, 20%, and 30% of the total num-
ber of account-subnet pairs in each dataset as the work-
load threshold for analysts. For the rankings provided 
by CEAD and DAS, we count the number of compro-
mised email accounts included within each workload 
threshold and use the hit rate as the evaluation metric. 
The results of the comparative experiments are shown 
in Table  7. In the comparative experiment, the ω′ of 
CEAD’s temporal characterization module is set to 0.9, 
and rep′ is set to the lower bound value of all top 30% 
reputations.

From Table 7, it can be observed that when the work-
load threshold is low, CEAD outperforms or is compa-
rable to DAS in all datasets except Dataset-6. However, 
when the workload threshold is high, DAS detects more 
compromised email accounts. This suggests that CEAD 
is better at ranking potentially compromised email 
accounts higher, but its detection results are not as 
comprehensive as those of DAS. CEAD’s performance 
on Dataset-6 is worse than DAS, because the login fre-
quency of associated malicious subnets is extremely 
low, making it difficult for our method to model them, 

Table 6  Detection results of the spatial behavior characterization module

Dataset Top 10% Top 20% Top 30%

Emails accounts Detection rate Emails accounts Detection rate Emails accounts Detection rate

Dataset-1 29 8/132 58 27/132 87 39/132

Dataset-2 46 – 93 - 140 –

Dataset-3 125 2/3 250 3/3 376 3/3

Dataset-4 82 – 165 – 247 –

Dataset-5 252 3/6 505 4/6 758 5/6

Dataset-6 73 11/55 147 20/55 220 28/55

Dataset-7 121 2/2 243 2/2 365 2/2

Dataset-8 150 – 301 – 452 –

Dataset-9 65 – 131 – 197 –
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and the too few login behaviors did not cause a sig-
nificant increase in the cumulative travel distance. 
However, if we consider intelligence sharing, CEAD’s 
detection performance will be improved.

Additionally, the selection of training data has a sig-
nificant impact on the detection results of DAS. We 
compared the detection rate of CEAD and DAS with 
different learn sizes when the workload threshold is 
20%, and the results are shown in Table  8. It can be 
observed that using too little or too much training data 
in DAS cannot achieve satisfactory results. Too little 
training data can result in normal account-subnet pairs 
being ranked higher, while too much training data may 
include abnormal account-subnet pairs in the training 
data. In contrast, CEAD uses the concept of subnet life-
time and cumulative travel distance matrix, and does 
not overly rely on the size of the logs or require addi-
tional training data.

Undisclosed malicious subnet detection results
After analyzing a portion of the account-subnet pairs in 
the ranking output of CEAD, we found some highly sus-
picious login behaviors. We hereby list some subnets and 
accounts that exhibit clear abnormal behavior and do not 
match any IoCs as follows:

•	 In Dataset-1, there exists a malicious subnet N which 
is ranked 17th by the temporal characterization mod-
ule. This subnet contains only one IP address and has 
logged in to three email accounts. The login meth-
ods, activity dates, and distribution of this subnet 
across the 3 email accounts are all very similar, and 
the city where the IP address is located is not a usual 
location for any of the accounts. Therefore, we infer 
that this malicious subnet is an infrastructure used by 
an attack organization in a single attack campaign.

Table 7  Detection rate of CEAD and DAS at different workload thresholds

The bold in the table is to highlight the system that perform better

Dataset Total pairs Top 10% Top 20% Top 30%

Pairs to be 
analyzed

CEAD DAS Pairs to be 
analyzed

CEAD DAS Pairs to be 
analyzed

CEAD DAS

Dataset-1 8632 863 132/136 20/136 1726 134/136 93/136 2589 135/136 136/136
Dataset-2 17580 1758 – – 3516 – – 5274 – –

Dataset-3 46695 4669 1/3 0/3 9339 3/3 3/3 14008 3/3 3/3

Dataset-4 21886 2188 – – 4377 – – 6565 – –

Dataset-5 40035 4003 3/6 3/6 8007 4/6 6/6 12010 5/6 6/6
Dataset-6 23246 2324 7/55 19/55 4649 13/55 55/55 6973 20/55 55/55
Dataset-7 45442 4544 2/2 0/2 9088 2/2 1/2 13632 2/2 1/2

Dataset-8 47939 4793 – – 9587 – – 14381 – –

Dataset-9 31563 3156 – – 6312 – – 9468 – –

Table 8  Detection rate of CEAD and DAS with different learn sizes

Dataset Total pairs Pairs to be 
analyzed

CEAD DAS with different learn sizes

0 1/8 1/4 1/2

Dataset-1 8632 1726 134/136 39/136 93/136 117/136 56/136

Dataset-2 17580 3516 – – – – –

Dataset-3 46695 9339 3/3 1/3 3/3 3/3 3/3

Dataset-4 21886 4377 – – – – –

Dataset-5 40035 8007 4/6 4/6 6/6 6/6 6/6

Dataset-6 23246 4649 13/55 55/55 55/55 55/55 0/55

Dataset-7 45442 9088 2/2 1/2 1/2 1/2 1/2

Dataset-8 47939 9587 – – – – –

Dataset-9 31563 6312 – – – – –
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•	 In Dataset-1, there are anomalies in email accounts 
ranked third and fourth in the spatial behavior char-
acterization results. These two email accounts do not 
have a habit of using proxies, but their occasional 
logins from faraway locations resulted in an abnor-
mal cumulative travel distance. The malicious subnet 
associated with the first email account also logged in 
to four other email accounts, and the login frequency 
in these accounts was very low. We speculate that 
this is the attacker’s attempt to verify leaked account 
information. The malicious subnet associated with 
the second email account also logged into 15 other 
email accounts within three hours of a day, with each 
account being logged in only 1–2 times. Their activ-
ity dates and login methods are similar to those of 
malicious subnet A, so we speculate that they belong 
to the same attack organization.

•	 In Dataset-6, there is an anomaly in the spatial 
behavior characterization result of the 13th ranked 
email account. The account does not exhibit any 
proxy usage habit, and it is associated with two mali-
cious subnets that both perform password verifica-
tion. One of the subnets has logged in to 19 email 
accounts, and the other has logged in to 26 email 
accounts. The behavior of one of the subnets is simi-
lar to the one observed in malicious subnet A, sug-
gesting that they belong to the same attacking organ-
ization.

Based on discovered real attack cases, we summa-
rized several characteristics of APT groups when steal-
ing emails. First, the same attacker uses changing IP 
addresses to carry out attacks. For example, the attack 
organization corresponding to the malicious subnet A 
used IP addresses from at least 3 different subnets to 
access the victim’s email account. Second, attackers adopt 
different strategies for different targets. For high-value 
targets, attackers will track for a long time, while for most 
other targets, they rarely log in after verifying their access 
permissions. Third, the number of email theft attacks far 
exceeds lateral phishing attacks. Fourth, attackers use a 
combination of manual and automated attack methods. 
They first verify account permissions manually and filter 
out high-value targets, and then use automated tools to 
steal emails for a long time. This is mainly reflected in the 
fact that the malicious subnet used one protocol for the 
first login and another protocol for subsequent logins.

Discussion and limitations
In this section, we summarize some limitations of our 
framework, and briefly describe our framework’s effi-
ciency and extensibility.

Limitations
The evaluation results demonstrate that our approach 
can (1) effectively ranking the suspicious account-
subnet pairs towards the top and (2) identifying previ-
ously undisclosed malicious IP addresses. However, our 
approach does have some limitations in the following 
areas.

Application scenario: First, our approach detects com-
promised email accounts by identifying login behaviors 
that do not belong to the owner. However, in actual enter-
prise settings, some accounts are used by multiple users, 
which may lead to false positives. Second, our approach 
is designed to support attribution and forensic efforts, 
and may not be easily retrofitted for real-time detec-
tion methods. Third, our approach primarily focuses on 
detecting compromised email accounts within enterprise 
settings. It may not be able to detect fake accounts that 
are maliciously registered by adversaries through auto-
mated means, as they may not exhibit normal behaviors 
for comparison.

Sparse logins and subnet size: The evaluation of our 
approach revealed that it may not be effective in detect-
ing malicious subnets with sparse logins. If attackers uti-
lize frequently changing IP addresses, such as through 
Tor or proxy pools, to target different accounts, our 
framework may not be capable of detecting such activi-
ties. Furthermore, the size of the subnet also plays a 
significant role in the accuracy of detection results. An 
unreasonable subnet size may lead to inaccurate repu-
tation computations and ultimately produce incorrect 
characterization results. In contrast, by applying our 
framework with a more reasonable subnet size reference, 
security teams may achieve better results.

Evasion strategies: Adversaries may alter their strat-
egies to evade detection by our approach. For instance, 
attackers may utilize frequently changing IP addresses or 
conceal their time zone, and choose IP addresses in close 
proximity to the target to carry out their malicious activi-
ties. Such tactics can prevent the attacker’s logins from 
being considered as independent behavior or being dis-
missed as noise by our method.

Efficiency and extensibility
We evaluated our framework in an environment with-
out GPUs, which resulted in significant time con-
sumption (nearly 10  h for characterizing the temporal 
behaviors in Dataset-3). However, if GPUs were utilized, 
the performance could be improved by several hundred 
times (Machlica et al. 2011).

Our method can extend the analysis object to more types 
of events after appropriate modification, such as posting 
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events and liking events in social network behavior analy-
sis. Therefore, the types of compromised accounts that our 
framework can detect can also be extended to other types 
of accounts. In that scenario, FeatureC for measuring the 
subnet’s reputation can be calculated by the number of 
User-Agents (UAs) or device types.

Conclusion
We propose a framework for detecting compromised 
email accounts that relies solely on login data and does 
not require human labeling. Our approach identifies 
login behaviors that do not belong to the account owner 
by characterizing temporal and spatial patterns of logins. 
The detection results in nine datasets show that in some 
actual attacks, the attacker and the owner indeed have 
different time zones and alternate login behaviors. Our 
approach successfully detects malicious subnets and 
compromised accounts, and is more efficient than simi-
lar studies at low workload thresholds. Additionally, our 
method also has the ability to identify undisclosed mali-
cious IP addresses.
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