skip to main content
research-article

On the Complexity of Probabilistic Abstract Argumentation Frameworks

Published: 02 June 2015 Publication History

Abstract

Probabilistic abstract argumentation combines Dung’s abstract argumentation framework with probability theory in order to model uncertainty in argumentation. In this setting, we address the fundamental problem of computing the probability that a set of arguments is an extension according to a given semantics. We focus on the most popular semantics (i.e., admissible, stable, complete, grounded, preferred, ideal-set, ideal, stage, and semistable) and show the following dichotomy result: computing the probability that a set of arguments is an extension is either FP or FP#P-complete depending on the semantics adopted. Our polynomial-time results are particularly interesting, as they hold for some semantics for which no polynomial-time technique was known so far.

References

[1]
Teresa Alsinet, Carlos Iván Chesñevar, Lluis Godo, Sandra Sandri, and Guillermo Ricardo Simari. 2008a. Formalizing argumentative reasoning in a possibilistic logic programming setting with fuzzy unification. Int. J. Approx. Reasoning 48, 3 (2008), 711--729.
[2]
Teresa Alsinet, Carlos Iván Chesñevar, Lluis Godo, and Guillermo Ricardo Simari. 2008b. A logic programming framework for possibilistic argumentation: Formalization and logical properties. Fuzzy Sets Syst. 159, 10 (2008), 1208--1228.
[3]
Leila Amgoud and Claudette Cayrol. 2002. A reasoning model based on the production of acceptable arguments. Ann. Math. Artif. Intell. 34, 1--3 (2002), 197--215.
[4]
Leila Amgoud and Henri Prade. 2004. Reaching agreement through argumentation: A possibilistic approach. In Principles of Knowledge Representation and Reasoning (KR). 175--182.
[5]
Leila Amgoud and Srdjan Vesic. 2011. A new approach for preference-based argumentation frameworks. Ann. Math. Artif. Intell. 63, 2 (2011), 149--183.
[6]
Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. 2011. An introduction to argumentation semantics. Knowl. Eng. Rev. 26, 4 (2011), 365--410.
[7]
Pietro Baroni and Massimiliano Giacomin. 2009. Semantics of abstract argument systems. In Argumentation in Artificial Intelligence. 25--44.
[8]
Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. 2005. SCC-recursiveness: A general schema for argumentation semantics. Artif. Intell. 168, 1--2 (2005), 162--210.
[9]
Trevor J. M. Bench-Capon. 2003. Persuasion in practical argument using value-based argumentation frameworks. J. Log. Comput. 13, 3 (2003), 429--448.
[10]
Trevor J. M. Bench-Capon and Paul E. Dunne. 2007. Argumentation in artificial intelligence. Artif. Intell. 171, 10--15 (2007), 619--641.
[11]
Philippe Besnard and Anthony Hunter (Eds.). 2008. Elements of Argumentation. MIT Press.
[12]
Martin Caminada. 2006. Semi-stable semantics. In Computational Models of Argument (COMMA). 121--130.
[13]
Martin W. A. Caminada, Walter Alexandre Carnielli, and Paul E. Dunne. 2012. Semi-stable semantics. J. Log. Comput. 22, 5 (2012), 1207--1254.
[14]
Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. 2005. Prudent semantics for argumentation frameworks. In International Conference on Tools with Artificial Intelligence (ICTAI). 568--572.
[15]
Sylvie Coste-Marquis, S�bastien Konieczny, Pierre Marquis, and Mohand Akli Ouali. 2012. Weighted attacks in argumentation frameworks. In Principles of Knowledge Representation and Reasoning (KR). 593--597.
[16]
P. M. Dung, R. A. Kowalski, and F. Toni. 2009. Assumption-based argumentation. In Argumentation in Artificial Intelligence. 199--218.
[17]
Phan Minh Dung. 1995. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 2 (1995), 321--358.
[18]
Phan Minh Dung, Paolo Mancarella, and Francesca Toni. 2007. Computing ideal sceptical argumentation. Artif. Intell. 171, 10--15 (2007), 642--674.
[19]
Phan Minh Dung and Phan Minh Thang. 2010. Towards (probabilistic) argumentation for jury-based dispute resolution. In Computational Models of Argument (COMMA). 171--182.
[20]
Paul E. Dunne. 2009. The computational complexity of ideal semantics. Artif. Intell. 173, 18 (2009), 1559--1591.
[21]
Paul E. Dunne, Anthony Hunter, Peter McBurney, Simon Parsons, and Michael Wooldridge. 2011. Weighted argument systems: Basic definitions, algorithms, and complexity results. Artif. Intell. 175, 2 (2011), 457--486.
[22]
Paul E. Dunne and Michael Wooldridge. 2009. Complexity of abstract argumentation. In Argumentation in Artificial Intelligence. 85--104.
[23]
Wolfgang Dvor�k. 2012. Computational Aspects of Abstract Argumentation. Ph.D. Dissertation. Technische Universit�t Wien.
[24]
Wolfgang Dvor�k, Matti J�rvisalo, Johannes Peter Wallner, and Stefan Woltran. 2014. Complexity-sensitive decision procedures for abstract argumentation. Artif. Intell. 206 (2014), 53--78.
[25]
Wolfgang Dvor�k and Stefan Woltran. 2010. Complexity of semi-stable and stage semantics in argumentation frameworks. Inf. Process. Lett. 110, 11 (2010), 425--430.
[26]
Thomas Eiter and Georg Gottlob. 1997. The complexity class Θp2 : Recent results and applications in AI and modal logic. In Fundamentals of Computation Theory, Bogdan S. Chlebus and Ludwik Czaja (Eds.). Lecture Notes in Computer Science, Vol. 1279. Springer, Berlin, 1--18.
[27]
Bettina Fazzinga, Sergio Flesca, and Francesco Parisi. 2013a. Efficiently estimating the probability of extensions in abstract argumentation. In International Conference on Scalable Uncertainty Management (SUM). 106--119.
[28]
Bettina Fazzinga, Sergio Flesca, and Francesco Parisi. 2013b. On the complexity of probabilistic abstract argumentation. In International Joint Conference on Artificial Intelligence (IJCAI). 898--904.
[29]
A. Ferrara, G. Pan, and M. Y. Vardi. 2005. Treewidth in verification: Local vs. global. In International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). 489--503.
[30]
Sergio Flesca, Filippo Furfaro, and Francesco Parisi. 2014. Consistency checking and querying in probabilistic databases under integrity constraints. J. Comput. Syst. Sci. 80, 7 (2014), 1448--1489.
[31]
Sarah Alice Gaggl and Stefan Woltran. 2013. The cf2 argumentation semantics revisited. J. Log. Comput. 23, 5 (2013), 925--949.
[32]
Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.
[33]
Davide Grossi and Wiebe van der Hoek. 2013. Audience-based uncertainty in abstract argument games. In International Joint Conference on Artificial Intelligence (IJCAI). 143--149.
[34]
R. Haenni, B. Anrig, J. Kohlas, and N. Lehmann. 2001. A survey on probabilistic argumentation. In ECSQARU Workshop: Adventures in Argumentation. 19--25.
[35]
R. Haenni, J. Kohlas, and N. Lehmann. 2000. Probabilistic argumentation systems. In Handbook of Defeasible Reasoning and Uncertainty Management Systems, Volume 5: Algorithms for Uncertainty and Defeasible Reasoning. Kluwer, 221--288.
[36]
Anthony Hunter. 2012. Some foundations for probabilistic abstract argumentation. In Computational Models of Argument (COMMA). 117--128.
[37]
Anthony Hunter. 2013a. Modelling uncertainty in persuasion. In International Conference on the Scalable Uncertainty Management (SUM). 57--70.
[38]
Anthony Hunter. 2013b. A probabilistic approach to modelling uncertain logical arguments. Int. J. Approx. Reasoning 54, 1 (2013), 47--81.
[39]
Anthony Hunter. 2014. Probabilistic qualification of attack in abstract argumentation. Int. J. Approx. Reasoning 55, 2 (2014), 607--638.
[40]
Abhay Kumar Jha and Dan Suciu. 2013. Knowledge compilation meets database theory: Compiling queries to decision diagrams. Theory Comput. Syst. 52, 3 (2013), 403--440.
[41]
Eun Jung Kim, Sebastian Ordyniak, and Stefan Szeider. 2011. Algorithms and complexity results for persuasive argumentation. Artif. Intell. 175, 9--10 (2011), 1722--1736.
[42]
Hengfei Li, Nir Oren, and Timothy J. Norman. 2011. Probabilistic argumentation frameworks. In Theorie and Applications of Formal Argumentation (TAFA). 1--16.
[43]
Hengfei Li, Nir Oren, and Timothy J. Norman. 2013. Relaxing independence assumptions in probabilistic argumentation. In Workshop on Argumentation in Multi-Agent Systems (ArgMAS).
[44]
T. Lukasiewicz. 1999. Probabilistic deduction with conditional constraints over basic events. J. Artif. Intell. Res. (JAIR) 10 (1999), 199--241.
[45]
T. Lukasiewicz. 2001. Probabilistic logic programming with conditional constraints. ACM Trans. Comput. Logic 2, 3 (2001), 289--339.
[46]
Thomas Lukasiewicz. 2007. Probabilistic description logic programs. Int. J. Approx. Reasoning 45, 2 (2007), 288--307.
[47]
Diego C. Mart�nez, Alejandro Javier Garc�a, and Guillermo Ricardo Simari. 2008. An abstract argumentation framework with varied-strength attacks. In Principles of Knowledge Representation and Reasoning (KR). 135--144.
[48]
C. Meinel and T. Theobald. 1998. Algorithms and Data Structures in VLSI Design. Springer-Verlag.
[49]
Sanjay Modgil. 2009. Reasoning about preferences in argumentation frameworks. Artif. Intell. 173, 9--10 (2009), 901--934.
[50]
R. T. Ng and V. S. Subrahmanian. 1992. Probabilistic logic programming. Inf. Comput. 101, 2 (1992), 150--201.
[51]
Juan Carlos Nieves and Roberto Confalonieri. 2011. A possibilistic argumentation decision making framework with default reasoning. Fundam. Inform. 113, 1 (2011), 41--61.
[52]
Nir Oren and Timothy J. Norman. 2008. Semantics for evidence-based argumentation. In Computational Models of Argument (COMMA). 276--284.
[53]
Mauricio Osorio and Juan Carlos Nieves. 2009. Possibilistic well-founded semantics. In Advances in Artificial Intelligence, International Conference on Artificial Intelligence (MICAI). 15--26.
[54]
C. M. Papadimitriou. 1994. Computational Complexity. Addison-Wesley.
[55]
David Poole. 1997. The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94, 1--2 (1997), 7--56.
[56]
Henry Prakken. 2010. An abstract framework for argumentation with structured arguments. Argument Comput 1, 2 (2010), 93--124.
[57]
Iyad Rahwan and Guillermo R. Simari (Eds.). 2009. Argumentation in Artificial Intelligence. Springer.
[58]
Tjitze Rienstra. 2012. Towards a probabilistic dung-style argumentation system. In International Conference on Agreement Technologies (AT). 138--152.
[59]
Dan Suciu, Dan Olteanu, Christopher R�, and Christoph Koch. 2011. Probabilistic Databases. Morgan & Claypool.
[60]
Matthias Thimm. 2012. A probabilistic semantics for abstract argumentation. In European Conference on Artificial Intelligence (ECAI). 750--755.
[61]
Seinosuke Toda and Osamu Watanabe. 1992. Polynomial time 1-turing reductions from #PH to #P. Theor. Comput. Sci. 100, 1 (1992), 205--221.
[62]
Leslie G. Valiant. 1979. The complexity of computing the permanent. Theor. Comput. Sci. 8 (1979), 189--201.
[63]
Bart Verheij. 1996. Two approaches to dialectical argumentation: Admissible sets and argumentation stages. In International Conference on Formal and Applied Practical Reasoning Workshop (FAPR). 357--368.

Cited By

View all
  • (2024)Temporal duration-based probabilistic argumentation frameworksJournal of Logic and Computation10.1093/logcom/exae039Online publication date: 31-Jul-2024
  • (2023)Quantitative reasoning and structural complexity for claim-centric argumentationProceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/358(3212-3220)Online publication date: 19-Aug-2023
  • (2023)Preferences and constraints in abstract argumentationProceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/345(3095-3103)Online publication date: 19-Aug-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Computational Logic
ACM Transactions on Computational Logic  Volume 16, Issue 3
July 2015
285 pages
ISSN:1529-3785
EISSN:1557-945X
DOI:10.1145/2764956
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 June 2015
Accepted: 01 March 2015
Revised: 01 January 2015
Received: 01 May 2014
Published in TOCL Volume 16, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Computational complexity
  2. argumentation theory
  3. probabilistic reasoning
  4. uncertainty

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • project PON01_01286 - eJRM (electronic Justice Relationship Management)

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)14
  • Downloads (Last 6 weeks)2
Reflects downloads up to 19 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Temporal duration-based probabilistic argumentation frameworksJournal of Logic and Computation10.1093/logcom/exae039Online publication date: 31-Jul-2024
  • (2023)Quantitative reasoning and structural complexity for claim-centric argumentationProceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/358(3212-3220)Online publication date: 19-Aug-2023
  • (2023)Preferences and constraints in abstract argumentationProceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/345(3095-3103)Online publication date: 19-Aug-2023
  • (2023)Abstract argumentation framework with conditional preferencesProceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v37i5.25766(6218-6227)Online publication date: 7-Feb-2023
  • (2023)Explainable acceptance in probabilistic and incomplete abstract argumentation frameworksArtificial Intelligence10.1016/j.artint.2023.103967323(103967)Online publication date: Oct-2023
  • (2023)Taking into account “who said what” in abstract argumentation: Complexity resultsArtificial Intelligence10.1016/j.artint.2023.103885318(103885)Online publication date: May-2023
  • (2023)On the Complexity of Predicting Election Outcomes and Estimating Their RobustnessSN Computer Science10.1007/s42979-023-01725-04:4Online publication date: 28-Apr-2023
  • (2022)Process Mining meets argumentationInformation Systems10.1016/j.is.2022.101987107:COnline publication date: 1-Jul-2022
  • (2022)A Definition of�Sceptical Semantics in�the�Constellations ApproachLogic Programming and Nonmonotonic Reasoning10.1007/978-3-031-15707-3_6(62-74)Online publication date: 5-Sep-2022
  • (2021)Labeled Bipolar Argumentation FrameworksJournal of Artificial Intelligence Research10.1613/jair.1.1239470(1557-1636)Online publication date: 1-May-2021
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media