skip to main content
research-article

Deterministic Algorithms for Submodular Maximization Problems

Published: 16 June 2018 Publication History

Abstract

Randomization is a fundamental tool used in many theoretical and practical areas of computer science. We study here the role of randomization in the area of submodular function maximization. In this area, most algorithms are randomized, and in almost all cases the approximation ratios obtained by current randomized algorithms are superior to the best results obtained by known deterministic algorithms. Derandomization of algorithms for general submodular function maximization seems hard since the access to the function is done via a value oracle. This makes it hard, for example, to apply standard derandomization techniques such as conditional expectations. Therefore, an interesting fundamental problem in this area is whether randomization is inherently necessary for obtaining good approximation ratios.
In this work, we give evidence that randomization is not necessary for obtaining good algorithms by presenting a new technique for derandomization of algorithms for submodular function maximization. Our high level idea is to maintain explicitly a (small) distribution over the states of the algorithm, and carefully update it using marginal values obtained from an extreme point solution of a suitable linear formulation. We demonstrate our technique on two recent algorithms for unconstrained submodular maximization and for maximizing a submodular function subject to a cardinality constraint. In particular, for unconstrained submodular maximization we obtain an optimal deterministic 1/2-approximation showing that randomization is unnecessary for obtaining optimal results for this setting.

References

[1]
A. A. Ageev and M. I. Sviridenko. 1999. An 0.828 approximation algorithm for the uncapacitated facility location problem. Discrete Appl. Math. 93 (July 1999), 149--156. Issue 2--3.
[2]
Noga Alon and Joel H. Spencer. 2000. The Probabilistic Method (2nd ed.). John Wiley and Sons, Inc., New York.
[3]
Yossi Azar, Iftah Gamzu, and Ran Roth. 2011. Submodular max-SAT. In Proceedings of the ESA. Springer-Verlag, Berlin, 323--334.
[4]
Niv Buchbinder and Moran Feldman. 2016a. Constrained submodular maximization via a non-symmetric technique. CoRR abs/1611.03253 (2016). Retrieved from http://arxiv.org/abs/1611.03253.
[5]
Niv Buchbinder and Moran Feldman. 2016b. Deterministic algorithms for submodular maximization problems. In Proceedings of the SODA. SIAM, Philadelphia, PA, 392--403.
[6]
Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. 2015. A tight linear time (1/2)-approximation for unconstrained submodular maximization. SIAM J. Comput. 44, 5 (2015), 1384--1402.
[7]
Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. 2014. Submodular maximization with cardinality constraints. In Proceedings of the SODA. SIAM, Philadelphia, PA, 1433--1452.
[8]
Niv Buchbinder, Moran Feldman, and Roy Schwartz. 2015b. Comparing apples and oranges: Query tradeoff in submodular maximization. In Proceedings of the SODA. SIAM, Philadelphia, PA, 1149--1168.
[9]
Niv Buchbinder, Moran Feldman, and Roy Schwartz. 2015a. Online submodular maximization with preemption. In Proceedings of the SODA. SIAM, Philadelphia, PA, 1202--1216.
[10]
Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondr�k. 2011. Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40, 6 (2011), 1740--1766.
[11]
Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. 2015. Streaming algorithms for submodular function maximization. In Proceedings of the ICALP. ACM, New York, NY, 318--330.
[12]
Chandra Chekuri and Sanjeev Khanna. 2005. A polynomial time approximation scheme for the multiple knapsack problem. SIAM J. Comput. 35, 3 (September 2005), 713--728.
[13]
Reuven Cohen, Liran Katzir, and Danny Raz. 2006. An efficient approximation for the generalized assignment problem. Inform. Process. Lett. 100, 4 (2006), 162--166.
[14]
G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. 1977a. Location of bank accounts to optimize float: An analytic study of exact and approximate algorithms. Manage. Sci. 23 (1977), 789--810.
[15]
G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. 1977b. On the uncapacitated location problem. Ann. Discrete Math. 1 (1977), 163--177.
[16]
Shahar Dobzinski and Ami Mor. 2015. A deterministic algorithm for maximizing submodular functions. CoRR abs/1507.07237 (2015). Retrieved from http://arxiv.org/abs/1507.07237.
[17]
Shahar Dobzinski and Michael Schapira. 2006. An improved approximation algorithm for combinatorial auctions with submodular bidders. In Proceedings of the SODA. SIAM, Philadelphia, PA, 1064--1073.
[18]
Alina Ene and Huy L. Nguyen. 2016. Constrained submodular maximization: Beyond 1/e. In Proceedings of the FOCS. IEEE Computer Society, New York, NY, 248--257.
[19]
Uriel Feige and Michel X. Goemans. 1995. Aproximating the value of two prover proof systems, with applications to MAX 2SAT and MAX DICUT. In Proceedings of the ISTCS. IEEE Computer Society, Washington, DC, 182--189.
[20]
Uriel Feige, Vahab S. Mirrokni, and Jan Vondr�k. 2011. Maximizing non-monotone submodular functions. SIAM J. Comput. 40, 4 (2011), 1133--1153.
[21]
Uriel Feige and Jan Vondr�k. 2006. Approximation algorithms for allocation problems: Improving the factor of . In Proceedings of the FOCS. IEEE Computer Society, New York, NY, 667--676.
[22]
Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. 2011a. Nonmonotone submodular maximization via a structural continuous greedy algorithm. In Proceedings of the ICALP. Springer-Verlag, Berlin, 342--353.
[23]
Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. 2011b. A unified continuous greedy algorithm for submodular maximization. In Proceedings of the FOCS. IEEE Computer Society, New York, NY, 570--579.
[24]
Yuval Filmus and Justin Ward. 2014. Monotone submodular maximization over a matroid via non-oblivious local search. SIAM J. Comput. 43, 2 (2014), 514--542.
[25]
M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. 1978. An analysis of approximations for maximizing submodular set functions -- II. In Polyhedral Combinatorics. Mathematical Programming Studies, Vol. 8. Springer-Verlag, Berlin, 73--87.
[26]
Lisa Fleischer, Michel X. Goemans, Vahab S. Mirrokni, and Maxim Sviridenko. 2011. Tight approximation algorithms for maximum separable assignment problems. Math. Oper. Res. 36, 3 (2011), 416--431.
[27]
Shayan Oveis Gharan and Jan Vondr�k. 2011. Submodular maximization by simulated annealing. In Proceedings of the SODA. SIAM, Philadelphia, PA, 1098--1117.
[28]
Michel X. Goemans and David P. Williamson. 1995. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 6 (1995), 1115--1145.
[29]
Eran Halperin and Uri Zwick. 2001. Combinatorial approximation algorithms for the maximum directed cut problem. In Proceedings of the SODA. SIAM, Philadelphia, PA, 1--7.
[30]
Johan Hȧstad. 2001. Some optimal inapproximability results. J. ACM 48 (July 2001), 798--859. Issue 4.
[31]
Norman Huang and Allan Borodin. 2014. Bounds on double-sided myopic algorithms for unconstrained non-monotone submodular maximization. In Proceedings of the ISAAC. SIAM, Philadelphia, PA, 528--539.
[32]
Richard M. Karp. 1972. Reducibility among combinatorial problems. In Complexity of Computer Computations, R. E. Miller and J. W. Thatcher (Eds.). Plenum Press, New York, 85--103.
[33]
Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. 2007. Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 37 (April 2007), 319--357. Issue 1.
[34]
Ariel Kulik, Hadas Shachnai, and Tami Tamir. 2013. Approximations for monotone and non-monotone submodular maximization with knapsack constraints. Math. Oper. Res. 38, 4 (2013), 729--739.
[35]
Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. 2010. Maximizing non-monotone submodular functions under matroid or knapsack constraints. SIAM J. Discrete Math. 23, 4 (2010), 2053--2078.
[36]
Michael Mitzenmacher and Eli Upfal. 2005. Probability and Computing, Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York, NY.
[37]
Luca Trevisan, Gregory B. Sorkin, Madhu Sudan, and David P. Williamson. 2000. Gadgets, approximation, and linear programming. SIAM J. Comput. 29 (April 2000), 2074--2097. Issue 6.
[38]
Jan Vondrák. 2013. Symmetry and approximability of submodular maximization problems. SIAM J. Comput. 42, 1 (2013), 265--304.

Cited By

View all
  • (2024)Improved deterministic algorithms for non-monotone submodular maximizationTheoretical Computer Science10.1016/j.tcs.2023.114293984(114293)Online publication date: Feb-2024
  • (2023)Online Learning via Offline Greedy AlgorithmsManagement Science10.1287/mnsc.2022.455869:7(3797-3817)Online publication date: 1-Jul-2023
  • (2023)Approximation Algorithms for Size-Constrained Non-Monotone Submodular Maximization in Deterministic Linear TimeProceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3580305.3599259(250-261)Online publication date: 6-Aug-2023
  • Show More Cited By

Index Terms

  1. Deterministic Algorithms for Submodular Maximization Problems

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Algorithms
    ACM Transactions on Algorithms  Volume 14, Issue 3
    Special Issue on SODA’16 and Regular Papers
    July 2018
    393 pages
    ISSN:1549-6325
    EISSN:1549-6333
    DOI:10.1145/3233176
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 16 June 2018
    Accepted: 01 January 2018
    Received: 01 March 2016
    Published in TALG Volume 14, Issue 3

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Submodular function maximization
    2. derandomization
    3. unconstrained submodular maximization

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • BSF
    • ERC
    • ISF

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)156
    • Downloads (Last 6 weeks)10
    Reflects downloads up to 16 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Improved deterministic algorithms for non-monotone submodular maximizationTheoretical Computer Science10.1016/j.tcs.2023.114293984(114293)Online publication date: Feb-2024
    • (2023)Online Learning via Offline Greedy AlgorithmsManagement Science10.1287/mnsc.2022.455869:7(3797-3817)Online publication date: 1-Jul-2023
    • (2023)Approximation Algorithms for Size-Constrained Non-Monotone Submodular Maximization in Deterministic Linear TimeProceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3580305.3599259(250-261)Online publication date: 6-Aug-2023
    • (2023)Deterministic \(\boldsymbol{(\unicode{x00BD}+\varepsilon)}\) -Approximation for Submodular Maximization over a MatroidSIAM Journal on Computing10.1137/19M125515X52:4(945-967)Online publication date: 27-Jul-2023
    • (2023)An Approximation Algorithm for the h-Hop Independently Submodular Maximization Problem and Its ApplicationsIEEE/ACM Transactions on Networking10.1109/TNET.2022.321082531:3(1216-1229)Online publication date: Jun-2023
    • (2023)Joint Resource Management and Pricing for Task Offloading in Serverless Edge ComputingIEEE Transactions on Mobile Computing10.1109/TMC.2023.333491423:6(7438-7452)Online publication date: 28-Nov-2023
    • (2023)Tracing Truth and Rumor Diffusions Over Mobile Social Networks: Who are the Initiators?IEEE Transactions on Mobile Computing10.1109/TMC.2021.311936222:4(2473-2490)Online publication date: 1-Apr-2023
    • (2023)Profit maximization in social networks and non-monotone DR-submodular maximizationTheoretical Computer Science10.1016/j.tcs.2023.113847957(113847)Online publication date: May-2023
    • (2023) Parallelized maximization of nonmonotone one-sided -smooth function Computers and Electrical Engineering10.1016/j.compeleceng.2022.108478105(108478)Online publication date: Jan-2023
    • (2022)Submodular maximization in clean linear timeProceedings of the 36th International Conference on Neural Information Processing Systems10.5555/3600270.3601540(17473-17487)Online publication date: 28-Nov-2022
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media