skip to main content
10.5555/3545946.3598664acmconferencesArticle/Chapter ViewAbstractPublication PagesaamasConference Proceedingsconference-collections
research-article

Epistemic Abstract Argumentation Framework: Formal Foundations, Computation and Complexity

Published: 30 May 2023 Publication History

Abstract

Dung's Abstract Argumentation Framework (AAF) has emerged as a central formalism in AI for modeling disputes among agents. In this paper, we introduce an extension of Dung's framework, called Epistemic Abstract Argumentation Framework (EAAF), which enhances AAF by allowing the representation of some pieces of epistemic knowledge. We generalize the concept of attack in AAF, introducing strong and weak epistemic attacks in EAAF, whose intuitive meaning is that an attacked argument is epistemically accepted only if the attacking argument is possibly or certainly rejected, respectively. We provide an intuitive semantics for EAAF that naturally extends that for AAF, and give an algorithm that enables the computation of epistemic extensions by using AAF-solvers. Finally, we analyze the complexity of the following argumentation problems: verification, i.e. checking whether a set of arguments is an epistemic extension; existence, i.e. checking whether there is at least one (non-empty) epistemic extension; and acceptance, i.e. checking whether an argument is epistemically accepted, under well-known argumentation semantics (i.e. grounded, complete, and preferred).

References

[1]
G. Alfano, M. Calautti, S. Greco, F. Parisi, and I. Trubitsyna. 2020a. Explainable Acceptance in Probabilistic Abstract Argumentation: Complexity and Approximation. In Proc. of KR. 33--43.
[2]
Gianvincenzo Alfano, Andrea Cohen, Sebastian Gottifredi, Sergio Greco, Francesco Parisi, and Guillermo Ricardo Simari. 2020b. Dynamics in Abstract Argumentation Frameworks with Recursive Attack and Support Relations. In Proc. of ECAI. 577--584.
[3]
Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi. 2021a. Incremental Computation in Dynamic Argumentation Frameworks. IEEE Intell. Syst., Vol. 36, 6 (2021), 80--86.
[4]
Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, Gerardo I. Simari, and Guillermo Ricardo Simari. 2021c. Incremental computation for structured argumentation over dynamic DeLP knowledge bases. Artif. Intell., Vol. 300 (2021), 103553.
[5]
Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, and Irina Trubitsyna. 2020c. On the Semantics of Abstract Argumentation Frameworks: A Logic Programming Approach. Theory Pract. Log. Program., Vol. 20, 5 (2020), 703--718.
[6]
Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, and Irina Trubitsyna. 2021b. Argumentation Frameworks with Strong and Weak Constraints: Semantics and Complexity. In Proc. of AAAI. 6175--6184.
[7]
Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, and Irina Trubitsyna. 2022a. Incomplete Argumentation Frameworks: Properties and Complexity. In Proc. of AAAI. 5451--5460.
[8]
Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, and Irina Trubitsyna. 2022b. On Preferences and Priority Rules in Abstract Argumentation. In Proc. of IJCAI. 2517--2524.
[9]
Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, and Irina Trubitsyna. 2023 a. Abstract Argumentation Framework with Conditional Preferences. In Proc. of AAAI. (to appear).
[10]
Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, and Irina Trubitsyna. 2023 b. Abstract Argumentation Framework with Conditional Preferences. In Proc. of AAAI.
[11]
Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, and Irina Trubitsyna. 2023 c. On acceptance conditions in abstract argumentation frameworks. Information Sciences, Vol. 625 (2023), 757--779.
[12]
Leila Amgoud and Claudette Cayrol. 2002. Inferring from Inconsistency in Preference-Based Argumentation Frameworks. J. Autom. Reason., Vol. 29, 2 (2002), 125--169.
[13]
Leila Amgoud, Yannis Dimopoulos, and Pavlos Moraitis. 2007. A unified and general framework for argumentation-based negotiation. In Proc. of AAMAS. 158.
[14]
Leila Amgoud and Mathieu Serrurier. 2008. Agents that argue and explain classifications. Auton. Agents Multi Agent Syst., Vol. 16, 2 (2008), 187--209.
[15]
Leila Amgoud and Srdjan Vesic. 2014. Rich preference-based argumentation frameworks. Int. J. Approx. Reason., Vol. 55, 2 (2014), 585--606.
[16]
Ofer Arieli. 2015. Conflict-free and conflict-tolerant semantics for constrained argumentation frameworks. J. Appl. Log., Vol. 13, 4 (2015), 582--604.
[17]
K. Atkinson, P. Baroni, M. Giacomin, A. Hunter, H. Prakken, C. Reed, G. R. Simari, M. Thimm, and S. Villata. 2017. Towards Artificial Argumentation. Artificial Intelligence Magazine, Vol. 38, 3 (2017), 25--36.
[18]
Pietro Baroni and Massimiliano Giacomin. 2007. On principle-based evaluation of extension-based argumentation semantics. Artif. Intell., Vol. 171, 10--15 (2007), 675--700.
[19]
P. Baroni, M. Giacomin, and G. Guida. 2005. SCC-recursiveness: a general schema for argumentation semantics. Artificial Intelligence, Vol. 168, 1--2 (2005), 162--210.
[20]
Pietro Baroni, Massimiliano Giacomin, and Beishui Liao. 2014. On topology-related properties of abstract argumentation semantics. A correction and extension to Dynamics of argumentation systems: A division-based method. Artif. Intell., Vol. 212 (2014), 104--115.
[21]
D. Baumeister, M. J"a rvisalo, D. Neugebauer, A. Niskanen, and J. Rothe. 2021. Acceptance in incomplete argumentation frameworks. Artif. Intell. (2021), 103470.
[22]
T.J.M. Bench-Capon and P. E. Dunne. 2007. Argumentation in Artificial Intelligence. Artif. Intell., Vol. 171 (2007), 619 -- 641.
[23]
Michael Bernreiter, Wolfgang Dvor� k, and Stefan Woltran. 2022. Abstract Argumentation with Conditional Preferences. In Proc. of COMMA. 92--103.
[24]
Stefano Bistarelli, Lars Kotthoff, Francesco Santini, and Carlo Taticchi. 2021. Summary Report for the Third International Competition On Computational Models of Argumentation. AI Mag., Vol. 42, 3 (2021), 70--73.
[25]
G. Brewka, H. Strass, S. Ellmauthaler, J. P. Wallner, and S. Woltran. 2013. Abstract Dialectical Frameworks Revisited. In Proc. of IJCAI. 803--809.
[26]
Pedro Cabalar, Jorge Fandinno, and Luis Fari n as del Cerro. 2020. Autoepistemic answer set programming. Artif. Intell., Vol. 289 (2020), 103382.
[27]
Pedro Cabalar, Jorge Fandinno, and Luis Fari n as del Cerro. 2021. Splitting Epistemic Logic Programs. Theory Pract. Log. Program., Vol. 21, 3 (2021), 296--316.
[28]
� lvaro Carrera and Carlos Angel Iglesias. 2015. A systematic review of argumentation techniques for multi-agent systems research. Artif. Intell. Rev., Vol. 44, 4 (2015), 509--535.
[29]
C. Cayrol, J. Fandinno, L. F. del Cerro, and M.-C. Lagasquie-Schiex. 2018. Structure-Based Semantics of Argumentation Frameworks with Higher-Order Attacks and Supports. In Proc. of COMMA. 29--36.
[30]
A. Cohen, S. Gottifredi, A. J. Garcia, and G. R. Simari. 2015. An approach to abstract argumentation with recursive attack and support. J. Appl. Log., Vol. 13, 4 (2015), 509--533.
[31]
Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. 2006. Constrained Argumentation Frameworks. In Proc. of (KR). 112--122.
[32]
Yannis Dimopoulos, Jean-Guy Mailly, and Pavlos Moraitis. 2019. Argumentation-based Negotiation with Incomplete Opponent Profiles. In Proc. AAMAS. 1252--1260.
[33]
Phan Minh Dung. 1995. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artif. Intell., Vol. 77 (1995), 321--358.
[34]
P. M. Dung and P. M. Thang. 2010. Towards (Probabilistic) Argumentation for Jury-based Dispute Resolution. In Proc. of COMMA. 171--182.
[35]
Wolfgang Dvor� k and Paul E. Dunne. 2017. Computational Problems in Formal Argumentation and their Complexity. FLAP, Vol. 4, 8 (2017).
[36]
Xiuyi Fan and Francesca Toni. 2012. Agent Strategies for ABA-based Information-seeking and Inquiry Dialogues. In Proc. of ECAI, Vol. 242. 324--329.
[37]
Jorge Fandinno, Wolfgang Faber, and Michael Gelfond. 2021. Thirty years of Epistemic Specifications. CoRR, Vol. abs/2108.07669 (2021).
[38]
Michael Gelfond. 1991. Strong Introspection. In Proc AAAI Conf., Thomas L. Dean and Kathleen R. McKeown (Eds.). 386--391.
[39]
Michael Gelfond. 2011. New Semantics for Epistemic Specifications. In Proc. of LPNMR Conf., Vol. 6645. 260--265.
[40]
S. Gottifredi, A. Cohen, A. J. Garcia, and G. R. Simari. 2018. Characterizing acceptability semantics of argumentation frameworks with recursive attack and support relations. Artif. Intell., Vol. 262 (2018), 336--368.
[41]
Andreas Herzig and Antonio Yuste-Ginel. 2021. On the Epistemic Logic of Incomplete Argumentation Frameworks. In Proc. of KR. 681--685.
[42]
A. Hunter. 2012. Some Foundations for Probabilistic Abstract Argumentation. In Proc. of COMMA. 117--128.
[43]
Souhila Kaci, Leendert W. N. van der Torre, and Serena Villata. 2018. Preference in Abstract Argumentation. In Proc. COMMA. 405--412.
[44]
H. Li, N. Oren, and T. J. Norman. 2011. Probabilistic Argumentation Frameworks. In Proc. of TAFA. 1--16.
[45]
Peter McBurney and Simon Parsons. 2009. Dialogue Games for Agent Argumentation. In Argumentation in Artificial Intelligence. Springer, 261--280.
[46]
Sanjay Modgil and Henry Prakken. 2013. A general account of argumentation with preferences. Artif. Intell., Vol. 195 (2013), 361--397.
[47]
Andreas Niskanen and Matti J"a rvisalo. 2020. (mathrmμ)-toksia: An Efficient Abstract Argumentation Reasoner. In Proc. ofKR. 800--804.
[48]
F. Nouioua. 2013. AFs with Necessities: Further Semantics and Labelling Characterization. In Proc. of SUM. 120--133.
[49]
Santiago Onta n ó n and Enric Plaza. 2007. An Argumentation-Based Framework for Deliberation in Multi-agent Systems. In Int. Workshop, ArgMAS, Vol. 4946. 178--196.
[50]
Christos H. Papadimitriou. 1994. Computational complexity. Addison-Wesley.
[51]
Simon Parsons, Carles Sierra, and Nicholas R. Jennings. 1998. Agents That Reason and Negotiate by Arguing. J. Log. Comput., Vol. 8, 3 (1998), 261--292.
[52]
Henry Prakken. 2009. Models of Persuasion Dialogue. In Argumentation in Artificial Intelligence. 281--300.
[53]
Henry Prakken and Giovanni Sartor. 1998. Modelling Reasoning with Precedents in a Formal Dialogue Game. Artif. Intell. Law, Vol. 6, 2--4 (1998), 231--287.
[54]
Chiaki Sakama and Tran Cao Son. 2020. Epistemic Argumentation Framework: Theory and Computation. J. Artif. Intell. Res., Vol. 69 (2020), 1103--1126.
[55]
Yi-Dong Shen and Thomas Eiter. 2020. Constraint Monotonicity, Epistemic Splitting and Foundedness Are Too Strong in Answer Set Programming. CoRR, Vol. abs/2010.00191 (2020).
[56]
Yoav Shoham and Kevin Leyton-Brown. 2009. Multiagent Systems - Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press.
[57]
G. R. Simari and I. Rahwan (Eds.). 2009. Argumentation in Artificial Intelligence. Springer.
[58]
Hans van Ditmarsch, Joseph Y. Halpern, Wiebe van der Hoek, and Barteld P. Kooi (Eds.). 2015a. Handbook of Epistemic Logic. kings College Pubn.
[59]
Hans van Ditmarsch, Joseph Y. Halpern, Wiebe van der Hoek, and Barteld P. Kooi. 2015b. An Introduction to Logics of Knowledge and Belief. CoRR, Vol. abs/1503.00806 (2015). http://arxiv.org/abs/1503.00806
[60]
S. Villata, G. Boella, D. M. Gabbay, and L. W. N. van der Torre. 2012. Modelling defeasible and prioritized support in bipolar argumentation. Ann. Math. Artif. Intell., Vol. 66, 1--4 (2012).

Index Terms

  1. Epistemic Abstract Argumentation Framework: Formal Foundations, Computation and Complexity

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      AAMAS '23: Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems
      May 2023
      3131 pages
      ISBN:9781450394321
      • General Chairs:
      • Noa Agmon,
      • Bo An,
      • Program Chairs:
      • Alessandro Ricci,
      • William Yeoh

      Sponsors

      Publisher

      International Foundation for Autonomous Agents and Multiagent Systems

      Richland, SC

      Publication History

      Published: 30 May 2023

      Check for updates

      Author Tags

      1. complexity
      2. epistemic argumentation
      3. formal argumentation

      Qualifiers

      • Research-article

      Funding Sources

      • PNRR MUR project PE0000013- FAIR.

      Conference

      AAMAS '23
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 1,155 of 5,036 submissions, 23%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 40
        Total Downloads
      • Downloads (Last 12 months)21
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 18 Oct 2024

      Other Metrics

      Citations

      View Options

      Get Access

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media