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Abstract

Magnetostrictive (“MS™) technology and Magneto-Rheological Fluid (“MRF”’) technology
are 0ld “newcomers” coming to the market at high speed. Various industries includmg the
automotive industry are full of potential MS and MRF applications. Magnetostrictive
technology and Magneto-Rheological Fluid technology have been successfully employed in
some low and high volume applications A structure based on “MS”-technology nught be the
next generation in design for products where power density, accuracy and dynamic
performance are key features. Since the introduction of active (MS) materials such as
Terfenol-D, with stable characteristics over a wide range of temperatures and high
magnetoelastic properties, interest in MS technology has been growing.

Additionally, for products where 1s a need to control fluid motion by varying the viscosity, a
structure based on MRF might be an improvement in performance. Two aspects of this
technology, direct shear mode (used in brakes and clutches) and valve mode (used in
dampers) have been studied thoroughly and several applications are already present on the
market. Excellent features like fast response, simple interface between electrical mput and

hydraulic output make MRF technology attractive for many applications.

This dissertation is the introduction of an actuator based on “MS”-technology The possible
control arrangement is based on “MR”-technology. The thesis is submutted for the degree of
the PhD The dissertation contains the layout definition, analytical calculations, sumulations,
and design verification and optimization with evaluation of experimental results for the
actuator based on “MS”-technology in combination of a possible control device based on

“MR”-technology.
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Chapter one

Chapter One

Introduction

1.1 Introduction of magnetostrictive (“MS”) technology

Magnetostriction (“MS”) is the change in shape of materials under the influence of an
external magnetic field. The magnetostrictive effect was first described in the 19™ century
(1842) by an English physicist James Joule. He observed that a sample of ferromagnetic
material, i.e. iron, changes its length in the presence of a magnetic field. Joule actually
observed a material with negative magnetostriction, but since that time materials with positive
magnetostriction have been discovered. The causes of magnetostriction are similar for both
types of material. This change in length is the result of the rotation of small magnetic
domains. This rotation and re-orientation causes internal strains in the material structure The
strains in the structure lead to the stretching, in the case of positive magnetostriction, of the
material 1 the direction of the magnetic field. During this stretching process the cross-section
is reduced 1n a way that the volume is kept nearly constant, The size of the volume change 1s
so small that it can be neglected under normal operating conditions Applying a stronger field
leads to stronger and more re-orientation of more and more domains in the direction of
magnetic field. When all the magnetic domains have become aligned with the magnetic field
the saturation point has been achieved. Fig.1 shows the 1dealized behavior of length change

versus applied magnetic field.

ALIL

&

Fig.1. Strain versus magnetic field
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Chapter one

When a magnetic field is established in the opposite direction, the field is understood to be
negative, but the negative field produces the same elongation in the magnetostrictive material,
as a positive field would. The shape of the curve is reminiscent of a butterfly and so the
curves are referred as butterfly curves. The physical background for the re-orientation of
magnetic domains is depicted with some simplification schematically 1n Fig. 2. In the region
between 0 and 1, where the applied magnetic field is small, the magnetic domains show
almost no common orientation pattern. Depending on how the material was formed there may
be a small amount of a common orientation pattern, which would show itself as a permanent
magnet bias. The resulting strain depends very much on how homogeneous is the base
structure of the magnetostrictive material and the material formulation. In the region 1-2
ideally there should be an almost hnear relationship between straim and magnetic field.
Because the relationship 1s a simple one, it is easier to predict the behavior of the material and
so most devices are designed to operate in this region. Beyond point 2, the relationship
becomes non-linear again as a result of the fact that most of the magnetic domains have
become aligned with the magnetic field direction. At point 3 there 15 a saturation effect, which

prevents further strain increase.

A3 Step3

Fig. 2: “MS”-effect, schematically

With pre-stress and magnetic bias the strain capability could be optimized. The behavior of
the magnetostrictive materials in various applications is complex, because the changing
conditions during operation cause changes in material properties The maximum useful
magnetoelastic strain is one of the key parameters defining the resulting mechanical output 1n
the case of a magnetostrictive actuator In comparison with other magnetostrictive materials
Terfenol-D shows a good trade-off between high strain and high Curie temperatare

Magnetostriction only occurs in a material at temperatures below the Curie temperature, but
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Chapter cne

often the Curie temperature is below the temperature of the environment and this causes the
magnetostriction effect to have little practical value. Development of further alternative
magnetostrictive materials is ongoimng [48, 51 and 61] Table 1 compares typical strains for

various magnetostrictive materials.

Table 1: Comparison of strain capability {14, 15 and 62]

Material Saturation strain in {[ppm] Curie temperature in [K]
Ni -50 630
Fe -14 1040
Fe;O4 60 860
Terfenol-D 2000 650
Tho sZng s 5500 180
Tbo sDyxZn 5000 200

In case a shaft is made of magnetostrictive material, i ¢ Terfenol-D, magnetic field along the
shaft axle will cause axial elongation. The elongation of the “MS”-shaft is proportional to the
applied magnetic field A higher magnetic field leads to larger elongation. Without the
magnetic field the shape of the magnetostrictive material reverses to the original. The
magnetostriction is a reversible feature. This unique feature from magnetostrictive material
could be used for an actuator device. The “MS”-technology offers an attractive controllability

with high power density.,

1.2 Introduction of magnetorheological (“MR”) technology

Magnetorheology (“MR”) is the change of rheological behavior under an external magnetic
field. Magnetorheological fluid contains three components: basic fluid, ferromagnetic
particles and stabilizing additives. The external magnetic field forces the ferromagnetic
particles to form a chain-like structure. The chain-like structure resists the free fluid motion
and the fluid behavior becomes controllable with the external magnetic field. The behavior of
the magneto-rheological fluid (“MRF”) is dependent on the chemical formulation and the
stability of the chain-like structure, which the fluid has to pass. The physical background for

the "MR"-effect is depicted with some simplification schematically in Fig. 3.
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Fig. 3: “MR”-effect, schematically

Without the external magnetic field, the magnetorheological fluid behaves like Newtonian
fluid. The “MR”-effect is a reversible feature and could be used in a device where fluid
motion should be controlled. Ever since some industrial issues were solved, both the technical
and the commercial benefits for various MRF applications have become very promising. As a
result MRF development is ongoing continuously. More than sixty five years ago, in the
1940s, Jacob Rabinov discovered the MRF effect at the US National bureau of Standards, At
the same time W. Wislow was working on a competitive technology called Electro-
Rheological Fluid (ERF). There are some similarities between the two different technologies
regarding the required power, but in the case of ERF, thousands of volis and some milli-
amperes are required, and in the case of MRF, normally between 2 and 24 volis and some
amperes are required. The electro-theological (ER) effect depends on an electric field, and the
magneto-rheological (MR) effect depends on a magnetic field. MRF products have between
20 and 50 times higher capacity than the equivalent ERF products. Table 2 gives an overview
of the ER and MR key features.

Table 2: MRF versus ERF [1, 2, 65-68]

Representative Feature MRF ERF
Max. Yield Stress 50-100 kPa 2-5 kPa
Power Supply 2-224V@1-2 A 2-5kV @ 1-10 mA

Response time

some millisecond

some millisecond

Operational Field ~250 kA/m ~4 kV/mm
Energy density 0.1 Yem? 0.001 Jem®
Stability Good for most impurities | Poor for most impurities

Operational temperature

-40°C up to +150°C

-25°Cup to +125°C
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Chapter one

All these MRF technology advantages have created a very high level of interest to introduce
products based on MRF technology during the most recent couple of years. At the beginning
of the development work on MRF, non-predictable behaviour, such as in-use thickening,
sedimentation and abrasion [67] were described. This created some challenges for the
industrialization of the first application based on MRF, especially for an automotive
application. During the last few years the stability, sedimentation and abrasive behavior have
been studied in several universities and companies in the USA, Europe, and Japan. Recently
MRF applications such as dampers, clutches, active bearings have already come to the market

or are close to the start of serial production.

1.3 Objectives and structure of the thesis

Both technologies, “MS” and “MR”, belong to the “smart” materials area and their features
like fast response, high power density, controliability and non-contact nature make them
attractive for various applications. Objectives of this thesis are as follows:

-to define an actuator concept based on “MS” technology;

-to define a concept of a control device based on “MR” technology;

-to perform analytical calculations and the magnetic field simulations;

-to design and to build experimental rig

-and finally to confirm the basic functionality by experimental evaluation of an “MS”-actuator
and “MR”-control devices Two different control devices, valve and orifice, have been
evaluated in this thesis. Furthermore, the pre-load for Terfenol-D shaft from the “MS”-

actuator has been optimized based on experimental evaluation.

The thesis is structured as follows. Chapter two and three are summaries of “MS” and “MR”
literature surveys including technologies basics and known applications. Chapter four
contains the parametrical calculations of actuator and control device performance. Chapter
five handles the magnetic field calculations and results of magnetic field simulations for the
“MS”-actuator and the “MR”-control devices. Two different software packages for magnetic
field simulation, free available FEMM-software and professional Vector Ficlds Opera-
software, have been used to optimize the “MS”-actuator design and the “MR”-control design
The experimental evaluation has been discussed in chapter six. In the last chapter conclusions
and future work for continuing development has been proposed. Experimental rig drawings

with specifications are summarized in appendixes of this thesis.
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Chapter Two

Literature survey of magnetostrictive “MS” technology

2.1 Magnetostriction Effects

Crystals of ferromagnetic materials change their shape when they are placed in a magnetic
field. This phenomenon is called magnetostriction. It is related to various other physical
effects [1-7]. Magnetostriction is, in general, a reversible exchange of energy between the
mechanical form and the magnetic form. The ability to convert an amount of energy from one
form into another allows the use of magnetostrictive materials in actuator and sensor
applications. Fig. 4 shows various physical effects which are related to the magnetostrictive

effect.

Magnetic fisld Magrietic flux
strenyth 4§ ¥ density
Permeability
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Fig 4: Magnetostrictive effects, similar to [4]

The most understood effect which is related to magnetostriction is the Joule effect. This is the
expansion, positive magnetostriction, or contraction, negative magnetostriction, of a
ferromagnetic rod in relation to a longitudinal magnetic field. This effect is mainly used in
magnetostrictive actuators. Magnetostriction is a fully reversible material feature. In the
absence of the magnetic field, the sample shape returns to its original dimensions. The ratio of
AL/L in Terfenol-D is in the range of 800 ppm up to 2000 ppm, and can be up to 4000 ppm at
resonance frequency. The increase in length (longitudinal strain) or the contraction of
diameter (lateral strain) is proportional to the applied magnetic field and this can be used for
various purposes 1n an actuator mechanism.

Another widely utilized effect related to magnetostriction is the Villaxi Effect. This effect is

based on the fact that when a mechanical stress is imposed on a sample, there is a change in
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the magnetic flux density which flows through the sample as a result of the creation of a
magnetic field. The change in flux density can be detected by a pickup coil and is
proportional to the level of the applied stress. The Villari effect is reversible and is used 1n
sensor applications.

The AE-Effect is another effect related to magnetostriction. It is the change of the Young's
Modulus as a result of a magnetic ficld. The AE/E in Terfenol-D is in the range of more than 5
and can be employed in tuneable vibration and broadband sonar systems [6]. Due to the
change of the Young's Modulus there 1s a change in the velocity of sound inside
magnetostrictive materials, and this can be observed.

Another effect related to magnetostriction is the Wiedemann Effect. The physical
background to this effect is similar to that of the Joule effect, but instead of a purely tensile or
compressive strain forming as a result of the magnetic field, there is a shear strain which
results in a torsional displacement of the ferromagnetic sample.

The inverse Wiedemann Effect is called Matteuci Effect. Alternating current fed to a coil
creates a longitudinal magnetic field m a sample, and this in turn creates a magnetic flux
density m the sample. The presence of the alternating magnetic flux can be detected by
another coil, a pickup coil which measures the rate of change in the magnetic flux density.
Twisting the ferromagnetic sample mduces a change in the magnetization of the sample,
which results in a change in the rate of change of the magnetic flux density. By detecting the
magnetization change using the pickup coil, the change in shear stress can be evaluated and as
a result the magnitude of the applied torque can be calculated. The Matteuci effect is modified
by introducing a permanent magnetic bias in the ferromagnetic sample and this is used in
sensor applications.

An additional magnetostrictive effect is the Barrett Effect [6]. In certain extreme operational
conditions the volume of the material may change in response to a magnetic field. For
instance, the fraction volume change of nickel is only 107 at 80 kA/m. This volume change in
response to a magnetic field is so small that it can be neglected under normal operational
conditions The inverse Barret effect, the Nagaoka-Honda Effect, is the change of magnetic
state caused by a change in the volume of a sample as a result of hydrostatic pressure. Due to
the very extreme operational conditions required to make 1t possible to detect these effects
connected with volume change, they have not found wide use in industry.

The two most widely used magnetostrictive effects are the Joule effect and the Villari effect.

They can be analyzed using the following equations. Firstly the Villari effect:

B=do+u’H 0
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In the Eq. (1) B 1s the magnetic flux density in T, d is the magnetostrictive constant in m/A, ¢
[Pa] symbolizes the stress change and p° {N/A?] is the permeability at constant mechanical

stress. The Joule effect can be represented by a similar equation:

v H
S=c"g+dH @

In the Eq. (2) S is the mechanical strain, ¢” [m*N] is the compliance coefficient at constant
field strength and d [m/A] is the magnetostrictive constant at constant stress.

The magnetic field strength, I, could be calculated using:

G)

Where 1 is the current [A], N[-] number of coil turns and I [m] is length of the magnetic path.
Due to the fact that the axis of a typical bar-shaped sample 1s usually in line with the direction
of magnetization only the axial component needs to be considered.

In a magnetostrictive application the physical parameters described above do not remain
constant during the operations Table 3 presents a summary of some features of different
materials and the structures where they are normally used. It is intended for use as a

comparison between the main materials used in actuators and sensors.

Table 3: Technology features overview [1, 2, 8, 9, 10, 11, 58, 59 and 60]

Typical features PZT Terfenol-D SMA
Actuation mechamism | Piezoelectric material | Magnetostrictive matertal | Shape memory alloys
Elongation 0.1% 0.2% 5%
Energy density 2.5 kJ/m? 20 kJ/m? 1 kI/m3
Bandwidth 100 kHz 10 kHz 0.5 kHz
Hysteresis 10% 2% 30%

Costs as reference 200 8/ cm? 130§/ cm? 200§ /cm?

Similar technology overviews are summarized in several references [17, [2], [8], [9], [101],

f11] and [32]. These classifications of various technologies can be used to select the optimum
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technology candidates for a particular application

Other material properties, related to Terfenol-D only, are summarized in the section 2.2.
These features can only be used for rough comparisons since the properties are variable in
each application. These tabled Terfenol-D features are only valid as a starting point because
the manufacturing process has a great influence on the exact values for these properties. Also

the level of pre-stress and level of magnetic bias can have a great influence on the properties.

2.2 Giant Magnetostrictive Materials and Their Properties

The development of giant magnetostrictive materials (GMM) was started 1n the 1960's by
A.E. Clark and other researchers. The best trade-off giving a high magnetostramn at a
relatively low magnetic field over a wide range of operating temperatures 1s the
commercially-available alloy Tbg 3Dy 7Fe; 9. Terfenol is a rare earth iron alloy. The alloy
formulation is known as Terfenol-D, where “Ter” is from Terbium, “Fe” 15 the chemical
symbol for iron, “NOL?” is derived from Naval Ordnance Laboratory and “D” is for
Dysprosium (Ter+Fe+Nol+D). Terfenol-D was discovered by a research group led by A.E.
Clark in the 1970's at the Naval Ordnance Laboratory. One of the first applications of
Terfenol-D was a high-performance sonar transducer. Terfenol-D is capable of providing a
positive magneto-strain of typical range of 800-2000 ppm at 50-200 kA/m in bulk materials
[12] and about 4000 ppm [1, 13] at mechanical resonance frequencies and at high magnetic
fields'

(AL)

A =

© L 4

A, =800—4000 ppmn (5)

In a typical application for a Terfenol-D rod, parts per million (ppm) values are expressed as

the length change multiplied by a million divided by the length of the sample rod. Fig. 5
shows the total range of length change for a given length of Terfenol-D rod.
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Elongation versus shaft length
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Fig. 5: Length change versus Terfenol-D rod with strain as parameter

Some devices using Terfenol D’s property of expansion have been designed using magnetic
and mechanical bias to have a zero point at the beginning of the linear section of the
performance curve of the material. When the magnetic field is established the response of the
material will be along the linear section of the curve, ensuring a response which is predictable
and proportional, and in the range of a strain up to 1500 ppm at relatively low flux density of
0.3 T [43]. The delay between magnetic field and the elongation is in the range of one micro

second [41 and 52]. Terfenol-D properties are summarized in Table 4.

Table 4: Terfenol-D properties, [1, 2,4, 5,6, 9, 12, 14, 16, 44 and 63]

Terfenol-D property Value range Comments
1. Nominal composition Tb,D; Fe, 0.27<x<0.3 & 1.9<y<2
2. Density & 9250 kg/m? Depending on manufacturing

3. Mechanical properties

Compressive strength 305-880 MPa Preferred in applications

Tensile strength 28-40 MPa To be avoided in applications

Young's modulus E" 10-75GPa  |At constant H
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Terferol-D property Value range Comments

Young's modulus EP 30-80 GPa At constant B

Sound speed| 1640-1940 m/s  |Due to AE-Effect

4 Thermal properties

Cocfficient of thermal expansion 12 ppm/°C Not widely reported

Specific heat coefficient| 0.35 kI/kgK @25°C |Not widely repotted

Thermal conductivity | 13.5 W/mK @25°C |Not widely reported

5 Electrical properties

Resistivity (58-63)1 0% Om |Not widely reported

6 Magnetomechanical properties

Relative permeability 1’/ po 9.0-12.0 Permeability at constant stress
Relative permeability u®/ pg 3.0-5.0 Permeability at constant strain
Magnetic saturation occurs at 1.0T Preferred distance to saturation

MS coupling coefficient kj; 0.6-0.85 Depending on application
MS strain coefficient ds; 8-20 nm/A Depending on magnetic field
MS quality factor QF 3.0-200 Depending on application

2.2.1 Terfenol-D Production

Terfenol-D is a rare earth alloy, silver in colour, brittle at room temperature and because the
raw materials are highly reactive and contain impurities, not easy to produce At least four
different methods have been developed to produce Terfenol-D and are utilized on a near-
production basis [1, 17]. The methods are Free Stand Zone Melting (FSZM), Modified
Bridgmann (MB), Sintered Powder Compact and Polymer Matrix Composites of Terfenol-D
Powder Techniques [17]. The most used methods are the MB and the FSZM. In the FSZM-
method, material in the melting zone is held in suspension by surface stress This method is
also called the Directional Solidification Method. In the MB-method, the material is melted
completely and crystals are grown starting with a seed crystal [1]. Because side nucleation
from the mould walls tends to overwhelm the primary, axial dendrite crystal growth, the

minimum Terfenol-D rod diameter is approximately 10 mm. In both processes the material
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solidification is specifically controlled by reducing the heat flow 1n a way which encourages a
crystallographically aligned structure. Both methods are used to produce Terfenol-D rods with
high magnetostriction and high energy density. The Sintered and Composite processes are
used more for the production of Terfenol-D rods for high frequency (higher than 1 kHz)
applications where, otherwise eddy currents would cause high losses [49] The methods based
on sinter technology are also suitable for more complex geometries.

Solid rods up to 65 mm m diameter and 200 mm in length, laminated rods, rods with holes or
odd shapes, rods with square cross sections, plates, discs, sputtering targets and Terfenol-D
powder are all available off-the-shelf or can be produced on specific request [14]. New and
opiimnized processing methods, like directional solidification or powder metallurgy methods,
are showing a promising way for high volume and cost-effective production [17, 54].
Characterization methods for evaluation of different production samples have been developed
and introduced in the reference article [55].

Terfenol-D material is very brittle in tension. Its tensile strength (28 MPa) 1s very low
compared with its compressive strength (up to 880 MPa) The density of the material is higher
than the density of normal grades of steel and is about 9250 kg/m?.

2.2.2 Young's Modulus

Some Terfenol-D features are not constant during an operational cycle. One of these features

is the Young's modulus, which varies almost linearly with the magnetic field. A sketch of the

AE-Effect is depicted in Fig. 6.

E [GPa]

A

ﬁ[kAfm

Fig. 6: Young's modulus versus magnetic field
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Young's modulus at constant value of magnetic flux density, EP, can be expressed as follows:

EH

Elme———
(1-k,,)

(6)

As equation (6) suggests, theoretically there is a value of flux density at which Young’s
modulus becomes infinite. When this property occurs in a sample of Terfenol-D, 1t 1s said to
have reached “a blocked state”, and no rotation of magnetic domamns 1s possible and the

material is prevented from changing its dimensions in response to stress [18].

2.2.3 The Magnetomechanical Coupling Factor & the Magnetostrictive

Coefficient

In the transducer application, magnetic energy is converted into mechanical energy. The
efficiency of the energy converting process 1s governed by the magnetomechanical coupling
factor, kaa. The value of this factor usually varies between 0.5 and 0.8, indicating that the
efficiency varies between 50 and 80% [1, 19, 36 and 46]. In applications where only the
longitudinal elongation is of interest (for standard actuator applications) the material
properties related to the longitudinal axis are relevant. This mode is called 33-mode and the
magnetomechanical coupling factor 1s called kiz. The magnetomechanical coupling factor,

ka3, is given by equation (7).

dE
2 33 g
ky=—7E
H3s %

In this equation, the magnetostrictive coefficient ds; is the slope of the strain Az; versus

magnetic field strength Hjs:
- {d ‘?“33}

g s 2330

33
(dH,,) &

In Fig. 7 the magnetostrictive coefficient dss is depicted graphically. There is a region in the

graph where the slope 1s high and the relationship between the strain and the magnetic field is

almost linear. This is the optimal working range, and is preferred for converting the magnetic
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into mechanical energy because of the minimization of losses and because the relationship is

almost lingar.

>

H

Fig. 7: Strain versus magnetic field

Neither the magnetomechanical coupling factor kss nor the magnetostrictive coefficient ds3
remain constant throughout the operating conditions in real magnetostrictive applications. Fig.
8 shows the impact of applied pressure on the coefficient di; and on the factor ks3 for an
application where Terfenol-D is used, to iftustrate this variability. It is common for both

cocfficients to show maxima at a given value of pre-stress.

F' 3

kaz
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0 10 B

20
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Fig. 8: ki3 and d33 versus applied stress [19]

For effective and efficient operation, both coefficients need to be as high as possible. The

magnetostrictive coefficient das is often called the magnetostrictive strain coefficient. For
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Terfenol-D the value of the magnetostrictive coefficient dss is in the range 5-70 nm/A [1, 20].
Both coefficients depend not only on the pre-stress as 1llustrated above, but also on the

applied magnetic field.

2.2.4 Quality Factor

Under quasi-static condition (continuous excitation under a sinusoidal alternating current),
assuming zero pre-stress and assuming a linear relationship between the strain and the

magnetic field, the strain is given by:

A..=d

33 33

H

33 )

The coefficient ds; is found to be almost constant for most frequencies. However when the
frequency approaches a value causing the sample to resonate in its longitudinal direction, the
amplitude of the vibration increases abruptly [12]. For this to be observed the sample of
Terfenol-D must be free to vibrate, so that if it was in an actuator it would be an unloaded
actuator. The strain at resonance is much higher than it 1s under quasi-static conditions. The

strain at the resonance condition is given by:

Aazmgm*dm'ﬁ 3

3 (10)

The amplification factor of the strain at its first resonance over the strain under quasi-static
conditions is the quality factor Q. In the case where the actuator’s vibrating end is totally
free, the quality factor Qy, 18 due to mechanical losses occurring internally i the matenal [1,
21] and is equal to Q. This internal material quality factor Q" is i the range of 3-20 [1, 21].
On the other hand, when there 1s a load, when the sample of Terfenol-D encounters a
resistance to its free movement because of the surrounding assembly, a damping feature is

introduced into the vibration and the quality factor Q" is reduced to a value Q.
2.2.5 Permeability

The constant y=4710" H/m defines the magnetic permeability of free space. The
permeabilities of most materials are close to the permeability of the free space. These

materials are called paramagnetic or diamagnetic. In the case of ferromagnetic materials the
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permeability is very large and it is common to express the permeability in terms of a new
property, the relative permeability. This is the number of times the permeability of free space
must be multiplied by mn order to arrive at a value for the permeability of the material. Since
this is a number, values of relative permeability are dimensionless. The relative permeability
therefore indicates the amplification of magnetic effects in a magnetic material, which is
expressed as the amplitude of the magnetic flux density in a magnetic material in response to
a given magnetic field. The relative permeability of Terfenol-D is much smaller than of a

magnetic iron. Table 5 presents a range of relative permeabilities including Terfenol-D.

Table 5° Relative permeability [22]

Relative permeability Value range
Mu-metal 20000
Permalloy 8000
Magnetic iron 200
Nickel 100
Terfenol-D <10
Aluminum 1

When a ferromagnetic material has been magnetized using a magnetic field and that field 1s
removed, the material will not relax back exactly to zero magnetization when the magnetic
field is removed. It must be driven to zero by imposing a magnetic field in the opposite
direction. So, the magnetization curve is a loop and this loop is called a hysteresis loop. The
lack of retraceability is defined as hysteresis. It requires some energy in order to cause
magnetic domains to become oriented in the same direction as a magnetic field [22]. For an
actuator or sensor smart material, the aim is to develop materials with the smallest hysteresis.
On the other hand, a material to be used for magnetic memory with a high capacity, a large
hysteresis is required, which is also the case in most permanent magnet applications Fig. 9 is
taken from a website called HyperPhysics. The hysteresis loop is explained using some

graphical indications of the magnetic domains.
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Chapter two

‘Another way to specify the magnetic behavior is to use the term magnetic susceptibility &y

The magnetic susceptibility Ky specifies how much the relative permeability differs from

value of one.

h
7
= _

Hy

i

(11)

In the case of an active material like Terfenol-D the relative permeability depends on the pre-
stress and the frequency used in ifs operation. Fig. 11 represents the magnetic behavior of
Terfenol-D. It shows how the material responds to an applied magnetic field (H) by
developing a magnetic flux, with a flux density (B). The permeability is the value of B/H. The

diagram shows the hysteresis loops [similar to 57].

+100
H [kA/Mm]

Fig. 11: General B-H curve

1t is found that higher amounts of pre-stress reduce the relative permeability. For positive
magnetostrictive materials an explanation for this could be that it is because when the pre-
stress is high the domain movement requires more mechanical energy, and therefore the
matetial is unable to respond to the magnetic ficld as well as it can when the pre-stress is
lower. For magnetostrictive materials there is another response to the magnetic field in
addition to the ferromagnetic effect (amplifying the magnetic flux) and this is the change in
strain. The two effects are related, but the relationship between them is complex. For these
materials there is also a hysteresis feature associated with the magnetostrictive effects [37].

Some hysteresis models to calculate the hysteresis have been introduced [42, 45]. A typical
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hysteresis loop, showing magnetostrictive strain in response to a magnetic field for a sample
of Terfenol-D is illustrated in Fig. 12.

%
A

+H

Fig. 12: Full loop of magnetization [23]

Also for these materials another property connected with permeability can be defined.

The permeability at constant strain is defined by:

57 2
fio =tk ) (12)

This property applies to a smart material and is useful when it is in the “blocked” state. In the

blocked state the material is prevented from increasing its strain by external forces and so no

further rotations of magnetic domains are possible [18].
2.2.6 Blocked Force

The maximal achievable force is called the “blocked force”. A simple force-displacement

relationship is valid for elastic behavior:

F.=S8 AL
g (3

In this equation Sy, is the stiffness of the active element and is defined by the Young's
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modulus (at constant magnetic field), the cross sectional area and the length of the Terfenol-D

element;

"L (14)

Combining the last two equations with substitution of the stiffness, and also substituting

magnetostrictive strain (A =AL/L) leads to equation of definition for a blocked force.

"_ H 4 F
Fi=A-E¥ AL 5

There is an axial force which refers to the maximum amount of magnetostrictive strain that
can be applied to a sample of Terfenol-D. This occurs at very high magnetic field strengths (at
Amax)- According to this relationship the blocked force F*p is proportional to the Young's
modulus and the maximal strain at an applied magnetic field. Blocked forces of about

12000 N are achievable with a Terfenol-D shaft with a diameter of 20 mm and with a

moderate magnetic field [19].

2.2.7 Typical Optimization

All the above described material properties have highly variable characteristics due to the
changing conditions during an operational cycle. To achieve the desirable functionality with
accuracy, good controllability and high power density, a number of additional arrangements
are required to optimize the performance of a Terfenol-D transducer. One of the typical
optimizing arrangements is to create a magnetic field with a permanent bias using permanent
magnets, in order to operate in a region of the performance curve where the slope is at a

maximum value. This condition is shown in Fig.13.
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4 =

o

Fig.13: Typical optimization with magnetic bias

The level of pre-magnetization depends on the transducer design and is usually about some

. 10 kA/m, The other method of optimization is to apply a defined mechanical pre-stress which
can cause rotations of magnetic moments in a way that they are aligned perpendicularly to

- this applied stress. In this condition the smallest increase in the applied magnetic field will
produce the greatest magnetostrictive strain, The applied mechanical pre-stress is not very
large.
It can be observed that larger magnetostrictive strains can be produced by the same magnetic

ficld strengths when the pre-siress is increased. This is illustrated for Terfenol-D in Fig. 14.
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A [ppm]

< -1 50k A/m N +130kA/m P

-H +H

Fig.14: Typical optimization with mechanic bias [similar to 24, 25 and 50]

For larger pre-stress values, another effect is observed. The energy required to overcome the
pre-stress when producing a positive magnetostrictive strain becomes the dominant factor,
with the result that magnetostrictive strain becomes smaller for very large values of pre-stress.
There is therefore a pre-stress value where the magnetostrictive strain reaches a maximum.
The optimal pre-stress is the stress which causes the magnetic moments to be aligned
predominantly perpendicular to the rod's longitudinal axis without introduciug so much load
that the work required to overcome it becomes overwhelming [25]. The butterfly curves,
showing strain versus applicd magnetic field at various pre-stresses, as illustrated above, are
typically used to quantify the optimal pre-stress. The strain capability of a Terfenol-D element
in a transducer can be increased by factor ~3 as a result of the correct pre-siress selection. The
pre-stress is applied using a spring. There is interdependence between the choice of magnetic
bias and mechanical pre-stress, with one factor having an effect on the other. The choice of
magnetic bias and mechanical pre-siress is investigated in several studies. A general overview
of this effect is given in reference articles [24, 25, 38, 39 and 40]. Furthermore, the impact of
cyclic stress on Terfenol-D on durability has to be taken into account; some information can
be viewed in reference article [35].

Further optimization, linked to the same physical background, is possible by choosing the best
manufacturing method [17] or annealing process [26] to improve the material texture, which
has an effect on the direction of the magnetic moments. Some additional optimizations are

feasible in terms of using a specific layout for the magnetostrictive transducer. It depends on
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the exact location of the active coil and permanent magnet in the transducer. Typical actuator

layouts, with their advantages and disadvantages, are depicted in Table 5 schematically.

Table 6: Typical layouts in comparison [1, 2]

TCM T™C MTC

—p e

Typical actuator featires i | ! !

Magnetic bias with DC coil Permanent magnets

Magnetic bias level Low Medinm Medium, high High
Terfenol-D shape Rod, bar Rod Rod Hollow rod
Structure Simple Medinm Medium Complex
Field inhomogeneity Low Low Mectinm High |

For a simple, cost-effective actuator with a high energy density the TC & TCM configurations
should be given priority. Finally the required functionality, cost level and available

packaging can have an influence also on the best actuator configuration.
2.3 Applications of Terfenol-D

Magnetostrictive technology has been successfully employed in low and high volume
products. The magnetostrictive effects discussed in the previous sections have been put to use
in several applications of Terfenol-D. The two main areas of Terfenol-D applications are
actuators and sensors. The following section of this thesis gives an overview of typical GMM

applications.
2.3.1 Reaction Mass Actuator

Etrema [27] has designed, built and validated an actuator device, which is capable of
generating useful forces although it can operate over a wide bandwidth of frequencies. This
particular reaction mass actuator was designed to operate over a bandwidth from 150 to
2000 Hz. It was also able to generate a force of 4000 N or an acceleration of 30 g at the
device's resonant frequency of 635 Hz [27]. Genérating seismic waves with this actuator and

analyzing the reflection provides an indication of underground and hidden structures and
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formations. Fig. 15 shows a cross section of a reaction mass actuator.

ELECTRICAL—— SR F—imi EXITING GROOVE
CONRECTER | TERFEROL-D
. rﬁﬁﬂ"u‘i CoiL
- ~—HELLEWILLE
Y B m— < BRELOAD SPRIMG

st D ¥R 4§ | —OUTPYT AOD

e . i T TOR PLAVE

CNGTH, 305 MM

Fig. 15: Reaction mass actuator [27]

One example of a further direct magnetostrictive microactuator has been introduced in the
reference article [53]. The goal for this application was a structure in millimeter size with
nanometer resolution. Axial force of 25 N and 3 micrometer in displacement at 1.5 A, and

. resolution of 250 nm per 0.1 A, has been achieved [53].

2.3.2 A standard Terfenol-D Actuator

Etrema also designed, build and validated several other actuators for different purposes. An
actuator with its layout depicted in Fig. 16 is available off-the-shelf, giving displacements up
to 25 Opm and forces up to 2,200 N, and operating at frequencies up to 2500 Hz. The
operational temperature of this actuator is typically in the range from —20 °C up to +100 °C.
In addition, ultrasonic actuators for higher frequencies are available. Other types of Terfenol-
D actuators have been developed by Cedrat Recherche [14].
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Permanent Preload
Magnets Springs

 Output

Coil

Fig. 16: Standard actuator [14]
2.3.3 Linear Motor Based on Terfenol-D (Worm Motor)

Energen, Inc. [15] has designed and built a compact lincar motor based on the smart material
Terfenol-D. The central feature of this linear motor is a rod of Terfenol-D surrounded by an
electric coil which, when energized, causes the rod to elongate. The actuator is mounted
between two clamps. By operating the actuator and the clamps in an appropriate sequence the
rod of smart material moves forwards or backwards. Fig. 17 shows the principle by which the
functionality is achieved.

1)
2)
3)
4)
5)
8)

7}

Fig. 17: Worm motor [15]

In the first step the power is off and both ends are clamped. Then one of the clamps is

released by energizing (step 2) and after this by energizing the actuator coil (step 3) the front
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end of the rod is moved forwards due to the elongation of the Terfenol-D. During this
elongated condition the forward clamp 15 closed to hold the rod (step 4). Then the rear clamp
is energized to allow movement (step 5). Next in the sequence the actuator coil 1s switched off
and the rear end of the rod moves forwards (step 6) In the last sequence the rear clamp is
closed again to provide the full hold force capability. This arrangement achieved very

accurate control of position to within a few mucrons over a total stroke length of 20 mm. The
holding force capability was up to 3000 N [15]. A similar application of the worm motor has

been miroduced in a micro mobile robot [34].
2.3.4 Terfenol-D in Sonar Transducers

A good sonar transducer should produce high mechanical power at low frequencies. Often an
additional trade-off must be achieved between a broad bandwidth of operating frequencies,
and a low quality factor Q [6]. The original, widely employed, transducers based on nickel,
with a magnetomechanical coupling coefficient of 0.3, have been replaced by newer
technology based on the newer magnetostriction materials In fact Terfenol-D transducers are
able to operate with high mechanical power and at low frequencies because their
magnetomechanical coupling coefficients can be as high as 0.8 and their quality factor Q is
low. Fig. 18 shows various types of transducers. Layout a) depicts the typical Tonpilz sonar
transducer which can operate over a bandwidth of 200 Hz at the resonant frequency of

2000 Hz (Q=10) and a source level of 200 dB [6]. Layout b) and c¢) from reference [6] show
various designs to convert the limear motion of Terfenol-D into appropriate controllable

vibrations. Further details for various applications are given in the references [6 and 9].
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Fig.18; Sonar transducers [6]

2.3.5 Terfenol-D Wireless Rotational Motor

A structure has been developed to convert the elongation movement of a magnetostrictive
material into a rotary motion to form a micro-stepping rotary motor [28]. The principle of
operation is based on “Inch worm” functionality. A prototype based on this technology
provides high torque and precise positional control in a power-off self-blocking arrangement.
The magnetostrictive micro-stepping motor consists of two sets of pole pairs, and two sets of
driving elements, which work in engagement and disengagement sequences to enable the
micro-stepping movement Part of the energy is stored i u-shape springs between the pole
pairs. A prototype with dimensions of 260 x 115 x 108 mm was capable of producing

12.2 Nm torque at 0.5 rpm rotational speed using 600 W power. The stepping resolution
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achieved was 800-urad. More details are depicted, analyzed and discussed with test results in

reference [28]. Fig. 19 shows the layout of the micro-stepping rotary motor.

Drive Di
Housing.

- Seclion A~a

Fig. 19: Rotational stepping motor [28]

2.3.6 Terfenol-D Electro-Hydraulic Actuator

Magnetostriction can be used in linear motion actuators in combination with conventional
technologies like hydraulic technology. Small elongations, added step-by-step, can be used as
the working principle in a simple pump for high pressure fluid flow. A system combining the
magnetostrictive functionality with hydraulic non-return valves has been introduced in
reference [29]. The system consists of a magnetostrictive pump, a hydraulic flow distribution
sub-system, a sub-system to convert hydraulic energy (pressure [Pa] x fluid flow [m?/s]) into
mechanical energy (force [N] x movement [m]) and control electronics. Fig. 20 depicts the
structure of the magnetostrictive pump. A prototype using this structure achieved an
operational pressure of 4.2 MPa and a fluid flow rate of more then 3 I/min [29]. The
simplicity, high power density and fast response are very promising. More details with a

discussion of testing and simulation results are published in reference article [29].
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Fig. 20: Electro-hydraulic actuator [29]

2.3.7 Wireless Linear Micro-Motor

Various types of standing-wave ultrasonic motors have been developed at Cedrat Recherche.
This is one of the magnetostrictive film applications. The linear micro-motor is achieved as a
self moving silicon plate with small magnetostrictive films applied to 1is surface. The major
advantage of using a smart material like Terfenol-D is that actuation can be achieved without
contact using a magnetic field produced by an electric coil which could be located some
distance from the moving parts. The applied magnetic field produces a resonating flexing
shape; this leads to the vibration of the plate and causes a motion of approximately 10-

20 mnv/s {1, 2 and 12]. A sumilar principle is used in a rotational motor. At a 20 mT excitation
field the typical performance is a rotating speed of 30 rpm with a torque of 1.6 uNm. Fig. 21

shows the functional principle of the thin film actuator based on magnetostrictive materials.

Hegnesogtpictive thin film
Bilicon Fiate

s

| H&qh&%&&ﬂmiﬁaive thin filp

e Ly

Fig. 21, Magnetostrictive thin film actuator [12]
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Further micro-pump mechanism, based on magnetostrictive films, has been introduced in

reference article [47].
2.3.8 Other Magnetostrictive Film Applications

Coating methods suitable for Terfenol-D and other magnetostrictive materials have been
developed for a number of applications based on using the magnetostrictive properties of the
film. Sputter-deposited magnetostrictive films are used in actuators in microstructures to work
m simple, cost-effective, contact-less arrangements at high operational frequencies [30].
Depending on the composition and sputtering conditions a strain of up to 700 ppm at 0.5 T for
TbDyFe is achievable. Various layouts of cantilever-type and membrane-type microsystems
have been published in recent years. Lateral pattering of the magnetostrictive film is essential
in order to obtain large and predictable deflections. The deflection of a double-clamped
cantilever produces a curvature of the substrate, which can be either convex or concave If
only one side is coated the deflection under the magnetic field is predictable and can be
controlled for different purposes. A possible structure for a conirol valve is shown in the
following figure, Fig. 22. The coated arca of the bilaterally fixed transverse substrate 1s shown
in colour The arrangement has the advantage that the fluid flow could be controlled contact-
less to moving parts by a magnetic field, and a promising functionality can be obtained usmg

this micro-valve structure [1, 2 and 30].

QUTLET OUTLET

WMagnetastrictive

INLET

VALVE GLOSED VALVE OPEN
Fig. 22. Thin film application i valves [30]

Page 30



Chapter two

2.3.9 Magnetostrictive Contactless Torque Sensors

The high efficiency in converting magnetic energy into mechanical energy, and vice versa,
enables magnetostrictive technology to be used in contact-less sensor applications. In these
applications the Wiedemann, the Villari, the AE and the Matteuci effects are used to detect the
measurable magnetostrictive changes and so to provide quantifiable data on stresses, forces or
torques. Changes in mechanical properties like stresses and strains produce predictable
changes in magnetic properties in magnetostrictive material. In the sensor applications
mechanical energy changes generate magnetic energy changes. Often pick-up coils
surrounding the magnetostrictive material are used to detect changes in permeability
properties and electronics are used to convert, filter and amplify the basic data to produce data
on strains and stresses, which in turn give estimates for loads (pressure, force, torque) In the
following Fig. 23 a) [12] a sensor based on magnetostrictive technology has been sketched. In
this application torque was applied to the shaft, and shear stress is generated along the length
of the shaft. This also produces tensile and compressive stresses in the directions of +/-45° to
the longitudinal shaft axis. The two stress vectors are oriented 90° to each other and have
opposite signs (to indicate tensile and compressive stresses). When the shaft contains a
magnetostrictive material, or has a collar containing a magnetostrictive material attached to 1t,
the magnetic permeability measured along these directions will change. Changes in magnetic
flux can be measured without any physical contact being necessary using the Hall Effect or
with perpendicular coils. Applications like this have been developed and are close to a
possible high volume application m the automotive area. Another type of contact-less sensor
application is shown in Fig. 23 b) [12]. The principle is based on the change of permeability
due to shear stress. For less sensitive measurements, i.e. for restricting the torque, less
expensive magnetic steels or alloys can be used In the diagram the torque in the drill shaft is
measured by two pick-up coils connected in series. One coil is located over the flutes and the
other over the shank The permeability change of the shank is less sensitive to the torque
change than the permeability change of the flutes. An additional excitation coil provides a
maguetic field, while the sensor output is the difference in voltage from the two pick-up coils
due to the different permeability sensitivity of the shank and flutes. More details and linked

references are given n reference article [12]
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Fig 23: Contactless sensor application based on magnetostrictive materials [12]

Another example where the inverse magnetostrictive or magnetoimpedance effect is used n
sensor applications is the remote-interrogation strain gauge [31]. When using the inverse
magnetostriction effect, it is common to use films of magnetostrictive materials or amorphous
multilayer of these materials. The mstruments operate at frequencies in the range from

10 MHz to 8 GHz [31]. The remote-interrogation principle is shown in following graph. The
high frequency allows the sensor antenna to be small in size and a broad bandwidth of
frequencies can be used to produce valid measurements. Basically the change in mechanical
stress (or strain) produces a corresponding change in the AC-permeability of the strained /
stressed material. The use of a magnetostrictive material with a high efficiency in converting
mechanical energy into magnetic energy increases considerably the sensitivity at high stress
when compared with more conventional strain gauges sensors. Fig. 24 shows the remote-
mterrogation functionality principle [31] for sensor applications in two configurations. In
configuration a) the sensing element is wrapped around a core containing the magnetostrictive
material and in configuration b) the sensing element is coated with a film of a

magnetostrictive material.

Page 32



Chapter two

A) Antenna structure with magnetoelastic core | D) Magnetoelastic thin film or wire
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Fig. 24: Sensor applications, similar to [31]

This list of applications is not comprehensive but gives on overview of applications based on
magnetostrictive materials, mainly on Terfenol-D, with a potential for high volume
production It illustrates the area of the greatest interest for many research projects. Several
companies and universities are involved in research areas closely related to magnetostriction,
especially related to materials like Terfenol-D. Applications such as micro-positioners, fluid
inyjectors, active damping systems, helicopter blade control systems, as well as some hybrid-

applications using a combination with piezoelectric effects have been introduced into the

public domain.

2.4 Remarks on MS Technology

The Magnetostrictive (MS) technology is one of the older “newcomers” coming to the market
at high speed. Magnetostrictive technology has been successfully employed in several
automotive and non-automotive applications The market readiness is growing for
magnetostrictive applications with more intelligence in the functionality keeping with, or even
improving on, the simplicity of the operating system. Features of magnetostrictive
applications like power density, accuracy and dynamic performance are excellent catalysts for
the implementation of the technology in high volume applications. Since some active
materials like Terfenol-I) have been developed with stable characteristics over a wide range

of temperatures and have a high magnetoelastic coefficient, interests in the technology is
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Chapter three

Chapter Three

Literature survey of magneto-rheological (MR) technology

3.1 Rheological Background of the MRF Technology

Rheology 1s the study of flow and deformation. Flow capability and deformation, which is
either elastic or plastic, have common features and the study of both subjects must overlap. In
a conventional application with conventional liquids i.e. a hydraulic pump or damper the
characteristic depends on viscosity and the viscosity change of viscosity with temperature.
Because of this, temperature would normally be considered as an uncontrollable feature.
There are two ways of expressing the viscosity — dynamic and kinematic viscosity. Dynamic

viscosity 1 1s defined by:

-L
n=y (16)

In this equation n is in [Pa-s] , the T [Pa] 1s the shear stress and the v [1/s] is the shear rate.

Kinematic viscosity v [m?/s] 1s defined by following equation:

_n
v= P (17)

In this equation p is the density in [kg/m?] and v is the dynamc viscosity The temperature
dependency of the conventional fluid i.e. silicon oil or mineral oil is defined by

approximation:
b

n(g):A_e{(aun}

)
(18)

The factors A and b are experimentally defined for specific liquids, 0 is temperature m °C.
Newton evaluated the relationship between shear stress and shear rate for various materials. In
the case of water this relationship 1s linear. The common name for such a fluid is a Newtonian
fluid. For a Newtonian fluid the dynamic viscosity has a constant value. Typical relationships
between shear rate and shear stress, and the corresponding relationships between dynamic
viscosity and shear stress for various fluids are shown in Figure 25. In addition to the
graphical representation, equations have been developed to quantify the relationships between
these rheological parameters. In these equations, & and » are characteristic parameters

describing the theological behaviour of the particular flmd.
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Fig. 25: Different types of fluids models [74]

The relationship between the shear stress, viscosity and shear rate depends on the fluid type.
In the case of the black curve marked with the small letter (a), the fluid can be recognised as a
Newtonian flud. The viscosity does not change despite different shear rate values, and the
shear stress has a linear relationship with the shear rate. The representative fluid with this
behaviour 1s water. In the cases of curves (b) and (c), the shear stress has a reducing (b) or
increasing (¢} dependency with shear rate There is an analogous relationship between
viscosity and shear rate, which corresponds to each of these fluid behaviours The
representative fluids with these behaviours are ketchup tooth pastes, etc. The curve (d)
describes behaviour, which is close to the behaviour of MRF. The rheological behaviour of

~MR fluids, where no magnetic field is present, is very similar to the pattern of the carrier
fluids, except that the metal powder content of the MR fluid makes the liquid slightly
“thicker”[65,66 and 68].
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Fig. 26: Shear stress against shear rate for various fluids

Fig. 26 shows the typical relationship between shear stress and shear rate for a Bmgham fluid
and compares this with a Newtonian fluid. Tt is recognised that the Bingham model is valid
for use in describing the rheological features of an MR fiuid [65, 66 and 68]. When a
magnetic field 1s not present an MR fluid behaves like a Newtonian fluid. When a magnetic
field 1s present, the MR fluid shows a characteristic of Bingham fluids. At zero shear rate
there is some resistance to flow. The force causes a plastic deformation, but there is no
contimucus movement. In this condition, the maximum stress, which can be applied without
causing continuous movement, is the yield stress and this 1s a function of the magnetic field
strength. For an MR fluid, the yield stress can be controlled, increasing or decreasing with the

strength of the magnetic field.

T =1, (H)y+n7y

(19)

In the magnetic field each metal particle becomes a dipole (North / South) and there is a

tendency for a chain to be created with neighbouring particles. The chains have a mechamcal
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resistance to the fluid flow, and because of this the viscosity of the fluid increases. In the
magnetic field, the particle chains are structured according to the pattern of magnetic flux
paths. The mechanical resistance to flow of this chain structure can be controlled by the
magnetic fleld strength and results in viscosity changes from free flowing liquid to a serm-
solid condition. The MR effect is reversible. When the magnetic field is removed, the original
condition of the liquid is re-established. The magnctic field controls the level of the MR
effect. The magnetic field required to impose this control depends on the fluid formulation,
especially on the quality and quantity of the metal powder. To increase the yield stress
capabulity it 1s necessary to have a higher percentage of metal powder and larger particles to
support the cham structure. The yield siress capability also depends on the magnetization
characteristics of the fluid. This magnetization is expressed as the Flux density, B (Tesla) as it
varies with the magnetic field strength, H (A/m). It depends on the concentration of metal
powder 1 the liquid and on the actual nature of the material in the particles. MR fluids based
on carbonyl iron are capable of operating with yield stresses of 100 kPa. In order to have a
predictable behaviour it is recommended the equipment should be operated in the linear
section of the B= f (H) curve, and 1t is better if the hysteresis effect 1s very small. Detailed
design must manage a trade-off between mechanical, magnetic and rheological factors.
Depending on the fluid flow and on the rheological stress, there are three different modes of
MRF operation- the Direct Shear Mode, the Valve Mode and the Squeeze Mode. The basic

working principles of each of these are shown in Table 7.

Table 7: MRF operational modes

Operational
Valve mode Shear mede Squecere mode
mode
Functional
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3.2 MRF Components

A Magneto-Rheological-Fluid is a fluid with rheological behavior which depends on the
strength of a magnetic field The rheological status changes reversibly from liquid to the solid.
The Greek word “rheos” means flowing and rheology is the science of deformation behavior
of materials which are able to flow. Normally the rheological property of viscosity changes
with other physical properties, such as chemical composition, shear stress and temperature.
These features are not easily controlled in most applications because they are fixed by the
environment in a particular situation. In the case of all fluids the variation of viscosity with
temperature 18 reversible but this does not allow the viscosity to be controlled easily. In the
case of MR the fluid viscosity becomes intclligently controllable using the magnetic field.
This change of viscosity up to the solid condition is reversible and 1s the basic feature of MRF
technology. The MRF effect is the difference in rheological properties with and without a
magnetic field.

There are basically three components in an MR fluid: basic fluid, metal particles and
stabilizing additives [1, 2, 65-79, 56].

The Base fluid has the function of the carner and naturally combines lubrication (in
combination with additives) and damping features. For the highest MRF effect the viscosity
of the fluid should be small and almost independent of temperature. In this way the MRF
effect will be the dorminant effect when it is compared with the natural physical viscosity
varying with temperature and shear stress Basically in the off-state (without any magnetic
effects) MR fluids behave like the base fluid in accordance with their chemical compositions.
There are different types of liquid which can be used as the carrier fluid i.e. hydrocarbon oils,
mineral oils or silicon oils As with any type of particle suspended in a fluid, the base fluid
will have a higher viscosity when the concentration of metal particles 1s very high The fluid
will appear to be “thicker” [69]. So even in the off-state, the fluid with the powder will have
an increased viscosity. Usually the dynamic viscosity 1q at ambient temperature is around

100 mPa [68, 71]

In the on-state (with a magnetic field in place) the Metal particles are guided by the magnetic
field to form a chain-like structure. This chain-like structure restricts the motion of the fluid
[68] and therefore changes the rheological behavior of the fluid. The MR-effect 1s produced
because of this resistance to flow caused by the chain-like structure. The metal particles are

usually made of carbonyl iron, or powder iron, or iron/ cobalt alloys to achieve a high
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magnetic saturation. The amount of metal powder in MRF can be up to 50% by volume [1, 2,
65-80]. The particle size is in the p—meter range and varies depending on the manufacturing
processes. The particle size can be chosen to achieve various purposes. In the case of carbonyl
iron the particle size ranges between 1-10 p—meter. Larger particles and higher fractions of
powder in the MR fluid will provide higher torque in the on-state, but at the same time the
viscosity of the MR fluid 1n the off-state will also be higher under these conditions. The
material specification, especially the permeability 15 also a very important factor for

controlling the MR-effect.

The additives include stabilizers and surfactants [70]. Additives are suspending agents,
thixotropes, friction modifiers and anti-corrosion/wear components. Highly viscous materials
such as grease or other thixotropic additives are used to improve setthing stability [76].
Ferrous naphthanate or ferrous oleate can be used as dispersants and metal soaps such as
lithium stearate or sodium stearate as thixotropic additives [77]. Additives are required to
control the viscosity of the liquid and the settling rate of the particles, the friction between the
particles and to avoid the in-use thickening for a defined number of off-duty cycles.

All three components define the magneto-theological behavior of the MR fluid. The total
density depends on the formulation and 1s approximately by 3-4 g/cc. The change of one of
the MRF components will lead to rheological changes (in the off-state) and to magneto-
rheological changes m behavior (in the on-state) . Finally a trade-off between the achievable
performances of all three components in combination 1s required in order to optimize a

formulation.

There are some similarities between MR fluids and Ferrofluids. The magneto-rheological
behaviors of the two types of fluid are different because there is a difference in both the
quality and the quantity of the metal powders. Common to both 1s that they contain iron
particles, a basic fluid and additives. The main difference 1s the size, the quantity and the
quality of the iron particles. In the case of MR fluids the ron particles are large, larger than

1 pm. In the case of Ferrofluids the iron oxide particles are much smaller, about 30 nm [69,
79]. With MRF there is a change of state from liquid to solid when a magnetic field 1s
switched on, whereas a Ferrofluid remains liquid even in a high magnetic field [69, 72]. Tn the
Ferrofluid effect the strong yield stress behavior is almost nonexistent, whereas it is the ability
to create the chain structure in MR fluids with mechanical resistance to flow which is of
paramount importance in the MRF effect. Carbonyl iron based MR fluids are able to develop
yield stresses of 100 kPa, but a typical yield stress for a Ferrofluid is 10 kPa. The viscosity
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dependency due to a magnetic field in a Ferrofluid is a secondary effect. The main Ferrofluid
effect 1s to guide and attract the fluid according the magnetic field intensity. Ferrofluids are
very stable due to the particle sizes. The particles are also less abrasive than is the case for
MR fluids.

The above description indicates the differences between the two types of fluid in terms of
functionality. It is also possible to differentiate between MRF and ERF using the proportion
between the Brownian thermal and the magnetic energies for individual particles. The thermal
energy can be expressed as follows:

Energy ~kT
rg;ikem (20)

In this term % is the Bolzmann's constant 1.38 * 102 J/K and 7'is temperature in K. The main
desirable feature in MRYF 1s to control the shear stress. In the case when the magnetic energy
is bigger than the thermal energy, the shear stress can be controlled. Otherwise the thermal

energy is bigger and the magnetic energy would just guide the particles according to the flux

density. An overview of representative features is shown in Table 8.

Table 8: MRF versus Ferrofluid [1, 2, 65-79, 56]

Representative Feature MRF Ferrofluid
Relation between magnetic | Magnetic energy is higher | Thermal energy is higher
and thermal energy than the thermal energy than the magnetic energy
Max. Yield Stress 100 kPa 10 kPa

Particle size some um some sm
Particle material carbonyl won iron oxide
Fraction by volume up to 50% up to 10%
Stability medium good
Functionality controllable shear stress controllable liquid flow
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3.3 MRF Operational Modes and Applications

Depending on the fluid flow and the rheological stress there are three different modes of MRF
operation: Direct Shear Mode, Valve Mode and Squeeze Mode,

3.3.1 Valve Mode

The valve mode as an operational mode is used in dampers, shock absorbers and is shown

schematically in Fig. 27.

Magnetic Field
f Stationary plate

Pressure

i

i Stationary plate

Fig. 27. Valve Mode

The pressure drop created in this mode e.g. in a damper, is the sum of the viscous (pure
theological) component A P, and the magnetic field dependent (magneto-rheological)

component 4 £, The level of this pressure drop 1s defined using the following

approximation:

0 o oL
ﬂP=aPr+APW;[12nQLI+[f w Ll

lg*w] g 21)

In the viscous component in this equation nlPas]is the dynamic viscosity, Q [m?/s] is the
flow rate and L, w, g [m] are the geometric length, width, gap size of the flow channel
respectively. In the magnetic field dependent component T, [N/mm?] is the yield stress
developed in response to the applied magnetic field, L, w, g [m] are the same geometry data

as in the rheological pressure drop part.

The other factor / [-] (no units) 1s an empirical factor and is determined experimentally. It is
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necessary to explain the difference between the observed pressure drop AP and the pressure
drop calculated from rheological principles alone AP, . The AP, term of Eq. 21 is valid for

rectangular ducts. In case of circular ducts with radius t, 4 P, is described with the following

ec_[uatlon'

rp 87 LQ
A (22)

The pressure drop due to magneto-rheological principles 4 £, 1s clearly dependent on the
yield stress developed in response to the applied magnetic field and to the above geometrical
data, but there are also other factors which have an effect on this pressure drop, and the
influence of these other factors is represented by the empirical factor f [-]. The factor 1s found
experimentally to be dependent on the proportion of the purely rheological pressure drop to
the total observed pressure drop. To differentiate the two extreme regimes of operation there
is Eq. (23) defined

LAzl Proportional factor
e ——— [ J &

In the case that the proportion factor from Eq. (23) is below 1, the factor f]-] is equal to 2, In
the case that the proportion factor from Eq. (23) is below 100, the factor f-] is equal to 3 [67].
Equation (21) could be used for the design of MRF applications in valve mode. Usmg this

equation the minimum active fluid could be established as:

This mmmmum of fluid is required to achieve a desired MRF effect at given flow rate Q with
the specified pressure drop.

The Rheonetic linear damper shown below is designed for use as secondary suspension
element in on- and off-highway vehicles [67). This application is a damping control unit and
is one of the first applications of MRF in automotive industry. A magnetic coil integrated
mnto the piston of the damper generates a magnetic field and this magnetic field regulates the

MRF flow resistance within the dampez. Fig. 28 and Table 9 show the application features for
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Fig. 28: Functional principle of MRF damper [65-69]

Table 9: Valve mode features [65-69]

Chapter three

Application features Rheonetic' ™ (scat suspension damper)
Operational mode . Valve mode
Shear stress level 100 kPa
Shear rate level 50.000 1/sec
Packaging Diameter 35, length 100 mm
Operational input energy 4 Watts (1 A, 4 V)
Power level in the application 600 W
Active fluid volume 0.3 ml
Total fluid volume 50 ml
MRF Ratio (Fon / Foff) approx, 2200 N /400 N =55

Using this simple mechanical principle the damping arrangement becomes controllable and

the vibration transmission and excitation frequency for a suspended seat could be adjusted
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accordingly. Proper choice of MRF parameters extended to seat suspension could elimimate
any resonance problems and allow the system to be isolated from high frequencies [67]. Stnce
2002 the valve mode 18 used in the damper from automotive vehicle suspensions by GM /
Delphi. Further application of the valve mode, has been presented m the reference article [64]
and article [75]. These MRF applications bring additional functionality whilst keeping the
simplicity. Other possible MRF applications using this mode are dampers for knee prosthesis,
vibration dampers, seismic dampers for civil industry, active engine mounts and propshaft

MOUIits.
3.3.2 Direct Shear Mode

The second operational mode is the direct shear mode. The direct shear mode 1s used in

brakes, clutches and is shown schematically in Fig. 29.

Magnetic Field

Force ? Moveahle plate Speed

Fig. 29: Direct Shear Mode

The total force in the shear mode could be split into viscous (pure rheological) component F,
and the magnetic field dependent {magneto-rheological) component Fy,,. The total shear force

is defined through the following approximation:

'S'J’i
_____“{f? ]“{"T*A
g (25)

F=F+F =

In this equation n [Pas] 1s the dynamic viscosity, S[m/s] is the relative speed, A=L w is the
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working interface area and L, w, g [m] are the length, width, gap size of the flow channel
respectively. In the magnetic field dependent component oy, [N/mm?] is the yield stress
developed in response to the applied magnetic field and A=L w is again the working interface
area.

Equation (25) could be used for design of MRF applications in direct shear mode. Using this

equation the minimum active fluid can be established:

n
V=Lw-g=| 2].[[ ]

This minimum volume of fluid is required to achieve a desired MRF effect [#oe] at given

speed S with the specified drag torque.

COIL

WM FLUID

HOUSIN G

Field

Fig. 30: Functional principle of MRF brake [65-69, 79]

The brake, shown in Fig. 30, contams just a few parts: shaft, bearings, sealing devices,
housig with coil, interface disc and MRF. The simplicity and ease of control makes them a
gost effective choice for a controllable exercise equipment [67]. A MR fluid brake is currently
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being manufactured and sold a controliable resistance element for programmable aerobic
gxercise equipment [67]. The Table 10 shows some MRF features related to the brake or

clutch applications. Some values have been approximated.

Table 10: Shear mode features [65-69, 79]

Application features Rheonetic™ (exercise brake)
Operational mode Shear mode or called direct-shear mode
Shear stress level 100 kPa
Shear rate level 10.000 1/sec
Packaging Diameter 92, length ~35 mm
Operational input energy ~10 Watts (0.8 A, 12 V)

Power level in the application 700 Watts

Active fluid volume ~5 ml

Total fluid volume 5ml

MRF Ratio (Ton / Toff) approx. 7Nm/0.25 Nm =28

A further application using the shear mode has been presented in the reference paper [83].
Torque level of approximately 8 Nm at 4 Amps without a significant speed dependency has
been aclueved Another coupling with optimized magnetic properties has been discussed
reference paper [73]. Torque level of approximately 12 Nm at 8 A has been achieved [73].
The direct-shear mode and the valve mode have been studied in detail. Applications using
these modes are today already present in many automotive products. The initial unrecognized
1ssue of in use-thickening has been solved. Good MR fluids show no measurable thickening
m-use after more than 10 million cycles m the MotionMaster TM RD-10005 damper [66].
The degree of deterioration of the MR fluid depends on the application parameters like shear
rate, temperature and duration of operation. The total amount of MRF dissipated energy,

which can be controlled by the MRF unit, is defined by the following equation [66]:

Lyfztime
P-dt
0 @27)

Lifetime dissipated energy ( LDE ) ;.;_.
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where V[m?] is the total MRF volume in the application and P[W] is the mechanical power
converted to heat in the MRF unit. The Lifetime Dissipated Energy “LDE” is the total
mechanical energy dissipated per unit volume of MRF over the lifetime of the device [66].
Today's MRF applications are operating within the LDE range of approximately 3 MJ/em?®, If
the LDE limit is exceeded, the MR fluid becomes thickened to a level where the MR effect is
no longer significant enough to be considered as a controllable feature. The next steps in MRF
development will be the conversions of various other conventional applications into devices
using MR principles. There is also a need to develop fluids for the high shear regime from
10* 1/s to 10° 1/s, with acceptable values of the LDE being higher than 10" Yem?.

Observing patent databases and other information in the public domain it is clear that many
feasibility studies are on-going where MR technology is being considered as a competitive

~ technology for the future. Excellent features like simplicity, fast response, simple interface
between electrical power input and mechanical power output using a magnetic field, and the
controllability make the MRF technology the future technology for many applications.
However some application requirements are challenging the capabilities of the direct-shear
mode and the valve mode, especially regarding the MRF-ratio. In some applications a higher
ratio of the MRF effect is required to meet the specifications.

3.3.3 Squeeze Mode
Some publications report that there is an additional operational mode feasible with a higher
MREF effect than can be achieved with either the shear or the valve mode [1, 78 and 82]. This

third mode, called squeeze mode, is less well studied than direct-shear mode and valve mode.

This mode of operation is shown schematically in Fig. 31.

Magnetic Field ~ Force

Moveable plate

I Stationary plate

Fig. 31: MRF in squeeze mode
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Some small-amplitude vibration dampers use this mode. For small motions, this mode seems
to offer the possibility of very large forces which can be controlled by the MRF effect [1, 78
and 80]. In one of the most recent theoretical evaluations of the squeeze-strengthen effect in
magneto-rheological fluids [78] the operation of this mode is described. It is suggested that a
yield stress could be achieved which would be ten times as large as that which is possible
with either the direct-shear or the valve mode. Zhang et al. [78] evaluated theoretically and
confirmed with some experiments the higher capability of this specific operational mode. The
higher yield stress under magnetic ficld means a higher ratio between on- and off- states. A
stronger MRF effect in combination with advantages already described above would make
MRF technology even more attractive and the technology of choice for the next generation of

some automotive and industrial applications.

3.4 Remarks on MRF Technology

The Magneto-Rheological-Fluid (MRF) technology 1s one of the old “newcomers” coming to
the market at high speed. Various industries are full of potential MRF applications. For every
system where it is desirable to control motion using a fluid with changing viscosity, a solution
based on MRF technology may be an improvement in functionality and costs. Simplicity and
more intelligence in the functionality are key features of the MRF technology. Excellent
features like fast response, simple interface between electrical power input and the
mechanical power output make MRF the next technology of choice for many applications.
Direct shear mode (used m brakes and clutches) and valve mode (used m dampers) have been
studied thoroughly and several products are already present in the market Future
developments include an increase in the acceptable lifespan of MRF devices, in terms of the
total energy dissipated from the device throughout its working lifetime, and fluids with higher

shear regimes.
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Chapter Four

Actuator layout analytical calculations

4.1 Actuator Introduction

This study is about the design, calculation, simulation and experimental evaluation of “MS”-
based actuator and a possible “MR”-based control arrangement. The combination of “MS”
and “MR” technologies is used in two different actuator layouts. The first actuator layout is
using two conventional check valves and the “MR™-based release valve for pressure control.
Fig. 32 shows the arrangement based on magnetostrictive actuation and simple

magnetorheological control as release valve.

Cantrol coil
outlet Load

o
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Actuator
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Pipe (high pressure) =
Pipe (low pressure) e

Fig. 32: Arrangement for the study

The assembly for this study includes three main sub-assemblies. The first sub-assembly is the
magnetostrictive actuator. The Terfenol-D shaft is surrounded by the main coil. An actuator
piston is moved by Terfenol-D shaft elongation. A spring is used to pre-stress the shaft for

‘ improvements in the output strain capability. A one-way-valve arrangement enables the fluid
motion from the reservoir to the main piston. The second sub-assembly is the load side, which
uses a spring to represent the typical elasticity of a wet clutch. As the result of the actuation,

an axial force and movement of the main piston against the elasticity of the spring will be
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observed. The “MS”-based actuator with check-valves combines the functionality of an
electric motor and a hydraulic pump. The third sub-assembly is the “MR”-based release
valve. The MRF technology offers the controllable liquid valve with a simple interface
between electric and hydraulic power. In this layout the micro pumping mechanism, caused
by actuator piston movement and the one-way-valve arrangement, is used to increase
pressure. The pumping action is achieved by micro-stepping operations of the “MS”- actuator.
During the micro-stepping operations, the MRF control coil is energized with DC current in
order to hold the pressure. To decrease the pressure the MRF control coil has to be de-
activated by switching off the power. The extended version of the fully “MR” controlled

actuator is shown in Fig. 33.

T A T T T TR AT

Actuator

Pipe (high pressure) ===
Pipe (low pressure) —

Fig. 33: Alternative arrangement for the study

This alternative layout does not contain check valves. The pressure build up is fully controlled
by the “MR "”-based inlet and outlet valves. The operation of the valves in appropriate
sequence to the “MS”-actuator would enable the fully active increasing of pressure. At the
starting point of the operation, no system is energized. Firstly, the inlet valve coil is
energized. The outlet valve coil is not energized and the “MR”-fluid can pass through to the
main piston. Then the actuator coil is energized and the “MS”-shaft elongates and introduces
the first step of micro pumping. At the point where the elongation is at maximum the outlet
valve coil is energized and the inlet valve coil becomes no longer energized to enable the
sucking of the fluid from the reservoir for the next pump sequence. This leads to the flow of

“MR”-fluid into the working chamber area. As the result of the actuation, an axial force and
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movement of the main piston against the elasticity of the spring will be observed.

A general power flow chart from signal to power is sketched in Fig. 34,

sl Ly S 2
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Fig. 34: Actuation flow chart

Fig. 35 depicts the experimental actuator assembly based on magnetostrictive technology. All

relevant experimental rig drawings are summarized in the appendix Al.
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Fig. 35: Cross-section of the actuator used in the study

Fig. 36 depicts the main content of the valve control bardware 802.000 based on magneto-
rheological technology. In this arrangement, called valve mode, the magnetic field is
perpendicular to the direction of fluid flow. All experimental rig drawings form the valve

assembly are summarized in the appendix B.
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BeM#E Parté  [Title
1a 802001 [Housin
1b 802.001 HousIng
2 802002  |Shat
a an2.003 ‘
4 BUZ.005  [Ccil with bobbin
5 02006 [Screw

Fig. 36: Cross-section of the “MR” control valve

More details about the design and instrumentation for the experimental rig are discussed in

chapter 6. An alternative design of a “MR”-based orifice is shown in Fig. 37. In this

arrangement, called orifice mode, the magnetic field is parallel to the direction of fluid flow.

Bohd # Pat# | Titie
1 800001 Housing
2 s00.002 Cover LH
3 600.005 [Col hoblin
4 800.004
= 600.005
5

B01.006

rew

Fig. 37: Cross-section of the “MR” control orifice

All shown assemblies of actuator and control devices have been calculated, simulated and

designed for experimental rig evaluation. The experimental rig drawings form the “MR”-

orifice components are summarized in the appendix C.

4.2 Basic Performance Calculations

The pump functionality is achieved by a sequence of micro-stepping operations. Fig. 38

depicts the actuation sequence to increase to the maximum pressure in the micro steps.
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Fig. 38: Micro stepping hydraulic actuator

4.2.1 The choice of mechanical load as reference for the study

To test the functionality and performance of the proposed actuator layout, a specific
mechanical load should be selected in order to provide a realistic reference. Various types of
actuation, mechanical and hydraulic, are used today in the automotive area in wet clutch
mechanisms. Fig. 39 presents a diagram showing the variation of force with axial

displacement in a typical wet clutch assembly.

Axial force versus elastic deformation
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Fig. 39: Axial force versus elastic deformation
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The work done during actuation can be calculated using the following equation:

i
W=| F(x)dc

Y (28)

This movement is usually achieved in several actuation loops using conventional components
like electric motor with pump & piston or electric motor with reduction gear & ball ramp. The

power required to encrgize the system depends on the time taken:

x5
j F(x)dc
x
p=—na

!

! (29)

Typical response time of the actuation system is a few hundred milli seconds. Fig. 40 depicts

the main content of the reference load assembly.

Cplierr 1
with DiH2023-490
i3 Fotee DA0ON af mov. 0wl pston swavermand 1.50mm
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orig! Foree 142000 ol mav. ovig! pision movemen] 1.B8mm

BoM # Part # Tiie

1 600.001 Housing
2 B00.002  [Piston
3 600.003 _ [¥Ring
4 600.004 -Ring
8 600.005 i
6 600,006 |Adapter

| = £00.007 Nut
8 600.008 Force sensor

Fig. 40: Cross-section of the load assembly

The common way to represent the realistic clutch elasticity is to use a belleville spring with
similar elasticity to a clutch pack. The hydraulic piston used in the assembly has the outer
diameter of 115 mm and inner diameter of 68 mm, Specific sealing devices (called “quad-

ting” or “x-ring”) have been used to seal the piston against the housing. The typical range of
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the axial force is between 5 kN up to 30 kN. To achieve this axial force a fluid pressure of
about 0.75 MPa up to 4.5 MPa will be required. The piston movement caused by elasticity of
the clutch pack leads to the required volume of liquid which must be pumped into the piston
housing. Typical piston movement caused by elasticity lies between 0.5 mm up to 1 mm. This
elasticity will lead to 3378 mm? up to 6755 mm® of the required fluid. More details depend on
specific design and further application details. Above calculated load data will be used as the
realistic reference of the experimental evaluation for the proposed system. Based on chosen
packaging for the actuator, lower pressure range will be the reference for the experimental
evaluation. The experimental rig drawings form the load assembly are summarized in the

appendix E

4.2.2 Terfenol-D Shaft and MRF Capability Parameter Calculations

Based on known actuation performance and packaging, a solid Terfenol-D shaft with
diameter of 8mm has been chosen. A set of parametric calculations has been prepared in order
to create a basts for the component design. MathcadProfessional-Software has been used for
the following calculations. This calculation has been created considering the received
specification from the manufacturer of the Terfenol-D shaft (Etrema Inc.). The Terfenol-D
shaft length has been chosen as constant §7.5 mm and the magnetostrictive strain for the
available experimental part has been specified to 800 ppm up to 1200 ppm. Fig. 41 shows the
length change of the magnetostrictive shaft versus magnetostrictive strain.
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Fig. 41: Length change versus strain
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The output strain from the experimental shaft for the magnetostrictive actuator depicted in
| Fig. 35 including the dependency on frequency and pre-stress will be evaluated
experimentally. Fig. 42 shows the characteristic and specification of the delivered Terfenol-D
shaft. The shown data have been used as reference for the parameter calculation,

Fig. 42: Supplier characteristic and specification for Terfenol-D shaft [14]

Based on the information provided by the Terfenol-D shaft manufacturer the Young’s
modulus varies between 25 GPa and 35 GPa. Fig. 43 shows the relationship between
achievable operational force and both performance parameters, the upper limit of the
magnetostrictive strain that can be realized and the Young’s modulus of the material under
% these conditions. Equation (15) describes these fendencies mathematically.
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Fig. 43: Axial force versus strain and Young’s modulus E as parameter

The Terfenol-D shaft has a diameter of 8 mm, but when it expands it pushes against a pilot

piston, which is in contact with the fluid via the elastic

membrane. Details of the mechanical

arrangements are depicted in Fig. 35 and in appendix A. Using the range of achievable axial

force (15), where acceptable strain could be produced,

the achievable pressure level can now

be calculated. The achievable pressure range is presented in Fig. 44 with the specified

Young’s modulus.
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Fig. 44: Achievable pressure versus strain
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The variation of the piston diameter can be used to adjust the pump displacement and the
desirable pressure level. It is therefore concluded that this Terfenol-D actuator is capable of
providing pressures in an acceptable range of those required in some applications from the
automotive industry. When the blocked force has been achieved, no significant strain could be
produced. Therefore, the operational axial force should be lower than the blocked force. The
blocked force will be evaluated experimentally. However, the final performance of the
actuator system depends very much on strain capability and Young’s modulus of the
particular sample of delivered Terfenol-D shaft. Assuming the strain in the Terfenol-D rod
when activated changes from zero to some value between 800 ppm and 1200 ppm, the volume
delivered by the stroke of the pump is defined as product of rod elongation and cross-
sectional area of the actuator piston. The actuator piston is the part which moves with the end
of the Terfenol-D rod. Fig. 45 depicts the pump volume per loop when the piston will be
moved by the end of the Terfenol-D shaft.

Pump displacement versus sirain
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Fig. 45: Pump volume per loop versus strain

The final setup of parameters is a trade of achievable pressure and pump displacement.
Packaging restrictions, limitation of electric current in the application and further parameters
like operational frequency have to be taken into the account to freeze the particular design
proposal. Fig. 46 shows the achicvable flow rates at various frequencies of micro-step

- pumping.
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A\ = 1200 ppma

| A=1000PPm

A= 300 ppm

100

This graph has been plotted assuming the sinusoidal AC input power to the main actuator coil.

The efficiency of the valve layout has been set up to 100%. It should be mentioned that the ‘

electric frequency of operating electric power is the half of the mechanical pumping \

frequency. The doubling of the frequency is based on the fact that the strain peak appears
twice within one electric power frequency loop. Finally, a trade off between achievable strain
versus frequency performance and pressure level has to be taken into account. When
describing the wet clutch system, it was calculated that the piston movement, called axial
displacement, is in the range of 0.5 mm to 1 mm. In order to be able to achieve this delivery,
the Terfenol-D pump must be activated and de-activated a defined number of times and
complete a certain number of loops. The number of required loops during the micro step

pumping for the maximal engagement is shown in Fig. 47.
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Fig. 47: Main piston displacement versus number of pump loops

The complete number of loops must be carried out in the time required to activate the clutch

mechanism. This time is about few hundred milli-seconds. Therefore the Terfenol-D pump

must be operated by an electrical current with a defined frequency to achieve the specified

performance.

4.2.3 MRF Capability Parameter Calculations

By using Eq. (21) from chapter three of this thesis the pressure capability of the valve mode

could be analyzed. The cross-section on Fig. 36 depicts the content of the control

arrangement. Fig. 48 shows the control arrangement with red marked gap area where MRF is

working as a controlled valve.
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MRF flow €— MRF flow

Fig. 48: Cross section of the control valve

The detailed design of this control arrangement is summarized in the appendix B of this
thesis. For the final design of this proposal, a number of iterative parameter calculations has
been done in order to evaluate the achievable performance. In the arrangement shown in Fig.
48 the magnetic field is perpendicular to the direction of fluid flow. An alternative for the
control arrangement has been proposed and evaluated. In the alternative arrangement, called
orifice mode, the direction of the fluid flow is parallel to the direction of the magnetic field.

Fig. 49 depicts the alternative design of the control arrangement as a controllable orifice.

MRF controlled orifice

l— MRF flow

MRF flow =4

Fig. 49: Cross section of the control orifice

The coil bobbin inner diameter was designed to be equal to the orifice diameter. In this study,
the MRF-132-AD and MRF-336-AG have been used. Fig. 50 depicts specification including
achievable yield stress versus field intensity from hydrocarbon based MRF-132-AD. Fig. 51
depicts specification including achievable yield stress versus field intensity from the silicon
based fluid MRF-336-AG.
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Yield Stress Versus Magnetic Field Intensity
of Lord Corporation’s Hydrocarbon-Based MR Fluid (MRF-132AD)
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Fig. 50: Supplier specification of reference MRF-132-AD [68, 69 and 79]

Yield Stress Versus Magnetic Field Intensity
of Lord Corporation’s Silicone-Based MR Fluid (MRF-336AG)
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Fig. 51: Supplier specification of reference MRF-336-AG [68, 69 and 79]
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Fig. 52 shows the relationship for achievable pressure in the MRF valve, shown in Fig. 36,
versus the gap size using the yield stress range up to 45 kPa. The required magnetic field
intensity to achieve the highest yield stress is about 200 kA/m. To calculate the pressure
capabilities of this arrangement Eq. (21) has been used. The geometrical data from the control
valve used for this parameter calculation could be viewed from the detailed drawing in the

appendix B from this thesis.

Achievable pressure versus MRF gap size
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Fig. 52: Pressure versus gap size with yield stress as parameter

The pressure drop in the rectangular channel caused by fluid flow Q [m?/s] through the gap g

[mm] with particular dynamic viscosity 1 [Pa s] is defined with the following equation:

(30

Fig. 53 depicts the pressure drop through the valve considering the achievable flow rate has
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been shown in Fig. 46. Eq. (30) for the viscous component and the MRF 132-AD

specification has been used.

Viscous component of pressure versus gap
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Fig. 53: Pressure versus gap size at various flow rates
The wall shear rate y [s”] in the rectangular channel can be calculated with following
equation:
v ==
W g
h (1)

Fig. 54 shows the results of calculations for the wall shear rate y [s”'] in the rectangular
channel in the MRF valve. The maximal speed, at the maximal flow rate of 20 *10°° m¥s
through the gap of 0.5 mm, leads to fluid speed below 1 m/s and to the Reynolds Number of
approximately 50. Reynolds Number below 2000 (= velocity x density x length / viscosity), it
represents laminar flow [79]. For higher Reynold’s Numbers, over 2000, the fluid flow

becomes turbulent and could not be predicted with the presented equations.
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Fig. 54: Wall shear rate  [s"'] in the rectangular channel

In the arrangement shown in Fig. 37, the magnetic field is parallel to the direction of fluid

flow. To calculate the pressure capabilities of this arrangement Eq. (21) has to be adjusted for
cylindrical shape of the channel.

[ S'Q'Q‘Lu] ; [.f'TW‘Lu]

i (%)4 e (32)

In the viscous component in this equation n[Pa-s]is the dynamic viscosity, Q [m?/s] is the

AP=AP +AP_=

flow rate and L, and d,[m] is the geometric length and the diameter of the flow channel. The
factor f | -] (no units) is an empirical factor. The performance of this arrangement will be
evaluated experimentally. Fig. 55 shows the relationship for achievable pressure in the MRF
orifice, shown in Fig. 37, versus the orifice diameter using the yield stress range up to 45 kPa.
The required magnetic field intensity to achicve the highest yield stress is about 200 kA/m.
Since this operational mode, orifice mode, has not been studied yet, the factor f[-] in Eq. (32)
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has been set to value of 1. The geomeitrical data from the assembly used for this parameter

calculation could be viewed from the detailed drawing in the appendix C from this thesis.

Achievable pressure versus orifice diameter
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Fig. 55: Pressure versus orifice chameter with yield stress as parameter

The pressure drop in the cyhndrical channel caused by fluid flow Q [m?/s] with particular
dynamic viscosity 1 [Pa s] 1s defined with the following equation:

8.7-L-Q
Ay - —_ @ =
IAI ?E'IA

(33)

Fig. 56 depicts the pressure drop through the orifice considering the achievable flow rate has

been showed in Fig. 46. Eq. (33) for viscous component and the MRF 132-AD specification

have been used for calculation.
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Viscous component of pressure versus orfice diameter
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Fig. 56: Pressure versus orifice diameter at various flow rates

The wall shear rate y [s™'] in the cylindrical channel could be calculated with the following

equation:

4.0
v o=
i

(34)

Fig. 57 shows the results of calculations for the wall shear rate y [s"] in the cylindrical
channel in the orifice. The maximal speed, at the maximal flow rate of 20 *10® m?/s through
the orifice of 1.5 mm diameter, leads to fluid speed of 11 m/s and to the Reynolds Number of
approximately 1400. Reynolds Number below 2000 (= velocity x density x length / viscosity),
it represents laminar flow [79]. For higher Reynolds Numbers, over 2000, the fluid flow

becomes turbulent and could not be predicted with the presented equations.
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Fig. 57: Wall shear rate y [s™] in the cylindrical channel

From above shown parametrical calculations, it can be concluded that the MR control valve,
shown in Fig. 36, is the favorite for this study. This conclusion is based on the fact that the
valve layout shows higher achievable pressure than the orifice layout. Furthermore, the
parasitic pressure caused throngh fluid flow and the wall shear rate in the proposed valve is
lower than in the orifice, shown in Fig. 37.

The fluid flow rates through the pipes, MRF control valve and check valves have to be taken
into account. High liquid flow through narrow areas leads to additional parasitic losses in the
system. This difficulty can be easily overcome using lower flow rates and therefore larger
pipe diameter and gaps. On the other side, using larger gaps in the MRF control arrangement
leads to a limitation of achievable pressure. In the arrangement, shown in Fig. 32, an
miniaturized one-way valves from Lee Incorporation will be used. A cross section with basic

performance data is shown in Fig. 58.
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Fig. 58: Check valve fiom Lee Incorporation [93]

Common failsafe definition 1s that the system is pressure-less without power. The
specification of the dis-engagement time, a few hundred milli-seconds, 1s essential for
compatibility of the actuator system in the automotive environment (ABS/TC/ESP). Based on
above determined parameter calculation, achievable pressure and parasitic pressure drop, the
control valve shows significantly better performance in comparison with the orifice. Further
capabilities related to magnetic field of both assemblies will be evaluated in chapter 5. The
performance of both control assemblies with two different fluids, MRF-132-AD MRF-336-
AG, will be evaluated experimentally. Both arrangements, shown in Fig.32 and 33, will be
prepared for testing on the nig to confirm the basic functionality and the analytical

calculations with experimental results.
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Chapter Five

Magnetic field calculation and simulation

This chapter of the thesis is covering the magnetic field calculation and simulation for "MS"

and "MRF" device. Various tools have been used to complete this approach.

5.1 Electric circuit of the actuator system

Due to control of applied current and voltage to the coil arrangement the magnetic field
become controllable. The common way to actuate the magnetostrictive mechanism is AC. For
the control of the MRF coil a DC control is proposed. The general form of voltage versus time
is depicted in Fig. 59.

Voltage (AC) versus Time bDC
WY — ) W
3 SIN-Wave BLOCK-Form PWM-Form
0 E e qoL 0 = 0 =
RN jH &
s —émmmmwmmﬂmww 00 EWWW il Emmmmmqnwmmm
Lims} t(ms}) t{ms)

Fig. 59: Alternative voltage versus time relationships

The magnetic field variation versus time for micro-pumping leads to the required variation of
the electric power in the actuator and control coil. The most appropriate arrangement for the
micro-pump functionality will be the SIN-form. The arrangement with just PWM leads to
additional simplicity of the architecture of the electronic components.

Fig. 60 shows the behavior of an inductance in an AC power circle. An idealized inductor,
pure inductance without any resistance, leads to a phase shift between the current and the

voltage.
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Current logs voltage, and the 90° shift is a result of the idealized inductance with no
resistance. Consequently the simple Obm’s low which applies only to a direct current, where
current 1 is defined by:

U

= —
D¢ R 35)

It has to be extended and a new term, the impedance is introduced instead of the resistance:

U
I =
AC 7 (36)

The value Z is called impedance and differs for a solenoid coil in an AC circuit from the DC
circuit. For the pure resistor the impedance Z is equal to R, but because of the contribution of
an inductor to the phase shift of 90° a vector relationship has to be considered. Fig. 61 shows
this relationship graphically.

Imsin{wt - @)

Fig. 61: Impedance [22]

In the Fig. 61, ¢ is the indication of phase shift between the voltage and the current, R is the

resistance and X, is the inductance. The voltage is defined by:
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U=U, -sin{w-t) 7

and the current is.

I=J -sin{w-i—@) (38)

In this new example the circuit has both resistance and inductance, Xy. The impedance is

calculated as follows:

o, :
Zm}:ig'*mﬁﬁg%mg=£g
aff (39)
where:
X;=L-w (40)
and:
w=2-1 f @n

where f is the frequency of the alternating current in Hz, and the inductance L of a coil can be

calculated from the design of the coil and the properties of the materials:

Hy '#'Ac'hﬂ

W 42)

L

cold T

where o, the permeability of free space, and p 15 the permeability of the material, A is the
cross section of the inductor and N is the number of windings of the coil around the inductor

and w is the length of the inductor.
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5.2 The Magnetic circuitry for the magnetostrictive actuator

A coil in an appropriate ferromagnetic housing is defined as the source of the magnetic field.
The layout of the magnetostrictive actuator was discussed previously and was depicted in Fig.
35. The chosen diameter of the Terfenol-D shaft is 8 mm and the length is 67.5 mm. This
selection has been based on the results of the parametric calculations presented in chapter 4.
The magnetic field is the result of electric power flow, current I [A] and voltage U [V],
through the actuator coil. The coil is wound around the Terfenol-D shaft and the magnetic

field is therefore parallel to the axis of the rod. Fig. 62 depicts the generally the coil layout.

Actuator coil

Terfenol-D shaft

Fig. 62: Layout of the actuator coil

Since not only the coil is involved in the magnetic circuit other ferromagnetic components
like housing, Tetfenol-D shaft and inserts have to be considered. Fig. 63 presents the main
magnetic path through the magnetostrictive actuator.
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Fig. 63: Magnetic path through the actuator

For Terfenol-I} the magnetic field strength, H (A/m), whach is required to achieve the
expected performance, is considered as moderate. Fig. 64 shows the strain capability of

applied magnetic field intensity (A/m) from Terfenol-D material.

Stram versus field strength
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Fig. 64 Strain versus applied magnetic field intensity (A/m)[14]

Above depicted data were taken from the supplier specification for the Terfenol-I shaft at
pre-stress about 6.9 MPa. The estimated linear range is up to 900 ppm. The maximal targeting
strain range, due to near linear relationship to the applied field, is up to the level of 1200 ppm.
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It is common for layouts, involving Terfenol-D actuators where the magnetic flux should be
guided and focused in the region of the active material This is required to maximize the
magnetic field energy and minimize the energy losses in the region where the magnetic field
is not needed. The frequency range has also to be considered in order to enable the
functionality of the actuation system. A nonlinear time harmonic simulation method will be
used to determine and optimize the actuator performance. The parameter calculations from
this study related to the operational frequency would be used to set up the first set of
parameters for the stmulation.

According to the Ampere’s Law the relationship between the current (A) and the magnetic

field strength (A/m) could be formulated as.
$HAI=N-I )

In Fig, 63 there are six designated sections of component through which the magnetic flux

passes. Therefore:

§Hdgmem’IMmHI’EI+HE'EQ+““%‘Hﬁ"zﬁ (44)

It is ymportant to include all six terms in order to estimate the required total magnetomotive
force, and so the return path of the magnetic flux through steel components must also be
considered. For each section there is a length of the magnetic path, 1, and a value for the
magnetic field strength, H. The length 1s fixed by the geometry of the system, but the value of
H must be determined by making use of the magnetic properties of the material For the
housing of the actuator the low carbon steel, Ck15, has been used. The magnetic properties of

Ck15 are shown in Fig 65.
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Fig. 65: B-H diagram of Ck15 with measurement data

The magnetic properties of Terfenol-D at various pre-stress levels have been provided by the
Terfenol-D supplier. Fig. 66 depicts the B-H characteristic of the preferred pre-stress about

7.2MPa,
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Fig. 66: B-H diagram of Terfenol-D with measurement data [14]
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In order to enable the actuation mechanism to work at high dynamic level, the amount of the
ferromagnetic steel has to be mintmize. For a magnetic circuit the total flux, @, remains

constant. The flux is related to the flux density, B, and is equal to the flux density multiplied

by the integral of cross-sectional area [33].

¢=| Bda s

Where this area is constant throughout the magnetic pathway, the mtegral of cross-sectional
area is equal to the area. Since the flux is constant, the product of flux density and cross-

sectional area must be constant for each material:

(i) Terfenol - d‘).sfeei (46)

Terfenol ’A‘ Terfznol = B steel ’A

sheal (47)

The flux density B (T} depends on the properties of the medium and specially the relative

wr (-) and absolute permeability p. They are sometimes written in the form:

Bsreef = y[l ) I'i.stee! 'Hsr@el (48)

B Terfenol =HgtH Terfenol H Terfenol (49)

where pp, the permeability of free space is constant, and p,, the relative permeability 1s

another variable with dufferent values for each value of magnetic field strength and for each

material. The reluctance, R , 1 an analog to the resistance in the electric circut. For the

calculation of the retuctance the following equation could be stated:

_MMF_ NI
¢ ¢ (50)

R
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The reluctance is sometimes wrtten in the form:

=t
;‘{U #Rg){i (5 I)
The total system reluctance can be calculated as follows:
Ropw = RIFR24+R3++Ru
fota
(52)
Ohm’s law for magnetic circuit could be formed as:
MMEF = (}b 3R (53)
In the magnetic path through an assembly, components specific reluctance has to be
considered separately:
MMF = (R1I+R2+R3+---+Rn) (st
The inductance (weber-turns per ampere) of the magnetic circuit is defined as:
2
N
L=
R toted (55)

For the proposed type of actuation system the maximal current is limited in antomotive area.
Conventional actuation systems are working with high current, up to 50 A, which is always a
critical feature for some automotive applications. Current demand in the range of 10 A would
be a good trade off between low current and good performance requirements. Due to
combination of equations (50) with (51), considering equations (47) to (49), following

equation could be utroduced:

~ R Ho Mrapmor H rogme A ropmi

I (56)

Page 79



Chapter five

It is now possible to follow the procedure to calculate the required number of turns to achieve
the required magnetic field strength. For the parametric calculation, to determine the number
turns, the relative permeability of Ck15 and Terfenol-D has been set constant. These
constants, Yes and Urgmmen, have been set to average value for specific material based on
measurements. Fig. 67 depicts the results from the parametric calculation for the required
number of turns. The geometries have been taken from drawings in the appendix A of this

thesis.
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Fig. 67: Number of turns versus achievable magnetic field strength

These calculations are prepared as the first input for simulation of the magnetic circuit. The
nonlinear B-H characteristic and the real, not constant permeability of each material will be
used in the magnetic field simulation. The proposed approach, outlined above, was also used
to calculate the reluctance of the circuit; it is 60 * 10° H''. For above parametrical calculation
it was necessary to perform a trial and error series of operations to find out how many turns
the coil needs to have in order to provide the required field strength and how much space this
coil will need. To perform these calculations, layout geometries had to be assumed initially,
ie. the outer diameter of the housing, and then tuned to the optimum. Finally, magnetic field
simulation has been used to confirm the magnetic field calculations. Presented calculation
tesults have been used as the initial input for the magnetic simulation software for further

optimization.
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5.3 The Magnetic circuitry for the magnetorheological arrangement

Two different layouts, valve and orifice, have been introduced with parametrical calculations
in chapter 4. The favorite has been identified due to better performance regarding drag
pressure drop and achievable pressure. The orifice is simpler and less expensive than valve.
Therefore both layouts will be used for the magnetic calculations and for experimental
evaluation. With this approach an alternative control arrangement can be verified theoretically
and experimentally.

The favorite arrangement has been introduced in Fig. 36. A coil in an appropriate
ferromagnetic housing was defined as the source of the magnetic field. The chosen diameter
of the internal shaft is 10 mm and the MRF gap is 0.5 mm. This selection has been based on
the results of the parametric calculations. The magnetic field is the result of electric power
flow, current I [A] and voltage U [V], through the coil. The coil is wound around the bobbin
and the magnetic field is guided through the MRF gap perpendicularly to the fluid flow. Fig.
68 depicts the coil layout with fluid motion and magnetic field direction.

MRF asrangzment voil

Field direction

Fiald divection

MRF floww

Fig.68: Layout of the valve control arrangement
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Fig. 69 depicts the same arrangement as shown above but with the experimental assembly.

Fig.69: Layout of the control valve
All ferromagnetic components, housing with internal shaft and MRF, have to be considered

for the evaluation of the magnetic circuitry. Fig. 70 shows the main magnetic path through

the favorite MRF valve arrangement.

A5 LS A4.L4 A3.L3

AB,LG Al.L1  A2L2

Fig. 70: Magnetic path through the valve

The requirement of the magnetic field strength for the MRF is in the range up to 200 kA/m.

The alternative arrangement has been introduce in Fig. 37. A coil in an appropriate
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ferromagnetic housing was defined as the source of the magnetic field. The chosen diameter
of the orifice is 1.5 mm. This selection has been based on the results of the parametric
calculations. The magnetic field is the result of electric power flow, current 1 [A] and voltage
U [V], through the coil. The coil is wound around the bobbin and the magnetic field is guided
directly into the MRF, which is in the orifice. The bobbin inner diameter is the orifice
diameter. The magnetic field direction is inline with the fluid flow direction. Fig. 71 depicts
the coil layout with fluid motion and magnetic field direction.

Control coil

MRF flow

Fig.71: Layout of the orifice control arrangement

Fig. 72 depicts the same arrangement as shown above but with the experimental assembly.

iadgnetic fiekd
dirgetion H

Fig.72: Layout of the control orifice
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The ferromagnetic components, housing and MRF, have to be considered for the evaluation
of the magnetic circuitry. Fig. 73 shows the main magnetic path through the alternative MRF

orifice arrangement.

A3L3

£

A4Ll4  A1L1 AZL2

Fig. 73: Magnetic path through the control orifice

Also here, the target range of the magnetic field is up to 200 kA/m. For the housing in the
valve assembly (favorite) and the orifice (alternative) the low carbon steel, Ck15, has been
used. The magnetic property of Ck15 has been shown in Fig. 65. Fig. 74 depicts the magnetic
properties of the favorite MRF132 taken from the MRF supplier [69 and 79].
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Fig. 74: B-H diagram of MRF132-AD [69 and 79]
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Fig. 75 depicts the magnetic properties of alternative MRF336 taken from the MRF supplier
[69 and 79].

B-H Diagram MRF-336-AG
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Fig. 75: B-H diagram of MRF 336-AG [69 and 79]

In order to achieve fast response it is obtained to minimize the amount of the ferromagnetic
steel in the magnetic circuit. The approach of magnetic field calculation, which has been
implemented using equations (45) to (55), would be used as well to define desired coils for
the valve and the orifice.

In Fig. 70 there are six designated sections of component through which the magnetic flux
passes. Therefore, in analog to Eq. (43):

§ H dyge=Nyge ] se=H Iy +Hylyt -+ Hylg

(57)
And for the alternative design according Fig. 73:
Eb Hdlyow=Nygr ] yge=H [, +Hyly+ o+ H -l (58)

Since the flux is constant, the product of flux density and cross-sectional area must be

constant for each material:
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¢MFF = qbstee! (59)

B W‘AW =B steel *Astee! (60)

The flux density B (T) depends on the properties of the medium and specially the relative pr

{(-) and absolute permeability p They are sometumes written 1n the form:
BMRFmpD*#MRF*HMRF (61)

where g, the permeability of free space is constant, and t,, the relative permeability 1s
another variable with different values for each value of magnetic field strength and for each
material.

For the MRF control arrangement the maximal current was set to be up to 6A. Due to
combination of equations (50) with (51), considering equations (57) to (61), following

equation could be introduced:

R Ho' M yer Hy e A s

I (62)

It is now possible to follow the procedure to calculate the required number of turns to achieve
the required magnetic field strength. For the parametric calculation, to determine the number
turns, the relative permeability of Ck15 and MRF-132-AD have been set as constant. These
constants, Hes and ygrs.ap, Dave been set to average value for specific material based B-H
diagram. Fig. 76 depicts the results from the calculation for the required number of turns for

the favorite design.
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Magnetic path

Required number of eoil turns versus field strength
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Fig. 76: Number of turns versus achievable magnetic field strength for the valve

Fig. 77 depicts the results from the calculation for the required number of turns for the

alternative orifice design.
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Fig. 77: Number of turns versus achievable magnetic field strength for the orifice

It is again obvious for both, magnetic and geometric dimensions, that the valve layout should
be preferred. All geometries have been taken from drawings the in the appendices B and C.
These calculations are prepared as the first input for simulation of the magnetic circuit. The

nonlinear B-H characteristic and the real, not constant permeability of each material will be
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used in the magnetic field simulation. Further details regarding the coil and wire geometry
will be discussed in section 5.4. The proposed approach, outlined above, was also used to
calculate the reluctance of the circuit; it is in the favorite arrangement 0.9 * 10° H.. For the
above parametrical calculation it was necessary to perform a trial and error series of
operations to find out how many turns the coil needs to have in order to provide the required
field strength and how much space this coil will need. To perform these calculations, layout
gcometries had to be assumed initially, i.e. the outer diameter of the housing, and then tuned
to the optimum. Finally, magnetic field simulation has been used to confirm the magnetic
field calculations. The above shown calculation results have been used as the initial input for

the magnetic simulation software for further optimization.
5.4 Electric coil for actuator and magnetorheological arrangement

In the following calculation it was necessary to perform a trial and error series of operations
to find out how many turns the coil needs in order to provide the required field strength and
how much space this coil will need. The proposed approach with the calculation of the
reluctance enables to indicate the dynamic capability of the proposed arrangement. Fig. 78
shows the cross section of an air coil. The bobbin of the coil is made of aluminum and does

not affect the magnetic field.

w

d eff (wire without isolation)

d o {wire with isolation, ~+10%)

Fig. 78: Air coil geometry

Each strand of the copper wire is coated with an insulating layer to avoid electrical short

circuits. The insulated wire is about 10% larger than the un-insulated wire. The overall

Page 88




Chapter five

resistance of the copper wire in the coil can be calculated if the geometry, length and cross-

sectional area, are known and the resistivity of copper is known.

R.= 2] ‘lw:re
de™ A
wire (63)
The resistivity of copper, & with units, is defined by:
Q-mm’
§,=0.01786- ————
e (61

There is also a variation of the resistivity of copper with temperature, and this also must be

taken into consideration. Over the temperature range of interest:

Ry=Ryy(1+0(0-20°C)) o

where & is the temperature in degrees centigrade and the temperature constant, o at 20°C

with units 1/ °C, is defined by:

1
a,,=0.0039 &

Fig. 79 shows the result of the parametric calculation of current density versus wire diameter.
The specified current range 1-10 A has been used. Typical current density in automotive
applications is lower then 7 A/mm?. The current density limitation, given by wire supplier, is
up to 10 A/mm?, Generally, the limitation is given by thermal conditions and the isolation

layer specification.
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Current density versus wire dismeter
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Fig. 79: Current density versus wire diameter with current as parameter

It is now necessary to perform a trial and error series of operations to find out how many turns
the coil needs to have in order to overcome the reluctance, Another way to calculate is the
definition of required magnetomotive force. The result of both ways of calculation leads to
the same coil specification. The parametrical calculation results, used to specify the prototype
coil, have been proven by non-linear magnetic field simulation. Based on above discussed
analytical calculations and the results from the magnetic field simulations, prototype
specification for coils has been proposed. Fig. 80 depicts geometry and reference coil
specification of magnetostrictive actuator. Fig. 81 depicis geometry and coil specification of

the favorite MRF control valve.,
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Fig. 80: Geometry and coil specification of the magnetostrictive actuator
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Fig. 81: Geometry and coil specification of the control valve
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Based of calculations, magnetic field simulations and the desired simplicity of the assembly,
the coil for the orifice control has been proposed. Fig. 83 shows geometry and coil

specification of the control orifice.
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Fig. 82: Geometry and coil specification of the control orifice

5.5 Magnetic Field Simulation

In order to optimize the design of the actuator, a simulation of magnetic field, including the
real magnetic properties of used material, is required. The nonlinear simulation method was
used to determine and optimize the actuator and control performance. Due fo nonlinear B-H
function the system has to be solved by an iterative way [87]. The “MS”-actuator, “MR”-
valve and “MR-orifice have been simulated regarding magnetic ficld. Finite element
modelling metheds of the magneto-mechanical phenomena have been proposed in several
publications in [20] and [86} to [92]. Terfenol-D is a smart material in that the magnetic
properties are coupled with mechanical state and vice versa, For an accurate simulation a non-

linear method with coupling between magnetic and mechanic properties are recommended.
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One method involves a simultaneous solving process using the magnetostrictive
characteristics of Terfenol-D rods: o (8, H) and H (B, o) [86]. Another method uses the direct
dependency of the strain A[ppm] versus field intensity H [A/m]. Special software packaging
for smart materials and structures i.e. Atila FEM software is available for this purpose. Atila-
Software has been developed by ISEN, France and distributed by Cedrat in Europe &
Magsoft in USA. For the proposed actuator structure with stepwise accumulation of the smart
material motion the knowledge of the pre-stress and pre-magnetization has to be considered to
obtain the required functionality. For the optimization of the proposed structure the software
packages Opera from Vector Fields and free available FEMM have been used. Some
simulations have been done with both software modules for comparison reasons. The simple
user interface and efficiency has been found in using the free available FEMM software
packaging developed by David Meeker, Senior Engineer at Forster-Miller Inc. Results from
the magnetic field simulation from FEMM and Opera have been evaluated and positively
verified with measurements on the rig for several coil layouts. For low-frequency evaluations
only a part of the complete Maxwell’s equations is considered. Displacement currents are
typically relevant only at radio frequencies [84]. For magnetic field simulation, the
operational frequency for the actuator and control device has been investigated up to 1000 Hz
For simulation of the actuator and the control device at that low-frequency the problems of
displacement currents can be neglected.

In the Finite Element method the partial differential and integral equations describe the

variation of the magnetic field either directly as field variable i.e. flux density B, but more

often using a potential function that is related to the field by gradient Vor by curl (V X)
operation [85]. In the magneto-static case fields are constant over the time and the current

density J is defined by equation:

J=V=xH (67)
Flux density B has zero divergence and is expressed by:
V:-B=0 (68)
For a non-linear material the permeability is expressed with:
[ = B
H{B) 69)

The software modules are finding a magnetic field that satisfies equations (67) and (68) by

iteration using the magnetic potential vector A. The magnetic flux density is expressed with
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the vector A and is defined as:

B=V=xA4 (70)

Equation (67) for the static magnetic field using a magnetic vector potential could be re-

written as;

J=Vx [——-I—V x A)
u(B) (71)

In 3D problems, feasible with FEM Opera from Vector Fields, this magnetic vector potential
A becomes a three component vector. For simulation of the proposed actuator and control
device a 2D and axisymmetric model has been applied. In this case the first two of the three
components are zero and just the “out of the page” vector component has to be considered. In
case that material behaves linear in the magnetic field, a simplification of the previous

equation could be established:

B=uH (72)

Further, for the linear isotropic material the fellowing is valid:

V- -4=0 (73)

Following, equation (71) with the linear isotropic material and 2D an axisymmetric problem

could be rewritten as:

Jmml_,gy?,A

H (74)
In the case that the magnetic field 1s not constant over the simulation period time, further
Maxwell’s equations have to be applied. The current density J, the electric field intensity E

and conductivity o are linked by:

J=gE (75)

The 1nduced electric field could be expressed with:
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dB
Vs E=——
i di  (76)

Due to substitution of the magnetic vector potential A from B into equation for induced

electric field as presented in Eq. 77:
Vx Em-ﬁ? X A (77)
The integration and simplification to a 2-D problem lead to
EZ—A“W -V (78)
By substitution of E into Eq. (75), the relationship for current density could be rewritten to:
J=—0Ad—o-V-¥V (79)

With further substitution of equation for the cutrent density the partial differential equation

can be presented as follows:

i .
Vs{——Vxd)= —gd+J,, ~ o V-F
uiB) 80)

In equation (80} S e stands for the applied currents sources and the term V-V is the
additional voltage gradient over a conducting body [84]. FEMM considers equation (80) for
evaluations of the magnetic field oscillating at one constant frequency. With additional

transformation shown in equation (81), where a is the complex number-

A=Rela(coswt jsinwi)] =Re[ae’ '] (81)

and substitution info equation (80) with dividing out of the complex exponential term

equation (81) could be presented in following form:
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——Vsxa}= —jwratd,— oWV
p{(ﬁ} (82)

FEMM software uses equation (82), with as the phasor transform of applied current sources,
for harmonic magnetic problems. FEMM software package enables the evaluation with a
complex and frequency-dependent permeability in time harmonic problems. This feature
could be used to model thin laminations and model of hysteresis effects.

To enable a particular magnetic sunulation, a boundary condition has to be defined. The
FEMM package offers three different types of boundary conditions: Dirichlet, Neumann and
Robin. In the Dirichlet-condition the value of A is explicitly defined at the boundary, i e. 4=0
This condition will guarantee that the flux is not passing the boundary. In the Neumann-
condition the normal derivative of A is specified. This condition forces the flux to leave the
boundary at exactly 90°, i.e. like into the very highly permeable metal And finally, the
Robin-condition 1s a mix between Dirichlet and Neumann. Under this condition the value of
A and its normal derivate at the boundary are specified [84]. For the evaluation of the
proposed actuator, as well the control device, an axisymmetric problem is established and
following A=0 on the line r=0.

All above discussed equations have to be satisfied by iteration and approximation Even for
evaluation of simple structures the final element analysis is very useful. The basic idea of the
final element analysis is to split the structure in a large number of small sub-structures, each
of them of simple standardized geometry (i.e. triangle). In this way the small but difficult to
solve problem becomes to a large but simple to solve problem [84]. In particular, due to
triangulation the differential equations become to x linear equation with x variable, what a
computer can solve in a view seconds. Specially, FEMM uses triangular elements onty. The
approximation of a sufficient number of solutions for simple triangular regions leads to an
accurate result for the magnetic vector potential 4. The following section of this chapter
contains results of the magnetic field simulation with the software packaging FEMM, some
key simulation results have been calculated with the professional magnetic field simulation
software tool Opera from Vector Field. Both software packages have been very useful and
powerful tools for optimization of the actuator and control device geometry.

The first simulation loop has been created using the magnetic field simulation software
FEMM, Version 4.0.1. Figure 83 shows the FEMM sofiware window with user interface.

Page 96



g e [700 01}0] ; :
E File Edit View Problem Grid Operal:lun Properties Mash Analysis  Window  Help

D=l sl e &= ]ﬁr|@|_;#|~| alEE( el x]] _ |
T”‘"I I =
=i control pannel
Bl 1= :
a1 128 .
2y 1 E
3 a
; L]
= g
=
| Abomfemm S
- femm401
' 14Wa2006
David Mesker
dmeeker@ieee. 00
Coppright [C) 1998-2005 : |
| & room | _

ir—353 0000,2= ‘IEE ooooy

Fig. 83: FEMM software window with user interface [84]

For geometry input the CAD export / import tools has been used. The 3D design and 2D
detailed drawings for prototyping as well the DXF-import files for the simulation tools have
been prepared with CAD parametrical tool Pro-Desktop. More details can be obtained from
the appendices A to D. The measured B-H characteristics, shown in previous section, have

been used in the simulation of magnetic circuit,
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5.5.1 Magnetic field simulation results from "MS"-actuator

Fig. 84 shows the meshed structure of the magnetostrictive actuator. The simulated model has
been set up to an “axisymmetric problem”, and the “asymptotic boundary conditions™ have
been applied. The results of the parametric calculation for the electric circuit have been used
to set up the simulated model of the actuator assembly. The measured B-H characteristic for

each material has been used as input for the magnetic field simulation software.

_‘Elr) Created mesh with 3285 nodes

Zoom in

Fig. 84: Meshed actuator with FEMM

Fig. 85 shows the density plot for the real part of B (T) related to the center line of the
Terfenol-D shaft. The results shown in Fig. 85 has been obtained using FEMM software

package, version 4.
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Fig. 85: FEMM Flux density B (T) in the actuator

Based on the parametric calculations the nominal current for the actuator coil has been set up

to 9 A. Various types of output information could be used to evaluate the magnetic field. For

the evaluation of the magnetic circuit voltage drop, flux linkage, inductance,

resistance and

electrical power have been calculated. All calculations has been obtained with frequencies

0 Hz, 10 Hz, 50 Hz, 250 Hz, 500 Hz and 1000 Hz. Fig. 86 shows various types of additional

result information from FEMM.
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Fig. 86: FEMM Magnetic Circuit Results for the actuator

The frequency impact on resistance and inductance could be obtained in the simulation
results. It should be mentioned that the electric frequency of operating electric power is the
half of the mechanical pumping frequency. The frequency interference, doubling of the
frequency, is based on the fact that the strain peak appears twice within one frequency loop
from the electric power working with sinevawes.

Fig. 87 presents the assembly reference picture for 2D-plots for magnitude of field density B
(T) and magnitude of field intensity H (A/m) of the Terfenol-D shaft along the defined path
line marked as length.
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Length

. 50 mm 100 mm
Fig. 87: Reference figure of the actuator plots of B (T) and H (A/m)

Fig. 88 shows the density plot of real part of B (T) related to the center line of the Terfenol-D
shaft in the “MS”-actuator assembly.
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i
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0 30 100
Fig. 88: FEMM Flux density B (T) the actuator

The geometry of the assembly has been verified up fo the homogeneous density of the
magnetic field along and across the Terfenol-D shaft has been achieved and the flux density
level was acceptable. The initial proposed geometry, based on analytical calculation, has been
optimized with the simulation tool. Several loops of simulations have been obtained before

reaching the prototype stage. At the prestress of 6.9 MPa and the field intensity about
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100 kA/m the expected strain of the Terfenol-D shaft should be higher than 1200 ppm. This
result will be within the specified range and was rated as acceptable.

Fig. 89 shows the magnitude of field intensity H (A/m) related to the center line of the
Terfenol-D shaft.
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Fig. 89: FEMM Field intensity H (A/m) in the actuator

A homogeneous distribution of the magnetic field mtensity (H) along and across the Terfenol-
D shaft has been achieved and the intensity level has been rated as acceptable The results of
the magnetic field simulation have been used to set up the final design freeze for experimental
rig. For comparison and verification reasons the “MS”-actuator assembly has been evaluated
using the Vector Fields Software for magnetic design (Opera). All the geometries and
material data as well the boundary conditions have been kept equivalent to the FEMM model.

Figure 90 presents the Opera software window with user interface.
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Fig. 90: Opera software window with user interface [85]

For geometry input the CAD export / import tools has been used. Fig. 91 shows the meshed
structure of the magnetostrictive actuator using Opera software. The simulated model has
been set up to an “axisymmetric problent”. The modified vector potential solution, "modified
1% A", has been selected to improve accuracy near the symmetry axis {85]. The results of the
parametric calculation for the electric circuit have been used to set up the complete model of
the “MS-actuator assembly. The measured B-H characteristic for cach material has been
used as input for the magnetic field sinmalation software.
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1 1.344456

B

Fig. 92 shows the potential lines and density plot for the real part of B (T) related to the centre

line of the Terfenol-D shaft.
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Comparions of simulation results

Eo sy o s o e gt
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Fig. 93: Comparison of simulation results regarding flux density B (T)
Fig. 94 shows the magnitude of field intensity H (A/m) related to the centre line of the

Terfenol-D shaft. Fig. 94 shows results which have been obtained with two different
simulation systems, Opera and FEMM.

Comparions of simulation results
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Fig. 94: Comparison of simulation results regarding field intensity H (A/m)
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Comparing the simulation results, obtained by FEMM and Opera, it is obvious that both
tesults are in perfect coincidence. It can be noted that the free available software package
FEMM offers a very simple user interface. The professional software packaging from Vector
Fields is wider purpose software for electromagnetic design. Various types of solutions for the
proposed actuation system are available: static analysis module, steady-state module and the

transient analysis module.

5.5.2 Magnetic field simulation results from "MR"-valve

Fig. 95 shows the meshed structure of the preferred magnetorheological valve assembly. The
simulated model has been set up to an “axisymmetric problem”, and the “asymptotic
boundary conditions” have been applied. The results of the parametric calculation for the
electric circuit have been used to set up the simulated model of the control valve assembly.
The measured B-H characteristic for each material has been used as input for the magnetic

field simulation software.
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Fig. 95: Meshed control valve with FEMM
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Fig. 96 presents the density plot for the real part of B (T) related to the center line of the MRF

valve assembly, which has been obtained using FEMM software version 4.
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Fig. 96: FEMM Flux density B (T) in the valve
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Chapter five

Based on parametric calculations the nominal current for the control coil has been set up to 3

Amperes. Various types of output information could be used to evaluate the magnetic field.

For the evaluation purpose of the magnetic circuit voltage drop, flux linkage, inductance,

resistance and electrical power have been calculated. All calculations have been obtained with
frequencies 0 Hz, 10 Hz, 50 Hz, 250 Hz, 500 Hz and 1000 Hz. Fig. 97 shows various types of

additional result information from FEMM.
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Fig. 97: FEMM Magnetic Circuit Results for valve

The preferred frequency range for the electric circuit using a sinevawes should be

synchronized with the operating frequency of the actuation. Further details regarding the

operational frequencies have been evaluated parametrically in chapter 4.

Fig. 98 shows the assembly reference picture for 2D-plots for magnitude of field density B
(T) and magnitude of field intensity H (A/m) of the mid of MRF gap along defined path line

marked as length.
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Length
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Fig. 98: Reference figure of the valve assembly for plots of B (T) and H (A/m)

Fig. 99 shows the density plot of B (T) at nominal current in the mid of MRF gap in the valve

assembly.
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Fig. 99: FEMM Flux density B (T) in the valve
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The geometry of the assembly has been verified up to the homogeneous density of the
magnetic field along and across the MRF gap. The results show that the density level was
acceptable. The initial proposed geometry, based on analytical calculation, has been
optimized with the simulation tool. Several loops of simulations have been obtained before
reaching the final design. At the magnetic field intensity of about 200 kA/m the expected
yield stress of MRF 132-AD should be higher than 42 kPa. It can be noted that the result were
in the specified range and was rated as acceptable. Fig. 100 shows the magnitude of field
intensity H (A/m) related to the mid of the MRF gap.
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Fig. 100: FEMM Field intensity H (A/m) in the valve, mid of MRF gap

A homogeneous distribution of the magnetic field intensity along and across the MRF gap has
been achieved and the intensity level has been rated as acceptable. The results of the magnetic

field simulation have been used to present the final design for experimental evaluation on the

rig.

Page 111



Chapter five

5.5.3 Magnetic field simulation results from "MR"-orifice

Fig. 101 depicts the meshed structure of the alternative magnetorheological orifice assembly.
The simulated model has been set up to an “axisymmetric problem”, and the “asymptotic
boundary conditions” have been applied. The results of the parametric calculation for the
electric circuit have been used to set up the simulated model of the control orifice. The
‘measured B-H characteristic for each material has been used as input for the magnetic field

simulation software.

Wie D Lede |
e UL R i —

Zoomin

Fig. 101: Meshed control orifice with FEMM
Fig. 102 shows the density plot for the real part of B (T) related to the center line of the MRF

orifice assembly. The results shown in Fig. 102 has been obtained using FEMM software

package, version 4.
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Fig. 102: FEMM Flux density B (T) in the orifice

Based on parametric calculations the nominal current for the control coil from the orifice has
been set up to 6 Amperes. Various types of output information could be used to evaluate the
magnetic field. For the evaluation purpose of the magnetic circuit voltage drop, flux linkage,
inductance, resistance and electrical power have been calculated. All calculations have been
obtained with frequencies 0 Hz, 10 Hz, 50 Hz, 250 Hz, 500 Hz and 1000 Hz. Fig. 103 shows

various types of additional result information from FEMM.
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FEMM Magnetic Circuit Results for orifice

Fig. 104 presents the assembly reference picture for 2D-plots for magnitude of ficld density
B (T) and magnitude of ficld intensity H (A/m) of the mid of MREF orifice along defined path

line marked as length.
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Fig. 104: Reference figure of the orifice for plots of B (T) and H (A/m)

Fig. 105 depicts the density plot of B (T) at nominal current in the mid of MRF orifice.
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Fig. 105: FEMM Flux density B (T) in the orifice
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The geometry of the assembly has been verified up to the acceptable density of the magnetic
field along and across the MRF orifice. It is obvious that, the density level was within the
expectation. The initial proposed geometry, based on analytical calculation, has been
optimized with the simulation tool. Several loops of stmulations have been obtained before
the design freeze for experimental evaluation on the rig. At the magnetic field intensity about
95 kA/m the expected yield stress of MRF 132-AD should be about 27 kPa. Fig. 106 shows
the magnitude of field intensity H (A/m) related to the mid of the MRF orifice
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Fig. 106: FEMM Field intensity H (A/m) in the orifice

The orifice assembly is simpler than the preferred control valve assembly. The achievable
performance would not be as good as the performance with preferred control valve assembly.
An acceptable distribution of the magnetic field intensity along and across the MRF orifice
has been achieved and the intensity level has been rated as acceptable for simpler device. The
results of the magnetic field simulation have been used to set up the final design for

experimental gvaluation.
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Chapter Six

Experimental evaluation

6.1 Experimental rig

To prove feasibility of the actuation principle experimental rig parts have been produced. The
magnetostrictive actuator assembly, magneto-rheological control assemblies and load
assembly has been prepared for experimental evaluation. The test results have been used to
confirm the analytical calculations and the magnetic field simulation and to highlight the
potential of performance optimization. The experimental rig parts of the magnetostrictive

actuator are shown in Fig, 107.

Fig.107: Picture from “MS”-actuator assembly
Details of the design are summarized in appendix A. Some experimental rig parts have been

manufactured in DCU facilities, some has been ordered from external suppliers. The

measured weight of the “MS”-actuator assembly is1560 g and the volume is about 250 mm?,
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The assembly of the control valve is presented m Fig. 108,

Fig. 108: Picture from “MR”-control valve assembly

The measured weight of the “MR”-valve assembly is 475 g and the volume is about 70 mm?®.

The assembly of the “MR”-control orifice is shown in Fig. 109.

2 S e T e Bk

Fig. 109: Picture from control orifice assembly

The measured weight of the “MR”-orifice assembly is 530 g and the volume is about 75 mm?®.
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The asserably of the reference load, used for experimental evaluation, is presented in Fig. 110.

Fig. 110: Picture from load assembly ‘
The housing has been prepared with M10x1 thread interface for a pressure transducer. The
assembly of the MRF reservoir is depicted in F1g 1t1. '

‘Fig. 111: Picture from assembly - -~ '
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An automotive “hydraulic-jack™ has been used to bleed the system and for reference toad
measurements. All drawing from components and assemblies are summarized in the

appendices A to F.

6.2 Rig test equipment and tools for experimental evaluation

The rig test cquipment, power supply and data acquisition, has been prepared and the sensor
calibration data have been checked by GKN Driveline test department. Table 11 shows the

list of chanunels for data acquisition and used sensors with key performance data.

Tab. 11: Rig test data and sensors

Test rig equipment Specification
Max, power from amplifier I1x40A&30V,2 x5A&12V
Input power frequencies Option 1: variable from function generator
Option 2: NI card with LabView 8.2 software interface
Input power type sinusoidal, friangle & rectangular from PWM
Acquisition frequencies >2000 Hz
Channel 1:  Current from rig equipment
Channel specification Channel 2:  Voltage from rig equipment
Channel 3:  Length from TR102/W1T3 = Sensor ]
Channel 4:  Force from 9021A = Sensor 2
Channel 5:  Pressurc PE2000-5048 = Sensor 3
Channel 6:  Force from 9051A = Sensor 4

Channel 72 Voltage from rig equipment
Channel 8:  Voltage from rig equipment
Current: 73 A, 46 A, 4.6 Awith+/-02 A
Measuring accuracies Voltage: 108V, 1.3V,3.7Vwith+-0.2V
Force 1: (9021A) 3 kN max, +/-100 N
Force 2: (9051A) 20 kN max, +/-250 N
Pressure: 4 MPa (40 bar) max, +/- 0.2 MPa (1 bar)
Displacement: 0.1 mm max, +/- 0.005 mm
Sensor 1: HBM TR102 / W1T3

Sensors Sensor 2: Kistler 9021A

Sensor 3: Kavlico PE2000-5048

Sensor 4: Kistler 9051A

[
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Power flow, current and voltage with various frequencies, have been checked with an
oscilloscope. A function generator has been used for various actuator tests. A National
Instruments I/O card with LabView8.2 has been used for the experimental tests with
simultaneous power input for the magneto-theological control device from the arrangement
shown in Fig. 33. The recorded data have been investigated with MGraph 1.00, software tool
for data acquisition. Fig, 112 depicts the rig test equipment with “MS”-actuator,

Fig. 112: Test rig equipment with “MS”-actuator prototype

Fig. 113 depicts the rig test equipment with function generator (left) and the rig test
equipment with the NI 1/O card device (right).

Fig. 113: Test rig equipment with function generator (left) and NI I/O card (right)
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The set up with conventional function generator has been found to be sufficient for singular
tests with magnetostrictive actuator or magneto-rheological control device. The NI 1/O-card
offers more flexibility for experimental evaluation with simultaneous power input for
magnetostrictive actuator and the magneto-theological control device. In some tests, up to
three electrical coils had been powered with defined phase shift in current and voltage. The
purpose of the experimental procedure was to confirm the analytical analysis, to prove the

basic functionality of the actuator and to highlight the potential of possible improvements.

6.3 Experimental evaluation of magnetostrictive actuator

The actuator assembly has been completed and used to evaluate the performance (strain
capability and blocked force level) of the magnetostrictive actuator. Fig. 114 depicts the test

bench layout for force and for axial displacement measurements.

Fig. 114: Actuator assembly for performance measurements
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Fig. 115 depicts the cross section of the tested assembly with force sensor and displacement

SENSOr.

\\
1\
= \
Position
sensor

Force sensor

Fig. 115: Actuator assembly cross section for performance measurements

Using above shown assembly the specified performance of the actuator, based on
magnetostrictive technology, has been proven on the rig test. Firstly, the effect of pre-stress
has been evaluated. A piezo-sensor has been integrated into the assembly for accurate and
dynamic force measurement. The details from used sensor are depicted in the appendix F of
this thesis. Recorded data versus time were current, voltage, axial force and axial
displacement. An evaluation of the displacement versus current has been used to define the
optimal pre-stress of Terfenol-D shaft in the assembly. Pre-stress range of 6-34 MPa (300 N-
1700 N pre-load) has been considered in this test session. Figures 116 to 131 show the results
from experimental evaluation of the magnetostrictive actuator. In these figures on the left

side: the time related data acquisition and on the right side: the displacement versus current.
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Fig. 116: “MS”-performance at pre-load with 300 N
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Fig. 118: “MS”-performance at pre-load with 500 N
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Fig. 119: “MS”-performance at pre-load with 600 N
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Fig. 120: “MS”-performance at pre-load with 650 N
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Fig. 121: “MS”-performance at pre-load with 750 N
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Fig. 122: “MS”-performance at pre-load with 850 N
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Fig. 123: “MS”-performance at pre-load with 950 N
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Fig. 124:; “MS”-performance at pre-load with 1050 N
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Fig. 128: “MS”-performance at pre-load with 1450 N
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Fig. 129: “MS”-performance at pre-load with 1600 N
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Fig. 130: “MS”-performance at pre-load with 1650 N

e

il
) 1=~1

Fig. 131: “MS”-performance at pre-load with 1700 N

The effect of pre-stress has been evaluated experimentally. The level of achieved strain has
been rated as sufficient and within the specified range. The optimal pre-stress has been set to
the axial force of 500-600 N. At this axial force the Terfenol-D shafi is pre-stressed with 10-
12MPa and the achievable displacement is about 0.065 mm. Related to the tested length of the
Terfenol-D shaft, the strain was approximately 1000 ppm. This strain was within the specified
strain range of the “MS”-shaft. The dependency of the achieved axial displacement versus
electrical current is shown in Fig. 132. In Figure 132 the pre-load effect is shown as

parameter.

Page 127



Chapter six

Axial displacement versus Current
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Fig. 132: Optimization of achievable strain with various pre-load

The evaluation of the frequency impact on the actuator performance strain capability has been
carried out in the next test. Further, the butterfly-curves with sinusoidal power input have
been measured to confirm symmetric behavior of the Terfenol-D. During this testing
procedure the frequency dependency has been evaluated. In Fig. 133 to 138 on the left side:
the displacement versus current, and on the right side: the time related data acquisition with

force current and voltage.
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Fig. 133: Butterfly-curve at 550 N pre-load & 20 Hz sinusoidal power input
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Chapter six
With the increase of the pre-load force the actuator comes into the blocked force mode and
the butterfly-curve is hardly visible. At the pre-load of approximately 4.5 kN the useable
strain is very limited and could not be used any more as considerable displacement for a pump
or other actuator principles. Fig. 140 depicts the hardly recognized butterfly-curves at blocked

force level at which the strain capability is not significant any more.
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Fig. 140: Butterfly-curves, force versus current, at high level

The achieved results of the magnetostrictive actuator can be summarized as: acceptable
displacement, good functionality at various frequencies and high blocked force level, which
would be considered as sufficient and in line with theoretical performance calculations. Based
on the achieved results, it can be stated that magnetostrictive technology offers big potential

for various automotive applications.

6.4 Experimental evalnation of magneto-rheological control

Two different control devices, valve and orifice, with two different MR fluids have been

evaluated experimentally. The static pressure capability versus applied current to the valve or
orifice coil has been evaluated. The external pressure has been supplied from "hydraulic jack"
after the coil from valve or orifice have been energized. Fig. 141 depicts arrangement with the

cross section of tested structure for experimental tests of the “MR”-controlled valve assembly.
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Fig. 141: Layout for experimental tests of the valve

Figure 142 presents arrangement for experimental tests of the alternative “MR”-controlled

orifice assembly.
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Fig. 142: Layout for experimental tests of the orifice

The above shown valve and orifice control assemblies, based on magneto-theological fluid,

have been evaluated experimentally. The position of the reservoir during the testing has been
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chosen at the top to enable the self bleeding due to pump and suck operation. Both assemblies
have been evaluated with MRF 132-AD and with MRF 336-AG. The data have been recorded
for evaluation of achieved pressure performance. Fig. 143 depicts an example of the recorded
data of the test procedure, where the valve filled with MRF 132-AD has been used.
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Fig. 143: Pressure capacity of valve with MRF 132-AD

As mentioned above, the external pressure has been supplied from the rig equipment. The
maximal achievable external flow rate from the "hydraulic jack" is about 5*10°m?/s. The
pumping through the valve without the electrically engaged control coil showed pressure drop
of approximately 0.05 MPa. For evaluation of the pressure capacity, the stationary condition,
static pressure has been evaluated. In this particular series of experimental trials, the delay in
the build-up of the pressure is part of experimental arrangements, and does not indicate a
delay in response time of the MRF. Figures 144 to 147 show examples of this static pressure
capability from the valve with MRF 132-AD.
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Fig. 144: Pressure capacity of the valve with MRF 132-AD (1.2 MPa @ 2A)
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Chapter six
Tests have been repeated several times in order to get some statistical value of the pressure
versus curtent capability and to prove the predictability. All testing has been carried out at
ambient temperature of +20°C. The silicon based fluid has been found challenging for
conventional bleeding and sealing devices. The MRF 336-AG fluid behavior in the orifice
control arrangement, as well in the valve control arrangement, has been found as less than
sufficient and predictable comparing with MRF 132-AD. Generally, silicon based MRF’s are
more difficult to seal and to bleed comparing with hydrocarbon based MRF’s. On the other
hand, silicon based MRF's are less sensitive to temperature variation. For support of the
bleeding procedure the fluid has been heated up to about +60°C. The fluid performance and
good bleeding is essential for the achievable pressure level. The recorded data from the
experimental evaluation of the orifice assembly and the valve assembly, with MRF 132-AD
and MRF 336-AG, are depicted in Fig. 148.

Achievable pressure versus electric current

/" M""' Palynom
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Fig. 148: Pressure capacity of MRF conirol assemblies

The pressure capacity of the “MR”-orifice depends mainly on the flow rate. Flow rate of

5 cm?/s was required to hold the pressure drop with the orifice. The “MR”-valve is capable to
hold the pressure without a significant leakage. It was concluded from the above mentioned
experimental results that the preferred control structure is the “MR”-valve, and the preferred
fluid for the next test is MRF 132-AD. The combination of the valve control (orthogonal
direction of magnetic field to the fluid motion) and the hydrocarbon based MRF 132-AD

shows more acceptable and predictable performance. The achievable pressure level has been
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predicted by calculation and simulation of magnetic ficld. The above showed results of the
experimental evaluation (valve with MRF132-AD) have been found as sufficient and in line
with specified performance. Based on the achieved results, it could be stated that, magneto-

rtheological technology offers big potential for various fluid applications.
6.5 Experimental evaluation of "MS"-pump

To prove the basic pump-functionality a layout with conventional check valve and hydraulic
liquid (CHF 118) has been prepared. Fig. 149 shows the layout on rig test with a
representative cross section. Details on design can be viewed in the appendices A and D of
this thesis.
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Fig. 149: "MS"-pump actuator assembly with check valves

Bleeding of the system was required to enable the pump functionality. The actuator coil has
been powered with sinusoidal current. The axial force during the operation and the required
time to pump 100 ml have been measured. Fig. 150 shows the result of the pumping
petformance with check valves and CHF 118 hydraulic fluid.
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Achievable flow rate versus operational frequency
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Fig. 150: "MS"-pump actoator assembly with check valves and CHF118

In the next test session, the conventional fluid has been replaced with the MRF 132-AD. And,
the same test procedure has been repeated to evaluate the basic pump functionality with
magneto-rheological fluid. Fig. 151 shows the result of the pumping performance with
conventional check valves and MRF 132-AD.

Achievable flow rate versus operational frequency
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Fig. 151: "MS"-pump actuator assembly with check valves and MRF 132-AD
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Some limitations from the available rig equipment (power electronic) regarding the

achievable frequencies are accepted since the purpose of this study is to prove the basic
functionality and to highlight the potential of the system. During the test, the axial force from
the "MS"-shaft and the electric input, voltage and current, have been recorded. Fig. 152 shows

a snap shut from the above tests.
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Fig. 152: "MS"-shaft force, voltage and current from pump actuator

The pump performance difference between two fluids, CHF11S and MRF132-AD, is not
significant. The difference in efficiency is below 4%. Due to content of ferro-magnetic
powder in MRF 132-AD the opening and closing of the one-way valve is less predictable
comparing with conventional fluid. Some unpredictable behavior, due to metallic particles in
the fluid, of the opening and closing of the check-valves has been observed. Generally, the
basic functionality has been proven and could be predicted by analytical calculations. The
tested structure could be extended to an “MS”-actuator with two conventional check valves,
load and a controlled “MR™-valve as release valve. Further experimental testing will be
carried out with the reference load assembly.

Tn the next step, the basic functionality of the “MS”-actuator with two “MR”-valves has been
evaluated. The purpose of the testing is to understand whether a fully “MR”-controlled fluid
flow could lead to better performance than above tested system with check valves. The
additional electric power source has been adapted into the experimental test rig.
Simultancously control of all three coils is required to enable the pump functionality. The
conirol of the three coils with the defined phase shift has been realized with the LabView
control panel and National Instruments 1/0 cards. The basic phase definition is defined as
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followmg. The input valve is assembled between the reservoir and the pilot piston from
“MS”-actuator. The output coil is assembled to the return line. Before the "MS" actuator is
elongating, the input coil has to be powered, and the output coil is switched off. In this
condition the elongation of the “MS”-shaft leads to pilot piston movement and this leads
finally to the fluid flow. Before the pilot piston returns in the original position, the output coil
should be powered to avoid the return of the fluid flow. Furthermore, after switching on of the
output coil and before the disengagement of the MS-actuator coil, the input coil should be
switched off. Opening the input coil in this moment leads to sucking of the oil from the

reservoir for the next actuation loop. Fig. 153 depicts the user interface from preparcd

LabView control panel.

Fig. 153: NI'interface for actuator with “MS” and “MR” conirol coils _ .
During the test, the clectric power flow has been recorded. Fig. 154 shows an example of the
recorded data with the fully "MR"-controlled fluid flow.

Page 139




Chapter six.

20y 16 - 8 8
v 8¢ i
a u i ?\f
1 [} i o
16 :
t ' Lo 1
L i By
g 14in H L @
: 12 r I L
a1a 5 e
(-] [ o 1
t 1041t ] L4n
u u 3 i
a & H u
LN ; £31
o [ H
o gr ' 3
] ; 2
[ ' [ 3 L
v o2la ' F1g
04 : e 5 ; i T - ; T : T . T : T : 0 Lo
17 18 19 20 21 22 23 24 25 28 27
Zeit [sec]

Fig. 154: Current and voltage flow during the testing as example

Fig. 155 presents the layout on rig test with a representative cross section. Details of the

design could be seen in the appendixes A, B, and D of this thesis.

Fig. 155: "MS"-pump actuator assembly with "MR"-valves
Fig. 156 shows the result of the pumping performance fully "MR"-controlled fluid flow with

MRF 132-AD. Proper bleeding and acceptable distribution of ferromagnetic particles in the

“MR”-fluid was essential for pumping operation.
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Achievable flow rate versus operational frequency
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Fig. 156: "MS"-pump actuator assembly with two “MR” valves and MRF 132-AD

The achievable performance of the system based on two miniaturized check valves is
significantly better than the performance from two active "MR"-valves. The lack of
performance occurs due to delay in response time of the two "MR"-valves. The measured
response time from the "MR"-valve is about 50 ms. Experimental results related to the
response time are summarized in chapter 6.6. The delay in response time leads to parasitic
fluid flow. The “MR”-fluid was moved forward and reverse, without a predictable fluid
control. Advance power confrol of the current and voltage could help to improve the response
time of the "MR"-valve. However, the drawback is the decrcasing of the efficiency versus
operational frequency. The "MR"-valve opening and closing at higher frequency, i.e. up 5 Hz
and higher, has been found as not sufficient. Basically, the decreasing of efficiency occurs in
both valves, the "MR"-valve and the check valves. For the "MR"-valve is the response time,
and for the check valve the leakage (return or parasitic flow) has to be taken into account. The
above depicted results show clearly that, the performance limitations of the “MS”-pump is the
confrol valve. The delay in response time is limiting the maximal operational frequency of the
valve, Most of the problem is due to the difficulty in stabilizing the current for higher
frequencies in the magnetic circuit with the particular inductance and reluctance. It was
concluded from the above showed experimental result that the preferred control structure for
the actuator should be based on check valves. However, to release the pressure an active valve
will be required. The "MR "-valve assembly with the favored fluid for the MRF 132-AD is
more suitable to be used as pressure release valve. Further experimental evaluation will be

carried out with the complete actuator assembly including the reference load.
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6.6 Experimental evaluation of complete actuator assembly

As the reference load for the study, the assembly with housing, piston and disc spring have
been chosen. A modified "hydraulic jack" has been used to supply the required pressure for
static performance measurement. The purpose of the test session is to evaluate the elasticity,
to prove pressure and force capability, to fill and to bleed the pump assembly. The
hydrocarbon fluid MRF 132-AD has been used as working fluid. Axial force from the
magnetostrictive actuator, hydraulic pressure, axial force at the main piston and the axial
displacement of the main piston against the disc spring have been recorded. Fig. 157 depicts

the arrangement for experimental tests of the reference assembly.

Fig.157: Reference assembly on test bench

Fig. 158 shows the cross section of the arrangement for experimental tests of the actuator,

load assembly and the “MR” release valve.
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Fig.158: Experimental tests of the load arrangements

Fig. 159 shows the measurement results of the reference assembly. The shown data have been

recorded versus time.
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Fig. 159: Measurement of the reference assembly

As an extract of above diagram the new diagrams "axial force and displacement versus
pressure™ have been created. MRF control coils have not been used during this test. Fig. 160

shows the performance characteristic of the reference assembly.
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Fig. 160: Axial force and displacement versus pressure

The axial force depicted in Fig. 160 as Force_1 is measured at the main piston and the
Force_ 2 is measured at the magnetostrictive actuator. The hysteresis (counter clockwise) of
displacement and the axial force from the main piston is caused by friction (piston sealing)
and could be improved by appropriate coating of the housing surfaces.

In the following test the "MR"-valve pressure capability and the pressure performance of the
complete assembly, have been evaluated. The pressure was applied externally with "hydraulic
jack" after the release valve was energized. By switching off the electric power from release
valve the disengagement behavior has been recorded. Figures 161 to 168 show the pressure

release performance of the conirol in the complete assembly at various pressure levels.

B
£
20+ ¥
L =]
P8
R o H
f’z&- t b7 oa
o g
: a5
3 — F&
5 apfee [ 6
u
. s ¢
7
[ 154 u
M ot
P e T . - AL T S it S k-
i 10 15] |3
k
b f2
&5 v
Ly |
nd ; T E T T : ¥ Lo Lo £D [ﬂ

P I 1™ ™ S M PR L 35
Zete fsec)

Fig. 161: Disengagement performance from 3 MPa
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Fig. 168: Disengagement performance from 0.5 MPa

Based on above depicted resulis it has been concluded to continue the basic functionality tests
with proposed load assembly. Less than 150 ms were required to decrease the pressure from
1.0 MPa to 0.25 MPa, and about 200 ms were required to decrease the pressure from 1.7 MPa
1o 0.25 MPa. Some delay, up to 25 ms, is caused by translation from the digital to the analog
signal. The delay in response could be overcome by further optimization of the valve
assembly and the advanced control strategy. Especially at low pressure level, due to the
hysteresis of the load system and the resistance from viscous medium some delay in
disengagement occurs. Pressure of up to 3 MPa has been measured with the "MR"-valve
assembly. In this valve assembly the MRF gap was 0.5 mm, Generally, the performance of
the load assembly has been rated as acceptable for further testing.

6.7 Experimental evaluation of the "MS"-pump actuator

To confirm the expected performance of the fully "MR"-controlled structure actuation tests
have been performed. The complete assembly is depicted in Fig. 169
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Fig. 169: MS actuator with full MRF control

Fig. 170 shows the cross section from the assembly. MRF 132-AD has been used for the basic
functionality test. The purpose of the test is to confirm the functionality and to evaluate
whether better bleeding and pre-load of the reservoir will significantly change the
performance. Based on discussed results in 6.6, the fully "MR" controlled system is not the

preferred system. However, the basic functionality will be checked.

Control coil bz
outlet A AL //

Displacement

Control eoll
inlet

Pipe (high pressure) ———
Pipe (low pressure)  ———

Fig. 170: Cross section of "MS"-actuator with full MRF control
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Fig. 171 presents the basic functionality of "MS"-actuator with full MRF control at low

frequency. It could be observed that the reverse pilot piston movement creates some leakage
through the valve.
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Fig. 171: Micro-pumping at low frequency (<1 Hz)
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Fig. 172 shows the example of the fumction at higher frequency. Maximal achievable pressure

is about 0.35 MPa. Further increase of operational frequency, higher than 15 Hz, leads to loss

of micro-pumping due to delay in response from the valves.
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Fig. 172: Micro-pumping at medium frequency (<15 Hz)

Page 149

=1

~cm~col sama-—a<

i

oo
95
Fan
25
F&n
5
70
&5
5313
55
F5n
48
F40
35
34
25
20
18
0
05

TR

]

- g—



Chapter six

As expected, further increase of the operational frequency stops the micro-pumping due to
response time delay from the "MR"-valves. Furthermore, the fully "MR"-controlled fluid flow
requires to control three coils simultaneously. The structure of the electronic control unit
becomes more complex and expensive in the application. Based on measurement results it has
been concluded to prefer the simpler structure where "MR"-valve is used to release the
pressure. Fig. 173 presents the structure of "MS"-pump actuator with two check valves and

"MR"-valve in the return line to release the pressure.

Fig. 173: "MS" pump actuator with "MR" release valve

Fig. 174 depicts the cross section of the MS"-pump actuator with two check valves and

"MR"-valve. “MR”-valve is used as pressure release valve.

Reservorr |

Fig. 174: Cross section of "MS" pump actuator with "MR" release valve
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The basic functionality of the pump mechanism has been already proven in chapter 6.5. The
purpose of this test is to evaluate whether the combination of "MS" and "MR" technologies
could be used in one actuator. The check valves enable the fluid flow through the pipes. Then
the "MR" release valve has been energized and the pressure increases. Fig. 175 depicts an

example of performed testing at 1 Hz micro-pumping.
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Fig. 175: Basic performance of pump actuator at 1 Hz

Fig. 176 shows recorded data at 10 Hz micro-pumping in the dead-lined main piston.
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Fig. 177 depicts one example of achieved performance with “MR”-valve. All data have been

recorded versus time.,
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Fig. 177: Engagement performance at 25 Hz

In could be observed that from the time where the release valve is energized the pressure
could be increased. At about 1.2MPa the axial displacement of the “MS”-shaft is not
sufficient to increase further the operational pressure. The pressure remains nearly constant;
despite continuing power to the “MS”-actuator at this frequency. The pressure release

performance, disengagement performance, are shown in Fig. 178.
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Fig. 178: Pressure release performance

After the “MR”-release valve has been switched off, the pressure starts to decrease. Fig. 179

presents the achievable pressure versus operational frequencies.
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Achievable pressure versus frequency

o Measured pressure| |

—Polynom

o 9

]

80 Hz 100 Hz 120 Hz

Operational frequency

Fig. 179: Achievable pressure versus operational frequency

Above depicted results are confirming the expected performance which has been evaluated in

chapter 6.5. The limitation of the actuator system is the valve structure. As well, the influence

of bleeding and settling of the “MR”-fluid has been observed several times during the

experimental testing.
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Chapter Seven

Conclusions and recommendation

7.1 Conclusions

High power density and simple design of the magnetostrictive actuator has been evaluated
and optimized. A literature survey for “MS”-technology has been extended with analytical
calculations, magnetic ficld simulations and experimental evaluation. Based on calculations
and simulation results, the design of an “MS”-actuator has been proposed. An experimental
rig has been built and the specified performance has been proven with experimental results.
Acceptable magnetostrictive strain a high blocked force has been achieved. The key

experimental results, related to “MS”-actuator, are summarized in Table 12.

Tab. 12: “MS”-actuator key data

“MS”-actuator Actuator key data Experimental results
Actuator Actuator coil: Optimized pre-stress:
-950 turns, 1.5 ohm 12 MPa (600 N pre-load)
-wire diameter of 1.12 mm | Strain capability:
Terfenol-D shaft: 0.065 mm @10 A
-shaft diameter of 8 mm (1000 ppm @ 108 kA/m)
-shaft length 67.5 mm Blocked force: > 4500 N

Furthermore, this thesis is the introduction of an actuator based on MS technology and
possible control arrangement which is based on MRF technology. A literature survey for
“MR”-technology, extended with analytical calculations, magnetic field simulations and
experimental evaluation has been carried out to enable the actuator principle. Based on
calculations and simulation results a design of the actuator with “MR”-control has been
proposed. Experimental rig assemblies of two different control arrangements have been built
and the performance has been evaluated experimentally. The key experimental results, related

to “MR”-valve and orifice, are summarized in Table 13,
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Tab. 13: “MR”-valve and orifice

“MR”-device, 3D CAD Actuator key data Experimental results
Valve Valve coil: Used fluid:
~120 turns, 0.3 ohm -MRF132-AD
~wire diameter of 0.9 mm | Pressure drop at 5 cm?/s:
MREF gap size: -less than 0.05 MPa
~gap of 0.5 mm and Achieved pressure:
-gap length of 12 mm 1.5MPa@ 4.5 A &0 cm?/s
Orifice Orifice coil: "Used fluid:
-490 turns, 0.84 ochm -MRF132-AD
-wire diameter of 0.9 mm | Pressure drop at 5 cm?¥/s:
MREF orifice size: -less than 0.2 MPa
-diameter of 1.5 mm Achieved pressure:
-length of 40 mm 0.6 MPa @ 4.5A & 5 cm®/s

An actuator based on MS technology and a control arrangement based on MRF technology

has been combined in one possible application. The basic functionality of proposed pump

actuator systems, one with full MRF control and another with check valves, have been

proven. The performance limitation, namely the valve structure, has been identified. Valve

leakage and dependency on the operational frequency are the limiting the performance of the

actuation system. However, a pressure of 1.2MPa with check valves and 0.35MPa with two

“MR”-valves has been achieved in the actuation system. Higher pressure capacity could be

achievable using a valve structure with faster control response and less leakage.

Presented calculations, magnetic field simulations and experimental evaluation results for

both technologies, "MS"-actuator and "MR"-control device, can be used as basis for future

development work. An important milestone in combination of smart technologies has been

achieved and enables further development of new applications based on MS and MRF

technologies, in combination and separately.

7.2 Recommendations for future work

Based on calculations, simulations and experimental results the performance of the "MS"-

actuator could be predicted now more accurately. It is recommended for the final application

to enlarge the Terfenol-D shaft and the pilot piston to achieve higher pressure level and to
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increase the flow rate. However, the potential of "MS"-technology is very attractive for
various actuator applications.

Related to the "MR"-technology, it can be stated that the contactless nature of fluid control is
attractive for various control device. Settling behavior, especially under micro pump
operational conditions, should be evaluated. Achieved performance of "MR"-valve is
desirable for a pressure release valve application. Significant improvement of response time
and reduction of leakage are required in order to improve the micro-pump performance.
Advanced integration of the “MR”-valve with reservoir into the “MS”-actuator is
recommended for the future development work. Fig.180 presents cross section of the actuator

with integrated valve.

Inle
"MR"-Valve

TNl 1= 7 LA LS Outlet P
A "MS".actustor Ll 7
i fimproved)

/74 Terfenol-D shaft

s

EE L g I A

Reservoir and Inlet "MR"-valve
integrated into the "MS"-actuator
{actuator coil = inlet "MR"-valve

Fig. 180, Actuator layout with integrated inlet valve

The proposed integration leads to a concept with only two electric coils; and offers automatic
synchronization of the shaft elongation and with pressure control for the inlet valve. The
magnetic field from the “MS”-actuator is used simultaneously for the "MR"-inlet valve. A
bias DC could be used to activate the inlet valve, before the full elongation of the shaft
mtroduces the pumping of the fluid to the main piston. The presented structure should lead to
simpler control structure and offers potential to improve the performance of the “MS”-
actuator and “MR”-control arrangement. Nevertheless, for micro pump actuation other smart

valve structure with less leakage, less frequency dependency and faster response might be
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considered too. An alternative structure for the actuator using “MR”-control is a simple pump,
which could be driven by e-motor. Fig. 181 presents a schematic layout of a simple electro-

hydraulic actuator with “MR”-release valve.

Outlet
"MR"-Valve

(mproved) LOEI. d

|| Reservoir|

Check valve

Fig. 181, Actuator layout with conventional pump

In this arrangement a conventional pump could be used to supply the pressure to the load.
“MR”-valve 1s used to release the pressure. Durability of the pump components and “MR”
fluid in a realistic duty cycle should be the topic of the future work. However, further
improvement of the response time from the “MR”-valve should be evaluated in collaboration

with fluid supplier in the near future.

Summarizing it can be stated that both technologies, “MS” and “MR”, with their smart
materials like Terfenol-D and Magneto-Rheological Fluids, offer very attractive and valuable
features. The contaci-less nature of fluid control from “MR”-technology is attractive for
automotive applications, where fluid motion is controlled. The precise small motions with
high energy density and fast control response could be applied as well in some automotive
and aerospace applications. Further extension of the “know-how” related to smart
technologies, like “MR” and “MS”, will enable researchers and engineers to create and to

establish new products in various industries.
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Appendix

Appendices

The content of the appendix has been discussed in several chapters of this thesis. The main
content of the appendix are drawings of experimental rig parts, specifications and some

additional rig test results,

The appendix is structured as follows:

- Appendix A contains detailed drawings of the “MS”-actuator

- Appendix B contains detailed drawings of the “MR”-valve

- Appendix C contains detailed drawings of the “MR”-orifice

- Appendix D contains detailed drawings of the reservoir

- Appendix E contains detailed drawings of the load and some additional results from
experimental evaluation

- Appendix F contains additional specifications for experimental evaluation

- Appendix G contains additional magnetic ficld simulation results for the actuator assembly
with experimental measurements of flux density.

- Appeadix H contains additional list of various publications related to the thesis
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Appendix A

Fig. A3 shows a picture from prototypes of the alternative actuator assembly with small pilot
piston with 24mm outer diameter and membrane.

Fig. A3: cator assembly 7.0_0
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Appendix A

Pictares from Terfenol-D shaft (Diameter 8mm)
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Appendix E

Figure E8 depicts the test proceeding of the reference load. External pressure supply has been
nsed to evaluate the elasticity and to prove the sealing concept.

Fig. E8: Reference load on test bench
Figure E9 depicts the cross section of the arrangement for experimental tests of the load

assembly.
Presyure sensor }l/ ‘ LS
@ 7 /|

Force gengor
ge L

'j"///‘:_r‘j

A A e T A

Pregsure input

Digplacamant sengor

Fig. E9: Experimental tests of the load arrangements 600.000
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Appendix E

Load assembly with different disc spring specifications has been applied with external
pressure using a conventional fluid (CHF118). The force, axial displacement and the pressure
has been recorded. Fig. E10 shows the measurements result of the load assembly.
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Fig. E10: Measurement of assembly 600.600 with disc spring DIN2093-A90

As an extract of above diagram the new diagrams "pressure and axial force versus axial
displacement” have been created, The axial displacement has been measured on the hydraulic
piston. The linear relationship between pressure and axial force and low pressure drop versus
time is confirming low hysteresis and good sealing of reference assemblies.
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Fig. E11: Measured load assembly performance (with DIN2093-A%0)
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Appendix F

Pentosin CHF 11S

All-Purpose High Performance-Hydraulic Fluid for Application both
in Automotive Comfort— and Safety Devices

Quality Level
DIM 51 524T 3 and 1S 7308

Approvals

Waorldwide approved by laading car manu-

Description

Pentosin CHF 115 is a synthefic high per-
formance hydraulic fluid for life-time applica-
tion i modern vehicle aggregates. Itis
suitable for all extrame ambient temperatures
and guaranteas full parformance from -40°C

to over 1300 sytem temperature.

facturers, e.g.;

Bentley
Pentosin CHF 11S is espedially designed BLIY
for hydraulics in the automotive industry Fendt
with highest technical requitements. Due Ford
10 its excellent features it is used in follow- DaimlerChrysler
ing devices {extract): power steering, level G/ Opel
control, shock absor ber, hydro-pneumatic RSN
suspansion, stability- and traction control, Porsche
hyclraulics for convertible tops, eentral lock Saab
systams. WYolvo
The product is not classified as danger-
ous.
Pentosin CHF 11S Typical Data
Unit Hesult lethod
Appearancs graen visual
Density at 15 =0 kg'm?2 B8an DIM EN IS0 12185
Flash point G 166 150 2502
Kinematic Viscosity at 100 °C mmé's G0 DIN 51 532 part 1
Kinematiz Viecosity at 40 'C mma's 19,0 DIN 51 882 part 1
Kinematic Viscosity at-40°C mma's 1100 DIN 81 552 part 1
Pourpoint G -B7 180 3018
FZG wear tast (A/B.3/90) Failure Load Stage 11 DIN 51354 part 2

While handling lubricants the relevant safety rules have to be taken into account. For more detailed information please ses the
curnent safiely data sheet for this product

Thiz presdut may net be evailable at all locslicns. For mor inforrmation, (easa call us at +42 41023-9134-0 orvisit us abw
[lun to contiral product rezsarch snd deve boprrent, the information contzined herein iz subject o chanse witie

i 2006 Deumche Pentosin W erke GrmbH, Al rights resereer, (V3 GE SEROE giu)

Fig. F2: CHF118S specification from fluid supplier [Pentosin Werke]
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Fig. F4: Displacement sensor specification [HBM]
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Fig. F5: Displacement sensor specification [HBM]
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Appendix G

FEMM verification

Tn order to verify the simulated model of actuator, the experimental rig assembly has been

prepared for measurements of flux density with Tesla Meter.

Fig. G1: Actuator with Tesla-Meter probe (Model 5080)
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Apperdix G

o
T LEE IS
— J o-l®

GAUSS 7 TESLAMETER
SACANEL SEeat

i >

ACCURACY [analog cutput, including probe)

de mode: =1 % of reading, £ 5 mv.

S,
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VModel 5080
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Fig. G2: Tesla-Meter Model 5080 [Instruction Manual, F.W. Bell]
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Appendix G

Following simulation model has been used to verify the simulated flux density with the

measured flux density:

A
e *_E'“s—-—'”:gw : At i ,.;E:
o Le T
LA : B
& : et
iz 108 Tt
TS el
(o (o
Hedoot 2 2veA :
T GG b Ead T
;gggk_ﬁ 7f6‘-£
e

Fig. G3: Actuator model without (left) and with (right) Tesla-Meter probe

Fig. G4 presents the simulation results of flux density B (T) obtained with FEMM at nominal
electrical current. On the left side: the original actuator assembly; on the right side: the
modified assembly for Tesla-Meter probe. Top-to-bottom reference centre line has been used

as reference.

1B, Tesla 16|, Tesla

05 4 05 -

o - ‘ 0 ; T
0 EY 100 [ 50 W
Leagh, me 1enggh, mm '

Fig. G4: Flux density without (left) and with (right) Tesla-Meter probe

The difference between the two above showed results has been found as acceptable for
verification of the magnetic ficld simulation results. Figures G5 to G19 show the simulation
results of flux density B(T) and field intensity H (kA/m) at various current levels.
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Fig. G6: FEMM flux density B (left) and field intensity H (right) at 2 A
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Fig. G7: FEMM flux density B (left) and field intensity H (right) at 3 A
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Fig. G8: FEMM flux density B (left) and field intensity H (right) at 4 A
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Appendix G
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Fig. G13: FEMM flux density B (left) and field intensity H (right) at 9 A
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Fig. G14: FEMM flux density B (left) and field intensity H (right) at 10 A

Table G1 presents the results from FEMM magnetic field simulation and the measurement
results of flux density at the top of the Terfenol-D shaft.

Table G1: Simulation and measurement result for comparison

Electne current | | FEMM flux density |Measured flux density | FEMM flux density in Expected field ntensity in
(Amp) inthe gap B (Tests) | inthe gap B {Tesla) Terfenol-D B (Tesla) Tetfenol-D) H ¢Afm) at 7.20Pa
ap 0.000 0000 G000 1]
10 0.200 0220 0400 11600
20 0330 0300 1] 23000
30 0.400 0342 1]z=1] 37000
40 0.450 0382 0710 47800
50 0.500 0417 0750 58000
=11 0.540 0450 Q775 E7E00
70 0.580 0 480 2810 67000
(1] 0.620 0520 6830 53000
a0 0 640 0 560 087 108000
10.8 0 660 0530 0830 118000

A power supply unit (up to 10A, DC), a Multi-Meter for current measurements and the Tesla-

Meter Model 5080 have been used for the measurements. The flat Tesla-probe has been

adapted in to the actuator assembly according Fig. G1. The difference in the simulated resulis

and the measured flux density is predictable and was caused by accepted variations of the

housing material and measurement tolerances.
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Appendix G
Figure G135 depicts the measured flux density at the top of the Terfenol-D shaft with

simulated results, obtained with FEMM.

Magnetic field flux density (B} and field intensity (H)
versus current |
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Fig. G15: FEMM flux density B (T) versus electrical current
Summarizing the results from simulation and the flux density measurement with the Tesla-

Meter Model 5080 can be stated, that the results are within the specified range and in good

consistence,
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List of publications

Following articles, related fo this thesis, have been published:

[al] A. G. Olabi, A. Grunwald, Design and application of magneto-rheological fluid,
Dublin City University, Materials & Design 28 (2007), pp. 2658-2664

[a2] A. G. Olabi, A. Grunwald, Design and application of magnetostrictive materials,
Dublin City University, Materials & Design (2007), available on www.science-direct.com
Following articles, related to this thesis, are under review:

[a3] A. G. Olabi, A. Grunwald, Design of magneto-rheological (“MR”) fluid device, Dublin
City University, Materials & Design, submitted to science direct in August 2007

[a4] A. G. Olabi, A. Grunwald, Design of magnetostrictive (“MS”) actuator, Dublin City
University, Materials & Design, submitted to science direct in August 2007
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