Counting and Matching

Bart Jacobs &
Radboud University Nijmegen, The Netherlands

Dario Stein &
Radboud University Nijmegen, The Netherlands

—— Abstract

Lists, multisets and partitions are fundamental datatypes in mathematics and computing. There are
basic transformations from lists to multisets (called “accumulation”) and also from lists to partitions
(called “matching”). We show how these transformations arise systematically by forgetting/abstract-
ing away certain aspects of information, namely order (transposition) and identity (substitution).
Our main result is that suitable restrictions of these transformations are isomorphisms: This reveals
fundamental correspondences between elementary datatypes. These restrictions involve “incremental”
lists/multisets and “non-crossing” partitions/lists. While the process of forgetting information can
be precisely spelled out in the language of category theory, the relevant constructions are very
combinatorial in nature. The lists, partitions and multisets in these constructions are counted by
Bell numbers and Catalan numbers. One side-product of our main result is a (terminating) rewriting
system that turns an arbitrary partition into a non-crossing partition, without improper nestings.

2012 ACM Subject Classification Mathematics of computing — Combinatorics
Keywords and phrases List, Multiset, Partition, Crossing

Digital Object Identifier 10.4230/LIPIcs.CSL.2023.28

Acknowledgements We like to thank Dusko Pavlovic for lively discussions on the topic of this paper

— and on much more.

1 Introduction

This paper considers three fundamental datatypes in computing and reasoning, namely
lists (or sequences), multisets, and set partitions. Two characteristic properties of lists are:
(1) elements in a list are ordered, and (2) elements may occur multiple times. Multisets are
datatypes where the first property is dropped, but the second one is kept. Thus, a multiset
is like a subset, except that elements may occur multiple times. The order of the occurrences
does not matter. Finally, set partitions are collections of non-empty pairwise disjoint subsets
of a given set, whose union is the whole set.

We distinguish two fundamental operations on lists, called accumulation (abbreviated as
acc) and matching (written as mat). Accumulation is a function from lists to multisets that
counts occurrences of elements in the list. Matching is a function from lists to partitions
that registers equality of elements. Both these functions, accumulation and matching, will
be used as two orthogonal operations on lists in the following situation, where the number
K > 1 is a parameter.

lists of
length K
= T 1)
multisets partitions of
of size K {1,..., K}
© Bart Jacobs and Dario Stein;
37 licensed under Creative Commons License CC-BY 4.0

31st EACSL Annual Conference on Computer Science Logic (CSL 2023).
Editors: Bartek Klin and Elaine Pimentel; Article No. 28; pp. 28:1-28:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:bart@cs.ru.nl
mailto:dario.stein@ru.nl
https://doi.org/10.4230/LIPIcs.CSL.2023.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2

Counting and Matching

Intuitively, the accumulation of a list forgets the order and only considers the elements in the
list with their multiplicity (number of occurrences). In matching we look at which positions
equal elements occur and we put these positions in the same block (subset) of the resulting
partition of {1,..., K}.
These two operations acc and mat are orthogonal in the following sense:
Accumulation is invariant under transposition: permuting (transposing) the elements in a
list, by swapping places, does not change their accumulation.
Matching is invariant under substitution: applying a permutation to the elements them-
selves does not change the outcome of matching.
We recall that transposition and substitution are the two basic operations in (symmetric)
cryptography, used to encipher a message.

We now describe in abstract terms the main result of this paper. As in Diagram (1)
we fix a parameter K > 1 and use it in a “double” manner, not only for length/size, but
also as the set of elements {1,..., K} that may be used in the lists and multisets. In that
case we can identify certain subsets of lists, multisets and set partitions that are in bijective
correspondence, in a situation:

lists of
length K
acc NCIL(K) mat (2)
multisets partitions of
(of size K) —IM(K) o NCSP(K)— ({1,...,K})

The abbreviation NCIL stands for “non-crossing incremental list, IM for “incremental
multiset”, and NCSP for “non-crossing set partition”. Details will be provided below. These
isomorphisms in the small triangle in the middle capture fundamental ways to relate the
basic structures of lists, multisets and partitions. The construction of these isomorphisms is
essentially combinatorial. Interestingly, the number of elements in the isomorphic sets in this
sub-triangle is given by Catalan numbers — as observed in [12].

Non-crossing partitions have been introduced in the 1970s in the work of Germain
Kreweras [12]. The additional property that we call “incremental” is introduced here. There
is a wider story to tell about the usage of these basic datatypes in probability theory, see
e.g. [5, 4], especially for sufficient statistics [10]. Here, however, we concentrate on the
datatypes themselves, and their interconnections.

It is a bit unfortunate that two meanings of the word partition have developed in the
literature, namely set partitions and multiset partitions. We only use these multiset partitions
in Section 8, and we focus on set partitions first. When we simply write “partition”, we
mean “set partition”.

The paper is organised as follows. It starts with some background information on multisets
and set partitions, which allows us to define accumulation and matching in Sections 2 and 3.
Subsequently, Section 4 introduces a special subset of “incremental” lists and shows that
these sequences correspond bijectively to partitions. Section 5 recalls the notion of non-
crossing partition (from [12]) and defines the corresponding notion on sequences. It captures
proper nesting. Our main result, about the subtriangle of isomorphisms in Diagram (2) is in
Section 6. A consequence of this result is a mapping from arbitrary partitions to non-crossing

B. Jacobs and D. Stein

partitions. Section 7 shows how this map can be obtained via a terminating rewriting system.
In the final two sections we put our findings in a wider perspective: in Section 8 we show
how to extend Diagram 1 to a commuting diamond via multiset partitions. This gives a
wider perspective on the datatypes at hand. Finally, in Section 9 we describe how this
diamond can be obtained from a general categorical construction, taking a colimit with
respect to an exponent Y X in the two different variables. This is based on Joyal’s approach
to combinatorics using the theory of species [11], formulated in terms of presheaves on the
category of (finite) sets and bijections.

2 Multisets and accumulation

A multiset, or a bag, is a “subset” in which elements may occur multiple times. We use “ket”
notation | —) for multisets and write for instance 3| R) + 4|G) + 5| B) for a multiset with
three elements R, four elements G, and five elements B. This multiset may represent an
urn with three red, four green, and five blue balls. In general, a multiset over a set X is a
formal finite sum), n;|x;) with 2; € X and n; € N. Alternatively, such a multiset may be
represented as a function ¢: X — N whose support supp(p) = {x € X | p(z) # 0} is finite.
We write M(X) for the set of such multisets over X.

The size ||¢|| of a multiset ¢ € M(X) is its number of elements, including multiplicities,
so ||l == >, ¢(x). For a number K € N we write M[K](X) C M(X) for the subset of
multisets of size K.

As is common, we write X% = X x --- x X for the K-fold product of X, containing lists
of length K. There is an accumulation map acc: X% — M[K](X) given by:

acc(xl,...,x;() = 1)+ -+ 1zg).

Then, for instance acc(b,a,c,b,b,a) = 2|a) + 3|b) + 1|¢). This accumulation map thus
counts the multiplicities of each of the elements in the list. Transposing the elements in a
list, by interchanging their positions, does not change the accumulation outcome. Indeed,
also acc(c,a,b,a,b,b) = 2|a) + 3|b) + 1|¢) = acc(b,a,c, b, b, a).

Accumulation is a fairly standard operation which can be used, for instance, to describe
multinomial distributions, see [8, 9]. We include two standard combinatorial results.

» Lemma 1.
1. For each multiset ¢ € M(X), there are (¢) many lists that accumulate to ¢, where (@)
is the multinomial coefficient of the multiset ¢, given by the number:

el
() = o

2. When the set X has n elements, written as | X | = n, then the number of elements in the
set MIK|(X) of multisets over X of size K is given by the multichoose coefficient:

(&)= (%) - J

For instance, for the multiset ¢ = 1|a) +2[b) + 1|c) € M({a,b,c}) of size ||¢| = 4 there
are () = trar = 12 lists in {a, b, c}* that accumulate to ¢, namely:

(a,b,b,c) (a,b,c,b) (a,c,b,b) (b,a,b,c) (b,a,c,b) (b,b,a,c)
<b7 b7 C’ a> <b7 C7 a7 b> <b7 C7 b7 a> <C’ a7 b7 b> <C7 b7 a’ b> <C’ b7 b7 a>.

28:3

CSL 2023

28:4

Counting and Matching

3 Set partitions and matching

We shall write K := {1,2,..., K} for the set of the first K positive natural numbers. By a
(set) partition of K, we mean a (set) partition of the set K: It consists of a collection of “blocks”
B; C K of non-empty pairwise disjoint subsets B; with J, B; = K. Examples of partitions
of K are the single block-partition {K } and the K-clement partition {{1},...,{K}} with
singleton blocks. The number of blocks in a partition of K ranges between 1 and K. We shall
write SP(K) for the set of set partitions of K. It comes with a size function | — |: SP(K) — K.

For each set X there is a matching function mat: X% — SP(K). It forms blocks out of
the positions in a list with equal elements, as in:

mat(b,a,c,b,b,a) = {{1,4,5}7 {2,6}, {3}}

In general we define matching as:

mat(zy,...,2K) = U {{] eEK |z = xl}}
1<i<K
This matching operation, like accumulation, is quite standard. An early source is, for
instance, [1]. It is not hard to see that matching is stable under each substitution isomorphism
X 5 X that is applied elementwise to the input list.

We see that accumulation of lists in X ¥ is stable under transposition — that is, under
permutations K 5 K of the positions — whereas matching is stable under substitution — that
is, under permutations X 5 X of the elements. A systematic categorical perspective is
offered in Section 9.

Again we list two basic results, without proof.

» Lemma 2.

1. The numbers |SP(K)| of partitions of K, for K = 1,2,3,..., are given by the Bell
numbers: 1, 2, 5, 15, 52, 203, 877, 4140, ...

2. Let X be a finite set with | X | =n and let P € SP(K) be a partition of K with | P| < n.
The number of lists in X that match to P is given by the falling factorial:

n'

(n)py=nn-1)(n-2)---(n—|P|+1) = m

For instance, consider the four-element set X = {a,b,¢,d} and the partition P € SP(7)
with two blocks:

j = {{1,3,7}, {2,4,5,6}}.

Then there are m = 4 — 12 lists in X7 that match to P, namely:

21
(a,b,a,b,b,b,a) (a,c,a,c,c,c,a) (a,d,a,d,d,d,a) (b,a,b,a,a,a,b)
<b7 C7 b7 C7 C7 C’ b> <b7 d7 b7 d7 d’ d’ b> <C7 a7 C7 a7 a’ a7 C> <C’ b7 C7 b’ b7 b7 C>
(¢,d,c,d,d,d,c) (d,a,d,a,a,a,d) (d,b,d,b,b,b,d) (d,ye,d,c,e e, d).

4 Incremental lists and multisets

This section introduces what we call “incremental” lists and multisets. As we shall see,
the numbers of these lists and multisets are described by the Bell and Catalan numbers,
respectively. The main result in this section says that set partitions correspond to incremental
lists.

B. Jacobs and D. Stein

In the previous two sections we have considered partitions, lists and multisets on an

arbitrary set X. From now on, we will take the underlying set to be X = K = {1,...,K}.

By taking advantage of the order on K, we can obtain concrete representations of partitions
in terms of lists. Of special importance in this context are the minimal elements of each
block, which we name parents.

» Definition 3. Let P € SP(K) be a set partition of K.

1. An element a € K is called a parent of the partition P if it is the minimum element of
its block, that is, if a = min(B) where B € P is the necessarily unique block with a € B.
For any element b € K, we call the least element of its block the parent of b and denote it
by parp(b).

2. For a partition P € SP(K), its parent list (s1,...,Sk) € K% is defined as s; = parp(i).
Its parent multiset p € MK is defined as ¢ = acc(sy,...,Sk).

For example, in the partition P € SP(8) given by

j = {{1,3,5}, (2,6}, {4, 7,8}}

we have highlighted the parents 1,2, 4 in bold. The parent list of Pis §=(1,2,1,4,1,2,4,4).
For instance, there is a 1 in the fifth entry since parp(5) = 1. The associated parent multiset
is ¢ = acc(§) = 3|1) +2|2) + 3|4). From the parent multiset, we can read off the parents
of the partition, and the sizes of their respective blocks, but not which elements belong to
those blocks. Explicitly, the parent multiset ¢ satisfies:
{0 if b is not a parent
p(b) = . :
|B| if b= min(B) for B € P.

It is easy to see that the parent list uniquely characterises the partition, via matching.
The question comes up: which lists arise as parent lists? A characterisation of such lists will
be formulated below in terms of an “incremental” property. We then get an isomorphism
between incremental lists and set partitions, see Theorem 5 below.

We will give a similar characterisation of parent multisets as “incremental” multisets. A

partition is generally not uniquely characterised by its parent multiset, however we will show
in Section 5 that so-called noncrossing partitions are.

» Definition 4.

1. A list §= (s1,...,8K) € K% with1 < s; <K, is called incremental if for each index
1 <i< K, we have s; <14 and s, = ;.
We shall write IL(K) C KK for the subset of incremental lists.

2. A multiset ¢ € M[K|(K) of size K with elements from K = {1,...,K} is called
incremental if for all i € K, we have

> el) 2.
J<i
We write IM(K) C MK for the subset of incremental multisets.

The two requirements in Definition 4 (1) express that in an incremental list §, an entry s;
must be in the range {1,...,4} and s; = j < i can only happen if s; = j, that is, if j occurs
already in § at position j. This follows since s; = s5, = 5; = J.

Let’s make a bit more concrete what this means, for incremental lists.

28:5

CSL 2023

28:6

Counting and Matching

When K = 1, there is only one list (1) € 1!, which is incremental.
For K = 2 there are four lists (1,1), (1,2), (2,1) and (2,2) in 22. The last two lists are
not incremental because the first requirement s; < i fails for ¢ = 1.
For K = 3 we thus have five incremental lists, namely: (1,1,1), (1,2,1), (1,2,2), (1,1, 3),
(1,2,3).

In a similar way:
For K = 1, there is only ¢ = 1|1) € M[1]({1}). This ¢ is incremental.
For K =2 we M[2]({1,2}) contains three elements 2|1), 1|1) + 1]2), 2|2). Only the
last one, ¢ = 2[2) is not incremental since } -, ¢(j) =0 Z 1.
For K = 3 there are five incremental multisets, namely 3|1), 2|1) 4+ 1|2), 2|1) + 1|3),
1)1) +2/2) and 1]1) +1|2) + 1|3).

It is not hard to see that for ¢ € IM(K) one has p(i) < K + 1 — i, for each i € K.

» Theorem 5. Fix a number K > 1. There are bijective correspondences between:
1. incremental lists § € IL(K);

2. “parent” functions p: K — K forming an interior operation: p> = p and p < id.
3. set partitions P € SP(K).

Via these correspondences the match function becomes an isomorphism mat: IL(K) = SP(K).

Proof. The equivalence between items (1) and (2) in Theorem 5 is obvious because a list
§=(s1,...,8K) corresponds to a function p: K — K via p(i) = s;. The two requirements
s; <iand s, = s; in Definition 4 (1) correspond directly to p(i) < i and p(p(i)) = p(i), that
is, to p < id and p? = p.

The equivalence between (1) and (3) is obtained by sending a partition to its parent
list. <

A consequence of the isomorphism IL(K) = SP(K) in Theorem 5 is that the number of
incremental lists in IL(K) is given by the K-th Bell number, see Lemma 2 (1).

As we will show, the accumulation map takes incremental lists to incremental multisets
(Lemma 7). Therefore, we obtain a canonical map from set partitions to incremental multisets.

» Proposition 6. The parent multiset function can be expressed by the “minimum size”
function ms in:

ms = (SP(K) —mat L LK) — s IM(K)).
As in Definition 3 (2), it is given by the formula:
ms(P) = |B|’ min(B)>. J
BeP

The sets IL(K) and IM(K) of incremental lists and multisets can also be defined in-
ductively. This gives a better grip and allows us to express that accumulation restricts to
“incremental”.

» Lemma 7.
1. Define for K > 1 the sets Sg C KK as:

Sl = {<1>}
Ski1 = {(sl,...,sK7K—|—1> } se SK} U U {(sh...,sK,si) } se SK}.
1<i<K

Then Sk = IL(K).

B. Jacobs and D. Stein

2. We also define sets M C MIK](K) via:

My, = {1]1)}

My = {p+1|K+1) | p € Mg} U U {e+1li) | e Mk}
1<i<K, p(i)>0

Then My = IM(K).
3. The accumulation map acc: K* — M[K] (K) restricts to acc: IL(K) — IM(K).

The inductive formulation, especially in item (2), is reminiscent of what is called a Hoppe
urn, after [7]. One thinks of a multiset ¢ € MK as an urn with K balls of K-many
different colors (in K). In a “Hoppe” draw an extra ball of the same colour as the drawn
ball is returned to the urn but additionally another ball is added with a new, fresh colour,
not already occurring in the urn. In item (2) this is represented via the addition of color
with number K + 1 in the sum ¢ + 1| K+1). Biologically, this ball of a new colour K + 1
can be understood as a (genetic) mutation. Indeed, this structures have first been studied in
population biology, see e.g. [4, 15].

Proof.

1. Clearly, S5y = {(1)} = IL(1). The inclusions Sk C IL(K) follow by an easy induction on
K. In the other direction, assume IL(K) C Sk; we aim to show IL(K+1) C Sk41. So
consider (si,...,Sx,n) € IL(K+1). Then §= (s1,...,sx) € IL(K) and thus § € Sk by

induction hypothesis. The element n must be in {1,..., K+1}. If n = K+1 we are done.

If n < K+1, then s, = n, so that we are also done.
2. Similarly.
3. By induction on K, using the previous two inductive characterisations. |

In the end, we add that the name parent is motivated by analogy with the disjoint-set
forest data structure (sometimes called union-find data structure) [6]. Any list 5 € K* with
p; < i represents a forest where p; is the parent of i. For example, the list (1,2,1,3,2,1)
represents the forest:

ee @\@

This induces a partition of K by taking connected components, or successively taking parents.

The forest representing a given partition is not unique. We can make it unique by forcing all

trees to have depth al most 1; this corresponds to the condition p,, = p; for incremental lists.

Another common way to encode set partitions as numeric lists are restricted growth
lists (RGS) [16]. While similar to incremental lists in many aspects, we argue here that
incremental lists have convenient properties especially considered in connection with the
accumulation map and with multisets.

5 Non-crossing partitions and lists

The notion of a crossing has been introduced in the literature for partitions, see [12]. We
recall that definition and formulate a corresponding notion for lists. In this section we

introduce the basics of such crossings, especially that they are counted by Catalan numbers.

In the next section we make connections to (incremental) multisets.

28:7

CSL 2023

28:8

Counting and Matching

» Definition 8.

1. In general, a list § € X has a crossing if there are indices n < i < m < j with
Sn = Sm # 8; = 5j. The list § is called non-crossing if it has no crossings.
We are especially interested in lists which are both incremental and non-crossing. We
write NCIL(K) C IL(K) C K for the subset of such lists.

2. A partition P € SP(K) has a crossing if there are different blocks A, B € P with numbers

n<a<m<b where n,m € A and a,b € B.

A set partition is called non-crossing if it has no such crossings. We shall write
NCSP(K) C SP(K) for the subset of non-crossing partitions of K.

A list is non-crossing when it involves proper nesting, like in nested blocks {. ..} in program-
ming languages, or in nested brackets (. ..) in expressions. Non-crossing partitions can be visu-
alized nicely by putting the elements of K = {1,..., K} on a circle and taking convex hulls of
the elements in each block. Non-crossing means these hulls don’t overlap. Below, we illustrate
these definitions for the non-crossing partition P = {{1,11},{2,9,10},{3,4},{5,7,8},{6}},
drawn on a circle on the left, without overlapping regions. The associated non-crossing
incremental list (1,2,3,3,5,6,5,5,2,2,1) is drawn on the right, without improper nestings.

1\

1" 2

’ N

10 3 1 23356 55 221

| | e-o o o-o

3

9 4 . o-o)
\ / ° °

8 5

\7_6/

Non-crossing partitions are counted by the Catalan numbers, as observed in [12, Cor. 4.2].

» Lemma 9. The number of non-crossing partitions in NCSP(K) for K = 1,2,3,..., is
given by the Catalan numbers: 1, 2, 5, 14, 42, 132, 429, 1430, 4862, ... a

The next result is immediate from the formulations of “non-crossing” in Definition 8.

» Proposition 10. The match isomorphism IL(K) = SP(K) restricts to an isomorphism
between non-crossing incremental lists and set partitions in:

6 The main sub-triangle result

We go straight to our main result, about the sub-triangle of isomorphisms in Diagram (2).

» Theorem 11. For each K > 1 there are isomorphisms between non-crossing incremental
lists, incremental multisets, and non-crossing set partitions, in:

NCIL(K)

IR
IR

IM(K) = NCSP(K)

IR

As a consequence, the numbers of all these items are given by the Catalan numbers.

B. Jacobs and D. Stein

Proof. By Proposition 10 it suffices to prove that accumulation restricts to an isomorphism
acc: NCIL(K) — IM(K). We first illustrate surjectivity via an exemplaric construction.
Then we prove injectivity.
We describe a map IM(K) — NCIL(K) via a “stack”. Let’s take ¢ = 2|1)+3|2) +2|3) +
3|5) +1|6) € IM(11). We proceed in two steps.
1. All elements 1,2,3,5,6 in the support of ¢ must become parents, so we know their
required position in the list of size 11 that we need to build:

= <172?3377536)7?77777ﬂ7>' ((*D

2. Next we need to complete to a non-crossing incremental list. We go through the above
(partial) list £ in () from left to right using a stack st, which is empty initially.

We first encounter a 1 in the list in (%). We have ¢(1) = 2, which means that one
more 1 needs to be placed somewhere in the list. Hence we push one 1 onto the stack,
giving st = (1). This stack serves as an ordered memory that records the elements
that we still need to put in the list.
The next item in the list (%) is a 2, with ¢(2) = 3. We proceed in the same manner
and push two numbers 2 onto the stack, giving st = (1,2,2).
There is one more such step when we encounter 3 in (x) with ¢(3) = 2 and turn the
stack into st = (1,2, 2, 3).
The next thing in (%) is a blank —. We pop the last element from the stack and put it
at this empty spot, giving new list and stack:

¢ = <1a27373a5»6>_7_a_7_,_> st = <1,2,2>.

The next item in (x) is 5, with ¢(5) = 3, so we push two 5’s onto the stack, giving
st = (1,2,2,5,5).

Next we see a 6 in (x) with ¢(6) = 1, so there is no need to put more numbers 6 in
the list, and we proceed without any action.

After 6 in () we encounter only blanks. Thus, one-by-one we pop the items from the
current stack st = (1,2,2,5,5) and place them in the list. This gives our outcome
¢ € NCIL(11) of the form:

¢ =1(1,2,3,3,5,6,5,5,2,2,1).

By construction, this list is non-crossing, see the diagram on the right in (3). The pushing-
and-popping via the stack ensures the proper nesting. This algorithmic description can easily
be generalised to an arbitrary incremental multiset.

We turn to injectivity, so let acc (5') = acc(ﬂ for 5, € NCIL(K). Our aim is to show
§ = t. We first note that the assumption acc(é’) = acc(ﬂ implies that the sequences §
and ¢ have the same “parent” elements: s; = i iff t; = i for each i. Indeed, if s; = 7, then
0 < acc(5)(i) = acc(f) (). This means that i must occur in # and thus t; = 4, since f is
incremental.

Towards a contradiction, let §# ¢, and let i be the least index with s; # t;. Then s; # i
and also t; # 4, by what we just noted. Thus, there is an index j < i with j = s; = s5; and
there is also a k < ¢ with k = t;, = t;. But then j # k, since s; # t;. Without loss of generality
we assume j < k. Since ¢ is the least index where s,t differ, we have t; = s; = j = s; and
s, = tr, = k = t;. When we write out the two lists § and # we get:

28:9

CSL 2023

28:10 Counting and Matching

81 PR sj P Sk PR 8171 SZ .« .. SK
I Il
I |
ty e tp et e tig i oee tg
S~~~
The number of occurrences of k in the segment si,...s; is one less than in the segment
t1,...,t;. We do have acc(5)(k) = acc(t)(k), which means that the number of occurrences

of k in the whole list § is the same as the number of occurrences of k in ¢. This means
that there is an index ¢ > ¢ with sy = s, = k. But now we have a contradiction with the
non-crossing assumption for s, since we now have:

i<k<i</t with sj=j=s and sp=1t,=k=s. <

Relationships to other combinatorial families. The three isomorphic structures in The-

orem 11 are counted by Catalan numbers. There are dozens of structures in the “Catalan

family” which are counted in this way. Famously, sixty-six are listed in a single exercise in [14,

Exc 6.19]. While we believe that incremental multisets are a novel addition, we highlight

some connections to other family as follows: If ¢ = acc(sy,...,sx) € IM(K) then

1. the list of multiplicities @ = (p(1) — 1,9(2) — 1,...,¢(K) — 1) satisfies w; > —1, has all
partial sums nonnegative and wy + ... + wx = 0; that is Example 6.19.(w) of [14]

2. the increasing rearrangement (s(1y,...,S(x)) = sort(si,. .., sy) satisfies 1 < sy < ... <
s(x)y and s(;) < 4; that is Example 6.19.(s) of [14]. Both of these relationships are
invertible.

Elaborating the second bullet point further leads to the well-known combinatorial notion
of parking function (e.g. the chapter of C. Yan in [2]). A parking function is any list
(s1,...,s1) € K* whose increasing rearrangement (8(1),- -+ 8(K)) satisfies 1 <5y < ... <
s(k) and s(;) <. A parking function is called increasing if it furthermore satisfies s; < s; for
i < j. Increasing parking functions are another prominent member of the Catalan family [13].
Bullet Point 2 states that they are also in bijection with incremental multisets.

It is easy to conclude that a sequence § satisfies acc(§) € IM(K) if and only if §is a
parking function. The sets IPF(K) C PF(K) of increasing parking functions and parking
functions thus fit into the following diagram, which becomes a pullback:

PF(K)
KL{

7 Un-crossing via term rewriting

acc

T

— "y JPF(K) —2 5 IM(K)

J

IR

acc M[K] (K)

The constructions in the previous sections give us a mapping from arbitrary partitions to
non-crossing partitions, namely:

SP(K) —2 s IL(K) —“— IM(K) —"— NCSP(K).

o~

B. Jacobs and D. Stein

In this section we show how this mapping can also be obtained via rewriting. Concretely,
we start with an arbitrary partition Py € SP(K) and successively eliminate single crossings
via rewrite steps Py — P — P, — ... while in each step preserving the parent multiset
ms(P;) = ms(Py). We show that this reduction system strongly terminates, that is any choice
of reduction sequence leads to a crossing-free normal form. By Theorem 11 this normal form
must then be unique.

We begin with a preliminary observation: An increasing crossing in a partition P € SP(K)
is a crossing a < b < ¢ < d such that parp(a) < parp(b). It is easy to see that if a partition
has a crossing, it also has an increasing crossing.

» Definition 12. We define the “uncrossing” reduction relation (—) on SP(K) as follows.
If P € SP(K) and a < b < ¢ < d is an increasing crossing with a,c € A and b,d € B, we
define P’ as the partition in which c,d switch block, giving a new partition:

P'= P\ {A,B} U {4\ {c} U {a}, B\{d} U {c} }.
This defines a single reduction step P — P’'.

There is a corresponding rewrite system on incremental lists: an increasing crossing here
looks like a length 2-repetition, and we define reductions

(coiaycyboiay by — (Coiay. b by a0 for a <D (4)

We illustrate a rewrite step on partitions and on the corresponding incremental lists:

(1,1,3,1,5,5,3,3) — (1,1,3,3,5,5,3,1)

It is easy to see that every uncrossing reduction preserves parents as well as block sizes,
so it preserves parent multisets: If P — P’ then ms(P) = ms(P’).

» Proposition 13. The rewriting system of Definition 12 is strongly terminating, that is every
list of reductions Py — Py — ... is finite and terminates with a non-crossing partition P*.

Proof. This is elegantly expressed in terms of incremental lists (4): every reduction $§; — 8,51
is a strict up-step in the lexicographic order on lists, i.e. satisfies §; < s;71. Because the set
IL(K) is finite, there can only be finitely many of such steps. <

» Corollary 14. The reduction system of Definition 12 has the Church-Rosser property (i.e.
is confluent). a

This follows abstractly from strong termination and uniqueness of normal forms. We
conjecture that (local) confluence can also be established directly, in the following form: For
all P, if @, < P — Q> then there exists an R and lists of reductions of length at most 2
with Q1 —* R " Q-.

28:11

CSL 2023

28:12

Counting and Matching

As an aside, note that we can apply the reduction rule (4) not just to incremental
lists but also to arbitrary lists of natural numbers N*. This extended rewriting system
is still strongly terminating, but no longer confluent. For example, we have reductions
(1,3,2,3,2,1) *« (1,3,2,1,3,2) — (1,3,2,2,3,1) where the left and right lists are both
irreducible.

8 A wider picture: adding multiset partitions

Having presented our main results, we step back and put things in a wider perspective. We
started in Diagram (1) with lists, multisets and set partitions. The two legs in this diagram
can be completed to a diamond of the form:

XK

M[K](X) SP(K) (5)

MP(K)

The set MP(K) contains the multiset partitions with total K. It is defined as:
MP(K) = {oc e M(K) | ¥;0(i)-i=K}.

Multiset partitions represent unlabelled partitions where the underlying elements of X are
not distinguishable anymore Such multiset partitions are commonly Considered in number
theory. The sizes | MP(K (K) with values
1,2,3,5,7,11,15,22, 30, 42 56,.... For example p(4) = 5 counts the 5 number-theoretic
partitions of the number 4,

1+1+1+1=4 1+1+2=4 1+3=14 242=4 4=4.
Alternatively, in multiset notation, we get the elements of MP(4), namely:
4/1) 2|1) +1]2) 1) +1)3) 2|2) 1]4).

The function mec: M[K](X) — MP(K) is defined in [10] and is called multiplicity count. It
counts the multiplicities in a multiset ¢ € M[K](X) via:

me(p) = Z 1 p(x)).
z€supp ()

The fourth function sc: SP(K) — MP(K) in (5), from set partitions to multiset partitions,
will be called size count. It keeps track of the sizes of blocks in a set partition:

sc(P) = Z 1/|B]).

The following instantiation illustrates how the operations in Diagram (5) work.

(¢,b,a,a,c,c,b)

2la) + 2|b) + 3|c) {{1,5,6},{2,7},{3,4}}

TR,

2(2) +1|3)

B. Jacobs and D. Stein

It is not hard to show in general that Diagram (5) commutes.

Set and multiset partitions are studied in mathematical biology [5, 4], to capture mutations,
and more recently also in clustering in machine learning, to handle possible extension of
the numbers of clusters, see e.g. [3]. Here we study the underlying datatypes and their
relations (5).

Finally, we remark that the diamond (5) is a weak pullback. That is for every pair (¢, P)
of a multiset and a partition which induce the same multiset partition mec(p) = sc(P),
we can find some list & with ¢ = ace(Z) and P = mat(#). For example, the multiset
¢ = 3la)+2|b)+2|c) and the partition P = {{1, 3,4}, {2,6}, {5, 7}} induce the same multiset
partition 1|3) +2|2) € MP(7). They are themselves induced by the list ¥ = (a, b, a, a, ¢, b, c).
This list Z is not unique however; in our example, & = (a, ¢, a, a, b, ¢, b) also works.

9 An even wider categorical picture

In this section, we give a more high-level, structural view on the diamond (5), returning to
general finite sets X,Y. Category theory is an abstract language of structure and datatypes.
The idea of forgetting information can be formalized using coequalizers, an abstract form of
quotient. In [9] it is shown that the accumulation map is the coequaliser of all transposition
maps:

XK /¢ XK ¢, M[K](X)

T

!

3
Y

Any bijection m: K =, K induces a reordering (transposition) map 7,: X% — X%, Accu-
mulation is invariant under all those transpositions, and furthermore universal with that
property: any map f: X¥ — Y which is invariant under all transpositions factors uniquely
through acc. This can be understood as a proof principle about multisets.

We wish to understand partitions SP(X) in the same way. An immediate obstacle is that
unlike multisets, set partitions do not push forward under arbitrary functions X — Y in an
obvious way. They do however push forward under bijections X — Y. This naturally leads
us to consider combinatorial species, which are functors Bij — Set where Bij is the category
of finite sets X, Y and bijections between them. Since their invention [11], species have been
a staple in combining combinatorial and categorical reasoning. Using their framework, we
can precisely state the process of forgetting information by quotienting out the action of
permutations.

» Definition 15 (Anonymisation). Let C be any category, and write N for the discrete category
whose objects are the natural numbers. If F: Bij x C — Set is a functor, we define a functor
F1: N x C — Set as the coequalizer
F(m,idc)
F(K,C) =——= F(K,C) —— Fi(K,C) (6)
F(n',ide)

More concretely, the set F (K, C) admits an action of the group of bijections Aut(K) and
we let F1(K,C) = F(K,C)/Aut(K). This canonical construction is already present in the

first section of [11]. We will also write F; (K, C) = fK F(X,C)dX in analogy with coend
calculus or the category of elements.

28:13

CSL 2023

28:14

Counting and Matching

» Proposition 16. Let H: Bij x Bij — Set be a functor in two variables. Then we can
anonymise variables in different orders and obtain the same result

/n/mH(XJ/)dXdY =~ /m/nH(X,Y)deX. 4

For the formally minded, the cardinality functor | — |: Bij — N induces a functor
A: [N, Set®] — [Bij, Set®] between functor categories by precomposition; it has a left adjoint
which is given by “anonymisation”. The unit of this adjunction is a natural transformation
F(X,C) — F1(|X],C). Thus any functor H: Bij x Bij — Set gives rise to a commuting
diamond of natural transformations

Mx,y)dx My x, vyax (7)

YNy (x, yydxdy
We can now describe the diamond (5) by invoking Proposition 16 on the function space
construction YX.

» Proposition 17. Let H: Bij x Bij — Set be given by H(X,Y) = Y with functorial action
H(a,B)(f)=Bo foal. Then

[FyXdx =~ M[K|(Y)
is multisets with exactly K elements, and
N yXay =~ SP[N](X)
is set partitions with at most N blocks, i.e. SP[N](X) = {P € SP(X) | |P| < N}. N

Furthermore, if we define MP[n, k] as multiset partitions of k with at most n blocks, we
obtain the following improved categorical diamond.

YX
mc

MIX]](Y) SP[[Y](X) (®)

MP[|Y], |X]]

All maps are coequalizers and natural in X,Y. This makes it clear that multisets and
partitions arise from a fully symmetric situation, where we forget information along two
independent axis: order (transposition X = X) and identity (substitution ¥ 2 Y).

10 Conclusion

In this paper we studied two orthogonal operations on lists from a fundamental perspective,
namely: (1) accumulation of lists to multisets, which is stable under transposition, and
(2) matching of lists to set partitions, which is stable under substitution. In subsequent work
we wish to include the various distributions on these datatypes in the same perspective.

B. Jacobs and D. Stein

—— References

1

10

11

12
13

14

15

16

D. Aldous. Exchangeability and related topics. In P. Hennequin, editor, Ecole d’Eté de
Probabilités de Saint-Flour XIII — 1983, number 1117 in Lect. Notes Math., pages 1-198.
Springer, Berlin, 1985. doi:10.1007/BFb0099421.

M. Bona. Handbook of Enumerative Combinatorics. Discrete Mathematics and Its Applications.
CRC Press, 2015.

T. Broderick, J. Pitman, and M. Jordan. Feature allocations, probability functions, and
paintboxes. Bayesian Analysis, 8:801-836, 2013. doi:10.1214/13-BA823.

H. Crane. The ubiquitous Ewens sampling formula. Statistical Science, 31(1):1-19, 2016.
doi:10.1214/15-STS529.

W. Ewens. The sampling theory of selectively neutral alleles. Theoret. Population Biology,
3:87-112, 1972. doi:10.1016/0040-5809(72)90035-4.

7. Galil and G. Italiano. Data structures and algorithms for disjoint set union problems. ACM
Comput. Surv., 23:319-344, September 1991. doi:10.1145/116873.116878.

F. Hoppe. Pélya-like urns and the Ewens’ sampling formula. Journ. Math. Biology, 20:91-94,
1984. doi:10.1007/BF00275863.

B. Jacobs. From multisets over distributions to distributions over multisets. In Logic in

Computer Science. IEEE, Computer Science Press, 2021. doi:10.1109/1ics52264.2021.

9470678.

B. Jacobs. Multinomial and hypergeometric distributions in Markov categories. In A. Sokolova,
editor, Math. Found. of Programming Semantics, number 351 in Elect. Proc. in Theor. Comp.
Sci., pages 98-115, 2021. doi:10.4204/EPTCS.351.7.

B. Jacobs. Sufficient statistics and split idempotents in discrete probability theory. In Math.
Found. of Programming Semantics, 2022.

A. Joyal. Une théorie combinatoire des séries formelles. Advances in Mathematics, 42(1):1-82,
1981. d0i:10.1016/0001-8708(81)90052-9.

G. Kreweras. Sur les partitions non croisées d’un cycle. Discrete Math., 1(4):333-350, 1972.
R. Stanley. Parking functions and noncrossing partitions. Elect. Jour. of Combinatorics, 2(4),
1997. d0i:10.37236/1335.

R. Stanley and S. Fomin. FEnumerative Combinatorics, volume 2 of Cambridge Studies in

Advanced Mathematics. Cambridge University Press, 1999. doi:10.1017/CB09780511609589.

S. Tavaré. The magical Ewens sampling formula. Bull. London Math. Soc., 53:1563-1582,
2021. doi:10.1112/blms.12537.

E. Weisstein. Restricted growth string. MathWorld — A Wolfram Web Resource. http:
//mathworld.wolfram.com/RestrictedGrowthString.html, July 2022.

28:15

CSL 2023

https://doi.org/10.1007/BFb0099421
https://doi.org/10.1214/13-BA823
https://doi.org/10.1214/15-STS529
https://doi.org/10.1016/0040-5809(72)90035-4
https://doi.org/10.1145/116873.116878
https://doi.org/10.1007/BF00275863
https://doi.org/10.1109/lics52264.2021.9470678
https://doi.org/10.1109/lics52264.2021.9470678
https://doi.org/10.4204/EPTCS.351.7
https://doi.org/10.1016/0001-8708(81)90052-9
https://doi.org/10.37236/1335
https://doi.org/10.1017/CBO9780511609589
https://doi.org/10.1112/blms.12537
http://mathworld.wolfram.com/RestrictedGrowthString.html
http://mathworld.wolfram.com/RestrictedGrowthString.html

	1 Introduction
	2 Multisets and accumulation
	3 Set partitions and matching
	4 Incremental lists and multisets
	5 Non-crossing partitions and lists
	6 The main sub-triangle result
	7 Un-crossing via term rewriting
	8 A wider picture: adding multiset partitions
	9 An even wider categorical picture
	10 Conclusion

