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Abstract. Pricing a path-dependent financial derivative, such as an
Asian option, requires the computation of E[g(B(·))], the expectation
of a payoff functional, g, that depends on a Brownian motion, (B(t))T

t=0.
The expectation corresponds to an infinite dimensional integral, which is
approximated by the sample average of a d-dimensional approximation
to the integrand. In this article, a multilevel algorithm with low discrep-
ancy designs is used to improve the convergence rate of the worst case
error with respect to a single level algorithm. The worst case error is
derived as a function of each level l’s sample size, nl, and truncated di-
mension, dl, for payoff functionals that arise from certain Hilbert spaces
with moderate smoothness. If the error in approximating an infinite di-
mensional expectation by a d-dimensional integral is O(d−q), and the
error for approximating a d-dimensional integral by an n-term sample
average is O(n−p), independent of d, then it is shown that the error
in computing the infinite dimensional expectation may be as small as
N−min(p,q/s) for a well-chosen multilevel algorithm, where N , the cost
of the algorithm is defined as N = n1d

s
1 + · · · + nLds

L for some s ≥ 0.
This optimal convergence rate is achieved for either small or large q for
rank-1 lattice rule designs, or alternatively for Niederretier net designs
for large q.

Keywords. Hilbert spaces, Infinite dimension, Karhunen-Loève expan-
sion, Low discrepancy points, Worst case error

1 Introduction

This article is an extension of [1,2], which consider the Monte Carlo simulation of
stochastic integrals when the cost of function evaluation is dimension dependent.
It is related to [3], which considers the error in the randomized setting, and has
similarities to [4]. The problem is to approximate the expectation

µ = µ(f) = E[f(X1, X2, . . .)], (1)
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where (X1, X2, . . .) is an i.i.d. sequence of random variables with common prob-
ability density function ρ1(·), and f is some functional. This expectation may
be thought of as an infinite dimensional integral. Note that the dependence of µ
on f in (1) is sometimes written explicitly, and sometimes implied.

The aim is to efficiently estimate this expectation by an algorithm based on
functional values, f(xi,1, . . . , xi,d, c, c, . . .), where c is some nominal value of the
Xj . For example, a simple sample average takes the form

µ̂d = µ̂d(f) =
1

n

n
∑

i=1

f (xi,1, . . . , xi,d, c, c, . . .) , (2)

for some dimension, d, and some design
{

xi,1:d = (xi,1, xi,2, . . . , xi,d) ∈ R
d
}n

i=1
.

The error, µ(f) − µ̂d(f), depends on the choice of d, the design, and attributes
of the functional, f . The cost of a single functional evaluation is assumed to
be proportional to ds for some s ≥ 0. Examples where s = 1 is reasonable are
given later in this section. The case of s = 0 is typically unrealistic in practical
applications. Thus, the cost of algorithm µ̂d is proportional to N = nds, which
corresponds to the fixed subspace sampling model of [1]. An efficient algorithm
is one for which the error is � N−τ for τ as large as possible.

In [2], it was demonstrated that for functionals, f , lying in certain Hilbert
spaces, H(K), defined by kernels, K, the squared worst case error of µ̂ can be
written as the squared worst case error of approximating µ by a finite dimensional
integral plus the squared worst case error of the finite dimensional cubature, i.e.,

sup
‖f‖

H(K)≤1

|µ(f) − µ̂d(f)|2

= sup
‖f‖

H(K)≤1

|µ(f) − µd(f)|2 + sup
‖f‖

H(K)≤1

|µd(f) − µ̂d(f)|2 . (3)

Here µd is defined as the conditional expectation where all coordinates numbered
greater than d are set to the nominal value, c:

µd = µd(f) = E[f(X1, X2, . . .)|Xd+1 = Xd+2 = · · · = c]. (4)

The worst case error of approximating µ by µd is independent of the algorithm
and might be called the bias. It is expected to vanish like � d−q as d → ∞ for
some q > 0. The worst case of µd− µ̂d corresponds to the discrepancy [5,6,7] and
is known from strong tractability results, e.g., [8,9,10,11] to be � n−p, where
the leading constant is independent of d, and p depends on the smoothness of
the functional and the quality of the design. The error decomposition in (3) and
the convergence rates of the two pieces on the right hand side can then be used

to show that the worst case error for algorithm (2) is � N
−pq

ps+q [2]. Only when
s = 0, typically not realistic, or q → ∞ does one obtain an error � N−p, which
is the ideal.
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It is shown in Theorem 4 below that by using a multilevel algorithm one

can obtain a better convergence rate of � N
−p min(1, q

ps+q′
)
, where s ≥ 0 and

0 ≤ q′ ≤ q, The constant q′ affects the value of p, but it may be chosen, subject
to the given constraints, to obtain as large a convergence order as possible. In
Section 6 it is shown that for some cases one may obtain an ideal convergence
rate of � N−min(p,q/s).

The multilevel algorithm is based on an increasing sequence of truncated
dimensions, d1 < · · · < dL. The infinite dimensional expectation is written as a
telescoping sum:

µ = µd1 +

L
∑

l=2

(µdl
− µdl−1

) + (µ − µdL
), (5)

where the µdl
are defined in (4). Each term in this sum is approximated by

an algorithm similar to µ̂d above in (2) with nl terms. The precise form of the
multilevel algorithm is given below in (14), and its cost is N = n1d

s
1 + · · ·+nLds

L

with s ≥ 0. This multilevel algorithm is similar to that found in [1,3]. Multilevel
algorithms can also be found in [12,13], which consider the quadrature problems
of diffusion processes. There, the levels refer to the fineness of the steps in time,
whereas here, the levels refer to various truncated dimensions dl.

This article is organized as follows. This section concludes by describing
an application that motivates the problem of computing the expectation of a
functional of X1, X2, . . .. Section 2 defines the Hilbert space where the functional
f resides, and appropriate assumptions are made to facilitate the worst case error
analysis later. Key results on the single level algorithm from [2] are reviewed in
Section 3. The multilevel algorithm and its worst case error analysis are explained
in Sections 4 and 5. Section 6 illustrates how to optimally choose the number of
samples and truncated dimensions at each level l to achieve the minimal worst
case error.

An important example of computing the functional of a countable number
of random variables is the option pricing problem in mathematical finance. The
price of an option is the expected value of the payoff, which in turn depends on
the path of an asset price over an interval in time, S(t), 0 ≤ t ≤ T . The asset
price S(t) is often modeled by a stochastic differential equation (SDE) with
general drift corresponding to the interest rate and a term involving a Brownian
motion, B(t), that describes the random fluctuations, e.g.,

dS(t) = rdt + σ(S, t)dB(t), 0 < t < T, S(0) given.

Thus, one may express the option price as µ = E[payoff(S(·))] = E[g(B(·))],
where g is the payoff functional expressed in terms of the Brownian motion
driving the asset price via an SDE. For example, the discounted payoff functional
of an arithmetic Asian call option is defined as:

g(B(·)) = payoff(S(·)) = e−rT max

(

1

T

∫ T

0

S(t) dt − K, 0

)

.
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It remains to express the Brownian motion, B(·), in terms of a sequence of
standard Gaussian random variables, (X1, X2, . . .), and so obtain

payoff(S(·)) = g(B(·)) = f(X1, X2, . . .).

This then sets option pricing in the framework of computing µ = E[f(X1, X2, . . .)].
The time differencing method defines a sequence of times, tk with 0 = t0 <

t1 < · · · < td = T , and then sets

B(0) = 0, B(tk; X1, . . . , Xk) = B(tk−1) +
√

tk − tk−1Xk, k = 1, . . . , d.

However, this method only defines the Brownian motion at a fixed number of
different times, and does not easily allow for refinement of the time mesh to a
larger number of times. Thus, the time differencing method is not suited to the
problem described here.

Another approach to generate a Brownian motion is the Brownian bridge,
which extends the time differencing approach by allowing continued refinements
of the time mesh. Set the initial time to be t0 = 0. For any k ∈ N0, let tk+1 =
(1 − φ2(k)) T , where φ2 is the radical inverse function in base 2, which maps
each k to a point in [0, 1) by reflecting digits of the binary expansion for k about
the decimal points. Specifically, if k = k0 + 2k1 + · · · + 2mk−1kmk−1 + 2mk for
kj ∈ {0, 1}, and so mk = ⌊log2(k)⌋, then

φ2(k) =
k0

2
+

k1

22
+ · · · + kmk−1

2mk
+

1

2mk+1
.

The Brownian Bridge definition is

B(t0) = B(0) = 0,

B(t1; X1) = B(T ) =
√

TX1,

B(tk+1; X1, . . . , Xk+1) =
1

2

[

B

(

tk+1 −
T

2mk+1

)

+ B

(

tk+1 +
T

2mk+1

)]

+

√

T

2mk+2
Xk+1, k = 1, 2, . . . , d,

where X1, X2, . . . are standard normal random variables. Thus, one may think
of the payoff functional for the option, g(B(·)), as a functional of a countable
number of standard Gaussian random variables, f(X1, X2, . . .). Truncating the
Brownian bridge at d steps corresponds to setting the variables Xd+1, Xd+2, . . .
to their nominal value c = 0, and then B(t) becomes simply the linear interpolant
between the two neighboring time mesh points tk1 and tk2 , where 0 ≤ k1, k2 ≤ d.
The cost of a d-step Brownian bridge is O(d) operations. Thus, the Brownian
bridge generation of the Brownian motion fits the problem formulation adopted
in this article.

A third method for generating a Brownian motion is the Karhunen-Loève

expansion. The eigenvalue problem of the covariance operator for B(t), i.e.,
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cov(B(t), B(s)) = min(t, s), leads to an infinite series for the Brownian mo-
tion in terms of the i.i.d. standard Gaussian random variables X1, X2, . . . and
the sinusoidal eigenfunctions:

B(t; X1, X2, . . .) =
√

2T
∞
∑

j=1

Xj

sin
((

j − 1
2

)

πt/T
)

(

j − 1
2

)

π
.

Again, the payoff functional for the option, g(B(·)) can then be thought of
as a functional of a countable number of standard Gaussian random variables,
f(X1, X2, . . .). Truncating the Karhunen-Loève expansion at d terms corresponds
to f(X1, . . . , Xd, 0, . . .) and costs O(d) mathematical operations to evaluate. The
truncated Karhunen-Loève expansion includes the most important low frequency
terms, and can be evaluated at any time, t.

In summary option pricing where the Brownian motion driving the SDE for
the asset price is generated by a d-step Brownian Bridge or a d-term Karhunen-
Loève expansion is an example of finding an expectation that fits the general
framework set forth in this introductory section. The functional f corresponds to
the option payoff. Although it depends on a countably infinite number of random
variables, one may neglect all but the first d of them as an approximation.

2 Hilbert Spaces of Functionals

In this section, the Hilbert space where the functional f resides is constructed.
The functional f depends on a countably infinite number of variables, and the
Hilbert space containing f is constructed as the tensor product space of a count-
able number of reproducing kernel Hilbert spaces. As discussed in Section 1,
the main problem is to approximate µ = E[f(X1, X2, . . .)], where (X1, X2, . . .)
is an i.i.d. random sequence with common probability density function ρ1(·),
and the support of ρ1 is assumed to be I, where I is some open, half-open, or
closed interval, which may be finite, semi-finite or infinite. As discussed in [2],
the domain of f can be considered to be IN, where N is natural number set. The
vector of nominal values of the random variables is denoted c = (c, c, . . .), and
it is used to recursively define the effects of parts of f , which are the parts that
depend on a finite number of variables.

The symmetric, positive semi-definite kernel function K1 : I × I → R is
the building block used to construct the Hilbert space containing f . This kernel
may possibly be unbounded. In addition, it is assumed that K1(c, c) = 0, which
implies that K1(x, c) = 0, ∀x ∈ I, since K1 is positive semi-definite. Let H(K1)
denote the reproducing kernel Hilbert space of functions with reproducing kernel,
K1. The above assumption on K1 implies that f(c) = 0 for all f ∈ H(K1).
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Further assumptions are made on the finiteness and integrability of K1:

h1(x) :=

∫

I

K1(x, y) ρ1(y) dy, ∀x ∈ I, h1 ∈ H(K1), (6a)

m :=

∫

I
2
K1(x, y) ρ1(x)ρ1(y) dxdy < ∞, (6b)

M :=

∫

I

K1(x, x)ρ1(x) dx < ∞. (6c)

Following the notation in [2], U is defined as a set of subsets of N with finite
cardinality, namely U = {u ⊂ N : |u| < ∞}. Given any set u ∈ U, xu denotes the
vector containing the coordinates of x whose indices are in u. The symmetric,
positive semi-definite kernel

Ku(xu,yu) =
∏

j∈u

K1(xj , yj)

defines the Hilbert space H(Ku) containing functionals of |u| variables. The
domain of those functionals in H(Ku) is Iu.

To facilitate the definition of the Hilbert space of functionals of an infinite
number of variables, a sequence of non-increasing, non-negative weights is intro-
duced, γ = (γ1, γ2, . . .), which satisfies the following conditions:

γj � j−1−2q, γ1 ≥ γ2 ≥ · · · ≥ 0, (7)

where q is some positive constant. This implies that

∞
∑

j=d

γj � d−2q. (8)

Moreover, γu =
∏

j∈u γj is defined as the product weight for any finite set u.

The Hilbert space of functionals with domain IN is now defined as an infinite
direct sum of reproducing kernel Hilbert spaces H(Ku) using the approach in
[4]. The kernel K defining the Hilbert space H(K) is defined as

K(x,y) :=
∑

u∈U

γuKu(xu,yu) =

∞
∏

j=1

[1 + γjK1(xj , yj)]. (9)

The kernel K(x,y) defined in (9) is not necessarily finite for all x,y ∈ IN,
especially for unbounded kernels K1. Although H(K) may not be a reproducing
kernel Hilbert space, it is a Hilbert space, and the reproducing property holds
for the functional evaluation f(xu, c) for any set u ∈ U. Another useful kernel
function K(d) is defined by

K(d)(x1:d,y1:d) =
∑

u⊆1:d

γuKu(xu,yu) =

d
∏

j=1

[1 + γjK1(xj , yj)]

= K ((x1:d, c), (y1:d, c)) .
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The Hilbert space H(K(d)) contains functions depending on only the first d
variables.

Following the argument in [14], it can be shown that H(Ku)
⋂H(Kv) = {0}

for any u 6= v because H(1)
⋂H(K1) = {0}. Consequently, the Hilbert space

H(K) can be decomposed as

H(K) =
⊕

u∈U

H(γuKu), where H(Ku) ⊥ H(Kv), ∀u 6= v. (10)

The following definition recursively defines the Hilbert space H(K) of function-
als, f , as a sum of their pieces fu, which lie in the reproducing kernel Hilbert
spaces H(Ku), as in [2,14].

Definition 1. The Hilbert space H(K) consists of all functionals of the form

f =
∑

u∈U

fu, fu ∈ H(Ku),

such that
∑

u∈U

γ−1
u ‖fu‖2

H(Ku) < ∞.

In case of convergence, 〈f, g〉H(K) =
∑

u∈U
γ−1

u 〈fu, gu〉H(Ku) and ‖f‖2
H(K) =

∑

u∈U
γ−1

u ‖fu‖2
H(Ku).

Since Ku(xu,yu) vanishes if any one or more of the components of xu equals
the nominal value, c, the same holds for fu(xu). This implies that the functional
f ∈ H(K) evaluated at (xu, cN\u) for u ∈ U is the sum of only a finite number
of effects, fv, namely, f(xu, cN\u) =

∑

v⊆u fv, since fv(xu, cN\u) vanishes for
v 6⊆ u. Therefore, the effects, fu, can be obtained recursively by the formula
fu = f(xu, cN\u) −∑v⊂u fv.

3 Single Level Algorithm

The main result of the worst case error analysis for the single level algorithm
defined in (2) is that the worst case error can be decomposed as the bias due
to approximating an infinite dimensional integral by a finite dimensional ap-
proximation to the functional, and the sampling error for approximating a d-
dimensional integral by a sample average, i.e., the discrepancy. The following
theorem summarizes the main result from [2].

Theorem 1. Suppose that K1 is a symmetric, real-valued, positive semi-definite

kernel function defined on I2 that satisfies the assumptions (6). Consider a

Hilbert space H(K) of functionals f : IN → R, which is defined above in terms

of K1 and the weights γj satisfying assumption (8). Then the worst case error
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for approximating the expectation of the functional f by a Monte Carlo type

algorithm of the form (2) is

worst-err({xi,1:d}n
i=1; K) = sup

||f ||H(K)≤1

|µ(f) − µ̂(f)|

=
√

worst-bias2(d; K) + D2
(

{xi,1:d}n
i=1; K

(d)
)

,

where

worst-bias2(d; K) =
d
∏

j=1

[1 + γjm]





∞
∏

j=d+1

[1 + γjm] − 1



 � d−2q,

D2({xi,1:d}n
i=1; K

(d)) =

d
∏

j=1

[1 + γjm] − 2

n

n
∑

i=1

d
∏

j=1

[1 + γjh1(xi,j)]

+
1

n2

n
∑

i,k=1

d
∏

j=1

[1 + γjK1(xi,j , xk,j)]. (11)

Results on strong tractability, e.g., [8,9,10,11] imply that the discrepancy
� n−p, and so worst-err2({xi,1:d}n

i=1; K) � d−2q + n−2p, where the implied con-
stants are independent of d and n. As mentioned in the introduction the cost
of a single function evaluation is proportional to ds for some s ≥ 0, and so the
computational cost of the single level algorithm is proportional to N = nds. Min-
imizing the error upper bound with respect to d and n given the computational
cost N yields d ≍ np/q, and

min
n,d

nd=N

worst-err(xi,1:d; K) � N−pq/(ps+q). (12)

4 Multilevel Algorithms

As noted in the introduction, this single level algorithm convergence is worse than
the rate of � N−min(p,q/s) that one might dream of. The multilevel algorithm
allows the dream convergence rate to be realized by focusing more sampling
effort on the lower dimensions.

Consider a sequence of increasing dimensions 0 = d0 < d1 < · · · < dL+1 = ∞.
For any d ∈ N, define the projection Φd from H(K) to H(K(d)) as

(Φdf)(x1, . . . , xd) = f(x1, . . . , xd, c, c, . . .), ∀f ∈ H(K).

By convention define Φ0f = 0 and Φ∞f = f . Because Φdf ⊥ f − Φdf , Φd is an
orthogonal projection onto H(K(d)). Using this notation, the telescopic sum for
the infinite dimensional expectation in (5) can be rewritten as

µ(f) =

L+1
∑

l=1

µdl

(

Φdl
f − Φdl−1

f
)

, (13)
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where the d-dimensional expectation µd is defined in (4).
The multilevel algorithm for approximating µ(f) approximates each term in

(13), except for the last one, by a Monte Carlo or quasi-Monte Carlo algorithm
of the form of (2). The last term in (13) is approximated by 0 since it is assumed
to be small. Specifically, the multilevel algorithm takes the form

µ̂(f) =
L+1
∑

l=1

µ̂dl
(Φdl

f − Φdl−1
f), (14a)

µ̂dl
(Φdl

f − Φdl−1
f) =

1

nl

nl
∑

i=1

[

f(x
(l)
i,1:dl

, c) − f(x
(l)
i,1:dl−1

, c)
]

,

l = 1, . . . , L, (14b)

µ̂dL+1(ΦdL+1f − ΦdL
f) = 0. (14c)

An nl-point design of dimension dl is used to compute the level l approximation,

µ̂dl
. All dimensions are used to evaluate f(x

(l)
i,1:dl

, c) and the first dl−1 dimensions

are used to evaluate f(x
(l)
i,1:dl−1

, c).

Since the cost of evaluating f(x
(l)
i,1:dl

, c) − f(x
(l)
i,1:dl−1

, c) for a single i is pro-

portional to ds
l , the total computational cost of µ̂(f) proportional to

N =

L
∑

l=1

nld
s
l . (15)

In many cases s = 1 matches the practical situation, but the analysis here allows
s to be any non-negative number. As shall be seen, the advantage of the multilevel
algorithm is that one can choose nl to decrease as dl increases to obtain greater
efficiency than the single level algorithm.

5 Multilevel Algorithm Worst-case Error Analysis

The worst case error of the multilevel algorithm µ̂ defined in the previous section
is now analyzed for functionals f lying in the Hilbert space H(K) defined in
Definition 1. It is found in Theorem 2 that this worst case error is the square
root of the square bias plus the sum of differences of discrepancies with different
dimensions at each level. Although Theorem 2 provides a tight upper bound for
the error, it is technically more difficult to get the explicit convergence rate, and
a more convenient loose upper bound is provided in Corollary 1.

To facilitate the error analysis and simplify the notation, the following subsets
of U are defined:

Ωl = 21:dl \ 21:dl−1 = {u ∈ U : u ∈ 1 : dl and u /∈ 1 : dl−1}, l = 1, . . . , L + 1.

Given the convention that d0 = 0 and dL+1 = ∞, this corresponds to Ω1 = 21:d1

and ΩL+1 = U\21:dL. Define the following projections for any f ∈ H(K):

Ψlf = Φdl
f − Φdl−1

f =
∑

u∈Ωl

fu ∈ H
(

∑

u∈Ωl

γuKu

)

, l = 1, 2, . . . , L + 1.
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Whereas Φdl
f yields the part of f depending only on the first dl coordinates, Ψlf

yields the part of f depending only on the first dl coordinates, but not on the
first dl−1 coordinates. It follows from (10), that the Ψl are mutually orthogonal
projections and

f =

L+1
∑

l=1

Ψlf, ‖f‖2
H(K) =

L+1
∑

l=1

‖Ψlfl‖2
H(K) , ∀f ∈ H(K).

The main task is to get a tight upper bound for the worst case error

worst-err = sup
‖f‖H(K)≤1

|µ(f) − µ̂(f)| = sup
‖f‖H(K)≤1

∣

∣

∣

∣

∣

L+1
∑

l=1

(µdl
− µ̂dl

)(Ψlf)

∣

∣

∣

∣

∣

. (16)

Each term in the sum above is a bounded linear functional of Ψl(f). Since f lies
in a Hilbert space, these bounded linear functionals may be written as the inner
products of Ψl(f) with the corresponding representers.

As in [2], the infinite dimensional expectation is defined as a countable sum
of the finite dimensional expectations of pieces, i.e.,

µ(f) = E[f(X1, X2, . . .)] :=
∑

u∈U

E[fu(Xu)] =
∑

u∈U

〈hu, f〉H(K) = 〈h, f〉H(K),

where the representers h and hu are given by

hu(xu) :=
∏

j∈u

γjh1(xj) ∈ H(Ku),

h(x) :=
∑

u∈U

hu(xu) =
∞
∏

j=1

[1 + γjh1(xj)] .

For any d ∈ N the bounded linear functionals µd and µ̂d are expressed as inner
products by

µd(f) = 〈Φdh, f〉H(K) = 〈h(·, cd+1:∞), f〉H(K),

µ̂d(f) =

〈

1

n

n
∑

i=1

K(·, (xi,1:d, c)), f

〉

H(K)

=

〈

1

n

n
∑

i=1

K(d)(·,xi,1:d), f

〉

H(K)

.

This means that (µdl
− µ̂dl

)(Ψlf) = 〈ξl, Ψlf〉H(K), where

ξl = h(·, cdl+1:∞) − 1

nl

nl
∑

i=1

K(dl)(·,x(l)
i,1:dl

), l = 1, . . . L,

ξL+1 = h.

Note that since the Ψl are orthogonal projections, one may also write (µdl
−

µ̂dl
)(Ψlf) = 〈Ψlξl, Ψlf〉H(K).
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Continuing from (16) one can now write

worst-err = sup
‖f‖H(K)≤1

∣

∣

∣

∣

∣

L+1
∑

l=1

(µdl
− µ̂dl

)(Ψlf)

∣

∣

∣

∣

∣

= sup
‖f‖H(K)≤1

∣

∣

∣

∣

∣

L+1
∑

l=1

〈Ψlξl, Ψlf〉H(K)

∣

∣

∣

∣

∣

= sup
‖f‖H(K)≤1

|〈ξ, f〉H(K)| = ‖ξ‖H(K) =

√

√

√

√

L+1
∑

l=1

‖Ψlξl‖2
H(K),

where ξ :=
∑L+1

l=1 Ψlξl. This leads to the following theorem:

Theorem 2. Under the assumptions for the Hilbert space of functionals, f , in

Section 2, the multilevel algorithm µ̂ defined in (14) has the following worst case

error:

worst-err2 = sup
‖f‖H(K)≤1

|µ(f) − µ̂(f)|2

=

L
∑

l=1

[

D2(Pl; K
(dl)) −D2(Pl; K

(dl−1))
]

+

dL
∏

j=1

[1 + γjm]





∞
∏

j=dL+1

[1 + γjm] − 1



 ,

where D2(Pl; K
(dl)) is the discrepancy defined in (11) dependent on the design

Pl = {xi,1:dl
}nl

i=1, and the reproducing kernel for functions of dl variables, K(dl).

Proof. Most of the proof is contained in the preceding arguments. It is shown
in [2] that the last term in the expression for the squared worst case error cor-

responds to ‖ΨL+1ξL+1‖2
H(K). What remains to be shown is that ‖Ψlξl‖2

H(K) =

D2(Pl; K
(dl)) −D2(Pl; K

(dl−1)) for l = 1, . . . , L.
Note that D(Pl; K

(dl)) = ‖ξl‖H(K). Furthermore, the fact that Φdl−1
=

Ψ1 + · · · + Ψl−1 implies that Ψl and Φdl−1
are mutually orthogonal projections.

Moreover, by definition, Φdl
ξl = ξl. Thus, for l = 1, . . . , L,

D2(Pl; K
(dl)) = ‖ξl‖2

H(K) = ‖Φdl
ξl‖2

H(K) =
∥

∥(Φdl−1
+ Ψl)ξl

∥

∥

2

H(K)

=
∥

∥Φdl−1
ξl

∥

∥

2

H(K)
+ ‖Ψlξl‖2

H(K) = D2(Pl; K
(dl−1)) + ‖Ψlξl‖2

H(K) ,

which completes the proof.

Theorem 2 makes it possible to write the worst case error as a combination of
the difference between square discrepancies of the same design, but with different
dimensional kernel functions. Note that this difference of square discrepancies
is always non-negative. The goal is to minimize the worst case error given the
computational cost constraint. A key point here is how to make a good balance
between the errors at different levels, l, by choosing dl and nl appropriately. To
facilitate this a looser bound is derived.
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Consider another non-increasing, non-negative sequence of coordinate weights,
γ′ = (γ′

1, γ
′
2, . . .) satisfying γj ≤ γ′

j , and use these new coordinate weights to de-
fine a kernel function K ′, where

K
′

(x,y) =

∞
∏

j=1

[1 + γ
′

jK1(xj , yj)].

The kernel function K and K
′

differ only in terms of the different coordinate
weights used to define them. The projections Φd, d ∈ N, and Ψl, l = 1, . . . , L act
on H(K ′) in the same way that they act on H(K). It follows that

H(K) ⊆ H(K
′

), with ‖f‖H(K′) ≤ ‖f‖H(K), f ∈ H(K). (17)

Lemma 1. For any g =
∑

u∈U
gu ∈ H(K) where gu ∈ H(Ku), let g′ =

∑

u∈U
g′u,

where g′u = (γ′
u/γu)gu. It follows that 〈g, f〉H(K) = 〈g′, f〉H(K′) for all f ∈ H(K).

Moreover, ‖Ψlg‖H(K) ≤
√

kl ‖Ψlg
′‖H(K′) and D2(Pl; K

(dl)) − D2(Pl; K
(dl−1)) ≤

klD2(Pl; K
′(dl)) for l = 1, . . . , L, where kl = γdl−1+1/γ

′

dl−1+1.

Proof. From the definition of the inner product in Definition 1 it follows that

〈g, f〉H(K) =
∑

u∈U

1

γu
〈gu, fu〉H(Ku) =

∑

u∈U

1

γ′
u

〈

γ′
u

γu
gu, fu

〉

H(Ku)

=
∑

u∈U

1

γ′
u

〈g′u, fu〉H(Ku) = 〈g′, f〉H(K′) ,

which proves the first part of the lemma. Moreover,

‖Ψlg‖2
H(K) =

∑

u∈Ωl

1

γu
〈gu, gu〉H(Ku) =

∑

u∈Ωl

γu

γ′
u

1

γ′
u

〈

γ′
u

γu
gu,

γ′
u

γu
gu

〉

H(Ku)

=
∑

u∈Ωl

γu

γ′
u

1

γ′
u

〈g′u, g′u〉H(Ku) ≤ sup
u∈U

(

γu

γ′
u

)

‖Ψlg
′‖2

H(K′) = kl ‖Ψlg
′‖2

H(K′) ,

which completes the second part of the proof. Finally, combining this fact from
what is known from the proof of Theorem 2 it follows that

D2(Pl; K
(dl)) − D2(Pl; K

(dl−1)) = ‖Ψlξl‖2
H(K) ≤ kl ‖Ψlξ

′
l‖

2
H(K′)

= kl

[

D2(Pl; K
′(dl)) −D2(Pl; K

′(dl−1))
]

≤ klD2(Pl; K
′(dl)).

for l = 1, . . . , L.

This lemma allows the worst case error of the multilevel algorithm to be
bounded in terms of discrepancies, not differences of discrepancies in the corol-
lary below. The advantage is a simpler form that makes it possible to determine
the optimal choice of the samples sizes and dimensions for each level. The dis-
advantage is that the error bound is no longer tight.
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Corollary 1. Under the assumptions of Theorem 2 and for the kernel K ′ de-

fined in terms of the coordinate weights γ′, it follows that the worst case error

of the multilevel algorithm µ̂ is bounded loosely above by

worst-err2 ≤
L
∑

l=1

klD2(Pl; K
′(dl)) +

dL
∏

j=1

[1 + γjm]





∞
∏

j=dL+1

[1 + γjm] − 1



 , (18)

where kl = γdl−1+1/γ
′

dl−1+1.

The discrepancy, D(Pl; K
′(dl)), is that defined in (11), but for the Hilbert

space H(K ′(dl)) defined in terms of the weights γ′
j . The advantage of introducing

the new set of weights is that Corollary 1 has an upper bound with a kl that can
be made to become small as l increases. The next section explores the choice of
γ′

j , nl, and dl to make the error bound as small as possible given a budget of
mathematical operations.

6 Optimal choice of nl and dl

Studies of strong tractability in [10,11,15], and related articles show that it is
possible to obtain

D
(

P ; K ′(d)
)

� n−p, (19)

for some positive p, where the right hand side is independent of d. The order p is
dependent on the following: i) the quality of the design, P , ii) the smoothness of
the kernel K ′, which determines the smoothness of the associated Hilbert space
of functionals, and iii) the rate of decay of the weights, γ′

j , defining K ′.
The non-increasing, non-negative sequence of weights γ′ = (γ′

1, γ
′
2, . . .) is

assumed to satisfy

γ
′

j ≍ j2(q−q′)γj, (20)

from some positive q′ no greater than q. This means that the γ′
j decays to zero

more slowly than the γj , so H(K ′(d)) is a larger space of functions than H(K(d)).
This condition on the γ′

j together with (7) imply that

γ′
j ≍ j2(q−q′)γj ≍ j2(q−q′)j−1−2q � j−1−2q′

.

Table 1, reproduced from [2], provides some values for p, the order of convergence
of discrepancy in (19) depending on q′ for rank-1 lattices and digital nets. Note
that H(K) contains functions with mixed partial first derivative that are squared
integrable.

Condition (20) implies that

k1 = 1, kl =
γdl−1+1

γ
′

dl−1+1

� d
−2(q−q′)
l−1 , l = 2, 3, . . . . (21)
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Table 1. The choice of p and q based on different designs

Design p

Simple random sequence 1/2

Rank-1 lattices [8] min
`

1, q′ + 1
2

´

− ε

Niederreiter (T, s)-net (q′ > 1/2) [11] min
“

1, q′

2
+ 1

4

”

− ε

This condition and (19), imply that klD2
(

Pl; K
′(dl)

)

� d
−2(q−q′)
l−1 n−2p

l for l =

2, 3, . . .. As in Theorem 1, the last term in (18) is � d−2q
L . Thus, the task is to

optimally choose nl and dl such that the worst case error bound

worst-err2 � w-up2 := n−2p
1 + n−2p

2 d
−2(q−q′)
1 + · · · + n−2p

L d
−2(q−q′)
L−1 + d−2q

L (22)

is minimized under the computational cost constraint (15). The following theo-
rem describes the best that can be hoped for for this constrained optimization
problem. Theorem 4 demonstrates that this can be achieved.

Theorem 3. Suppose n1 ≥ · · · ≥ nL and d1 < · · · < dL, and let the computa-

tional cost of the multilevel algorithm, N , be defined as in (15). For any values

of p, q, q′ > 0 with q ≥ q′ it follows that w-up, has the lower bound

w-up � N
−p min

“

1, q

ps+q′

”

. (23)

Proof. Since N � n1d
s
1 � n1 and N � nLds

L � nLds
L−1, so w-up2 is bounded

below by its first term and last two terms:

w-up2 � n−2p
1 + n−2p

L d
−2(q−q′)
L−1 + d−2q

L

� N−2p + n−2p
L

(

N

nL

)−2(q−q′)/s

+

(

N

nL

)−2q/s

� N−2p + N
− 2pq

ps+q′





(

nL

N
q′

ps+q′

)−2(ps+q′−q)/s

+

(

nL

N
q′

ps+q′

)2q/s


 .

If ps + q′ ≤ q, then both powers of nLN
− q′

ps+q′ are positive and are minimized
by taking nL ≍ 1, which implies that

w-up2 � N−2p + N−2(q−q′)/s + N−2q/s ≍ N−2p.

If ps + q′ > q, then the two powers of nLN
− q′

ps+q′ have opposite signs, and their

sum is minimized by taking nLN
− q′

ps+q′ ≍ 1. This means that

w-up2 � N−2p + N
− 2pq

ps+q′ ≍ N
− 2pq

ps+q′ .
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Theorem 3 suggests that the convergence rate for the multilevel method

might be as fast as N
−p min

“

1, q

ps+q′

”

. The next step is to choose the nl and dl

optimally to achieve this rate of convergence. This is done by choosing nl to
decrease exponentially and dl to increase exponentially, as follows:

nl ≍ 2L−bl, dl ≍ 2cl, l = 1, . . . , L, (24)

where b and c are positive constants to be determined, and b ≤ 1 to ensure that
nL � 1. Correspondingly the computational cost of the algorithm, as defined in
(15), is

N ≍
L
∑

l=1

2L−bl2cls = 2L
L
∑

l=1

2(cs−b)l ≍
{

2L, if b > cs,

2L(1+cs−b), if b < cs.
(25)

Moreover, the upper bound on the square worst case error becomes

worst-err2 �
L
∑

l=1

2−2c(l−1)(q−q′)2−2p(L−bl) + 2−2cLq

≍ 2−2pL

[

L
∑

l=1

22(bp−c(q−q′))(l−1) + 22L(p−cq)

]

. (26)

The following theorem describes the optimal choice of b and c such that the
above convergence order can be achieved.

Theorem 4. Consider any s ≥ 0 and p, q, q′ > 0 with q ≥ q′ and ps+q′ 6= q. Let

the computational cost of the multilevel algorithm is defined as N =
∑L

l=1 nld
s
l .

Then the worst case error of this algorithm is bounded above by

worst-err � N
−p min

“

1, q

ps+q′

”

.

This convergence rate is achieved by choosing b and c to satisfy 0 < b ≤ 1, c > 0,
and

i. p2s/q ≤ cps < bp < c(q − q′) in the case ps + q′ < q, and

ii. 1 + cq′/p = b < 1 − q′/q in the case ps + q′ > q.

Proof. The proof is proceeds by considering two cases, as in the proof of the
previous theorem. First, consider the case of ps + q′ < q and the choices of b
and c described above. Since b > cs, it follows from (25) that N ≍ 2L. Since
bp− c(q− q′) < 0 and p− cq ≤ 0, it follows from (26) that worst-err2 � 2−2pL ≍
N−2p.

Next, consider the case of ps + q′ > q. The proof of Theorem 3 suggests
choosing the last two terms on the right hand side of (26) to be of the same
order, which implies that b = 1+cq′/p and c = (1−b)p/q′. Thus, pb−c(q−q′) =
pq(b − 1 + q′/q)/q′ < 0 under the inequality constraint on b, and the last term
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in the sum in (26) is the dominant one. Moreover, the inequality constraint on
b also implies that

cs − b =
ps − b(ps + q′)

q′
>

ps − (q − q′)(ps + q′)/q

q′
=

ps + q′ − q

q
> 0,

so N ≍ 2L(1+cs−b) by (25). Thus, from (26) it follows that

worst-err � 2−Lcq ≍ N−cq/(1+cs−b) = N−pq/(ps+q′).

Theorems 3 and 4 still leave open the question of the optimal choice of q′.
Thus, one has worst-err � N−τ , where

τ = max
q′

p min

(

1,
q

ps + q′

)

≤ min (p, q/s) . (27)

Since p typically depends on q′, this is a nontrivial, but often solvable problem.
In some cases, the upper bound above is attainable.

Consider the low discrepancy designs given in Table 1. For rank-1 lattice
points, since p = min(1, q′ + 1

2 ), ignoring the arbitrarily small positive number
ε, the order of convergence for the best q′ is

τ = min

(

q

s
,
q + 1/2

s + 1
, 1

)

=











q
s , 0 < q < s

2 , by choosing q′ = 0,
q+1/2
s+1 , s

2 ≤ q < s + 1
2 , by choosing q′ = q−s/2

s+1 ,

1, s + 1
2 ≤ q, by choosing q′ = 1

2 .

(28)

Correspondingly, the best convergence exponent that can be obtained for a
Niederreiter (T, d)-net is

τ = min

(

q

s + 1
,
q + 1/2

s + 2
, 1

)

=











q
s+1 , 1

2 ≤ q < s+1
2 , by choosing q′ = 1

2 ,
q+1/2
s+2 , s+1

2 ≤ q < s + 3
2 , by choosing q′ = 2q−s/2

s+2 ,

1, s + 3
2 ≤ q, by choosing q′ = 3

2 .

(29)

Figure 1 compares the order of convergence in the case s = 1 for the multilevel
algorithm, the single level algorithm described in Section 3, and results from [4].
One plot is for rank-1 lattice designs and the other for Niederreiter net designs.
The convergence order for the multilevel algorithm is given by (28) and (29).
The convergence order for the single level algorithm is based on (12) and Table 1
with q′ replaced by q. The upper bound on the order of convergence is min(1, q),
which comes from (27). It is independent of the design but dependent on the
smoothness of the space H(K). Unfortunately, the upper bound is only attained
for a certain range of q. In the plot of rank-1 lattice rules, the convergence order
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Fig. 1. The order of convergence for a multilevel algorithm based on rank-1
lattice rules (top) and a Niederreiter (T, d)-net (bottom) compared to the single
level algorithm, the upper bound in (27) and the lower bound of [4].
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for the single level quite similar to the results from [4], except that [4] is slightly
superior value for q ≤ 1

2 . The multilevel algorithm based on lattice rules gives
the best orders of convergence among all algorithms compared.

The lattice and net designs referred to in Table 1 have the advantage of being
extensible in both dimension and sample size. This allows one to use parts of one
large design for each level of the multilevel algorithm. Specifically, one can remove
the superscript (l) labeling the design points in (14) and re-arrange the terms to
arrive at an equivalent formula that uses fewer computational operations. Recall
that d0 = 0 and f(xi,1:d0 , c) = 0, and furthermore assume that n1 > n2 > · · · >
nL > nL+1 = 0. Then one obtains the following equivalent expression for the
multilevel algorithm:

µ̂(f) =

L
∑

l=1

1

nl

nl
∑

i=1

[

f(xi,1:dl
, c) − f(xi,1:dl−1

, c)
]

=

L
∑

l=1

L
∑

k=l

nk
∑

i=nk+1+1

1

nl

[

f(xi,1:dl
, c) − f(xi,1:dl−1

, c)
]

=
L
∑

k=1

nk
∑

i=nk+1+1

k
∑

l=1

1

nl

[

f(xi,1:dl
, c) − f(xi,1:dl−1

, c)
]

=

L
∑

k=1

nk
∑

i=nk+1+1

{

1

nk
f(xi,1:dk

, c) +

k−1
∑

l=1

[

1

nl
− 1

nl+1

]

f(xi,1:dl
, c)

}

=
L
∑

k=1







1

nk

nk
∑

i=nk+1+1

f(xi,1:dk
, c) +

k−1
∑

l=1

[

1

nl
− 1

nl+1

] nk
∑

i=nk+1+1

f(xi,1:dl
, c)







.

Here, each point of the design, xi has theoretically unbounded dimension. One
uses the first d1, . . . , dl dimensions of this design point where l is defined by the
relation nl+1 < i ≤ nl. The savings here does not affect order of operations
required for the multilevel algorithm but does affect the leading constant.

7 Conclusion

This paper investigates the worst case error of the multilevel algorithm for com-
puting the expectation of functions of infinitely many variables. The quality of
the sampling points or design are essential in the determination of the conver-
gence order of the worst case error, since the worst case error is dependent on
the discrepancy at each level. Moreover, the strong tractability of the algorithm,
i.e., the independence of the discrepancy on the dimension, is also necessary.
Our main result is to achieve a superior convergence order to the single level
algorithm. For a range of values of q, a measure of how quickly the importance
of the higher numbered variables decays, one can obtain the ideal convergence
rate of � N−min(p,q/s). In addition, it has been shown how the sample size and
the truncated dimension should be chosen in terms of q to achieve this rate.
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An outstanding question is how to compute the truncated dimensions and
sample sizes on the fly without a prior knowledge of q or even p. This question,
for which even an empirical answer might be useful, is a topic for future research.
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