
Vulcan: Lessons on Reliability of Wearables through State-Aware
Fuzzing

Edgardo Barsallo Yi
ebarsall@purdue.edu
Purdue University
West Lafayette, IN

Heng Zhang
Purdue University
West Lafayette, IN

zhan2614@purdue.edu

Amiya K. Maji
Purdue University
West Lafayette, IN
amaji@purdue.edu

Kefan Xu
Purdue University
West Lafayette, IN
xu1405@purdue.edu

Saurabh Bagchi
Purdue University
West Lafayette, IN
sbagchi@purdue.edu

ABSTRACT
As we look to use Wear OS (formerly known as Android Wear)
devices for fitness and health monitoring, it is important to eval-
uate the reliability of its ecosystem. The goal of this paper is to
understand the reliability weak spots in Wear OS ecosystem. We
develop a state-aware fuzzing tool, Vulcan, without any elevated
privileges, to uncover these weak spots by fuzzing Wear OS apps.
We evaluate the outcomes due to these weak spots by fuzzing 100
popular apps downloaded from Google Play Store. The outcomes
include causing specific apps to crash, causing the running app
to become unresponsive, and causing the device to reboot. We fi-
nally propose a proof-of-concept mitigation solution to address the
system reboot issue.

CCS CONCEPTS
• Computer systems organization → Reliability; • Software
and its engineering→ Software testing and debugging.

ACM Reference Format:
Edgardo Barsallo Yi, Heng Zhang, Amiya K. Maji, Kefan Xu, and Saurabh
Bagchi. 2020. Vulcan: Lessons on Reliability of Wearables through State-
Aware Fuzzing. In The 18th Annual International Conference on Mobile Sys-
tems, Applications, and Services (MobiSys ’20), June 15–19, 2020, Toronto,
ON, Canada. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3386901.3388916

1 INTRODUCTION
Google’s Wear OS has been one of the dominant OSes for wearable
devices, which include smartwatches, smart glasses, and fitness
trackers. Wear OS is based on Android with similar features such
as kernel, programming model, app life cycle, development frame-
work, etc. However, unlike Android apps on the mobile devices,
wearable apps have somewhat different characteristics, as does

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7954-0/20/06. . . $15.00
https://doi.org/10.1145/3386901.3388916

Wear OS relative to Android. The fundamental driver of the dif-
ferences is the limited display area and the difficulty of executing
interactive work (such as typing) on a wearable device. As a result,
wearable apps tend to have more number of Services (which run in
the background) relative to Activities (which run in the foreground),
have fewer GUI components, and have tethering to a counterpart
app on the mobile device [32]. Moreover, wearable devices are of-
ten fitted with a variety of sensors (e.g., heart rate monitor, pulse
oximeter, and even electrocardiogram or ECG sensor) each with
its own device driver software. Device drivers have been found
to be reliability weak spots in the server world [29, 41]. Further,
wearable apps are generally more dependent on these sensors, have
unique interaction patterns, both intra-device and inter-device (be-
tween the smartwatch and the phone it is paired with), and are
aware of the physical context. These lead to distinctive software
and software-hardware interaction patterns in wearable systems.
As we are poised to use wearable devices for critical apps, such
as clinical-grade health monitoring, it is important to understand
the vulnerabilities in their software architecture and how best to
mitigate them1.

Although there have been several previous works focusing on
the reliability of the Android ecosystem [13, 25–27, 36, 37], there
are only few that study Wear OS [9, 32, 33, 45, 46]. However, none
of them consider the effects of the inter-device communication
(between the mobile device and the wearable device) and the effect
of sensor activities on the reliability of the wearable apps — both
of these are dominant software patterns in wearable systems. The
closest prior work is QGJ [9], which presented a black-box fuzzing
tool and defined a set of fuzzing campaigns to test the robustness
of wearable apps. However, QGJ is agnostic with respect to the
state of a wearable app and generates a large number of inputs
that are invalid and silently discarded by Wear OS. Further, for
those failures that it can trigger, the triggering mechanism of QGJ
is much less efficient relative to our solution. Apart from QGJ,
Monkey [5] and APE [25] are two tools for testing Android apps by
generating different UI events, which simulate how a user would
possibly interact with the apps. However, we show that UI fuzzers
by themselves are not effective in uncovering vulnerabilities in

1We use the term “vulnerability” not only in the security sense, but any bug that may
naturally lead to failures or that can be exploited through malicious actions.

https://doi.org/10.1145/3386901.3388916
https://doi.org/10.1145/3386901.3388916
https://doi.org/10.1145/3386901.3388916

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Barsallo, et al.

wearable systems because the UI interactions are fundamentally
less complex here.
Our Solution: Vulcan
In this paper, we present Vulcan2, a state-aware fuzzer for wearable
apps. Its workflow is shown in Figure 1 and includes the offline train-
ing andmodel building and the online fuzzing components.Vulcan
brings three innovations, which work together to improve the
fuzzing effectiveness. First, Vulcan separately triggers the intra-
device and inter-device interactions, thus leveraging the insight
that the system is more vulnerable when wearable-smartphone
synchronization is taking place (Table 4 shows the communication
fuzzing results). Second, we define the notion of vulnerable states
where bugs are more likely to be manifested. Vulcan steers the app
to the vulnerable states and fuzzes the app at those states, which
significantly increases the fault activation rate. This leverages the
insight that failures are often correlated with higher degree of con-
currency (Tables 3 and 4 show the results of fuzzing apps at different
degrees of concurrency, where the concurrency is correspondent to
the degrees of sensor activation defined in Table 2). Third, Vulcan
parses the Android Intent specification and creates a directed set of
Intents which are injected to the wearable apps to effectively trig-
ger bugs (Section 3.4 shows the details of the parser). Specifically,
the created Intents are based on what action-data pairs are valid
according to the specification, e.g., ACTION_DIAL can take either
empty data or the URI of a phone number. Summarizing, Vulcan
needs neither the source codes of the wearable apps (or their mobile
counterpart app) nor root privilege on the wearable device. Rather,
it improves the efficiency in triggering bugs in wearable apps and
causes device reboots through inputs generated from a user-level
app.

To evaluate Vulcan, we conduct a detailed study of the top 100
free apps from the Google Play Store — in terms of share, the top
categories are, in order: Health & Fitness, Tools, and Productivity.
Using Vulcan, we inject over 1M Intents between inter-device and
intra-device interactions. We uncover some foundational reliability
weak spots in the design of Wear OS and several vulnerabilities that
are common across multiple apps. We categorize the failure events
into three classes—app not responding, app crash, and the most
catastrophic failure, system reboot, which refers to the case where
our injection is able to cause the wearable device to reboot, thus
pointing to a vulnerability in the system software stack. Compared
to the three prior tools,Monkey [5], APE [25], and QGJ [9], Vul-
can is the only one that can trigger system reboots deterministically
and Vulcan runs without elevated system-level privileges. Further,
for app crashes that both QGJ and Vulcan can trigger, Vulcan trig-
gers them more efficiently, at a rate 5.5X compared to QGJ, when
normalized by the number of injected Intents (Table 5). Vulcan
renders the insights to the Wear OS developers to avoid system
reboots from a user level app and can be used by app developers to
test the reliability of their apps.

We delve into the details to analyze the system reboots in Sec-
tion 6. We find that these reboots are due to the Watchdog monitor
of Wear OS over-aggressively terminating the Android System
Server, a critical system level process, under various conditions

2Vulcan is the Roman God of fire and metalworking, the blacksmith of the Gods. The
aspiration is for our tool to forge more reliable wearable systems.

Figure 1: Workflow of Vulcan. This shows the offline phase
whereby, through simulated UI events, the tool learns the
finite state machine model of the app. In the online phase,
the tool steers the app to the vulnerable states and injects
messages or Intents in a directed manner, which leads to a
higher fault activation rate and even system reboots. In on-
line phase, the collected logs are also analyzed to dedupli-
cate the failure cases and identify the manifestations and
root causes.

of resource contention. In our experiments, we found 18 system
reboots from 13 apps, while none of the prior tools uncover any.
We show the system reboots can be deterministically triggered and
show that they are correlated with high degree of concurrency
in events such as sensor activity or inter-device communications.
We also design and develop a Proof-Of-Concept (POC) solution to
show how system reboots can be avoided. We evaluate the solu-
tion’s effectiveness and its usability, the latter through a small user
study. In the user study, only 6.7% of the users felt that the solution
significantly affected their usability of a third-party calendar app
on the wearable. Overall, our state-aware tool is more effective in
triggering app crashes and is the only one to trigger system reboots,
compared to state-agnostic fuzzers such as QGJ as well as UI fuzzers
such as Monkey and APE.

Our results reveal several interesting root causes for the failures—
abundance of improper exception handling, presence of legacy
codes in Wear OS copied from Android, and error propagation
across devices. We find that the distribution of exceptions that
cause app crashes is different from that in Android [36]. While
NullPointerException is still a dominant culprit, its relative in-
cidence has become less while IllegalArgumentException and
IllegalStateException have become numerous inwearable apps.

Our key contributions in this paper are:
(1) State-aware fuzzing:We present a state-aware fuzzing tool

for wearable apps. Our tool, Vulcan, can infer the state-model
of a wearable app without source code access, guide it to
specific states, and then run targeted fuzzing campaigns. Our
tool can be downloaded from [1] and used with the latest
version of Wear OS.

(2) Higher failure rate:We show that stateful fuzzing increases
the fault activation rate compared to a state-agnostic ap-
proach and compare it to three state-of-the-art tools, QGJ,

Vulcan: Lessons on Reliability of Wearables through State-Aware Fuzzing MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

Monkey, and APE. We find several novel and critical failure
cases through these experiments and suggest software ar-
chitecture improvements to make the wearable ecosystem
more reliable.

(3) System reboot: We demonstrate that it is possible to trig-
ger system reboots deterministically through Intent injection,
without elevated system-level privileges. We show that the
Wear OS vulnerability is correlated with high degree of con-
currency in sensor activity and inter-device communication
between mobile and wearable devices. Our POC solution
shows an approach to preventing these system reboots with-
out needing Wear OS framework changes.

The rest of the paper is organized as follows. After presenting
an overview of Wear OS and testing approaches on Android in
Section 2, we discuss the design of the fuzzing tool in Section 3.
Then, in Section 4 we introduce the relevant aspects of our im-
plementation and present the detailed experiments and results in
Section 5. Next, we delve into the system reboots in Wear OS and
propose a solution to avoid them in Section 6. We discuss lessons
and threats to validity in Section 7. Then we discuss related work
and conclude the paper.

2 BACKGROUND AND MOTIVATION
2.1 Wear OS
Wear OS apps, compared to their mobile counterparts, have a min-
imalist UI design, more focus on services (which are background
processes), and have a sensor-rich application context. Although
Wear OS supports standalone apps, some wearable apps are tightly
coupled with their mobile counterparts. Those wearable apps fre-
quently communicate with their companion apps in the mobile
device to share data or to exchange IPC messages. In our evaluation
of the top 100 apps, we find approximately 40 either need or are
significantly improved with a mobile companion app.

Interaction in wearable apps can happen either intra-device or
inter-device, typically between the mobile and the wearable devices.
The intra-device interaction we will refer to as “Intent” and
the inter-device interaction as “Communication”.

Intra-device interaction typically happens through the binder
IPC framework [13] and takes the form of Intent messages. Intent
is an abstraction of operations in the Android ecosystem. In an
Intent message, the developer can specify many attributes such
as a specific action (e.g., ACTION_CALL) and data (e.g., the phone
number of the callee). For example, the main activity of a hiking
app can periodically send Intent messages to a background service
to request the GPS location to build up the hiking map of the user.

For communication, two types of messages may be exchanged:
message passing (asynchronous) or data synchronization (synchro-
nous). These are commonly used respectively to send commands
or small data items, or synchronize data among devices. The inter-
device communication is also used for delegation of actions from
the wearable to the mobile. An example is shown in Figure 2 where
a WiFi connection is being set up on the wearable, but part of the
interaction (the password entry) happens on the mobile.
2.2 Existing Testing Approaches

Most existing research on wearable and, in general, Android ap-
plication testing follow a GUI-centric approach [2, 7, 14, 25, 30, 47].

Figure 2: Example of the inter-device communication be-
tween a wearable and a mobile device. The setup of a WiFi
connection starts in the wearable, but then the process con-
tinues on the mobile due to the difficulty of typing the pass-
word on the wearable device.

These tools focus on uncovering reliability issues related to the UI,
by simulating user events, such as clicks, touches, or gestures. The
performance metric for most of these tools is improved code cover-
age, which is achieved by building a model of the UI components in
the target app. Compared to Android, Wear OS apps have limited
display area, and hence, micro transactions are predominant [16].
We observe that although GUI testing is important for improving
user experience, it overlooks some important characteristics of
wearables: inter-device communication and sensor awareness. To the
best of our knowledge, Vulcan is the only testing tool for wearable
apps which focuses on these types of interactions.

In terms of research on inter-component communication in An-
droid and Wear OS, earlier tools either perform static analysis of
the source codes [13], or perform black-box fuzzing of target apps
[9, 37]. While black-box fuzzing is simple to implement, due to the
enormous input space for communication messages, its efficiency
is often limited. In contrast, Vulcan uses a state-aware fuzzing ap-
proach to discover more bugs in less time. A key motivation behind
Vulcan comes from the fact that behaviors of wearable apps are
often state (or context) dependent, where state can either be the
state of the app (e.g., operation being performed) or the state of
the device (e.g., physical location or movement of the wearable de-
vice). In this paper, we evaluate the robustness of wearable apps by
fuzzing both inter-device communication and intra-device Intents,
in a state-aware manner.
3 DESIGN
In this paper, we present the design and implementation of Vulcan,
a state-aware fuzzing tool for evaluating robustness of wearable ap-
plications. We wanted to make Vulcan state-aware to make it more
efficient in detecting bugs (i.e., detect more bugs with fewer test
inputs). This inherently translates to less time overhead for testing.
Moreover, we wanted to target the apps in their vulnerable states,
i.e., states where they are involved in many concurrent activities
such as sensor access and high degree of communication. This is
based on prior insight from server-class platforms and distributed
systems that failures are correlated with high degree of concur-
rency [10, 33]. Our overall design and implementation of Vulcan
are constrained by the following objectives, which are important
for wide adoption of our tool.

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Barsallo, et al.

(1) Make Vulcan as unintrusive as possible. We want to keep
the wearable device and the wearable app (i.e., system under
test) unmodified.

(2) We want to define a state model that is widely applicable
to most wearable apps. This improves generalizability of
Vulcan across apps.

(3) Vulcan should neither require any elevated privilege, nor
require source code of the target apps.

(4) Automate as many stages of Vulcan (Figure 1), so that it can
be run with little manual effort.

In the subsequent sections, we elaborate on the design of Vulcan
and show how each of these objectives is met.

3.1 Overview
In order to fuzz wearable apps with the awareness of their states,
Vulcan needs to build a state model for each app (offline phase
in Figure 1). At first, a UI testing tool is used to explore different
possible UI interactions that a user might have with the target app
during normal use. In the process, Vulcan collects logs for parsing
later to build the state model. We adopt the widely used Droidbot UI
testing tool and run it until a time threshold. Then we terminate the
training process to parse the collected logs and find out the intra-
device interaction events (through Intents) and the inter-device
interaction events (through communication messages). We track
how the app behaves on receipt of each of these events and use this
information to build the state model of the app (Fig. 3). We also
record these events as a way for Vulcan to steer the app to specific
states. In Vulcan, we fuzz the app in the states where it is involved
in a large number of tasks, implying a high degree of concurrency.
This design feature allows us to increase the fault activation rate
and thus to reduce the testing time, relative to state-agnostic fuzzers
(as experimentally validated in Section 5.4). We analyze the logs
and deduplicate the stack traces to identify the unique app crashes.

3.2 State Model
During our initial fuzzing experiments with wearable apps, we
found that several apps crashed while accessing sensors. Moreover,
sensors often determine the context of a wearable app (e.g., location
or accelerometer readings). We therefore decided to use sensor
activation as a feature to define the state of the wearable. Another
unique characteristic of wearable apps is that they are often tightly
coupled with their mobile counterpart apps. This means that a
wearable app needs a mobile app for interactive or power-hungry
operations. After multiple sensor data items are collected at the
wearable, they are sent to the mobile, or control commands are sent
from the mobile app to the wearable app. This background data
or control communication may lead to new bugs not yet seen in
the mobile app. Therefore, in our model, a combination of sensor
activation and communication activity together determine the state
of the app.

As an example, consider a fitness app that helps people keep
track of their workout (Figure 3). These apps commonly include
two paired apps, installed on the mobile and the wearable device.
Before starting the workout, a person uses the mobile to indicate to
the app that she is going to start (START_TRIP). The same happens
once the workout is done; the person uses the mobile app to stop
tracking the workout session (STOP_TRIP).

Figure 3: Simplified state transition diagram for a fitness app
that has a wearable and a mobile device component. There
are two sensors and inter-device communication leading to
a state vector of three variables, <COMM,GPS,HR>.

The state of the app is defined by a vector <COMM,GPS,HR>,
where COMM is the data synchronization activity with values 0
(stopped) or 1 (started), and GPS and HR are the GPS and heart
rate sensors that can have values 0 (deactivated) or 1 (activated).
Initially, both sensors and COMM are stopped and the app has state
<0, 0, 0>. After receiving the START_TRIP message, the app goes
to state <1, 0, 0>. At this point the user may decide to start moni-
toring her heart rate and activate the HR sensor (state <1, 0, 1>). If
she starts tracking her movement using GPS, the state changes to
(<1, 1, 1>). After some time, she may choose to stop either of the
sensors. Finally, the app goes back to state <0, 0, 0> after receiving
STOP_TRIP.

In general, if there are 𝑁 sensors in the device, then the state of
an app can be represented by a tuple <COMM, 𝑆1, 𝑆2, .., 𝑆𝑁 >. Even
though wearable devices can have in excess of 20 sensors leading to
many possible states in theory, we found that, in practice, any given
app uses only a few sensors. Therefore, we restrict the dimension-
ality of our state definition to include only the sensors used in the
app. Further, apps also often activate sensors in groups, e.g., an app
with 3 sensors can go from state <0, 0, 0, 0> to <1, 1, 1, 1> without
traversing through other combinations of the sensors leading to
further reduction of the state space. We found that this relatively
coarse definition of states reduces the state-space size but is suffi-
cient for our state-aware fuzzing, which targets vulnerable states,
and leads to more fault activations.

3.3 Target States for Fuzzing
It is well known in the area of server reliability that higher degree
of concurrency can lead to higher failure rates in software [10, 34].
During preliminary experiments, we also observed the negative
effect of concurrent activities on the overall reliability of the wear-
able device. We, therefore, use the degree of concurrency of an app
as an indicator of its vulnerability3. The underlying hypothesis is
that by fuzzing the app in its vulnerable states, we can discover
more bugs in a shorter time. We show empirical validation of this
hypothesis in Section 5.4.

In Vulcan, higher concurrency relates to sensor activity and
handling of communicationmessages at thewearable, each of which
runs in a separate thread. Therefore, we define the vulnerable
states of a given app as the states with a certain percentage or
greater degree of concurrency than the maximum observed during
the training runs. Vulcan steers the app to these states and then
fuzzes communication messages or Intents in those states. Our
approach has the potential shortcoming that bugs that are not
related to concurrency will be missed. One way to mitigate this

3We use the terms vulnerability and unreliability interchangeably in this paper.

Vulcan: Lessons on Reliability of Wearables through State-Aware Fuzzing MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

problem would be to broaden the definition of vulnerable states to
include other factors, such as, the use of deprecated API calls.

3.4 Fuzzing Strategies
Vulcan applies two different fuzzing strategies depending on the
state of the app. If the app is in a state that has ongoing communica-
tion, i.e., 𝐶𝑂𝑀𝑀 = 1, then both intra-device interaction, i.e., Intent
fuzzing, and inter-device interaction, i.e., Communication fuzzing,
are performed. In contrast, if no communication is ongoing, i.e.,
𝐶𝑂𝑀𝑀 = 0, only intra-device fuzzing is performed. This is due
to the fact that when 𝐶𝑂𝑀𝑀 = 0, communication messages from
mobile to wearable are silently ignored. Below, we detail each of
the two types of fuzzing and the method to automate the process.

3.4.1 Intent Injection. While fuzzing intra-device interaction, we
generate explicit Intents targeting Activities and Services within
an app. We modify the Action, Data, and Extra fields of Intents
based on three pre-defined strategies: semi-valid (use combination
of known Action and Data values, but which are incorrect accord-
ing to the actual usage), random (use random strings as Action
or Data), and empty (keep one of the fields blank). Vulcan gen-
erates semi-valid injections following the Android API specifica-
tion [23]. The Intents are composed using valid combinations of
Action, Data, and Extra fields. For instance, using a semi-valid
strategy, the fuzzer will generate an Intent{component=WearAct,
act=action.RUN}, when the app is expecting: Intent{component=
WearAct, act=fitness.TRACK}.

3.4.2 Communication Fuzzing. We fuzz the communication mes-
sages between the mobile and the wearable based on two strategies:
random (use random message) or empty (use null value as the
message). For example, for a message like [/getOffDismissed,
SomeMessage], the fuzzer replaces the message with [/getOffDis
missed, null] using the empty fuzzing strategy. We did not add
semi-valid fuzzing strategy here because we are unable to read the
structures of inter-device communication messages due to the lack
of source code and the lack of any standard format for inter-device
messages. To the best of our knowledge, no other Android testing
tool fuzzes inter-device communication messages. We found that
communication fuzzing led to some novel failures, including error
propagation from a wearable app to a mobile app, and a higher rate
of failures, as we discuss in Section 5.4.

3.4.3 Automated Intent Specification Generation. During our ini-
tial fuzzing experiments, we randomly generated Intents but we
found that a majority of randomly generated Intents were discarded
by the Android Runtime, since the target apps only subscribed to
specific Intents. To maximize the effectiveness of our semi-valid
Intent injection, we wanted to generate the Intents following the
Android specification [23]. We found that the Android documen-
tation specifies the valid fields (Data, Action, Category, Extra)
for each Intent and the possible valid combinations of those fields.
According to the purpose of the Intent, the valid type for each of
its fields is also specified. For example, an Intent could specify the
action of ACTION_PACKAGE_REPLACED to broadcast an updated app
package. The Intent will have the data field as the name of the
package and an extra field called EXTRA_UID that indicates a unique
integer identification number associated with the updated package.

This motivates us to intelligently generate Intents by combining
only valid fields instead of randomized values for the fields (e.g., as
used in QGJ).

We automate the Intent specification extraction process by de-
signing a text analysis tool. This tool takes the Android specifica-
tion HTML page [23] as the input and iterates through this page
as well as any other possible hyper-linked pages to compose all
possible Intents. Two core text extraction techniques are used to
extract information on the HTML pages: lexical matching and pat-
tern matching. Lexical matching is used to extract some specific
keywords like “Constant Value”.

The text analysis tool produces a structured JSON file describing
the Intent specifications and this file is used by Vulcan to randomly
inject Intents that follow the Android specification. We evaluate
the correctness of this automated tool by manually reviewing the
generated specifications. The manual process was performed in-
dependently by three graduate students to minimize mistakes. We
found that the text analysis tool achieved a reasonably high ac-
curacy of 93.5%. We measured accuracy through a conservative
calculation whereby if the tool got any of the fields wrong in an
Intent, it was taken to have made an error on that Intent. This
automation gives Vulcan the capability to dynamically adapt to
changes in the Android Intent specification in future API releases.

3.5 Vulcan Components
Vulcan consists of an ensemble of tools that performs various func-
tions at different stages of the offline training or the online testing
processes. The overall architecture of our testing tool and the in-
teraction between each of the components is shown in Figure 4.
Since Vulcan targets both interaction within the wearable device
(inter-process interaction via Intents) and across devices (mobile
and wearable), its components are spread across the two devices.

3.5.1 Offline Training. Training runs for each target app are done
using the Droidbot UI testing tool [30], which uses the Android
Debug Bridge (ADB) to send UI events to the wearable device.
Training is initiated with a script on the host computer. It is run for
a pre-defined time interval (2 hours for each app), by which time
we estimate (and empirically validate for a sampled set of apps)
that a majority of the app’s states are explored. Further, if during
the online operation new states are discovered, we add them into
the state model.
Instrumentation. The instrumentation module captures and logs
inter-device communication messages that are sent from the mobile
to the wearable. These are later used to generate mutated commu-
nication messages during the fuzzing phase. This module resides
on the mobile device and intercepts the communication to alter
messages before it is signed by the Android runtime. Such an instru-
mentation infrastructure does not exist yet on the wearable side. If
we were to alter the messages from the wearable to the mobile in
transit, or at the mobile end, these messages would fail the Android
check and be silently dropped. This is the reason why we cannot
mutate messages from the wearable to the mobile device.
Monitor. The Monitor captures log traces from various sources
such as logcat [24] and dumpsys [22]. Through this it evaluates
the values of the state variables, such as, for each sensor, whether
it is active or not.

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Barsallo, et al.

Figure 4: Vulcan architecture. The diagram shows the location for various components and their interaction in each of the two
stages: (a) The tools collect information from the log traces to build a model that represents the app; (b) The model is used to
guide fuzzing campaigns targeting the wearable app.

Model Builder. It parses the collected logs from the Monitor and
the traces of UI events from Droidbot and determines the state
model of the wearable app. If multiple UI events occur sequentially
without causing any change to the state variables, then Vulcan
creates one transition event as the concatenation of the multiple
UI events. This design helps in part to contain the explosion of the
state space. The sequence of UI events are later used to steer the
target app to a vulnerable state.

3.5.2 Online Fuzzing. During online testing, fuzzing happens in
an automated manner managed by the Orchestrator, given the state
model and the replay traces.
Orchestrator. The Orchestrator is the core of Vulcan and it de-
termines what actions will be performed next. Given a target app
and its state model, the orchestrator can run the app in one of two
modes–replay mode and fuzzing mode. In the replay mode, the
orchestrator guides an app to a target state. This is used to steer
the wearable app to a vulnerable state as described earlier. In the
fuzzing mode, it directs the Fuzzer to inject inter or intra-device
interaction messages accordingly, as described in Section 3.4.
Replay Module. The replay module is responsible for guiding the
target app to a given state. For this, it uses the state model of the
app and the sequence of UI events needed to drive the app to a
target state, both of which have been determined offline and are
provided by the Model Builder. This ordered set of UI events are
injected into the mobile device using ADB [21]. In case of a crash
on the wearable app during fuzzing, the replay module also steers
the app to the last valid state before the failure.
Fuzzer. The Fuzzer in Vulcan has two submodules, one for each
of the fuzzing strategies described in Section 3.4. Intra-device in-
teraction fuzzing (Intents) is done by a service component in the
wearable device, whereas, inter-device communication fuzzing is
done using the instrumentation module in the mobile device as
described above. Depending on the state of the wearable (i.e., is
communication in progress between the mobile and the wearable),
one or both of the fuzzing strategies may be applied. In either of
these campaigns, if the app state changes while fuzzing, the control
goes back to the Orchestrator to decide the next fuzzing strategy to
execute.
Monitor. As in the offline mode, the Monitor keeps track of current
state of the wearable app during the fuzz testing. If during fuzzing,
it discovers a new state (which was not observed during the training
phase), it updates the statemodel with this new state and records the

events that caused that transition. The new state is not immediately
fuzzed during the current iteration, but is considered in future runs
if it meets the definition of a vulnerable state.

4 IMPLEMENTATION
We implemented Vulcan using Java (Intent fuzzer), Python (scripts
for training and execution), and Javascript (Communication fuzzer).
Vulcan does not require access to source code of a target app and
can work with binaries. This is crucial for adoption of any tool
and is different from many tools in this space, such as ACTEve [3],
JPF-Android [42], AWUIAutomator [45]. All of our instrumentation
and fuzzing are done without any modifications to the wearable
app itself.
Data Collection and StateModel Building. The fact that Vulcan
is designed to fuzz apps without access to the source code posed
a challenge to infer the state model. The events relevant to our
approach to create the state model are interaction between devices
and hardware sensor activation and these are observed using the
adb logcat, dumpsys, and the communication traces collected
from the callback functions (instrumentation). The communication
between a wearable device and a mobile device is visible using the
traces from Wearable Data LayerAPIs in the Google Play services
framework. We collected the log traces of inter-device interactions
by enabling logging in Android’s WearableListenerService. The
sensor events are readily available by invoking the dumpsys service,
through the adb. This service provides the current status of the
sensor and which process is interacting with it, if it is activated,
Dynamic Binary Instrumentation. In order to fuzz inter-device
communication messages, we alter the messages at source (i.e., on
the mobile side). This was achieved by dynamically instrumenting
the binary of the mobile app and registering a callback for all its
Data Layer API calls. The instrumentationmodulewas implemented
using the Frida dynamic binary instrumentation framework [4].
FuzzingComponents. In terms of deployment, Vulcan is deployed
across both the mobile and the wearable device as shown in Fig. 4.
Our inter-device interaction fuzzer is implemented as a Javascript
code that is invoked by Frida when the mobile app communicates
with the wearable. Our intra-device interaction (Intent) fuzzer was
implemented as a separate app. It uses the Android framework spec-
ification for generating semi-valid and empty Intents. Currently,
these specifications are automatically extracted from Android doc-
umentation and are saved as JSON files. We also developed another
app for selectively activating and using sensors on the wearable

Vulcan: Lessons on Reliability of Wearables through State-Aware Fuzzing MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

device, called the Manipulator app. The purpose of this app is to
stress the wearable device itself by creating contention for various
sensors (Section 5.1).

5 EXPERIMENTS
5.1 Experiment Setup
Sample Set. We evaluated our fuzz tool on the top 100 wearable
apps available in the Google Play Store in the Android Wear section.
The three predominant categories that these apps fall under are (in
order) Health & Fitness, Tools, and Productivity. The criteria for
ranking are as per Google’s definition of popularity (a combination
of factors such as number of installs, number of uninstalls, user
ratings, growth trends etc.). We downloaded each app from the
Google Play Store and installed on the wearable devices. If the app
has a companion app, we installed the companion app on the mobile
device. Table 1 shows the detailed information on the selected apps,
which combine for a total of 861 activities and 604 services.
Hardware. For the experiments we used 4 Google Nexus 6P smart-
phones with Android 8.1 paired with 4 different smartwatches (two
of Huawei Watch 2 and two of Fossil Gen 4). All the smartwatches
have installed Wear OS 2.8 (released in July 2019). For the 100 apps
that we tested, we evenly distributed 25 apps to each smartwatch.
During the experiments, the mobile was connected to a computer
via USB to collect the log traces using adb, while the smartwatch
was connected to adb over Bluetooth.
Setup. None of our evaluations required any modification to the
target apps. For our baseline experiments, we ran Monkey and APE
for 2 hours on each app. In the case of QGJ, we ran all the four fuzz
campaigns presented in [9] targeting all the Activities and Services
components of each app. Finally, for evaluating Vulcan we first ran
each app for two hours with Droidbot for state-model construc-
tion. After identifying the state models, we fuzz each application in
its corresponding vulnerable states using the fuzzing strategies de-
scribed in Sec. 3.4. If the device rebooted, we continued the fuzzing
in the remaining vulnerable states after the reboot.

5.2 Failure Categories
From our experiments, we found failures to have three types of man-
ifestations, which are all user-visible failures. ANR: This condition
is triggered when the foreground app stops responding, leading to
the manifestation that the system appears frozen. The system gener-
ates a log entry containing the message ANR (App Not Responding).
App Crash: This corresponds to an app crash. The system gener-
ates a log entry with the message FATAL EXCEPTION. System Re-
boot:This is themost severe of the failures and triggers a soft reboot
of the Android runtime causing the device to reboot. The system
generates a log entry with the message android.os.DeadSystem
Exception. Thesemanifestations are equivalent to the Catastrophic,
Restart, and Abort failures proposed in [28] for the classification of
the robustness of server OSes. Another interesting class of errors,
silent data corruption, is kept outside the scope of this paper as it
needs expert users writing specific data validity checks. We cap-
ture the stack trace following a failure message to identify unique
failures, by looking for matching stack traces (after removing non-
deterministic fields like pid). For our results, we only count unique
failures after deduplication.

Table 1: Overview of selected apps for the evaluation
grouped by category. These are the top 100 apps on the
Google Play Store between Mar and Aug 2019.

Category # Apps # Act. # Serv.
Books and references 1 3 1
Communication 7 149 173
Entertainment 7 14 0
Finance 5 69 30
Food and drink 1 7 6
Game arcade 1 2 0
Game puzzle 1 2 2
Health & Fitness 16 160 85
Lifestyle 2 18 1
Maps and navigation 5 24 16
Medical 1 3 1
Music and audio 7 58 57
News and magazines 2 7 7
Personalization 5 62 29
Photography 1 6 4
Productivity 10 82 65
Shopping 2 24 14
Sports 5 25 16
Tools 11 95 51
Travel and local 4 16 11
Weather 6 35 35

100 861 604

5.3 State-aware Injection Campaigns
One of the primary objectives of Vulcan is to evaluate the effec-
tiveness of a state-aware fuzzing strategy in comparison with state-
agnostic fuzzing. To this end, we ran our experiments with fuzzing
strategies described in Section 3.5. Based on the state of an app,
our fuzzer either alters intra-device interaction messages (Intents)
or inter-device interaction messages (control commands or data
synchronization messages from the mobile to the wearable). Be-
sides state-aware fuzzing strategies, we also want to evaluate the
impact of degree of concurrency on application reliability. We hy-
pothesize that altering global state of the device (how many and
which sensors are activated) can lead to different failure manifesta-
tions. One approach to evaluate this could be to stress the sensors
from within the target app, e.g., querying the same sensors but at
a higher rate. However, doing so would require alteration of the
target app, and our usage model does not allow this. Therefore, we
decided to stress the apps, and thus the device, by activating sensors
through an external app, introduced earlier as the “Manipulator
app”. The Manipulator app either activates the same set of sensors
as those in an app (thereby causing contention for those sensors)
or it activates the complementary set of sensors (increasing load on
the SensorManager, the base class that lets apps access a device’s
sensors). Thus, we ran Vulcan under three scenarios as shown in
Table 2. While Expt. I evaluates Vulcan against a state-agnostic
fuzzer like Monkey or QGJ, Experiments II and III show the impact
of concurrency on the app reliability.

Some of the apps in our sample set did not use any sensor, there-
fore, Expt III is not applicable to these apps. Due to this, we split
the results into two categories: (a) apps that use sensors for which
all three experiments are run and (b) apps that do not use sensors

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Barsallo, et al.

Table 2: Variation of sensor activations across experiments.

Expt. Device State
I Not modified outside target app
II Activate complementary sensors (by the Manipulator app)
III Activate same sensors as in target app (by the Manipulator

app)

for which only experiments I and II are run. We found that despite
not using any sensors, these apps still showed a larger number of
ANRs and reboots for Expt II compared to Expt I.
Baselines
We compare the results of Vulcan against three state-of-the-art tools
for testing Android or Wear OS: QGJ [9], Android Monkey tool [5],
and the recently released APE [25], the first two are state-agnostic
while the last is state-aware. QGJ, a black box fuzz testing tool,
injectsmalformed Intents towearable apps based on four campaigns
which vary the Intent’s input (e.g., Action, Data or Extras). Monkey
is a widely used UI fuzzing tool that generates pseudo-random UI
events and injects them to the device or an emulator.We assigned an
equal probability to each of the possible events in Monkey. Finally,
APE, built on top of Monkey, is a GUI injection tool that does
dynamic refinement of the statically determined state model to
increase the effectiveness of Monkey’s testing strategies.

5.4 State-Aware Injection Results
Figure 5 shows the results obtained from our experiment. In general,
we found that our state-aware fuzzing with Vulcan generated more
crashes than the state-agnostic fuzzers. Moreover, Vulcan is the
only one that is able to trigger system reboots in the wearable de-
vice. However, Monkey generated more ANRs compared to Vulcan,
since it sends events at a higher rate than Vulcan. Vulcan pauses
injections after a set and invokes the Garbage Collector to prevent
overloading the system. To see the effect of altering the global state
of the device, according to Experiments I-III, we look at Tables 3 (for
all apps, using sensors and not using sensors) and 4 (only for the
apps that use sensors). As we can observe, ANR and system reboots
increase when the sensors on the device are stressed. We omit Expt
III from Table 3 since it has fewer apps than other experiments and
cannot be compared directly. Table 4 depicts the distribution of
failure manifestations for all three experiments.

We also found differences in failure manifestations across Exper-
iments I, II, and III, which supports our hypothesis that fuzzing in
the vulnerable states (higher concurrency) can trigger new bugs
on the wearable app. Although the number of crashes remain the
same across the experiments (Table 4), the number of ANRs is much
higher for Experiments II and III. This is expected considering the
Manipulator app is stressing the SensorService on the wearable
device. Similarly, number of reboots is higher in Expt II and III
compared to Expt I (Tables 3 and 4). This indicates that sensor ac-
tivation (even through an external app) has a negative effect on
overall reliability of the system. Vulcan can automatically guide a
wearable app to a vulnerable state and then fuzz at that state, thus
increasing the rate at which bugs can be discovered.
Comparison across tools. Figure 6 shows a comparison of unique
and overlapping crashes triggered by each of the tools. It can be
seen that QGJ and Vulcan has a large degree of overlap though there

Table 3: Failure manifestations for all apps. This indicates
that state-aware fuzzing leads to more ANR, crashes, and re-
boots. For Vulcan, the values are presented in parenthesis as
(Intent fuzzing, communication fuzzing).

State #ANR #Crashes #Reboots
Vulcan (Expt. I) 12 44 (39, 5) 3 (3, 0)
Vulcan (Expt. II) 20 45 (40, 5) 12 (12, 0)
QGJ 12 38 0
Monkey 57 17 0
APE 20 15 0

Table 4: Failure manifestations for apps that use sensors.
This indicates that state-aware approach can trigger more
failures than state-agnostic approaches like QGJ or Monkey.
For Vulcan all the failures correspond to the Intent fuzzing
strategy.

State #ANR #Crashes #Reboots
Vulcan (Expt. I) 1 10 2
Vulcan (Expt. II) 12 10 3
Vulcan (Expt. III) 9 10 3
QGJ 2 8 0
Monkey 18 5 0
APE 10 0 0

are 8 crashes that were not triggered by QGJ. On the contrary, Mon-
key and APE have very little overlap among the crashes because
they generate UI events very differently and they have no overlap
with the Intent fuzzing tools, QGJ and Vulcan. This highlights the
importance of using complementary tools for testing Wear OS apps,
namely, UI, Intent, and Communication fuzzing tools.
Exception types. To see the distribution of exception types that
resulted in the crashes across the experiments, we look at Figure 7.
It can be seen that NullPointerException dominates as the lead-
ing cause of failures, followed by IllegalArgumentException and
IllegalState Exception. This ordering is quite consistent across
the four fuzzing-based tools. Previous work [36, 37] has shown that
input validation bugs (null pointer and illegal argument exceptions)
have been a common category in Android apps over the years. Our
results indicate that similar situation persists in the current gener-
ation of wearable apps. Most of these crashes can be avoided by
proper exception handling code in the apps. IDEs such as Android
studio can implement better exception handling. If a system service
(e.g., Google Fit in our case) throws an exception, the tools should
check absence of exception handling codes and throw a compile
time error.

From Tables 3 and 4, we see Monkey triggers a high number
of ANRs. We performed an experiment to understand the reason
behind this. When Monkey is run with default settings, there is
no delay between UI events and this causes an overload of the
app. But when we ran Monkey with a delay of 500ms between
UI events to make it comparable to that of inter-Intent delay of
Vulcan, we observed that the ANRs come down significantly. For
example, for the 7 most ANR-prone apps, the number of ANRs with

Vulcan: Lessons on Reliability of Wearables through State-Aware Fuzzing MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

Figure 5: Distribution of failure manifestation for all the
tools. Vulcan leads to more crashes and reboots than others.

Figure 6: Unique crashes. Comparison of unique
crashes across tools after normalizing stack traces.

Figure 7: Distribution of Exception Types across runs that
resulted in a crash. The NullPointerException dominates
across all tools.

the default execution and with the delay went down from 16 to 4
(the number of crashes also incidentally went down, from 12 to 8,
while no system reboots were triggered). We also observed that
ANRs were rather non-deterministic, unlike crashes and system
reboots, and this is understandable because these correspond to
individual apps’ response to overload conditions, which tend to be
variable themselves.

5.5 QGJ vs Vulcan
Efficiency. Here we take a look at the efficiency of triggering the
crashes for QGJ versus Vulcan (Expt. I). Efficiency is measured by
how many Intents have to be injected to cause a single failure. We
replicate the four fuzzing campaigns of QGJ described in [9]. The
results are shown in Table 5.

QGJ is able to trigger comparable numbers of unique crashes
through Intent fuzzing as Vulcan (Table 3 Exp I). However, its ef-
ficiency in triggering the crashes is much lower. Table 5 shows
how Vulcan is 5.5X more efficient than QGJ in inducing unique
crashes. The efficiency difference comes from the fact that QGJ
creates fuzzed Intents without awareness of the validity of the

Table 5: Efficiency of triggering failures between QGJ and
Vulcan using Intent fuzzing.

Tool QGJ Vulcan
Intents injected 3,390,010 631,049
crashes 7,220 1,990
unique crashes 38 39
of unique crashes per 100K
injected Intents

1.12 6.18 (5.52X)

combination of Intent fields defined in the Android Intent specifi-
cations [23]. It tests all combinations of Action, Data, and Extra
fields in an Intent, therefore, a significant number of Intents sent
by QGJ are rejected by the Wear OS or triggered duplicated failures.
Vulcan, on the other hand, parses and follows the specification to
create specific Intents so that far fewer Intents are rejected.
Failure types. Vulcan fuzzes both inter-device and intra-device
communications, whereas, QGJ only fuzzes intra-device commu-
nications. Due to our state-aware fuzzing, Vulcan is able to iden-
tify when there is an ongoing synchronization between the wear-
able and the mobile device and fuzz the inter-device messages
in those states. Vulcan was able to identify 5 failures related to
inter-device communications. These failures are mostly due to
IllegalStateException errors. As we can notice in Figure 7, Vul-
can trigerred twice as many IllegalStateException failures as
QGJ. Some of these failures even propagated to the paired mobile,
crashing both the wearable app and the mobile companion app (we
provide a root cause analysis in Sec. 7.1).
Deterministic system reboots. In our experiments, QGJ did not
trigger any system reboots. By contrast, Vulcan was able to trigger
18 system reboots across 13 apps. This can be explained by the
fact that QGJ is a state-agnostic tool, while Vulcan can steer a
wearable app towards a vulnerable state before applying the fuzz
campaigns. Moreover, from our results, we identified that apps
with high concurrency often trigger system reboots with Vulcan.
Hence, we decided to further validate this claim by repeating the
experiments for the sensor-rich applications from the 13 in total for
which we observed system reboots. We focus here on the 4 apps
that had the richest use of sensors. Naturally, these achieve a higher
degree of concurrency due to the use of sensors. We followed the
same procedure as Section 5.4 and for each app we repeated the
experiment 5 times. As expected, Vulcan triggered system reboots,
but now the system reboots happen deterministically for each trial,

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Barsallo, et al.

while for the entire set of applications, the reboot trigger happened
approximately half the time.

6 SYSTEM REBOOTS
In this section, we show the cases where Vulcan causes the wearable
device to reboot and delve into the root causes of these system
reboots. We found 18 system reboots across 13 apps, out of the 100
evaluated apps. As part of responsible disclosure, we have shared
the failure details with the OS vendor. System reboots are identified
by the exception DeadSystemException in the Logcat logs, which
essentially means that the Android System Server is dead. Android
System Server is the middleware to support user level apps such as
a browser. It creates most of the core components in Android such
as Activity Manager, Package Manager, etc. If the System Server
is down, user apps will not function so the whole system has to
reboot to restore the normal operations.

6.1 Root Cause Analysis
In the system reboots that Vulcan triggered, the System Server is
killed by the Android Watchdog. The Watchdog is a protection
mechanism to prevent the wearable from becoming unresponsive;
it monitors the system processes in a while(true) loop with a
fixed delay between iterations. The Watchdog as well as all the
components shown in Figure 8 run as threads within the System
Server process. If the Watchdog finds a component that is hung
for more than 60 seconds (the default timeout value), it will call
Process.killProcess(Process.myPid()) to send a SIGKILL sig-
nal. Because the monitored components share the same process id
with the Watchdog as well as the System Server, this essentially
means killing the System Server, which causes the device to reboot.

By delving into the logs and stack traces of those cases, we
categorize those 18 reboots into two groups. 8 reboots are due to
blocked lock and 10 other reboots are due to busy waiting. Blocked
lock means that a thread is trying to acquire a lock but is blocked
because the lock is held by another thread. Busy waiting means
a thread is in the waiting status for some other thread to finish,
such as a UI thread (android.ui) or an I/O thread (android.io)
for read or write operation.

We give two examples to explain each of the two categories. For
Blocked Lock, Figure 9 shows the stacktrace where the Activity
Manager is waiting for the lock (0x05804bd6 in line 266) that is
held by thread 82. This wait passes the 60 seconds default timeout
value. As a thread created by the System Server, ActivityManager
shares the same process id with the System Server. There is no way
for the Watchdog to just kill the ActivityManager but has to kill
the System Server process thereby rebooting the system. For Busy
Waiting, Figure 10 shows an example. Here the ActivityManager
calls __epoll_pwait in line 513, which is a Linux function to wait
for an I/O event. This wait expires the 60 second threshold in the
Watchdog, so the System Server is also killed thereby rebooting the
device.

6.2 Mitigation of System Reboots
Keeping all the core system services as threads in the System Server
makes for a simple design. However, it comes with the price of
unnecessary reboots of the whole system because of the death of
a single service. With increasing number of system services, the

Figure 8: Various system service threads monitored by the
Watchdog. The system will reboot if any thread is killed by
the Watchdog.

reboots will become more frequent and it will also require longer
to reinitialize the System Server process.

Our solution strategy is to use an Intent buffer to alleviate such
resource starvation and thereby, preventing system reboots. In the
proposed solution, all the Intents sent from one app to another are
stored in the buffer. We then have a Fetcher process fetch a single
Intent periodically and forward the Intent to the destination(s) after
a pre-set delay. When the buffer is full, the system rejects any
incoming Intent to keep the device operational thus preventing
resource starvation from a burst of Intents. This approach will
prevent an attacker app (such as one injecting Intents at in Vulcan)
from overwhelming Wear OS.

Since Wear OS is closed source, we cannot modify the frame-
work so we implement a Proof-Of-Concept (POC) solution. We
implement an Intent buffer as a middle layer for Intent handing on
the target app itself. We empirically found that for a sensor-rich
application like the Cardiogram app, a delay of 2.5 seconds between
Intents eliminated all system reboots. Note that this delay is a pes-
simistic estimate (assuming an already busy device) and we can
incrementally raise the delay from a low value (few milliseconds)
after every Intent delivery. Moreover, (trusted) system Intents or
signed Intents can bypass our buffer and can be delivered immedi-
ately. Such a strategy will have negligible delay for system Intents
and a relatively high delay for untrusted user-level Intents.

Next, we discuss a small user study to quantify the effect on
usability due to the delay introduced by the Fetcher (we used the
default value of 2.5 seconds). First, we developed a (trivial) wear-
able app, which communicates with a third-party calendar app [6]
using Intents. Our app can interact with the calendar app using two
approaches: either using our POC solution or the standard mecha-
nism. Then, we recruited 15 random people from our department
to use our app to schedule events on the smartwatch. Each person
repeated the process three times for each approach, run as a blind
study. Finally, we asked the users to evaluate their experience with
the app. As Table 6 shows, most of the users experienced no differ-
ence (60.0%) or little difference (33.3%) while using the app with
our POC solution versus the standard mechanism. In contrast, only
(6.7%) noted a significant difference between the two approaches.
This shows that an appropriately tuned delay for our Intent buffer
solution can potentially mitigate system reboot attacks, while not
affecting usability of wearable apps. A full validation will require

Vulcan: Lessons on Reliability of Wearables through State-Aware Fuzzing MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

Figure 9: Example stacktrace of the blocked lock system re-
boots. ActivityManager is waiting for the lock at line 266.

Figure 10: Example stacktrace of the busy waiting system re-
boots. ActivityManager calls a I/O wait function at line 513.

a larger user study with a greater and a diverse set of wearable
activities.

(a) Varying # of sensors activated (b) Varying sensor sampling period

Figure 11: Effect of load of sensors on system reboots. Fewer
Intents are needed to trigger a system reboot as (a) the num-
ber of sensors being activated increases or (b) the sensor sam-
pling period decreases. The bars represent the range from
the min to the max values.

Table 6: User experience reported while using the smart-
watch with our POC solution.

User Experience % Response
No difference 60.0 %
Little difference 33.3 %
Significant difference 6.7 %

Comparison with prior research on Android system reboot.
In prior work [26], it was shown that Android suffers from coarse-
grained locking in its system services, whereby, seemingly innocu-
ous apps can cause starvation of system resources by acquiring
these locks in a loop. This would cause the Android device to re-
boot. We tried to replicate this failure mode on Wear OS and could
not. On investigating, we find that their attacker app, designed for
Android 5, relies on successfully receiving two Broadcast Intents:
PACKAGE_REMOVED, and ACTION_PACKAGE_REPLACED. But, since An-
droid 8.0, receiving Broadcast Intents has been severely restricted
for user-level apps and these two specifically can only be received
by system apps. In contrast, our Intent fuzzer is a user-level app
and can cause the system reboots without system-level privileges.

The mitigation proposed in [26] is finer-grained locking in An-
droid system services, a smarter Watchdog (that does not automat-
ically kill a non-responsive process), and restricting the number
of resources (e.g., sensors) an app can acquire. All their defenses

require modification of the Android framework, whereas, our solu-
tion can be implemented on a per-app basis (an Intent buffer at the
receiving app), or, at the framework level with vendor cooperation.

6.3 Effect of Load on System Reboots
Sensor activity. Our central hypothesis is that the reliability of
the software system is compromised by the degree of concurrency.
Here, we quantify this effect by varying the number of sensors
that are activated and measuring how many Intents are needed to
trigger a device reboot. For the experiment, we choose a popular
Health & Fitness app, the Cardiogram app [12], and one that has
been implicated in our earlier experiments with system reboots.
We vary the number of sensors activated (by the Manipulator app)
from 0 to the maximum available in the device, 22 sensors (15 hard-
ware sensors and 7 software sensors), while concurrently injecting
fuzzed Intents into the Cardiogram app. In each trial, we keep the
sampling period of each sensor fixed at once every 60 ms. We re-
peated the experiment 5 times for each number of activated sensors.
Importantly, device reboots were triggered deterministically in ev-
ery single trial. As shown in Figure 11(a), as the number of sensors
activated increases, we need fewer number of Intents to trigger a
system reboot. This number drops sharply for the first 5 sensors,
and then drops slowly. This result indicates that with increasing
concurrency, the vulnerability of the system increases to the most
catastrophic of failures, system reboots.
Sensor sampling period. In this experiment, we show the effect of
changing sensor sampling periods on the ease of triggering system
reboots. We inject Intents to the Cardiogram app while concur-
rently using our Manipulator app to sample all 22 sensors in synch,
with varying periodicities. We show the result in Figure 11(b). For
each sensor sampling period, we run 5 trials and in each trial, we
measure the number of injected Intents until the wearable device
reboots. The Android Developer document [18] specifies four dif-
ferent sampling periods and we use all of them in our experiments.
In every single trial, the device eventually rebooted (approximately
in 20–30 minutes), emphasizing the deterministic nature of this
failure. The result can be explained by the fact that sensor sampling
consumes system resources. Thus, the faster the sensors are sam-
pled, the more resources they consume and therefore, it requires
injecting fewer Intents to trigger system reboots.

7 LESSONS AND THREATS
7.1 Failure Case Studies
Our empirical evaluation of 100 popular Wear OS apps helped
us understand several aspects of wearable app reliability. In this
section, we present various failure categories that highlight some

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Barsallo, et al.

nuances about the Wear OS ecosystem and provide motivation for
future research.
Android-Wear OS Code Transfer. Among the crashes observed,
we found that every time our fuzzer injected a KEYCODE_SEARCH
event, the wearable app crashed. This is a widespread problem—
among the 100 tested apps, 95 crashed when this event was injected.
We found empirically that no other key event triggered a similar
vulnerability. On Android, the KEYCODE_SEARCH event is used to
launch a text search inside the app (apps can also silently ignore the
event if it has not implemented this feature). However, in the case
of Wear OS, when the event is injected, the apps crashed with an
IllegalStateException. Digging deeper we found that Wear OS,
when inheriting code from Android, removed the SearchManager
service class, assuming probably that text searches are not suited
for the form factor of wearables, but did not drop the corresponding
Intent. This kind of behavior can be seized on by amalicious app (po-
tentially with system-level privileges) to crash other apps. The root
problem can be handled at the Wear OS level by simply discarding
the search event in the base Activities class (WearableActivity)
instead of trying to launch SearchManager.
Error Propagation. As noted in Section 5.5, Vulcan found several
vulnerabilities related to ongoing synchronization between mobile
and wearable (refer Table 3). It is noteworthy that some of these
failures even propagated back to the mobile device, crashing not
only the wearable app but also its mobile counterpart. For example,
in our experiments, the crash of a wearable navigation app trig-
gers a communication from the wearable to the mobile with the
Exception object However, this causes a NullPointerException
in the mobile app when it tries to invoke a method getMessage.
This exception is caused by a mismatch of the serialized object sent
by the wearable and that expected by the mobile. The wearable
sends the exception wrapped as a GSON object, while the mobile
device expects a Throwable object. This can be handled better by
strongly typing the data being shared between devices and throw-
ing a compile-time error in case of type mismatch.
Watchdog and Resource Starvation. Our results in Section 6.1
show that it is possible to reboot a wearable device without any
root privilege. The primary reason for this is resource starvation
triggered by high degrees of concurrent activities, which cannot
be handled by the System Server. We have demonstrated how an
intent-buffer can alleviate such resource starvation and canmitigate
the problem of system reboots in Section 6.2.

7.2 Threats to Validity.
The experiments presented in this paper have a few shortcomings
that may bias our observations. First, our study is based on two
different smartwatch models each of which can have individual
vendor-specific customizations. Second, our inter-device communi-
cation fuzzing is currently one-directional, for messages going from
the mobile to the wearable. This is primarily to keep the wearable
device unaltered and because the injection tool Frida only exists
for Android. Third, even though we selected popular apps from
different categories, our sample size of 100 can be considered small.
However, this is a shortcoming of most fuzzing studies which are
usually time consuming. Even with 100 apps, Vulcan tested more
than 1,400 components and took more than two weeks for the
experiments of Table 3, running on 4 devices in parallel.

8 RELATEDWORK
Stateful Fuzzers.Most of the previouswork on stateful fuzzing has
been focused on communication protocols, such as SIP or FTP [8, 15,
17, 20]. A common approach here is to infer a finite state machine
by analyzing the network traffic. Then, this model is used to guide
the black-box fuzz testing of the communication messages, rather
than the intra-protocol interactions.
Android. Since its release in 2008, there have been numerous stud-
ies on the reliability of Android OS. These works vary from random
fuzzing testing tools based on UI events and system events [35, 44],
fuzzers focused on Android IPC [11, 36, 39], model-based testing
tools based on static analysis [2] or specialized approach based on
concolic testing [3]. Previous works based onmodel representations
of the apps, focused on GUI navigation [2, 14, 25, 30, 38, 40, 47],
rather than a stateful approach of communication and sensors as
in Vulcan.
Wear OS. Research on Wear OS focuses on the performance and
the reliability of the OS itself [31–33, 46]. They found inefficien-
cies in the OS because of deficiencies in the design. Some work
found unreliability of Wear OS apps for health monitoring based on
physical context such as mobility [19, 43]. However, those design
flaws were never tied to any vulnerabilities that made the Wear OS
prone to system reboots. Recent studies have addressed the need
for testing tools for Wear OS ecosystem [9, 25, 45]. Barsallo Yi et
al. [9] proposed QGJ, a testing tool for Wear OS that creates four
campaigns to inject faulty Intents to the wearable. These campaigns
are less efficient than the strategies of Vulcan. Being state-agnostic,
it is unable to trigger system reboots. To the best of our knowledge,
Vulcan is the first tool that fuzz tests Wear OS using a stateful
approach.

9 CONCLUSION
We presented the design and implementation of Vulcan, a state-
aware fuzzing tool for wearable apps. Vulcan can automatically
build a state model for an app from its logs and steer the app to
specific states by replaying the traces. It then launches state-aware
fuzzing on the wearable app targeting both inter-device communi-
cation and intra-device Intents at the states with high degrees of
concurrent activities. State-aware fuzzing leads to more app crashes
compared to stateless fuzzing. As the most worrisome result, it is
possible to predictably reboot a wearable device from a user app,
with no system-level or root privileges, by targeting specific states.
We provide a proof-of-concept solution to mitigate the system re-
boots that performs rate control at an intermediate layer between
the source and the destination apps. Lessons for improving the
wearable ecosystem are better exception handling, type checking of
inter-device communication messages, and diagnosing and termi-
nating components that starve sensor resources. Our future work
will focus on automatic identification of the minimum working
example for triggering failures and improvements to the exception
handling mechanism through static and dynamic techniques.

Vulcan: Lessons on Reliability of Wearables through State-Aware Fuzzing MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

REFERENCES
[1] 2019. Vulcan: A Wearable App Fuzzing Tool. https://github.com/purdue-

dcsl/vulcan/
[2] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore

De Carmine, and Atif M. Memon. 2012. Using GUI Ripping for Automated
Testing of Android Applications. In Proceedings of the 27th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (Essen, Germany) (ASE 2012).
ACM, New York, NY, USA, 258–261. https://doi.org/10.1145/2351676.2351717

[3] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Auto-
mated concolic testing of smartphone apps. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering. ACM,
59.

[4] Ole Andre. 2018. Frida. https://www.frida.re
[5] Android. 2017. UI/Application Exerciser Monkey. https://developer.android.

com/studio/test/monkey.html
[6] appfour. 2019. Calendar for Wear OS (Android Wear). https://play.google.com/

store/apps/details?id=com.appfour.wearcalendar
[7] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration

for systematic testing of android apps. In Acm Sigplan Notices, Vol. 48. ACM,
641–660.

[8] Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin Almeroth, Richard Kem-
merer, and Giovanni Vigna. 2006. SNOOZE: toward a Stateful NetwOrk prOtocol
fuzZEr. In International Conference on Information Security. Springer, 343–358.

[9] Edgardo Barsallo Yi, Amiya K Maji, and Saurabh Bagchi. 2018. How Reliable is
my Wearable: A Fuzz Testing-based Study. In In Proceedings of the 48th IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). 410–417.

[10] Francesco A Bianchi, Mauro Pezzè, and Valerio Terragni. 2017. Reproducing
concurrency failures from crash stacks. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ACM, 705–716.

[11] Jesse Burns. 2012. Intent Fuzzer. https://www.nccgroup.trust/us/about-us/
resources/intent-fuzzer

[12] Inc Cardiogram. 2019. Cardiogram: Wear OS, Fitbit, Garmin, Android Wear. https:
//play.google.com/store/apps/details?id=com.cardiogram.v1&hl=en_US

[13] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011.
Analyzing inter-application communication in Android. In Mobisys. ACM, 239–
252.

[14] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided gui testing of
android apps with minimal restart and approximate learning. In Acm Sigplan
Notices, Vol. 48. ACM, 623–640.

[15] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin
Kirda. 2009. Prospex: Protocol specification extraction. In Security and Privacy,
2009 30th IEEE Symposium on. IEEE, 110–125.

[16] E Connolly, A Faaborg, H Raffle, and B Ryskamp. 2014. Designing for wearables.
Google I/O (2014).

[17] Joeri De Ruiter and Erik Poll. 2015. Protocol State Fuzzing of TLS Implementa-
tions.. In USENIX Security Symposium. 193–206.

[18] Android Developers. [n.d.]. Sensors Overview. https://developer.android.com/
guide/topics/sensors/sensors_overview.html

[19] Cesar Garcia-Perez, Almudena Diaz-Zayas, Alvaro Rios, Pedro Merino, Kostas
Katsalis, Chia-Yu Chang, Shahab Shariat, Navid Nikaein, Pilar Rodriguez, and
Donal Morris. 2017. Improving the efficiency and reliability of wearable based
mobile eHealth applications. Pervasive and Mobile Computing 40 (2017), 674–691.

[20] Hugo Gascon, ChristianWressnegger, Fabian Yamaguchi, Daniel Arp, and Konrad
Rieck. 2015. PULSAR: stateful black-box fuzzing of proprietary network protocols.
In International Conference on Security and Privacy in Communication Systems.
Springer, 330–347.

[21] Google. 2017. Android Debug Bridge. https://developer.android.com/studio/
command-line/adb

[22] Google. 2019. Android Developers. Dumpsys. https://developer.android.com/
studio/command-line/dumpsys

[23] Google. 2019. Android Developers. Intent Specification. https://developer.
android.com/reference/android/content/Intent

[24] Google. 2019. Android Developers. Logcat. https://developer.android.com/
studio/command-line/logcat

[25] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI testing of Android
applications via model abstraction and refinement. In Proceedings of the 41st
International Conference on Software Engineering. IEEE Press, 269–280.

[26] Heqing Huang, Sencun Zhu, Kai Chen, and Peng Liu. 2015. From System Services
Freezing to System Server Shutdown in Android: All You Need Is a Loop in an
App. In ACM CCS. 1236–1247.

[27] Antonio Ken Iannillo, Roberto Natella, Domenico Cotroneo, and Cristina Nita-
Rotaru. 2017. Chizpurfle: A Gray-Box Android Fuzzer for Vendor Service Cus-
tomizations. In ISSRE.

[28] Philip Koopman, John Sung, Christopher Dingman, Daniel Siewiorek, and Ted
Marz. 1997. Comparing operating systems using robustness benchmarks. In
Proceedings of SRDS’97: 16th IEEE Symposium on Reliable Distributed Systems.

IEEE, 72–79.
[29] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. 2004. Unmodified

Device Driver Reuse and Improved System Dependability via Virtual Machines..
In OSDI, Vol. 4. 17–30.

[30] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. Droidbot: a
lightweight ui-guided test input generator for android. In Software Engineering
Companion (ICSE-C), 2017 IEEE/ACM 39th International Conference on. IEEE, 23–
26.

[31] Renju Liu, Lintong Jiang, Ningzhe Jiang, and Felix Xiaozhu Lin. 2015. Anatomizing
system activities on interactive wearable devices. In APSys. 1–7.

[32] Renju Liu and Felix Xiaozhu Lin. 2016. Understanding the characteristics of
android wear os. In Mobisys. 151–164.

[33] Xing Liu, Tianyu Chen, Feng Qian, Zhixiu Guo, Felix Xiaozhu Lin, Xiaofeng
Wang, and Kai Chen. 2017. Characterizing Smartwatch Usage in the Wild. In
Mobisys. 385–398.

[34] Brandon Lucia and Luis Ceze. 2013. Cooperative empirical failure avoidance for
multithreaded programs. ACM SIGPLAN Notices 48, 4 (2013), 39–50.

[35] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input
generation system for android apps. In FSE. 224–234.

[36] Amiya K Maji, Fahad A Arshad, Saurabh Bagchi, and Jan S Rellermeyer. 2012. An
empirical study of the robustness of inter-component communication in Android.
In DSN. 1–12.

[37] Amiya Kumar Maji, Kangli Hao, Salmin Sultana, and Saurabh Bagchi. 2010.
Characterizing failures in mobile oses: A case study with android and symbian. In
Software Reliability Engineering (ISSRE), 2010 IEEE 21st International Symposium
on. IEEE, 249–258.

[38] KeMao, Mark Harman, and Yue Jia. 2016. Sapienz: multi-objective automated test-
ing for Android applications. In Proceedings of the 25th International Symposium
on Software Testing and Analysis. ACM, 94–105.

[39] Raimondas Sasnauskas and John Regehr. 2014. Intent fuzzer: crafting intents of
death. In WODA and PERTEA. 1–5.

[40] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing
of android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. ACM, 245–256.

[41] Michael M Swift, Muthukaruppan Annamalai, Brian N Bershad, and Henry M
Levy. 2006. Recovering device drivers. ACM Transactions on Computer Systems
(TOCS) 24, 4 (2006), 333–360.

[42] Heila van der Merwe, Brink van der Merwe, and Willem Visser. 2012. Verifying
android applications using Java PathFinder. ACM SIGSOFT Software Engineering
Notes 37, 6 (2012), 1–5.

[43] Naixing Wang, Edgardo Barsallo Yi, and Saurabh Bagchi. 2017. On reliability of
Android wearable health devices. arXiv preprint arXiv:1706.09247 (2017), 1–2.

[44] Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. 2013. Droidfuzzer: Fuzzing
the android apps with intent-filter tag. In Proceedings of International Conference
on Advances in Mobile Computing & Multimedia. ACM, 68.

[45] Hailong Zhang and Atanas Rountev. 2017. Analysis and Testing of Notifications
in Android Wear Applications. In Proceedings of the 39th International Conference
on Software Engineering (Buenos Aires, Argentina) (ICSE ’17). IEEE Press, 347–357.
https://doi.org/10.1109/ICSE.2017.39

[46] Hailong Zhang, Haowei Wu, and Atanas Rountev. 2018. Detection of energy
inefficiencies in android wear watch faces. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ACM, 691–702.

[47] Haibing Zheng, Dengfeng Li, Beihai Liang, Xia Zeng, Wujie Zheng, Yuetang
Deng, Wing Lam, Wei Yang, and Tao Xie. 2017. Automated Test Input Generation
for Android: Towards Getting There in an Industrial Case. In Proceedings of the
39th International Conference on Software Engineering: Software Engineering in
Practice Track (Buenos Aires, Argentina) (ICSE-SEIP ’17). IEEE Press, 253–262.
https://doi.org/10.1109/ICSE-SEIP.2017.32

https://github.com/purdue-dcsl/vulcan/
https://github.com/purdue-dcsl/vulcan/
https://doi.org/10.1145/2351676.2351717
https://www.frida.re
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://play.google.com/store/apps/details?id=com.appfour.wearcalendar
https://play.google.com/store/apps/details?id=com.appfour.wearcalendar
https://www.nccgroup.trust/us/about-us/resources/intent-fuzzer
https://www.nccgroup.trust/us/about-us/resources/intent-fuzzer
https://play.google.com/store/apps/details?id=com.cardiogram.v1&hl=en_US
https://play.google.com/store/apps/details?id=com.cardiogram.v1&hl=en_US
https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/dumpsys
https://developer.android.com/studio/command-line/dumpsys
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/studio/command-line/logcat
https://developer.android.com/studio/command-line/logcat
https://doi.org/10.1109/ICSE.2017.39
https://doi.org/10.1109/ICSE-SEIP.2017.32

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Wear OS
	2.2 Existing Testing Approaches

	3 Design
	3.1 Overview
	3.2 State Model
	3.3 Target States for Fuzzing
	3.4 Fuzzing Strategies
	3.5 Vulcan Components

	4 Implementation
	5 Experiments
	5.1 Experiment Setup
	5.2 Failure Categories
	5.3 State-aware Injection Campaigns
	5.4 State-Aware Injection Results
	5.5 QGJ vs Vulcan

	6 System Reboots
	6.1 Root Cause Analysis
	6.2 Mitigation of System Reboots
	6.3 Effect of Load on System Reboots

	7 Lessons and Threats
	7.1 Failure Case Studies
	7.2 Threats to Validity.

	8 Related Work
	9 Conclusion
	References

