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Abstract. We discuss a modification of the Cramer-Shoup strong-RSA
signature scheme. Our proposal also presumes the strong RSA assump-
tion (and a collision-intractable hash function for long messages), but
—without loss in performance— the size of a signature is almost halved
compared to the original scheme. We also show how to turn the signature
scheme into a “lightweight” anonymous (but linkable) group identifica-
tion protocol without random oracles.

1 Introduction

Cramer and Shoup [CS00] have presented a signature scheme which is secure
against adaptive chosen-message attacks under the strong RSA (aka. flexible
RSA) assumption, and which does not rely on the random oracle model. For
a 1024-bit RSA modulus and a 160-bit (hash value of a) message a signature
has about 2200 bits. Cramer and Shoup also discuss a variation of their scheme
which, in addition to the strong RSA assumption, requires the discrete-log as-
sumption and which produces signatures of roughly half the length (about 1350
bits). Here, we show that we can achieve the same signature size under the strong
RSA assumption only, even with a slightly improved performance than in the
original strong-RSA-only case or the discrete-log & strong-RSA case.

Our signature scheme also has the feature that for short messages, e.g., of
120 bits, a collision-intractable (or universal one-way) hash function becomes
obsolete. Moreover, the signing process itself becomes slightly faster. This may
be interesting for identification protocols, where users identify by signing short
random messages.

At the end of this paper, we touch anonymous group identification protocols
in which users can prove membership in a group without disclosing their identity.
We discuss how to construct a “lightweight” anonymous (yet linkable) group
identification scheme from our signature scheme. Our solution does not need
random oracles, and the group’s common public key as well as the performance
of a single identification is independent of the number of users.

Recently, Damgȧrd and Koprowski [DK02] have generalized the Cramer-
Shoup signature scheme to generic groups. To best of our knowledge, our im-
provements here also apply to the model of Damgȧrd and Koprowski.



2 A Modification of the Cramer-Shoup Protocol

In this section we recall the original Cramer-Shoup scheme, introduce our mod-
ification and prove it to be secure, and compare our proposal to the original
protocol.

We adhere to the notation in [CS00]; still, the protocol description should
be intelligible without [CS00]. We remark that the strong RSA assumption says
that for a random RSA modulus n and a random element z ∈ Z∗n it is infeasible
to find an integer e ≥ 2 and the e-th root of z in Z∗n. Hence, compared to the
ordinary RSA assumption where the exponent is given, a solution for the strong
RSA problem allows to come up with a self-determined exponent.

2.1 Original Cramer-Shoup Signature Scheme

The original Cramer-Shoup scheme works as follows:

Key Generation: Generate n = pq, where p = 2p′ + 1 and q = 2q′ + 1 for
primes p, q, p′, q′. Also pick two quadratic residues h, x ∈ QRn and a random
(l+ 1)-bit prime e′. The public verfication key is (n, h, x, e′) and the private
key is (p, q).

Signing: To sign a message m compute the l-bit hash value H(m) with a
collision-intractable hash function H(·). Pick a random (l + 1)-bit prime
e 6= e′ and a random y′ ∈ QRn, compute x′ where

(y′)e
′

= x′hH(m) mod n

as well as y with
ye = xhH(x′) mod n.

Computing this e-th root is easy given the factorization of n. The signature
equals (e, y, y′).

Verification: First check that e is an odd (l + 1)-bit integer different from e′,
then compute x′ = (y′)e

′
h−H(m) and verify that x = yeh−H(m).

2.2 Modified Cramer-Shoup Signature Scheme

One can view the value H(x′) as a trapdoor commitment of the message m, using
the RSA trapdoor commitment scheme. Therefore, as pointed out in [CS00], one
may replace this part with any other appropriate trapdoor commitment. Indeed,
[CS00, Sec. 5] suggest as an example a trapdoor commitment based on the
discrete-log assumption. By this, the signature length shrinks to almost half of
the original size. Unfortunately, this advantage disappears again if one switches
to other trapdoor commitments based on the RSA or factoring assumption, or
even general one-way functions.
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The second part of the signature generation can be thought of as a repre-
sentation problem. That is, a representation of x with respect to h, e, n is a pair
(α, y) such that hαye = x mod n. In this sense, a signature in the original proto-
col requires that one finds a representation of x involving the hash value −H(x′)
and a self-determined exponent e. In the modified signature scheme here, we
assimilate the trapdoor commitment to the representation problem:

Key Generation: Generate n = pq, where p = 2p′ + 1 and q = 2q′ + 1 for
primes p, q, p′, q′. Also pick three quadratic residues h1, h2, x ∈ QRn. The
public verfication key is (n, h1, h2, x) and the private key is (p, q).

Signing: To sign a message m calculate the l-bit hash value H(m) with a
collision-intractable hash function H(·). Pick a random (l + 1)-bit prime e,
a random l-bit string α and compute a representation (−α,−(α⊕H(m)), y)
of x with respect to h1, h2, e, n, i.e.,

ye = xhα1h
α⊕H(m)
2 mod n.

Computing this e-th root y from xhα1h
α⊕H(m)
2 is easy given the factorization

of n. The signature is given by (e, α, y).

Verification: Check that e is an odd (l + 1)-bit integer, that α is l bits long,
and that ye = xhα1h

α⊕H(m)
2 mod n.

The idea of splitting H(m) into random (but dependent) parts α and α ⊕
H(m) is not new. It has already been applied for the well-known protocol for
proving knowledge of one out of two discrete logarithms [CDS94] and for se-
curity amplification lifting random-message attacks to chosen-message attacks
[CDP95]. As we will discuss below, it also gives the desired trapdoor information
for proving security here.

We remark that we may instead select α at random in Ze and split the
message into α and α+H(m) mod e. Moreover, we may alternatively define y in
the signature generation as the unique value such that x = hα1h

α⊕H(m)
2 ye mod n,

i.e., rearrange the equation to derive a “well-formed” representation problem.
Our security proof also works for these variations, even when combined.

2.3 Performance Comparison

Compared to the original scheme with signature size 2|n| + l + 1, both the
modification here as well as the one using the discrete-log trapdoor commitment
produce signatures of size |n| + 2l + 1. Disadvantegeously, both modifications
slightly increase the size of the public key, e.g., adding |n| − l bits in our case.

The same speedup techniques as in [CS00, Sec. 3, 6 and 7] apply here (e.g.,
faster prime number generation, taking e-th roots efficiently, precomputation
techniques, etc.). In particular, selecting x = ha1 and h2 = ha

′

1 for appropriate
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a, a′ and storing a, a′ in the secret key, the effort to compute the e-th root of
xhα1h

α⊕H(m)
2 = h

α+a+a′(α⊕H(m))
1 is (almost) the same as in the original scheme

for xhH(x′) = ha+H(x′) —and our proposal does not require the computation of
the separate trapdoor commitment.

For signature verification, taking into account possible precomputations and
that the discrete-log trapdoor commitment can be carried out with more efficient
multiplications than in Z∗n (e.g., if one works over elliptic curves or in Z∗p for
|p| = 768), the cost for the verifier for checking the single equation in our scheme
seems to be comparable to the cost of checking the equation ye = xhH(x′) and
the discrete-log trapdoor commitment.

Unfortunately, all solutions share the expensive prime generation of e. How-
ever, in our case, we can decrease the length of e at the cost of a larger public
key. Namely, if we put, say, three values h1, h2, h3 into the public key, then we
can divide the hash value H(m) into halves H1(m),H2(m) of 80 bits each, and
choose α and e to be 80 and 81 bits, respectively. A signature is then described
by the equation xhα1h

α⊕H1(m)
2 h

α⊕H2(m)
3 = ye, and the signature length is about

80 bits shorter. The security proof in the next section straightforwardly extends
to this case.

If we choose three generators h1, h2, h3, then the effort for the signer to com-
pute the e-th root y given stored values a, a′, a′′ does not change significantly in
comparison to the case of two generators. But an 81-bit prime e is much easier
to find than a 161-bit one. The verifier now has to perform a faster to compute
“quadruple” exponentiation hα1h

α⊕H1(m)
2 h

α⊕H2(m)
3 ye with 81-bit exponents in-

stead of a “triple” exponentiation hα1h
α⊕H(m)
2 ye with 161-bit exponents.

Also note that if one wants to sign short messages in our protocol, say of
120 bits, then one can forgo the hash function H and choose e also as a shorter
prime, e.g., 121 bits or even 61 bits with the trick above; it suffices that such
random primes collide with negligible pobability only. For short primes this can
be accomplished by using some state information like a counter.

2.4 Security Proof

We discuss that the modified signature scheme is secure against adaptive chosen-
message attacks. Basically, the proof follows the one in [CS00] closely.

Note that in an adaptive chosen-message attack the adversary is given the
public key of the signer and can ask the signer to sign arbitrary messages. The
choice of the next message submitted to this signature oracle is adaptively de-
termined by the data gathered before. Finally, the adversary outputs a message
that has not been signed by the oracle, together with a putative signature for
this message.

Let mi be the i-th query to the signer and (ei, αi, yi) denote the answer. Let
m and (e, α, y) be the putative forgery of the adversary. We assume that all ei
chosen by the signer during an attack are distinct (yet, the adversary’s choice
e may equal some ej), and that H(m) 6= H(mi) for all mi (otherwise we have
found a collision m 6= mi).
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There are two types of forgers (dubbed according to [CS00]):

Type II: The adversary outputs e = ej for some j.
Type III: The adversary outputs a new e, different from all ei.

Type I forgers as in [CS00] disappear due to our modification. We show
that type II forgers contradict the (ordinary) RSA assumption, whereas type III
forgers refute the strong RSA assumption.

Type II Forger

We assume that we know j, otherwise we can guess it. Since H(mj) 6= H(m) we
have αj 6= α or αj ⊕H(mj) 6= α⊕H(m). With probability 1/2 we can guess in
advance which case will happen, and we assume for simplicity that αj 6= α here.
The other case is treated analogously.

We are given n, z ∈ Z∗n and an odd prime r and are supposed to output z1/r.
To do so, we invoke the type II forger on the following public key and signature
oracle: Set ej = r and for all i 6= j choose a random (l+ 1)-bit prime ei (where i
is bounded by the number of queries to the signature oracle in the attack). Let

h1 = z2·
∏
i6=j ei , h2 = v2·

∏
i ei , x = h−β1 · w2·

∏
i ei

for random v, w ∈ Z∗n and a random l-bit string β. The “prepared” public key
is (n, h1, h2, x).

To sign the i-the message on behalf of the signer, i 6= j, select an l-bit string
αi and compute

yi = w2·
∏
k 6=i ek ·

(
z2·
∏
k 6=j,k 6=i ek

)αi−β · (v2·
∏
k 6=i ek

)αi⊕H(mi)

=
(
xhαi1 h

αi⊕H(mi)
2

)1/ei

For the j-th signature query set αj = β and compute yj as1

yj = w2·
∏
k 6=j ek ·

(
v2·
∏
k 6=j ek

)αj⊕H(mj) =
(
xh

αj
1 h

αj⊕H(mj)
2

)1/ej

It is not hard to see that the data in this simulation is identically distributed
to the one in a real attack. In particular, x and the signatures for i 6= j are
distributed independently of β, and therefore αj in this simulation has the same
distribution as in an actual attack.

The adversary’s output yields another representation of x with respect to
n, h1, h2 and ej = r. More precisely,

h
−αj
1 h

−(αj⊕H(mj))
2 yrj = x = h−α1 h

−(α⊕H(m))
2 yr mod n.

1 If we had bet on αj ⊕ H(mj) 6= α ⊕ H(m) then we would have basically swapped
the roles of h1 and h2 and would now set αj = β ⊕H(mj).
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And, plugging in the preselected values,

h
α−αj
1 = h

(αj⊕H(mj))−(α⊕H(m))
2 · (yy−1

j )r

z2·
∏
i6=j ei·(α−αj) =

(
v2·
∏
i6=j ei·((αj⊕H(mj))−(α⊕H(m)) · yy−1

j

)r
Since |α − αj | ∈ Zr − {0} and all ek are relatively prime, we can compute an
r-th root of z by standard procedures (see, for instance, [CS00]).

Type III Forger

This case is almost identical to the one discussed in [CS00]. Namely, given n, z
preselect all ei and set

h1 = z2·
∏
i ei , x = ha1 , h2 = ha

′

1

for random a, a′ ∈ {1, . . . , n2}. As h1 is a generator of QRn with high probability
and since a, a′ mod p′q′ are statistically close to the uniform distribution on Zp′q′ ,
the values x, h2 are almost uniformly distributed quadratic residues. Also, we can
sign any query mi since we know the ei-th roots of xhαi1 h

αi⊕H(mi)
2 for any αi.

On the other side, the forgery yields the equation

ye = xhα1h
α⊕H(m)
2 = zm

where
m = 2 ·

∏
i

ei · (a+ α+ a′(α⊕H(m))).

The fact that e 6 |m with non-negligible probability and that we can compute a
non-trivial e/gcd(e,m)-th root of z now follows as in [CS00]. Specifically, if r is a
prime dividing e, then r clearly does not divide 2 ·

∏
i ei. Write a as a = bp′q′+ c

for 0 ≤ c < p′q′ and note that the adverary’s view is essentially independent of
b, even if given c. Hence, for a random choice of a the value b mod r is almost
uniform on Zr and the probability that r|(a+α+a′(α⊕H(m))) or, equivalently,
that a+ α+ a′(α⊕H(m)) = 0 mod r is negligibly close to 1/r.

We conclude that with probability close to 1 − 1/r for the smallest prime
factor r of e we have e6 |m. Once more, in this case it is easy to compute a
non-trivial e/gcd(e,m)-th root of z by standard techniques.

3 “Lightweight” Anonymous Group Identification

With an anonymous group identification scheme each user of a group is able
to prove membership in the group while hiding his identity among the group
members. Below, we present an anonymous group identification scheme which
does not rely on random oracles, and where both the size of the group’s public
key as well as the computational effort for an identification are independent of
the number of users in the group. Unfortunately, our protocol is linkable in the

6



sense that a verifier is able to decide if two identifications have been carried out
by the same user (although the verifier will no be able to specify the user among
the group members). Also, the group manager is able to identify on behalf of
any user (besides the fact that the manager can issue keys for fake users). Still,
our protocol enjoys other strong security characteristics: it is for instance secure
against any number of users that actively coorperate to intrude as another honest
user; details follow.

Several anonymous group identification schemes (which can be derived for
example from group signature schemes) have been constructed in the past, e.g.,
[DDP98,BF99,ACJT00,LDZ02], each with different security and performance
features. Our solution seems to excell all these protocols in performance, but at
the cost of unlinkability.

The group manager in our anonymous identification scheme picks an RSA
modulus n = pq of strong primes p = 2p′+ 1, q = 2q′+ 1, and a random element
x ∈ QRn together with a generator h1 of QRn. The values (n, x, h1) make up the
group’s public key. If a user u wants to join, then the manager picks a random
(l + 1)-bit prime eu and a random l-bit value αu, and computes yu such that
hαu1 yeuu = x mod n. The manager hands the pair (αu, yu) and eu to the user.2

If a user u wants to identify as a group member to some verifier, both par-
ties run Okamoto’s RSA identification protocol [O92] on the user’s key and the
group’s public key. That is, the user picks a ∈ Zeu , z ∈ Z∗n in order to calculate
A = ha1z

eu mod n and sends this value A with eu to the verifier.3 The verifier
answers with a random challenge c ∈ Zeu and the user conclusively transmits
b, B where b = a + cαu mod eu and B = zxch

b(a+cαu)/euc
1 mod n. The veri-

fier checks that eu is an odd l + 1-bit number and the correctness condition
Axc = hb1B

eu mod n of the identification protocol.
Basically, our identification protocol inherits security from our signature

scheme. Think of the group manager giving each new user u a signature for
random message αu. Note that this message αu is chosen by the group manager,
i.e., this setting corresponds to a random-message attack. Therefore, we do not
need a trapdoor commitment nor a random splitting.

If some malicious user u∗, either a member or not, successfully identifies as
another member using an exponent eu of an honest user u, then, by the proof-
of-knowledge property of Okamoto’s scheme, we can extract a representation
(α∗, y∗) of x with respect to eu from this identification attempt. As Okamoto’s
identification is witness-independent, we have αu 6= α∗ with probability 1− 2−l

for the user’s secret key (αu, yu). In this case, party u∗ thus forges a signature of
a new message α∗ which is infeasible under the RSA assumption. Similarly, if u∗

chooses a new eu∗ and successfully proves membership, we obtain a successful

2 For ease of notation we switch to a “well-formed” representation problem as ex-
plained at the end of Section 2.2.

3 Okamoto’s protocol does not require to send the exponent eu as the exponent is
already part of the public key. Here, the group’s public key does not contain the
users’ exponents, so we let the user append it to the protocol data. Indeed, this is
what makes our protocol linkable.
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signature forgery for message α∗ for this eu∗ , contradicting the strong RSA
assumption.

We remark that security even holds with respect to malicious users u∗ who
may adaptively decide to join controlled users, to corrupt existing parties, and
run protocols with the honest users before trying to intrude. Using techniques
developed in [BFGM01], one can even extend it to the case that u∗ tries to
intrude in the name of a user u while executing the identification protocol with
that user u (in the presence of so-called session IDs).

Also note that we can add “threshold admittance levels” to our identification
protocol almost for free. That is, each user u is assigned a privilege number `u
and this user is only allowed to enter (by means of identification) level ` areas for
`u ≥ `. This feature is easy to accomplish in our scheme by demanding that, in
order to enter level `, the user u must identify with respect to an (l+1+`)-bit (or
larger) number eu, and by letting the group manager distribute corresponding
exponents to the users when joining.
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