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Abstract. Bilinear maps are popular cryptographic primitives which
have been commonly used in various modern cryptographic protocols.
However, the cost of computation for bilinear maps is expensive because
of their realization using variants of Weil and Tate pairings of ellip-
tic curves. Due to increasing availability of cloud computing services,
devices with limited computational resources can outsource this heavy
computation to more powerful external servers. Currently, the checka-
bility probability of the most efficient outsourcing algorithm is 1/2 and
the overall computation requires 4 point addition in the preimage and 3
multiplications in the image of the bilinear map under the one-malicious
version of a two-untrusted-program model. In this paper, we propose two
efficient new algorithms which decrease not only the memory requirement
but also the overall communication overhead.

Keywords: Outsourcing computation, Bilinear maps, Secure delega-
tion, Secure Cloud Computing.

1 Introduction

The improvements in the cloud computing services result in variety of new se-
curity and privacy challenges. Many cryptographic mechanisms involving com-
plex computations such as bilinear maps are proposed to overcome these chal-
lenges [5, 6, 14]. Since speeding up the computation of bilinear maps is crucial
in real-life applications, many schemes are suggested to reduce the computa-
tional cost of pairing computation [2,3,6,11,16,19]. Especially, Hess introduced
a general framework encompassing different types of pairing functions giving
optimum numbers of computation steps [12]. However, these computations are
still infeasible or unaffordable for resource constrained devices including mobile
phones, tablets, smart or RFID cards.

Since Hohenberger and Lysyanskaya stated the question of how a computa-
tionally limited device may outsource its computation to another, potentially
malicious, but much more computationally powerful device [13], it has been
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Fig. 1. Outsourcing Bilinear Maps with Two Untrusted Cloud Servers

studied extensively. Outsourcing the complex computations to external power-
ful devices dates back to Matsumoto, in which the RSA signature generation
problem is considered [17]. More specifically, Chevallier-Mames et al. proposed
a protocol enabling a computationally limited device to outsource the computa-
tion of bilinear maps into a more resourceful device [8]. However, this delegation
process brought new concerns. Firstly, the external device should learn noth-
ing about the secrets. Also, the computationally-limited device should be able
to check whether the external device computed correctly, at least with certain
probability. These two concerns can be eliminated by masking the secret values
with the cost of some extra computations before sending to the external server,
and then removing the masking values together with a way of validating the
outsourced computation.

Besides the efficiency constraints, secrecy is the main objective of the secu-
rity model, since the input and output pair of a client is used for cryptographic
purposes. Henceforth, outsource mechanisms surely follow a security model in
which the client (the energy limited trusted device that needs to delegate the
computation) does not trust the servers (which perform the needed computa-
tions). Thus, in the security model, it is assumed that the client is honest but the
servers are untrusted. Furthermore, checkability, validation of the computation
processes, should be also addressed.

As simulated in Figure 1, outsource computation protocols may utilize one
or more servers. Based on the number of servers utilized Tian et al. classified
them as follows [20]:
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– One-Untrusted Program (OUP): One malicious server performs the compu-
tation.

– One-Malicious version of a Two-Untrusted Program (OMTUP): Two un-
trusted servers perform the computation but only one of them may behave
maliciously.

– Two-Untrusted Program (TUP): Two untrusted servers perform the compu-
tation and both of them may behave maliciously, but they do not maliciously
collude.

Following the work of Chen et al., [1], Tian et al. proposed two algorithms [20]
in the OMTUP setting. First algorithm achieves less computational complexity
and the second one improves the checkability at the cost of some additional
computations. These outsource protocols are composed of both offline and on-
line computation steps. In the offline phase, the client prepares the necessary
values. During the online phase, the client creates masked values based on the
precomputed offline values and requests the bilinear map computation.

In this paper, we propose two new algorithms following the steps of Chen et
al. and Tian et al.’s work. We further analyze the protocols under the OMTUP
assumption and reduce not only the computational complexity of the offline
computations, but also the memory needed to store the values resulting from the
offline computations together with the communication overhead. While doing so,
we do not increase the computation costs that need to be handled by the client.

1.1 Related work

Weil and Tate pairings are firstly used as cryptanalytic tools for reducing the
discrete logarithm problem (DLP) on some elliptic curves to DLP on finite fields
[4]. Later, Boneh et al. and Joux constructed new cryptographic protocols based
on bilinear maps [5,6,14]. Reducing the computational cost of bilinear maps are
suggested in [2, 3, 6, 10–12,16,19].

First protocol for secure outsourcing of elliptic curve pairings were proposed
by Chevallier-Mames et al. [8]. The algorithm assumes the OUP setting and it
is 1-checkable. However, the algorithm requires expensive computations, namely
multiple membership test operation which is equivalent to an exponentiation over
the finite field and inversion on the exponents. Later on, under the same OUP
assumption, Kang et al. [15] and Canard et al. [7] improved the computational
complexity results. However, the solutions were not feasible since exponentiation,
membership test, and inversion were still required. Tsang et al. made a taxon-
omy for pairing based computations and constructed a batch pairing delegation
mechanism [21]. Chow et al. studied server aided signature verification [9].

Chen et al. broke the paradigm by utilizing two servers under the OMTUP
assumption and by performing some computations during an idle time of the
resource-limited device [1]. As a result, this outsourcing mechanism of bilinear
maps was the first one which does not depend on the membership test operations
and exponentiations over the finite field. Additionally, this scheme decreased the
online computations on the client side. The user had to perform only 5 point
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additions in G1 and G2, and 4 multiplications in G3, where e : G1 × G2 →
G3 is the underlying bilinear map. Later, Tian et al. proposed a more efficient
algorithm [20] and reduced the online computation phase to 4 point additions
in G1 and G2, and 3 multiplications in G3.

1.2 Our contributions

In this paper, we propose two efficient new algorithms for secure outsourcing
of bilinear maps. Compared to the state of the art algorithms (especially Tian
et al.’s [20]), our algorithms need less offline computations, less memory, and
less queries to the servers. In order to manage that, different from the previous
studies, we use negation of an input value (it is almost for free since it is located
over the elliptic curve), and we also send the same checking computation to both
servers. Since it is assumed that the two servers do not collude, we reduce the
computation costs without affecting the checkability of the system. The second
algorithm may for instance be utilized in signature verification applications, in
which we evade from at least one multiplication. For both propositions, we also
provide the security model following exactly the lines of the security model of
Hohenberger and Lysyanskaya [13]. We conclude the paper by comparing the
efficiency of the system with the very recent work of Tian et al. [20].

1.3 Roadmap

In Section 2, we give the security definitions for the outsourcing algorithm. Then,
we present some background and preliminaries that will be needed throughout
the manuscript, and we propose our two main algorithms together with their
security analysis in Section 3. Next, in Section 4, we analyze complexity of our
new algorithms and compare it to the complexity of the best known algorithm
[20]. Finally, we conclude the paper in Section 5.

2 Security Model

Chen et al.. [1] and Tian et al. [20] follow the security model proposed by Hohen-
berger and Lysyanskaya [13]. We remark especially that we also follow exactly
their security model [13].

Definition 1. An algorithm is said to obey the outsource input/output specifi-
cation if it takes five inputs, and produces three outputs. The first three inputs
are generated by an honest party, and are classified by how much the adversary
A = (E,U ′) knows about them. The first input is called the honest, secret input,
which is unknown to both E and U ; the second is called the honest, protected
input, which may be known by E, but is protected from U ; and the third is called
the honest, unprotected input, which may be known by both E and U . In addi-
tion, there are two adversarially-chosen inputs generated by the environment E:
the adversarial, protected input, which is known to E, but protected from U ; and
the the adversarial.
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Definition 2. Let Alg(., ., ., ., .) be an algorithm with outsource-IO. A pair of al-
gorithms (T,U) is said to be an outsource-secure implementation of an algorithm
Alg if: Correctness. TU is a correct implementation of Alg.
Security. For all probabilistic polynomial-time adversaries A = (E,U ′), there
exist probabilistic expected polynomial-time simulators (S1, S2) such that the fol-
lowing pairs of random variables are computationally indistinguishable. Let us
say that the honestly-generated inputs are chosen by a process I.

– Pair One: EV IEW i
real
∼EV IEWideal (The external adversary, E, learns

nothing.):

• The view that the adversarial environment E obtains by participating in
the following REAL process:

EV IEW i
real = {(istatei, xihs, xihp, xihu)← I(1k, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i)← E(1k, EV IEW i−1
real, x

i,hp , x
i
hu);

(tstatei, ustatei, yis, y
i
p, y

i
u)←

TU ′(ustatei−1)(tstatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au) :

(estatei, yip, y
i
u)}

EV IEWreal = EV IEW i
real if stopi = TRUE.

The real process proceeds in rounds. In round i, the honest (secret, pro-
tected, and unprotected) inputs (xihs, x

i
hp, x

i
hu) are picked using an honest,

stateful process I to which the environment does not have access. Then
the environment, based on its view from the last round, chooses (0) the
value of its estatei variable as a way of remembering what it did next time

it is invoked; (1) which previously generated honest inputs (xj
i

hs, x
ji

hp, x
ji

hu)

to give to TU ′ (note that the environment can specify the index ji of these
inputs, but not their values); (2) the adversarial, protected input xiap; (3)

the adversarial, unprotected input xiau; (4) the Boolean variable stopi

that determines whether roundi is the last round in this process. Next,

the algorithm TU ′ is run on the inputs (tstatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au),

where tstatei−1 is T s previously saved state, and produces a new state
tstatei for T , as well as the secret yis, protected yip and unprotected yiu
outputs. The oracle U ′ is given its previously saved state, ustatei−1, as
input, and the current state of U ′ is saved in the variable ustatei. The
view of the real process in roundi consists of estatei, and the values yip
and yiu. The overall view of the environment in the real process is just
its view in the last round (i.e., i for which stopi = TRUE).

• The IDEAL process:

EV IEW i
ideal = {(istatei, xihs, xihp, xihu)← I(1k, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i)← E(1k, EV IEW i−1
ideal, x

i,hp , x
i
hu);

(astatei, yis, y
i
p, y

i
u)← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei, Y i
p , Y

i
u, replace

i)←
SU
′(ustatei−1)

1 (sstatei−1, xj
i

hp, x
ji

hu, x
i
ap, x

i
au, y

i
p, y

i
u);
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(zip, z
i
u) = replacei(Y i

p , Y
i
u) + (1− replacei)(yip, yiu) :

(estatei, zip, z
i
u)}

EV IEWideal = EV IEW i
ideal if stopi = TRUE.

The ideal process also proceeds in rounds. In the ideal process, we have a
stateful simulator S1 who, shielded from the secret input xhs, but given
the non-secret outputs that Alg produces when run all the inputs for round
i, decides to either output the values (yip, y

i
u) generated by Alg, or replace

them with some other values (Y i
p , Y

i
u) (Notationally, this is captured by

having the indicator variable replacei be a bit that determines whether
yip will be replaced with Y i

p .) In doing so, it is allowed to query the oracle
U ′; moreover, U ′ saves its state as in the real experiment.

– Pair Two: UV IEWreal∼UV IEWideal (The untrusted software, (U1, U2),
learns nothing.):

• The view that the untrusted software U ′ obtains by participating in the
REAL process described in Pair One. UV IEWreal = ustateiifstopi =
TRUE.

• The IDEAL process:

UV IEW i
ideal = {(istatei, xihs, xihp, xihu)← I(1k, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i)← E(1k, estatei−1, xi,hp , x
i
hu, y

i−1
p , yi−1u);

(astatei, yis, y
i
p, y

i
u)← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei)← SU
′(ustatei−1)

2 (sstatei−1, xj
i

hu, x
i
au) :

(ustatei)}
UV IEWideal = UV IEW i

ideal if stopi = TRUE.
In the ideal process, we have a stateful simulator S2 who, equipped with
only the unprotected inputs (xihu, x

i
au), queries U ′. As before, U ′ may

maintain state.

In our security model we assume one-malicious version of a two-untrusted
program (OMTUP) model. More concretely, there are two untrusted cloud servers
in this model performing the outsourced computation, where only one of them
is assumed to be malicious.

Definition 3. A pair of algorithms (T,U1, U2) are an α-efficient implementa-
tion of an algorithm Alg if (1) they are an outsource-secure implementation of
Alg, and (2) ∀ inputs x, the running time of T is ≤ an α-multiplicative factor
of the running time of Alg(x).

Definition 4. A pair of algorithms (T,U1, U2) are an β-checkable implementa-
tion of an algorithm Alg if (1) they are an outsource-secure implementation of
Alg, and (2) ∀ inputs x, if U ′i , i = 1, 2 deviates from its advertised functionality

during the execution of T (U ′1,U
′
2)(x), T will detect the error with probability ≥ β.

Definition 5. A pair of algorithms (T,U1, U2) are an (α, β)-outsource secure
implementation of an algorithm Alg if they are both α-efficient and β-checkable.
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3 Algorithms for outsourcing of bilinear maps

3.1 Preliminaries: Bilinear Maps

Let (G1,+) and (G2,+) be two additive cyclic groups of order q with G1 =< Q >
and G2 =< P >, (G3, ·) be a multiplicative cyclic group of order q, where q is a
prime number and 0G1

, 0G2
and 1G3

are the identity elements of the groups G1,
G2 and G3, respectively. Assume that Discrete Logarithm Problem (DLP) is hard
in both G1 and G2 (i.e., given a random y ∈ G1 (or ∈ G2), it is computationally
infeasible to find an integer x ∈ Z such that y = gx). If it is clear from the
context we write 0 for the identity elements of G1, G2 and 1 for G3. A bilinear
map is a map e : G1 ×G2 → G3 satisfying the following properties [4]:

– Bilinearity: For all P1, Q1 ∈ G1, P
′
1, Q

′
1 ∈ G2, e is a group homomorphism

in each component, i.e.
1. e(P1 +Q1, P

′
1) = e(P1, P

′
1) · e(Q1, P

′
1),

2. e(P1, P
′
1 +Q′1) = e(P1, P

′
1) · e(P1, Q

′
1).

– Non-degeneracy: e is non-degenerate in each component, i.e.,
1. For all P ∈ G1, P 6= 0, there is an element Q ∈ G2 such that e(P,Q) 6= 1,
2. For all Q ∈ G2, Q 6= 0, there is an element P ∈ G1 such that e(P,Q) 6= 1.

– Computability: There exists an algorithm which computes the bilinear
map e efficiently.

3.2 Algorithm 1

Precomputations Like all existing outsourcing algorithms, some precomputa-
tions are performed to speed up the proposed algorithms following the method
of [20]. It includes a static table ST and a dynamic table DT. The values stored
in the dynamic table are replaced while they are used, and then the table is
reconstructed in an idle time of the device. We next describe the steps of the
Rand1 algorithm to generate random group elements.

Rand1

– Preprocessing Step: Let P1 and P2 be generators of G1 and G2, respec-
tively. Generate n random elements α1, · · · , αn ∈ Z/qZ. For j = 1, · · · , n
compute βj1 = αj · P1 and βj2 = αj · P2, and store the values of αj , βj1 and
βj2 in ST. Compute e(P1, P2) ∈ G3 and store it in ST.

– Generation of Precomputed Values: A new entry in DT is computed
as follows: Generate randomly S ∈ {1, · · · , n} such that |S| = k. For each
j ∈ S, select randomly Kj ∈ {1, · · · , h− 1}, where h > 1 is a small integer.
Compute

x1 ≡
∑
j∈S

αjKj mod q.

If x1 ≡ 0 mod q, start again. Otherwise, compute

x1 · P1 ≡
∑
j∈S

Kj · βj1 mod q.
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Following the above procedure, compute similarly the elements (x2, x2 ·
P2), (x3, x3 · P1), and (x4, x4 · P2). Then compute

1. 2x1 · P1,

2. −2x2 · P2,

3. e(P1, P2)2x1x2 ,

4. e(P1, P2)x3x4 .

The entry

(x1 · P1, 2x1 · P1, x3 · P1, x2 · P2,−2x2 · P2,

x4 · P2, e(P1, P2)2x1x2 , e(P1, P2)x3x4)

is stored in DT. On each invocation of Rand1, an entry is returned and
removed from DT. Further, a new set of values is used as fresh random
values.

Proposed Algorithm 1 Our algorithm takes A ∈ G1, B ∈ G2 as inputs and
produces e(A,B) as output. In what follows, T denotes a trusted device with
limited computation resources, and Ui(A,B)→ e(A,B), i ∈ {1, 2} denotes party
Ui taking (A,B) as inputs and returning e(A,B) as output.

– Initialization: T calls Rand1 to get random values

(x1 · P1, 2x1 · P1, x3 · P1, x2 · P2,−2x2 · P2,

x4 · P2, λ = e(P1, P2)2x1x2 , e(P1, P2)x3x4).

– Computation: In random orders, T sends the following values to U1

1. U1(A+ 2x1 · P1,−B − 2x2 · P2)→ α1,

2. U1(x3 · P1, x4 · P2)→ α′1.

Similarly, in random orders, T sends the following values to U2

1. U2(A+ x1 · P1, B + x2 · P2)→ α2,

2. U2(x3 · P1, x4 · P2)→ α′2.

– Recover: T checks whether α′1
?
= α′2

?
= e(P1, P2)x3x4 . If the verifications are

successful then it computes

β = α1α
2
2λ

and produces β as output. Otherwise, it rejects and gives an “Error”.

Security Analysis

Theorem 1. Under the OMTUP assumption, the algorithms (T, (U1, U2)) of
“Algorithm 1” are an outsource-secure implementation of a pairing evaluation,
where the input (A,B) may be honest, secret, honest, protected, or adversarial,
protected.
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Proof. The correctness follows easily by bilinear property of e:

β = α1 · α2
2 · λ

= e(A+ 2x1 · P1,−B − 2x2 · P2)·
e(A+ x1 · P1, B + x2 · P2)2 · e(P1, P2)2x1x2

= e(A,B)−1 · e(P1, P2)−4x1x2 · e(A,B)2·
e(P1, P2)2x1x2 · e(P1, P2)2x1x2

= e(A,B).

We next prove the security of the algorithm. Let (E,U ′1, U
′
2) be a PPT ad-

versary that interacts with a PPT algorithm T in the OMTUP model.
Pair One: EV IEW i

real
∼EV IEWideal (The external adversary, E, learns noth-

ing.):
For a round i, if the input (A,B) is other than secret, honest, (i.e., honest, pro-
tected or adversarial, protected) the simulator S1 behaves as in the real round.
S1 never requires to access the secret input, since there is none. So suppose
that the input (A,B) is honest, secret. In that case, the simulator S1 behaves
as follows: On receiving input in the ith round, S1 ignores it and instead make
random queries to the servers U ′1, U

′
2:

– U ′1(x1 · P1, x2 · P2)→ α1,
– U ′1(x3 · P1, x4 · P2)→ α′1,
– U ′2(x5 · P1, x6 · P2)→ α2,
– U ′2(x3 · P1, x4 · P2)→ α′2.

After getting responses from U ′1 and U ′2, S1 checks:

– If α′1 6= α′2 or e(x3 ·P1, X4 ·P2) 6= α′1, S1 produces Y i
p =“Error”, Y i

u = ∅ and

repi = 1.
– If all responses are correct, S1 sets Y i

p = ∅, Y i
u = ∅, and repi = 0.

– Otherwise, S1 selects a random value sr ∈ G3 and sets Y i
p = sr, Y

i
u = ∅ and

repi = 1.

For all cases, S1 saves the appropriate states.
The input distributions in the real and ideal experiments are computationally
indistinguishable for U ′1 and U ′2. The inputs to U ′1 and U ′2 are chosen uniformly
at random in the ideal experiment. In a real experiment, each part of all queries
that T makes to any one program in the computation step is independently re-
randomized, and the re-randomization factors(i.e., outputs of Rand1) are either
truly randomly generated by naive table-lookup approach or computationally
indistinguishable from random by the assumption of the EBPV generator [18].
Now, there are three possibilities to consider.

– If U ′1 and U ′2 behave honestly in the round i, S1 gives the correct output,
using Alg, which is the same as the output of TU1,U2 .
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– If one of (U ′1, U
′
2) give an incorrect output in the ith round and it has been

detected by both T and S1 with probability 1/2, then it will result in an
“Error”.

– Finally, we consider the case, where one of (U ′1, U
′
2) give an incorrect output

in the ith round and it is not caught with probability 1/2. In the real exper-
iment,the two outputs generated by (U ′1, U

′
2) are multiplied together along

with a random value λ.

Thus, a corrupted output looks random to the environment E, in the real
experiment, S1 also simulates with a random value in G3 as the output. So,
EV IEW i

real
∼EV IEW i

ideal even when one of (U ′1, U
′
2) is dishonest. Now, by the

hybrid argument, we conclude that EV IEWreal∼EV IEWideal.

Pair Two: UV IEWreal∼UV IEWideal (The untrusted software, (U1, U2),
learns nothing.):
Here, regardless of the input type, the simulator S2 always behaves the same way.
Upon receiving an input on round i, S2 ignores it and instead makes four random
queries to U ′1 and U ′2. Then S2 saves its own state and the states of (U ′1, U

′
2). E

can easily distinguish between these real and ideal experiments (output of the
ideal experiment is never corrupted), but we want to show that E cannot share
this information with (U ′1, U

′
2). This happens because in the ith round of the

real experiment, T always re-randomizes the inputs to (U ′1, U
′
2), and in the ideal

experiment S2 creates random, independent queries for (U ′1, U
′
2). So, for each

round i, we have UV IEW i
real
∼UV IEW i

ideal. Then, by the hybrid argument, we
get the desired result UV IEWreal∼UV IEWideal.

Theorem 2. The algorithms (T, (U1, U2)) of “Algorithm 1” are a (O( 1
log q ), 1/2)-

outsource secure implementation of a pairing evaluation under the OMTUP as-
sumption.

Proof. By the above theorem, U1 and U2 cannot distinguish a test query from
a real query. Without loss of generality, assume that U1 is honest while U2 is
dishonest (since we are under the OMTUP assumption). Thus, U2 fails with a
probability 1/2.

3.3 Algorithm 2

Precomputations Rand2

– Preprocessing Step: Generate n random elements α1, · · · , αn ∈ Zq. For
j = 1, · · · , n compute βj1 = αj · P1 and j2 = αj · P2, and store the values of
αj , βj1 and βj2 in a static table ST. Compute e(P1, P2) and store the value
in ST.

– Generation of Precomputed Values: When a table DT needs a new
entry, it is produced as follows. Randomly generate S ∈ {1, · · · , n} such
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that |S| = k. For each j ∈ S, randomly select Kj ∈ {1, · · · , h − 1}, where
h > 1 is a small integer. Compute

x1 ≡
∑
j∈S

αjKj mod q.

If x1 ≡ 0 mod q, start again. Otherwise, compute

x1P1 ≡
∑
j∈S

Kj · βj1 mod q.

Following the above procedure, compute similarly the elements (x2, x2 ·
P2), (x3, x3 · P1), (x4, x4 · P1), and (x5, x5 · P2). Then compute
1. (x2 − x−11 x2x3) · P2,
2. e(P1, P2)x4x5 .

The entry
(x1 · P1, x3 · P1, x4 · P1, x2 · P2, x5 · P2,

(x2 − x−11 x2x3) · P2, e(P1, P2)x4x5)

is stored in DT. On each invocation of Rand2, an entry is returned and
removed from DT. Further, a new set of values is used as fresh random
values.

Proposed Scheme 2 Algorithm 2 takes A ∈ G1, B ∈ G2 as inputs and pro-
duces e(A,B) as output. In what follows, T denotes a trusted device with limited
computation resources, and Ui(A,B)→ e(A,B), i ∈ {1, 2} denotes party Ui tak-
ing (A,B) as inputs and giving e(A,B) as output.

– Init: T calls Rand2 to get random values

(x1 · P1, x3 · P1, x4 · P1, x2 · P2, x5 · P2,

(x2 − x−11 x2x3) · P2, e(P1, P2)x4x5).

– Computation: In random orders, T sends the following to U1

1. U1(A+ x1 · P1, B + x2 · P2)→ α1,
2. U1(x4 · P1, x5 · P2)→ α′1.

Similarly, in random orders, T sends the following to U2

1. U2(A+ x3 · P1,−x2 · P2)→ α2,
2. U2(−x1 · P1, B + (x2 − x−11 x2x3) · P2)→ α3

3. U2(x4 · P1, x5 · P2)→ α′2.

– Recover: T checks whether α′1
?
= α′2

?
= e(P1, P2)x4x5 . If the verifications are

successful then it computes

β = α1α2α3

and produces β as output. Otherwise, it rejects and gives an “Error”.
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Security Analysis

Theorem 3. Under the OMTUP assumption, the algorithms (T, (U1, U2)) of
“Algorithm 1” are an outsource-secure implementation of a pairing evaluation,
where the input (A,B) may be honest, secret, honest, protected, or adversarial,
protected.

Proof. The correctness is straight forward:

β = α1 · α2 · α3

= e(A+ x1 · P1, B + x2 · P2) · e(A+ x3 · P1,−x2 · P2)·
e(−x1 · P1, B + (x2 − x−11 x2x3) · P2)

= e(A,B)e(P1, P2)x1x2 · e(P1, P2)−x2x3 ·

e(P1, P2)−x1(x2−x−1
1 x2x3)

= e(A,B).

The proof of the security part follows analogously to the proof of Theorem
1.

4 Complexity Analysis

4.1 Comparisons

We compare the precomputation algorithms of our proposed schemes with Tian
et al.’s algorithm [20]. In the following tables, SM denotes scalar multiplication in
G1,G2, ME modular exponentiation, PC pairing computation on the server side,
FM field multiplication, and PA point addition in G1,G2. Furthermore, k denotes
the size of the set S in the algorithms Rand1 and Rand2. Table I compares the
precomputation, Table II compares the client’s workload, and Table III compares
the server’s workload. Table IV compares the communication overhead between
the client and the servers, and finally Table V gives the memory requirements
for ST and DT by means of counting the number of group elements.

Algoritm [20] Algorithm 1 Algorithm 2

SM 3 2 1

ME 2 2 1

PA 5(k+h-3) 4(k+h-3) 5(k+h-3)
Table 1. Comparison of Precomputation
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Algoritm [20] Algorithm 1 Algorithm 2

PA 4 4 4

FM 3 3 2
Table 2. Comparison of Client’s Workload

Algoritm A [20] Algorithm 1 Algorithm 2

PC 6 4 5
Table 3. Comparison of Server’s Workload

Algoritm A [20] Algorithm 1 Algorithm 2

PC ≈ 0,117 KB ≈ 0,078 KB 0,098 KB
Table 4. Comparison of Communication Overhead for 80-Bit Security

ST DT

Algorithm 1 3 8

Algorithm 2 3 7
Table 5. Memory Requirements for Rand algorithms.

5 Conclusion

In this paper, we studied outsourcing the computation of bilinear maps and pro-
posed two new efficient algorithms decreasing both the memory requirement and
the overall communication overhead. We defined the necessary security model,
and proved the correctness and the security of the proposed secure outsourcing
algorithms. We further gave the comparisons of our algorithms with a very re-
cent outsourcing mechanism of Tian et al. [20] with respect to the offline and
online computations, and the memory to be used. In this way, we show that our
algorithms are more efficient than all previously proposed solutions.
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