DeepSecure: Scalable Provably-Secure Deep Learning

Bita Darvish Rouhani
UC San Diego
bita@ucsd.edu

ABSTRACT

This paper proposes DeepSecure, a novel framework that enables
scalable execution of the state-of-the-art Deep Learning (DL) mod-
els in a privacy-preserving setting. DeepSecure targets scenarios in
which neither of the involved parties including the cloud servers
that hold the DL model parameters or the delegating clients who
own the data is willing to reveal their information. Our framework
is the first to empower accurate and scalable DL analysis of data
generated by distributed clients without sacrificing the security
to maintain efficiency. The secure DL computation in DeepSecure
is performed using Yao’s Garbled Circuit (GC) protocol. We de-
vise GC-optimized realization of various components used in DL.
Our optimized implementation achieves more than 58-fold higher
throughput per sample compared with the best prior solution. In
addition to our optimized GC realization, we introduce a set of
novel low-overhead pre-processing techniques which further re-
duce the GC overall runtime in the context of deep learning. Ex-
tensive evaluations of various DL applications demonstrate up to
two orders-of-magnitude additional runtime improvement achieved
as a result of our pre-processing methodology. We also provide
mechanisms to securely delegate GC computations to a third party
in constrained embedded settings.
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Deep Learning, Secure Function Evaluation, Garbled Circuit,
Content-Aware Data Pre-processing.

1 INTRODUCTION

Deep Learning (DL) has provided a paradigm shift in our ability
to comprehend raw data by showing superb inference accuracy re-
sembling the learning capability of human brain [1, 2]. Technology
leaders such as Microsoft, Google, IBM, and Facebook are devot-
ing millions of dollars to devise accurate DL models for various
artificial intelligence and data inference applications ranging from
social networks and transportations to environmental monitoring
and health care [3-5]. The applicability of DL models, however, is
hindered in settings where the risk of data leakage raises serious
privacy concerns. Examples of such applications include scenar-
ios where clients hold sensitive private information, e.g., medical
records, financial data, or location.

Developing a DL model for a particular task involves two main
steps: training and execution. During DL training, the focus is to
fine-tune the DL parameters such that the accuracy of the model is
maximized. Whereas, the DL execution attempts to find the corre-
sponding inference label for newly arrived data samples using the
trained model. To address DL problem in sensitive scenarios, au-
thors in [6, 7] suggest the use of differential privacy for training DL
models. As such, training of a DL model is performed by creating
a statistical database from raw data samples such that the amount
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of information leaked from an individual record is minimized. The
notion of differential privacy, however, is not applicable to the DL
execution. This is due to the fact that during the DL execution,
one is interested in finding the pertinent output corresponding
to a single data sample as opposed to the statistical property of a
collection of data. In this paper, we focus on devising an end-to-end
framework that enables using the trained DL models to analyze
sensitive data, while ensuring the confidentiality of both data and
DL parameters.

To address DL execution in sensitive applications, Microsoft has
recently proposed a cryptographic DL framework (called Cryp-
toNet [8]) based on Homomorphic Encryption (HE). Although this
approach enables DL execution in a privacy-preserving setting, it
encounters four main limitations that we simultaneously address
in this paper: (i) CryptoNet has a privacy/utility trade-off; in order
to achieve a higher level of privacy, the utility decreases signifi-
cantly. In addition, the noise introduced to the DL model as a result
of securely encrypting data samples can further lessen DL infer-
ence accuracy and yield an incorrect result for the input data that
could have been classified correctly otherwise. (ii) Non-linear acti-
vation functions which are the key elements in a DL network (e.g.,
Tangent-Hyperbolic, Sigmoid, etc.) cannot be effectively computed
by low-degree polynomials as suggested in [8] using HE. (iii) Ho-
momorphic encryption results in a relatively high computational
overhead which bounds CryptoNet’s practicability in resource-
limited settings where the data owners have severe computational
constraints (e.g., smartphones and wearable devices). (iv) Cryp-
toNet incurs a constant computational cost up to a certain number
of samples depending on the choice of the polynomial degree (e.g.,
8000 samples). As such, to optimize the system throughput, it is
highly required to queue data samples and process them as one
data batch. Otherwise, the system performance degrades signifi-
cantly if each individual data sample is processed separately. This
constant overhead, in turn, bounds the applicability of CryptoNets
in scenarios where data samples generated by distributed clients
need to be processed with minimal latency.

This paper introduces DeepSecure, the first provably-secure
framework for scalable DL-based analysis of data collected by dis-
tributed clients. DeepSecure enables applying the state-of-the-art
DL models on sensitive data without sacrificing the accuracy to
obtain security. Consistent with the literature, we assume an honest-
but-curious adversary model for a generic case where both DL pa-
rameters and input data must be kept private. DeepSecure proposes
the use of Yao’s Garbled Circuit (GC) protocol to securely perform
DL execution. In contrast with the prior work based on Homomor-
phic encryption [8], our methodology does not involve a trade-off
between utility and privacy. We show that our framework is the
best choice for scenarios in which the number of samples collected
by each distributed client is less than 2600 samples; the clients send
the data to the server for processing with the least possible delay.



Our approach is well-suited for streaming settings where clients
need to dynamically analyze their data as it is collected over time
without having to queue the samples to meet a certain batch size.
In DeepSecure framework, we further provide mechanisms based
on secret sharing to securely delegate GC computations to a third
party for constrained embedded devices.

The function to be securely evaluated in GC should be repre-
sented as a list of Boolean logic gates (a.k.a., netlist). We generate
the netlists required for deep learning using logic synthesis tools
with GC-optimized custom libraries as suggested in [9]. DeepSe-
cure leverages sequential circuit design to provide a set of scalable
libraries and tools for deployment of different DL models with
various sizes. Our custom synthesis library includes the first GC-
optimized implementation of Tangent-Hyperbolic and Sigmoid
functions used in DL. We also provide the enhanced implemen-
tation of matrix-vector multiplication to support signed input data
as opposed to the realization reported in [9].

The computation and communication workload of GC protocol
in DeepSecure framework is explicitly governed by the number of
neurons in the target DL network and input data size. We further
introduce a set of novel low-overhead pre-processing techniques
to reduce data and DL network footprint without sacrificing nei-
ther the accuracy nor the data confidentiality. Our pre-processing
approach is developed based on two sets of innovations: (i) trans-
formation of input data to an ensemble of lower-dimensional sub-
spaces, and (ii) avoiding the execution of neutral (inactive) neurons
by leveraging the sparsity structure inherent in DL models. The
explicit contributions of this paper are as follows:

e Proposing DeepSecure, the first provably-secure frame-
work that simultaneously enables accurate and scalable
privacy-preserving DL execution for distributed clients.
Our approach is based on Yao’s GC protocol and is
amenable to embedded devices.

e Devising new custom libraries to generate GC-optimized
netlists for required DL network computations using stan-
dard logic synthesis tools. The libraries include the first
GC-optimized implementation of Tanh and Sigmoid func-
tions.

o Incepting the idea of data and DL network pre-processing
in the secure function evaluation settings. Our approach
leverages the fine- and coarse-grained data and DL network
parallelism to avoid unnecessary computation/communi-
cation in the execution of Yao’s GC protocol.

e Introducing a low-overhead secure outsourcing protocol to
provide support for constrained embedded platforms such
as smartphones, medical implants, and wearable devices.

e Providing proof-of-concept evaluations of various visual,
audio, and smart-sensing benchmarks. Our evaluations
corroborate DeepSecure’s scalability and practicability for
distributed users compared with the HE-based solution.

2 PRELIMINARIES
2.1 Deep Learning Networks

DL refers to learning a hierarchical non-linear model that consists
of several processing layers stacked on top of one the other. To
perform data inference, the raw values of data features are fed into

the first layer of the DL network known as the input layer. These
raw features are gradually mapped to higher-level abstractions
through the intermediate (hidden) layers of the DL model. The
acquired data abstractions are then used to predict the label in the
last layer of the DL network (a.k.a., the output layer).

Deep Neural Networks (DNNs) and Convolutional Neural Net-
works (CNNs) are the two main categories of neuron networks
widely used in deep learning domain [1]. These two types of neural
networks share many architectural similarities: CNNs are composed
of additional convolution layers on top of fully-connected networks
that form the foundation of DNNs. The use of convolutional layers
in a CNN model makes them better-suited for interpreting data
measurements with strong local connectivity (e.g., visual data),
whereas DNNs pose a more generic architecture to model datasets
which may not show a solid local dependency pattern (e.g., audio
data). Table 1 outlines common hidden layers used in different DL
networks.

The state of each neuron (unit) in a DL model is determined in
response to the states of the units in the prior layer after applying
a non-linear activation function. Commonly used activation func-
tions for hidden layers include logistic sigmoid, Tangent-hyperbolic
(Tanh), and Rectified Linear Unit (ReLu). The output layer is an
exception for which a Softmax regression is typically used to deter-
mine the final inference. Softmax regression (or multinomial logistic
regression) is a generalization of logistic regression that maps a
P-dimensional vector of arbitrary real values to a $-dimensional
vector of real values in the range of [0, 1). The final inference for
each input sample can be determined by the output unit that has
the largest conditional probability value [1].

Figure 1 demonstrates a schematic depiction of a CNN model con-
sisting of conventional, pooling, fully-connected, and non-linearity
layers. As we will explain in Section 4.2, each of these layers can be
effectively represented as a Boolean circuit used in GC. An end-to-
end DL model is formed by stacking different layers on top of each
other. Note that many of the computations involved in DL inference,
such as non-linearity layers, cannot be accurately represented by
polynomials used in HE. For instance, approximating a Rectified
Linear unit in HE requires using high-order polynomials, whereas
a ReLu can be accurately represented by a Multiplexer in Boolean
circuits.
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Figure 1: Schematic depiction of a typical CNN model used
for image classification [10].

2.2 Cryptographic Protocols

In the following, we provide a brief description of the cryptographic
protocols used in this paper.



Table 1: Commonly used layers in DNN and CNN models.

DL Layer ‘ ‘ Description ‘ Computation

2D Convolution (C) Multiplying the filter parameters (0;;) with the post- x,(jl.) = Z.I:l:l 2_’;:1 6'55;21) X lei?)(jﬂz) Weighted Sum
nonlinearity values in the preceding layer (Zg_l)) and summing
up the results

: - - - - o (551 -

Max Pooling (M;P) Computlng the maximum value of k X k overlapping regions of X = Max(z(iJrsl)(]_HZ))s1 {12,k Maximum

the preceding layer s € (1.2, ... k)
. . . . ) -
Mean Pooling (MP) Computing the mean value of k X k non-overlapping regions xgj) = Mean(zEHif)UHz))sl (L2 ...k} Mean

of the preceding layer

s2€{1,2, ...k}

Fully-Connected (FC) || Multiplying the parameters of the I'" layer (ij) with the post- xgl) =y IR z;.lil)

nonlinearity values in the preceding layer (zﬁ’l)

Matrix-Vector

Jj=1 "ij
Multiplication

Softmax z; = D CORDIC
Z;lzlo e
Non-Linearity (NL) Sigmoid 2= - CORDIC
1+e i
" 0]
Tangent-Hyperbolic (Tanh) gl) %(x‘“)) CORDIC
Cosh(x;”)
Rectified Linear unit (ReLu) zgl) = Max(0, xgl)) Maximum

2.2.1 Oblivious Transfer

Oblivious Transfer (OT) is a cryptographic protocol that runs be-
tween a Sender (S) and a Receiver (R). The receiver R obliviously
selects one of potentially many pieces of information provided by
S. Particularly, in a 1-out-of-n OT protocol, the sender S has n mes-
sages (x1, ..., xp) and the receiver R has an index r where 1 < r < n.
In this setting, R wants to receive x, among the sender’s messages
without the sender learning the index r, while the receiver only
obtains one of the n possible messages [11].

2.2.2 Garbled Circuit

Yao’s garbled circuit protocol [12] is a cryptographic protocol in
which two parties, Alice and Bob, jointly compute a function f'(x, y)
on their inputs while keeping the inputs fully private. In GC, the
function f should be represented as a Boolean circuit with 2-input
gates (e.g., XOR, AND, etc.). The input from each party is repre-
sented as input wires to the circuit. All gates in the circuit have to
be topologically sorted which creates a list of gates called netlist.
GC has four different stages: (i) garbling which is only performed
by Alice (a.k.a., Garbler). (ii) Data transfer and OT which involves
both parties, Alice and Bob. (iii) Evaluating, only performed by Bob
(a.k.a., Evaluator), and finally (iv) merging the results of the first
two steps by either of the parties.

(i) Garbling. Alice garbles the circuit by assigning two random
k-bit labels to each wire in the circuit corresponding to semantic
values one and zero (k is the security parameter usually set to 128).
For instance, for input wire number 5, Alice creates 128-bit ran-
dom string lg as a label for semantic value zero and l51 for semantic
value one. For each gate, a garbled table is computed. The very first
realization of the garbled table required four different rows, each
corresponding to one of the four possible combinations of inputs
labels. Each row is the encryption of the correct output key using
two input labels as the encryption key [13]. As an example, assume
wire 5 (ws) and 6 (wg) are input to an XOR gate and the output is
wire 7 (w7). Then, the second row of the garbled table which corre-
sponds to (w5 = 0) and (wg = 1) is equivalent to EnC(l;)’lﬁl) (l;) To
decrypt any garbled table, one needs to possess the associated two

input labels. Once Garbler creates all garbled tables, the protocol is
ready for the second step.

(ii) Transferring Data and OT. In this step, Alice sends all the
garbled tables along with the correct labels corresponding to her
actual input to Bob. For instance, if the input wire 8 belongs to
her and her actual input for that wire is zero, she sends lg to Bob.
In order for Bob to be able to decrypt and evaluate the garbled
tables (step 3), he needs the correct labels for his input wires as well.
This task is not trivial nor easy. On the one hand, Bob cannot send
his actual input to Alice (because it undermines his input privacy).
On the other hand, Alice cannot simply send both input labels to
Bob (because Bob can then infer more information in step 3). To
effectively perform this task, OT protocol is utilized. For each input
wire that belongs to Bob, both parties engage in a 1-out-of-2 OT
protocol where the selection bit is Bob’s input and two messages
are two labels from Alice. After all required information is received
by Bob, he can start evaluating the garbled circuit.

(iii) Evaluating. To evaluate the garbled circuit, Bob starts from
the first garbled table and uses two input labels to decrypt the
correct output key. All gates and their associated dependencies
are topologically sorted in the netlist. As such, Bob can perform
the evaluation one gate at a time until reaching the output wires
without any halts in the process. In order to create the actual plain-
text output, both the output mapping (owned by Alice) and final
output labels (owned by Bob) are required; thereby, one of the
parties, say Bob, needs to send his share to the other party (Alice).

(iv) Merging Results. At this point, Alice can easily compute the
final results. To do so, she uses the mapping from output labels
to the semantic value for each output wire. The protocol can be
considered finished after merging the results (as in DeepSecure) or
Alice can also share the final results with Bob.

2.3 Garbled Circuit Optimizations

In Section 2.2.2, we have described the GC protocol in its simplest
form. During the past decade, several optimization methodologies
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Figure 2: Global flow of DeepSecure framework including both off-line (indexed by rectangular icons) and online (indexed by
oval icons) steps. The operations shown in the left hand side of the figure are executed by the client (Alice) while the operations

on the right hand side are performed by the server (Bob).

have been suggested in the literature to minimize the overhead of
executing GC protocol. In the following, we summarize the most
important optimizations techniques that we also leverage to achieve
an efficient deployment of DeepSecure framework.
Row-Reduction: As we discussed earlier, the initial garbled table
consists of four rows. Authors in [14] proposed a technique to
reduce the number of rows in the garbled table to three. Since the
main portion of communication is to transfer the garbled tables,
this technique results in almost 25% reduction in communication.
Free-XOR: Perhaps one of the most important optimizations of
GC is Free-XOR [15]. The Free-XOR methodology enables the eval-
uation of XOR, XNOR, and NOT gates without costly cryptographic
encryption. Therefore, it is highly desirable to minimize the number
of non-XOR gates in the deployment of the underlying circuit.
Half-Gates: This technique that is proposed in [16], further re-
duces the number of rows for AND gates from three to two, re-
sulting in 33% less communication on top of the Row-reduction
optimization.

Garbling with Fixed-Key Block Cipher: This methodology [13]
introduces an encryption mechanism for garbled tables based on
fixed-key block ciphers (e.g., AES). Many of the modern processors
have AES-specific instructions in their Instruction Set Architecture
(ISA) which, in turn, makes the garbling and evaluating process
significantly faster using the fixed-key cipher.

Sequential Garbled Circuit: For years the GC protocol could have
only been used for Combinational circuits (a.k.a., acyclic graphs of
gates). Authors in [9] suggested a new approach that enables gar-
bling/evaluating sequential circuits (cyclic graphs). In their frame-
work, one can garble/evaluate a sequential circuit iteratively for
multiple clock cycles. Following the approach presented in [9], the
function f can be described with a Hardware Description Language
(HDL) and compiled with a logic synthesis tool.

2.4 Security Model

We assume an Honest-but-Curious (HbC) security model in which
the participating parties follow the protocol they agreed on, but

they may want to deduce more information from the data at hand.
We focus on this security model because of the following reasons:

e HbC is a standard security model in the literature [13, 17]
and is the first step towards stronger security models (e.g.,
security against malicious adversaries). Our solution can be
readily modified to support malicious models by following
the methodologies presented in [18-21]. Note that stronger
security models rely on multiple rounds of HbC with vary-
ing parameters. As such, the efficiency of DeepSecure is
carried out to those models as well.

e Many privacy-preserving DL execution settings naturally
fit well in HbC security. For instance, when all parties have
the incentive to produce the correct result (perhaps when
the DL inference task is a paid service). In these settings,
both data provider and the server that holds the DL model
will follow the protocol in order to produce the correct
outcome.

3 DeepSecure FRAMEWORK

Figure 2 demonstrates the overall flow of DeepSecure framework.
DeepSecure consists of two main components to securely perform
data inference in the context of deep learning: (i) GC-optimized
execution of the target DL model (Section 3.1), and (ii) data and DL
network transformation (Section 3.2).

3.1 DeepSecure GC Core Structure

Figure 3 illustrates the core structure of DeepSecure framework.
In our target setting, a cloud server (Bob) holds the DL model
parameters trained for a particular application, and a delegated
client (Alice) owns a data sample for which she wants to securely
find the corresponding classified label (a.k.a., inference label).

DL models have become a well-established machine learning
technique. Commonly employed DL topologies and cost functions
are well-known to the public. Indeed, what needs to be kept private
from the cloud server’s perspective is the DL model parameters
that have been tuned for a particular task using massive statistical
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databases and devoting large amounts of computing resources for
several weeks/months. Data owners, on the other hand, tend to
leverage the models already tuned by big technology companies to
figure out the inference label for their private data while keeping
their data fully private.

DeepSecure enables computing the pertinent data inference label
in a provably-secure setting while keeping both the DL model’s
parameters and data sample private. To perform a particular data
inference, the netlist of the publicly known DL architecture! should
be generated prior to the execution of the GC protocol. The execu-
tion of the GC protocol involves four main steps per Section 2.2.2: (i)
the client (data owner) garbles the Boolean circuit of the DL archi-
tecture. (ii) The client sends the computed garbled tables from the
first step to the cloud server along with her input wire labels. Both
client and the cloud server then engage in a 1-out-of-2 Oblivious
Transfer (OT) [11] protocol to obliviously transfer the wire labels
associated with cloud server’s inputs. (iii) The cloud server evalu-
ates (executes) the garbled circuit and computes the corresponding
encrypted data inference. (iv) The encrypted result is sent back to
the client to be decrypted using the garbled keys so that the true
inference label is revealed.

3.1.1 GC Communication and Computation Overhead
Table 2 details the computation and communication cost for exe-
cution of a fully-connected DNN. A similar setup applies to the
CNN models in which a set of convolutions are performed per layer.
DeepSecure finds an estimation of the physical coefficients (f and
) listed in Table 2 by running a set of subroutines as we will discuss
in Section 4.3. The total communication needed between client and
the server is proportional to the number of non-XOR gates since
only the garbled tables for non-XOR gates need to be transferred.
As shown in Table 2, the computation and communication over-
head of DL execution using GC protocol is explicitly governed by
the number of neurons (units) per DL layer. As such, we suggest
a set of data and DL network transformation as an arbitrarily pre-
processing step to reduce the computation and communication
overhead of GC protocol for DL inference.

3.2 Data and DL Network Pre-processing
DeepSecure pre-processing consists of two main steps: (i) data pro-
jection (Section 3.2.1), and (ii) DL network distillation (Section 3.2.2).

3.2.1 Data Projection
The input layer size of a neural network is conventionally dictated
by the feature space size of the input data samples. Many complex

DL architecture refers to the number and type of layers and not the values of the
pertinent private DL parameters.

Table 2: GC Computation and Communication Costs for re-
alization of a DNN model.

Computation and Communication Costs

Tcomp = ﬁmult Z?i;l n(l)”<l+1) + ﬁadd Z;LIZ n(l) + ﬁact Zln=12 n(l>

XOR XOR Non_XOR Non_XOR
Nopr “XCopr+Nopr XCopr

Popr = feru

ny: total number of DL layers

Bmuir: computational cost of a multiply operation in GC protocol
Pada: computational cost of an add operation in GC protocol

Pact: computational cost of a non-linearity operation in GC protocol
NXOR: number of XOR gates

NNon XOR: nymber of non_XOR gates

CXOR. garbling/evaluating cost of a XOR gate

CNon XOR: gqrpling/evaluating cost of a Non_XOR gate

fepu: CPU clock frequency

ny-1 n n
_ %mult Z,:Il nn 4,44 Z,:IZ nDtages 21:12 n®
comm = BWher

Qopr = Né\}l)gn_XOR X 2 X Npijrs

BW net: operational communication bandwidth

Amyly: communication cost of a multiply operation in GC protocol
Qqqq: communication cost of an add operation in GC protocol

Qqct: communication cost of a non-linearity operation in GC protocol
Npits: GC security parameter

modern data matrices that are not inherently low-rank can be mod-
eled by a composition of multiple lower-rank subspaces. This type
of composition of high-dimensional dense (non-sparse but struc-
tured) data as an ensemble of lower dimensional subspaces has been
used earlier by data scientists and engineers to facilitate knowledge
extraction or achieve resource efficiency [22-25]. DeepSecure, for
the first time, introduces, implements, and automates the idea of
pre-processing and systematic alignment of these data subspaces
as a way to achieve performance optimization for GC execution of
a DL model.

As we experimentally demonstrate in Section 4, the main bottle-
neck in the execution of GC protocol is the communication over-
head between the server (Bob) and client (Alice). Therefore, we
focus our pre-processing optimization to minimize the GC commu-
nication workload (T¢omm) customized to the application data and
DL model (see Table 2 for the characterization of communication
overhead in accordance with the data and DL network size). In or-
der to perform data pre-processing in DeepSecure framework, the
server (Bob) needs to re-train its private DL parameters according
to the following objective function:

Minimize (Tcomm) s.t., [|1A— DCl|p < €llAllp

D, DLparam
5(DLparam) < 8(DLparam) M
[ < m,

where Ay, is the raw input training data (owned by the server)
that we want to factorize into a dictionary matrix D,,y; and a
low-dimensional data embedding Cjy,, that is used to re-train the
DL model. Here, §(.) is the partial validation error corresponding
to the pertinent DL parameters. We use DLparam to denote the



initial DL parameters acquired by training the target DL model
using raw data features A. Whereas, ﬁLPamm indicates the updated
parameters after re-training the underlying DL model using the
projected data embedding C. || - ||r denotes the Frobenius norm
and € is an intermediate approximation error that casts the rank of
the input data.

Algorithm 1 Off-line re-training process locally performed by
server (Bob)

Input: Training data (A), batch size (np44¢p), training labels
(LTr), projection threshold (y), number of samples to
be evaluated before early stopping (patience), and pre-
trained DL parameters (DLparam)-

Output: Updated DL parameters DIPa ram, and projection
matrix W.

: D « empty

: C « empty

: DLparam — DLparam

: N1y « |Al //Number of columns in A
: 5best —1

§«1

s itr <0

je0

i—20

10: while i < N7, do

it:  Cj « 0//Column i in matrix C
12:  if D is empty then

R A U D

13: Vp(ai) =1

14:  else DO DT

5 Vplar) = IPER e
16:  end if

17: if § < 8pesy then

18: Opest < 0

19: itr <0

20:  else

21: itr « itr +1

22:  endif

23 if Vp(a;) > y & itr < patience then

24: D « [D,a;/Vlla;ill2]

25: Cij = Vllaillz //Element j in column i
26: jej+1

27:  else

28: C; « D(DTD)'DTg;

20:  endif

300 C« [C,Ci]
31: i—i+1
32:  if i mod np4pcp, == 0 then

33; DLparam < UpdateDL(DLparam. C, Ltr)
34: 0 « UpdateValidationError(DLparam)
35:  end if

36: end while
3. W = D(DTD)~1DT

Algorithm 1 outlines the pseudocode of our data pre-processing
step performed by the server (Bob). To solve Eq. 1, we first initiate
the matrices D and C as empty sets. DeepSecure gradually updates
the corresponding data embeddings by streaming the input training
data. In particular, for a batch of training data samples (4;), we
first calculate a projection error, V(A;), based on the current values
of the dictionary matrix D. This error shows how well the newly
added samples can be represented in the space spanned by D. If the
projection error is less than a user-defined threshold (y), it means
the current dictionary D is good enough to represent those new
samples (A4;). Otherwise, the corresponding data embeddings are
modified to include the new data structure imposed by the new
batch of data. The data embedding C is then used to update previous
DL parameters using multiple rounds of forward and backward
propagation (Line 33 Algorithm 1).

Once the DL model is re-trained using the projected data embed-
ding C, the underlying projection matrix (W = DD*)? is publicly
released to be used by the clients during DL execution phase. As
we will discuss in Section 3.7, W does not reveal any information
regarding the training data nor the DL parameters. We emphasize
that re-training of conventional DL model is a one-time off-line
process performed by the server. As such, the data pre-processing
overhead during GC execution only involves a matrix-vector mul-
tiplication, Y; = WXj, that is performed prior to garbling on the
client side (Algorithm 2). Here, X; indicates the raw data owned by
the client (Alice), W denotes the projection matrix, and Y; is the
projected data in the space spanned by columns of matrix W.

Algorithm 2 Online data pre-processing performed by the client
(Alice)

Input: Raw data measurement (X), projection matrix W,
number of client’s samples N_j;ep;-

Output: Projected data samples Y.

1: i« 0

2: while (i < N_jjen;) do
3: Y « WX;

4 i—i+1

5. end while

3.22 DL Network Pre-processing

Recent theoretical and empirical advances in DL has demonstrated
the importance of sparsity in training DL models [26-28]. Spar-
sity inducing techniques such as rectifying non-linearities and £
penalty are key techniques used to boost the accuracy in training
neural networks with millions of parameters.

To eliminate the unnecessary garbling/evaluation of non-
contributing neurons in a DL model, we suggest pruning the un-
derlying DL network prior to netlist generation for the GC pro-
tocol. In our DL network pre-processing, the connections with a
weight below a certain threshold are removed from the network.
The condensed network is re-trained as suggested in [28] to re-
trieve the accuracy of the initial DL model. DeepSecure network
pre-processing step is a one-time off-line process performed by the
server (Bob). Our approach is built upon the fact that DL models

2D* indicates the pseudo-inverse of the matrix D.



are usually over-parameterized and can be effectively represented
with a sparse structure without a noticeable drop in the pertinent
accuracy.

Note that using conventional GC protocol, it is not feasible to
skip the multiplication/addition in evaluating a particular neural
(unit) in a DL model. Our network pre-processing cuts out the non-
contributing connections/neurons per layer of a DL network. It,
in turn, enables using the sparse nature of DL models to signifi-
cantly reduce the computation and communication workload of
executing the GC protocol. The off-line step 1 indicated in Figure 2
corresponds to both data pre-processing outlined in Algorithm 1
and neural network pruning.

3.3 Secure Outsourcing

DeepSecure provides support for secure outsourcing of the GC
protocol to a proxy cloud server. This setting is well-suited for users
with severe resource constraints who may not be able to perform the
garbling task in a reasonable amount of time. We assume the same
level of security for the proxy server, being honest-but-curious.
This means that similar to the main server, we do not trust the
proxy server but we expect it to follow the protocol and do not
collude with the main server. Figure 4 illustrates the overall flow
of DeepSecure framework in the secure outsourcing scenario. The
proxy server can be a simple personal computer that is connected
to the Internet.

Our secure outsourcing scheme is based on XOR-sharing tech-
nique and works as follows: Client needs to generate [-bit random
string s, where [ is the bit-length of her input (x). Then, she XORs
her input with s, resulting in x @ s. She sends s to one of the servers
and x @ s to the other one. The Boolean circuit that is garbled in the
GC protocol remains the same except that it has one layer of XOR
gates at the initial stage of the circuit to generate the true input x
securely inside the circuit ((x ® s) ® s = x).
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Figure 4: The overall flow of DeepSecure framework in the
resource-constrained settings.

Communication and Computation Overhead. The secure out-
sourcing model does not introduce significant extra overhead. In

particular, users only need to generate a random string and do a
simple XOR operation. The GC protocol that runs between two
servers is the same as the original protocol except that we need to
put one layer of XOR gates in front of the circuit to produce the
true input (x). Thanks to the Free-XOR technique [15], this addi-
tional layer is almost free of charge resulting in almost the same
computation and communication overhead as the original scheme.

3.4 GC-Optimized Circuit Components Library

As we explained earlier, the GC protocol requires the function of
interest being represented as a Boolean circuit. Following the Free-
XOR optimization [15], the XOR gates are almost free of cost and
the garbled table needs to be generated and transferred only for
the non-XOR gates. Therefore, to optimize the computation and
communication costs, one needs to minimize the number of non-
XOR gates. We leverage the industrial synthesis tool to optimize
the resulting netlist by setting the area overhead for XOR gates to
zero and for all the other non-XOR gates to one. As such, forcing
the synthesis tools to create a netlist with minimum area, outputs
a netlist with least number of non-XOR gates.

Our custom synthesis library includes the GC-optimized realiza-
tion of all the necessary computation modules in a neural network
(Table 1). We design optimized fundamental blocks e.g., multiplexer
(MUX), comparator (CMP), adder (ADD), and multiplier (MULT)
such that they incur the least possible non-XOR gates. We add our
optimized blocks to the library of the synthesis tool. The detail
results of our GC-optimized realization of DL layers are presented
in Section 4.2.

3.5 GC Memory Footprint

We use sequential circuits as opposed to combinational circuits
traditionally used in GC for generating the netlists. Sequential
circuits are compact and can be scaled up easily due to their low
memory footprint. Therefore, the underlying circuit can be folded
into a more compact representation and be run for multiple clock
cycles. For instance, instead of instantiating all the MULT and ADD
modules used in the matrix multiplication individually, we can use
one MULT, one ADD, and multiple registers to accumulate the
result. A single multiplication is performed at a time and the result
is added to the previous steps, continuing until all operations are
done. As such, the circuit generation is no longer the bottleneck,
as the memory footprint of the circuit will be constant while the
circuit needs to be run for multiple iterations.

3.6 DeepSecure Modular Structure

Each DL layer outlined in Table 1 is implemented as a single module
in DeepSecure framework. These layers can be easily connected
to one another in order to form an end-to-end DL network. The
modular nature of DeepSecure enables users to create different
DL models with arbitrary architectures. For instance, a user can
instantiate one layer of convolutional layer followed by a non-linear
activation function and max pooling by easily stacking one layer
on the top of the previous layer. We have benchmarked multiple
well-known DL models including Convolutional Neural Networks
and Deep Neural Networks, each of which is explained in detail
in Section 4.5. We leverage Fixed-point number format for our



evaluations presented in Section 4.2. However, we emphasize that
our GC-optimized library also provides support for Floating-point
accuracy as well.

3.7 Security Proof

In this section, we provide a comprehensive security proof of
DeepSecure in the Honest-but-Curious (HbC) adversary model.
Our core secure function evaluation engine is the GC protocol. GC
is proven to be secure in HbC adversary model [29]; thereby, any in-
put from either client or server(s) to GC will be kept private during
the protocol execution. The Garbled circuit optimization techniques
(Section 3.4) that we leverage in DeepSecure to reduce the number
of non-XOR gates of circuit components do not affect the security
of our framework. This is because the security of the GC protocol
is independent of the topology of the underlying Boolean circuit.
As such, we only need to provide the security proof of the three
modifications that are performed outside of the GC protocol: (i)
data pre-processing, (ii) DL network pre-processing, and (iii) the
two secret shares generated in secure outsourcing mode that are re-
leased to the two servers (Section 3.3). In the following, we provide
detailed proofs for each of aforementioned modifications.

(i) Data Pre-processing. In step one of off-line processing depicted
in Figure 2, the projection matrix (W) is computed and released
publicly. In Proposition 3.1, we provide the security guarantees for
this step.

Proposition 3.1. Projection Matrix (W) reveals nothing but the
subspace of dictionary matrix (D) from which the matrix D cannot
be reconstructed.

Proof: Let D,,,«; = Unmxr X Zpxr X VrTxl denote the Singular
Value Decomposition (SVD) of the dictionary matrix D, where r is
the rank of D (r = min(m,[)). As such,

W = DD*
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where I, indicates the identity matrix of size r X r. As such, the
projection matrix W does not reveal any information regarding the
actual values of the dictionary matrix D but the subspace spanned
by its column space U (a.k.a., left-singular vectors). Note that for
a given set of left-singular vectors U, there exist infinite possible
data matrices that reside in the same column space. As such, the
dictionary matrix D cannot be reconstructed without having access
to corresponding right-singular vectors V and the singular value
set 2. If revealing the subspace spanned by U is not tolerable by
the server, this pre-processing step can be skipped.

(ii) DL Network Pre-processing. In this pre-processing stage,
the inherent sparsity of the neural network is utilized to produce
a new model which requires less computation. In order to avoid
garbling/evaluating unnecessary components in the Boolean circuit,

the server needs to modify the netlist used in the GC protocol.
Therefore, the sparsity map of the network is considered as a public
knowledge and will be revealed to the Garbler as well (Garbler needs
to garble the circuit based on the netlist). However, the sparsity
map only contains information regarding which part of the network
does not contribute to the output and reveals nothing about the
private network parameters. Just like the data pre-processing step,
if revealing the sparsity map is not acceptable by the server (DL
model owner), this step can be skipped.

(iii) Outsourcing. As discussed in Section 3.3, to securely out-
source the computation of the GC protocol to an untrusted server
Alice needs to generate a random number, send it to server one,
XOR her input with the random string, and send the XOR results to
the second server. This approach is secure based on the following
proposition.

Proposition 3.2. The XOR-sharing technique is secure with un-
trusted servers as long as two servers do not collude.

Proof: The first server only receives a purely random string
which is totally independent of the Client’s input data. Server one
should input this data to the GC protocol (considering that each
party must follow the protocol in HbC adversary model). What
the second server receives, is equivalent to One Time Pad (OTP)
encryption of Client’s input (using the random pad that is sent to
the first server). Server two also should input this data to the GC
protocol. Since OTP is proven to be secure [30], the only possible
way to decrypt the Client’s input is to have both the random pad and
the encrypted data which is not possible due to the non-colluding
assumption.

4 EVALUATIONS

4.1 Setup Experiment

We use Synopsys Design Compiler 2010.03-SP4 to generate the
Boolean circuits. The timing analysis is performed by two threads
on an Intel Core i7-2600 CPU working at 3.4GHz with 12GB RAM
and Ubuntu 14.04 operating system. We quantify the operational
throughput in our setting in Section 4.4. In all of the experiments,
the GC security parameter is set to 128-bit.

4.2 Circuit Synthesis

We implement each of the functions required for DL evaluation (Ta-
ble 1) using Verilog HDL and compile them with Synopsys Design
Compiler [31]. The results of our synthesized circuits in terms of the
number of XOR and non-XOR are summarized in Table 3. Table 3 in-
cludes three different approximation methods for Tanh and Sigmoid.
The error shown in this table reflects the level of approximation
in the realization of different variants of a particular function and
not the representational error. In any digital representation with
b fractional bits, there is an additional error of less than or equal
to 27(6*+1)_This error is introduced as a result of truncating the
precise representation which is inescapable in any digital system.
In our evaluations, we use 1 bit to hold the sign, 3 bits for integer
part, and 12 bits for the fractional part (denoted as b). Therefore,
a representational error of 2713 is present throughout the entire
network. An error rate of zero in Table 3 means the result of the
computation is precise up to b fractional bits. Any non-zero error



in the Table 3 implies that the computation will add the specified
amount of error to the final result.

Table 3: Number of XOR and non-XOR gates for each ele-
ment of DL networks.

Name #XOR #Non-XOR Error
Tanh; y7 692 149745 0
Tanhy 190.12 3040 1746 0.01%
Tanhpy, 5 206 0.22%
Tanhcorpic 8415 3900 07
Sigmoid; yp 553 142523 0
Sigmoidy o 1, 3629 2107 0.04%
Sigmoidpy AN 1 73 0.59%
Sigmoideoppic 8447 3932 0
ADD 16 16 0
MULT 381 212 0
DIV 545 361 0
ReLu 30 15 0
Softmaxy, (n—1)-48 (n—-1)-32 0

A1xm - Bmxn 397-m-n-16-n 228-m-n-16-n 0
T To achieve k bit precision, CORDIC has to be evaluated for k iterations.

The Sigmoid function has a symmetry point at (0, 0.5). There-
fore, one only needs to compute the function for one-half of the
X-y pairs (Yx<o = 1 — Yx>0). Similarly, Tanh is an odd function,
thus, we have yx<o = —yx>0. As shown in the Table 3, each ap-
proximation method results in a different error rate and circuit
size. In the first Tanh realization, this function is computed us-
ing Look-Up-Table (LUT) which incurs a zero computational error.
In the second realization, Tanhy 19.12, we eliminate the effect of
the two least significant fractional bits and the most significant
integer bit of the input value x. In particular, we set Tanh(x) for
any x value greater than four, equal to one. This approximation
has an error rate of 0.01%. Another less accurate but less costly
approach is to approximate Tanh with a piece-wise linear function
(denoted as Tanhpy, in Table 3). In this realization, we estimate Tanh
with seven different lines for x >= 0. Tanhpy, is almost 700 times
less costly than Tanh with an error rate of 0.22%. Equivalently, we
present three variants of Sigmoid function where Sigmoidpy 5\ is a
piece-wise linear implementation for approximate computation of
Sigmoid [32].

To compute DL non-linearity functions, we also evaluate COor-
dinate Rotation DIgital Computer (CORDIC) circuit. Each iteration
of computing CORDIC improves the final accuracy by one bit. As
such, in order to achieve 12 bit accuracy, we need to iteratively
evaluate the circuit 12 times. To operate CORDIC in hyperbolic
mode, one needs to evaluate iterations (3 X i + 1) twice, which in
turn, results in an overall 14 iterations per instance computation.
CORDIC outputs Cosine-Hyperbolic (Cosh) and Sine-Hyperbolic
(Sinh). We use these outputs to compute the corresponding values

of Tanh (é;::((i))) and Sigmoid function (m) The

synthesized result provided in Table 3 shows the total number of
gates for 14 iterations of evaluation plus one DIV operation for
Tanhcorpic With an additional two ADD operations for Sigmoid
computation.

Softmax is a monotonically increasing function. Therefore, ap-
plying this function to a given input vector does not change the
index of the maximum value (inference label index). As such, we use

optimized CMP and MUX blocks to implement Softmax in DeepSe-
cure framework. We provide different circuits for computing DL
non-linear activation functions to offer speed/accuracy trade-off.
One can choose each circuit according to her application criteria.
We utilize the CORDIC-based implementation of Tanh and Sigmoid
in our experiments presented in Section 4.5.

4.3 Performance Cost Characterization

Here, we quantify the GC performance parameters outlined in
Section 3.1.1. In DeepSecure framework, garbling/evaluating each
non-XOR and XOR gate requires 164 and 62 CPU clock cycles (clks)
on average, respectively. As a result, the computational time for
each operation (e.g., multiplication) can be defined as:
XOR -

NROR x 62 + Npor=XOR x 164

sec, (3)

feru

ﬁopr =

where fcpy is the CPU clock frequency.

In GC, the garbled tables for each non-XOR gate need to be
communicated between the two parties. Each table has two rows
and each row is 128 bits. Therefore, the total amount of data that
client has to send to the server (or the server-to-server communica-
tion overhead in secure outsourcing setting) can be defined as the
following:

topr = NJSHXOR 5 2 x 128 bit. (4)

Total execution time is dominated by the time required to transfer
the garbled tables as shown in Table 4.

4.4 GC Execution in Practice

Figure 5 illustrates the timing diagram of different GC steps for a
sequential circuit. In the case of a combinational circuit, only one
clock cycle of the operations will be executed. As we explained in
Section 2.2.2, the process starts by Alice who garbles the circuit.
After garbling, both parties engage in the OT protocol to obliviously
transfer the labels. Garbled tables are then sent to Bob. At this point,
while Bob starts evaluating the circuit, Alice starts garbling for
the second clock cycle. Therefore, the total execution time of the
protocol is not the summation of the execution time of both parties.
This process continues until the circuit is garbled for specified
number of clock cycles after which the result is sent back to Alice
to decode the final data inference result. The garbling/evaluating
time in GC is proportional to the total number of gates in the
circuit, whereas the data transfer time mainly depends on the total
number of non-XOR gates in the circuit. The OT execution overhead
particularly depends on the input data size (number of input bits). In
our target DL setting, DeepSecure achieves an effective throughput
of 2.56 M and 5.11M gates per second for non-XOR and XOR gates,
respectively.

4.5 Empirical Analysis

Table 4 details DeepSecure performance in the realization of four
different DL benchmarks without including the data and DL net-
work pre-processing. Our benchmarks include both DNN and CNN
models for analyzing visual, audio, and smart-sensing datasets. The
topology of each benchmark is outlined in the following.
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Figure 5: The timing diagram of GC execution in DeepSecure.

Table 4: Number of XOR and non-XOR gates, communication, computation time, and overall execution time for our bench-
marks without involving the data and DL network pre-processing.

Name Network Architecture

#XOR  #Non-XOR Comm. (MB) Comp.(s) Execution (s)

Benchmark 1 28x28-5C2-ReLu-100FC-ReLu-10FC-Softmax

Benchmark 2 28%x28-300FC-Sigmoid-100FC-Sigmoid-10FC-Softmax

Benchmark 3  617-50FC-Tanh-26FC-Softmax
Benchmark 4  5625-2000FC-Tanh-500FC-Tanh-19FC-Softmax

4.31E7 2.47E7 7.91E2 1.98 9.67
1.09E8 6.23E7 1.99E3 4.99 24.37
1.32E7 7.54E6 2.41E2 0.60 2.95
4.89E9 2.81E9 8.98E4 224.50 1098.3

Table 5: Number of XOR and non-XOR gates, communication, computation time, and overall execution time for our bench-
marks after considering the pre-processing steps. The last column of the table denotes the improvement achieved as a result

of applying our pre-processing methodology.

Name Data and Network Compaction #XOR  #Non-XOR Comm. (MB) Comp. (s) Execution(s) Improvement
Benchmark 1 9-fold 4.81E6 2.76E6 8.82E1 0.22 1.08 8.95%
Benchmark 2 12-fold 1.21E7 6.57E6 2.10E2 0.54 2.57 9.48%
Benchmark 3 6-fold 2.51E6 4.47E1 0.11 0.56 5.27X
Benchmark 4 120-fold 6.28E7 3.39E7 1.08E3 2.78 13.26 82.83%

4.5.1 Visual Benchmarks

Detecting objects in an image is a key enabler in devising various
artificial intelligence and learning tasks. We evaluate DeepSecure
practicability in analyzing MNIST dataset [33] using two differ-
ent DL architectures. This data contains hand-written digits repre-
sented as 28 x 28 pixel grids, where each pixel is denoted by a gray
level value in the range of 0-255.

Benchmark 1. In this experiment, we train and use a 5-layer con-
volutional neural network for document classification as suggested
in [8]. The five layers include: (i) a convolutional layer with a kernel
of size 5 X 5, a stride of (2, 2), and a map-count of 5. This layer
outputs a matrix of size 5 X 13 X 13. (ii) A ReLu layer as the non-
linearity activation function. (iii) A fully-connected layer that maps
the (5 X 13 X 13 = 865) units computed in the previous layers to
a 100-dimensional vector. (iv) Another ReLu non-linearity layer,
followed by (v) a final fully-connected layer of size 10 to compute
the probability of each inference class.

Benchmark 2. In this experiment, we train and use LeNet-300-100
as described in [34]. LeNet-300-100 is a classical feed-forward neural
network consisting of three fully-connected layers interleaved with
two non-linearity layers (Sigmoid) with total 267K DL parameters.

4.5.2  Audio Benchmark

Benchmark 3. Processing audio data is an important step in de-
vising different voice activated learning tasks that appear in mobile
sensing, robotics, and autonomous applications. Our audio data
collection consists of approximately 1.25 hours of speech collected
by 150 speakers [35]. In this experiment, we train and use a 3-layer
fully-connected DNN of size (617 X 50 X 26) with Tanh as the non-
linear activation function to analyze data within 5% inference error
as suggested in [24].

4.5.3 Smart-Sensing Benchmark

Benchmark 4. Analyzing smart-sensing data collected by embed-
ded sensors such as accelerometers and gyroscopes is a common
step in the realization of various learning tasks. In our smart-sensing
data analysis, we train and use a 4-layer fully-connected DNN of
size (5625 X 2000 X 500 X 19) with Tanh as the non-linear activation
function to classify 19 different activities [36] within 5% inference
error as suggested in [24].

4.6 DeepSecure Pre-processing Effect

Table 5 shows DeepSecure performance for each benchmark af-
ter including the data and DL network pre-processing. Our pre-
processing customization is an arbitrary step that can be used to



minimize the number of required XOR and non-XOR gates for
the realization of a particular DL model. As illustrated, our pre-
processing approach reduces the execution time of GC protocol by
up to 82-fold without any drop in the underlying DL accuracy.

4.7 Comparison with Prior Art Framework

Table 6 details the computation and communication overhead per
sample in DeepSecure framework compared with the prior art
privacy-preserving DL system [8]. Our result shows more than
58-fold improvement in terms of overall execution time per sample
even without considering the pre-processing steps. For instance,
it takes 570.11 seconds to run a single instance on the pertinent
MNIST network using [8] while DeepSecure reduces this time to
9.67 seconds with no data and network pre-processing. Our data
and DL network pre-processing further reduces the processing
time per sample to only 1.08 seconds with no drop in the target
accuracy.? As we discussed in Section 3.7, the confidentiality level
of data samples and DL parameters does not change as a result of
employing our pre-processing techniques.

Table 6: Communication and computation overhead per
sample in DeepSecure vs. CryptoNet [8] for benchmark 1.

Framework Comm. Comp. (s) Execution(s) Improvement
DeepSecure without  791MB 1.98 9.67 58.96 X
pre-processing

DeepSecure with 88.2MB 0.22 1.08 527.88x
pre-processing

CryptoNets 74KB 570.11 570.11 -

Figure 6 shows the expected processing time as a function of data
batch size from the client’s point of view. The reported runtime for
CryptoNet corresponds to implementing benchmark 1 using 5-10
bit precision on a Xeon E5-1620 CPU running at 3.5GHz, with 16GB
of RAM as presented in [8]. Whereas, DeepSecure is prototyped
using 16 bit number representation on an intel Core-i7 processor
that has a slightly less computing power compared to the Xeon
processor [37].

As illustrated in Figure 6, DeepSecure’s computational cost scales
linearly with respect to the number of samples. As such, DeepSecure
is particularly ideal for scenarios in which distributed clients stream
small batches of data (e.g., N¢jjens < 2590) and send them to the
server to find the corresponding inference label with minimal delay.
However, CryptoNet is better-suited for settings where one client
has a large batch of data (e.g., N¢jjens = 8192) to process at once.
This is because CryptoNet incurs a constant computational cost
up to a certain number of samples depending on the choice of the
polynomial degree. To mitigate the cost, authors in [8] suggest
processing data in batches as opposed to individual samples using
scalar encoding. The data batch size, in turn, is dictated by the
polynomial degree used in the realization of a particular DL model.
Therefore, to acquire a higher security level one might need to use
larger data batch sizes in the CryptoNet framework.

3 Authors in [8] have only reported one benchmark (which we used as benchmark 1)
for proof-of-concept evaluation. As such, we did not include the comparison for the
other three benchmarks used in this paper.
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Figure 6: Expected processing time from client’s point of
view as a function of data batch size. In this figure, the y axis
is illustrated in logarithmic scale.

5 RELATED WORK

Authors in [38] have suggested the use of secure function evaluation
protocols to securely evaluate a DL model. Their proposed approach,
however, is an interactive protocol in which the data owner needs to
first encrypt the data and send it to the cloud. Then, the cloud server
should multiply the encrypted data with the weights of the first
layer, and send back the results to the data owner. The data owner
decrypts, applies the pertinent non-linearity, and encrypts the result
again to send it back to the cloud server for the evaluation of the
second layer of the DL model. This process continues until all the
layers are computed. There are several limitations with this work
[38]: (i) it leaks partial information embedded in the weights of the
DL model to the data owner. (ii) It requires the data owner to have a
constant connection with the cloud server while evaluating the DL
network. To address the issue of information leakage as a result of
sharing the intermediate results, [39] and [40] enhance the protocol
initially proposed in [38] to obscure the weights. However, even
these works [39, 40] still need to establish a constant connection
with the client to delegate the non-linearity computations after
each hidden layer to the data owner and do not provide the same
level of security provided by DeepSecure.

Perhaps the closest work to DeepSecure is the study by Microsoft
Research [8] in which homomorphic encryption is used as the
primary tool for privacy-preserving computation of DL networks.
Unlike DeepSecure, the inherent noise in HE yields a trade-off
between privacy and accuracy in evaluating the DL model which
in turn translates to a lower accuracy level for obtaining a higher
degree of privacy. In addition, the relatively high computation
overhead of HE bounds the applicability of such approach to the
use of low-degree polynomials and limited-precision numbers (e.g.,
5-10 bits). To the best of our knowledge, DeepSecure is the first
to propose a scalable, fully-secure model for DL evaluation while
limiting the communications between the client and the cloud
server to a constant number regardless of the input data and DL
network size.

A number of earlier works have shown the usability of data pro-
jection and sparsity regularization techniques to facilitate feature
extraction [26, 27, 41] or accelerate the execution of particular DL



models [24, 28]. These set of works have been mainly focused on
the functionality of DL models in terms of the accuracy and physi-
cal performance (e.g., energy consumption, memory footprint, etc.)
with no attention to the data privacy. To the best of our knowledge,
DeepSecure is the first framework that introduces, implements, and
automates the idea of data and DL network transformation as a
way to minimize the number of required non-XOR gates for the
privacy-preserving realization of DL models using GC.

6 CONCLUSION

We present DeepSecure, a novel practical and provably-secure DL
framework that enables distributed clients (data owners) and cloud
servers (who have the capability and resources to tune large scale
DL models), jointly evaluate a DL network on their private assets.
DeepSecure leverages automated design, efficient logic synthesis
tools, and optimization methodologies to provide scalable realiza-
tion of functions required for DL evaluation optimized for Yao’s GC
protocol. We also provide mechanisms to securely outsource the
GC computation in settings where clients incur severe resource con-
straints. Our GC-optimized realization of hierarchical non-linear
DL models demonstrates more than 58 times higher throughput
per sample compared with the prior art privacy-preserving DL
solution. We further propose a set of data and DL network transfor-
mation techniques as a pre-processing step to explicitly optimize
the computation and communication overhead of GC protocol in
the context of deep learning. Proof-of-concept evaluations using
different DL benchmarks shows up to two orders-of-magnitude
additional improvements achieved as a result of our pre-processing
methodology.
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