
A Provably-Secure Unidirectional Proxy Re-Encryption Scheme
Without Pairing in the Random Oracle Model

S. Sharmila Deva Selvi?, Arinjita Paul?? and C. Pandu Rangan??

Theoretical Computer Science Lab,
Department of Computer Science and Engineering,

Indian Institute of Technology Madras, Chennai, India.
{sharmila,arinjita,prangan}@cse.iitm.ac.in

Abstract. Proxy re-encryption (PRE) enables delegation of decryption rights by entrusting a proxy server with
special information, that allows it to transform a ciphertext under one public key into a ciphertext of the same
message under a different public key. It is important to note that, the proxy which performs the re-encryption
learns nothing about the message encrypted under either public keys. Due to its transformation property, proxy
re-encryption schemes have practical applications in distributed storage, encrypted email forwarding, Digital
Rights Management (DRM) and cloud storage. From its introduction, several proxy re-encryption schemes have
been proposed in the literature, and a majority of them have been realized using bilinear pairing. In Africacrypt
2010, the first PKI-based collusion resistant CCA secure PRE scheme without pairing was proposed in the random
oracle model. In this paper, we point out an important weakness in the scheme. We also present the first collusion-
resistant pairing-free unidirectional proxy re-encryption scheme which meets CCA security under a variant of the
computational Diffie-Hellman hardness assumption in the random oracle model.

Keywords: Proxy Re-Encryption, Random Oracle Model, Chosen Ciphertext Security, provably secure, unidi-
rectional.

1 Introduction

Encryption is one of the fundamental cryptographic primitives for scenarios requiring confidentiality. Proxy re-
encryption is an important primitive that allows a third party termed as proxy server, to transform the ciphertext of
a user into a ciphertext of another user without learning anything about the underlying message. Consider the email
forwarding scenario, where Alice with public key PKAlice is on a vacation and wishes her mail server to forward all her
encrypted emails to Bob with public key PKBob. Here, Alice is not interested in sharing her private key SKAlice with
either the mail server or Bob as that would compromise her private key. As pointed out by Mambo and Okamoto in
[18], this is a common situation in practice where a data encrypted under PKAlice is required to be encrypted under
PKBob. When Alice is online, the encrypted message EPKAlice(m) can be decrypted by Alice using SKAlice to extract
the message m, followed by encrypting it under PKBob to obtain the ciphertext EPKBob(m). But in applications like
encrypted email forwarding (described above), secure distributed file systems and outsourced filtering of encrypted
spam, when the owner of SKAlice is not online, proxy re-encryption efficiently solves the problem of delegation of
decryption rights with the involvement of an untrusted party called proxy. Here, Alice provides a secret information
to the proxy called Re-Encryption Key (but not her private key SKAlice) that allows it to transform EPKAlice(m) to
EPKBob(m). Since Alice delegates her decryption rights to Bob, Alice is termed as delegator and Bob as delegatee.
The important property to note here is, the proxy learns nothing about m or SKAlice.
A PRE scheme can be unidirectional or bidirectional. In a bidirectional scheme, the re-encryption key (RKAlice→Bob)
allows re-encryption in both directions, i.e., the transformation of a ciphertext EPKAlice(m) under the public key of
Alice to a ciphertext EPKBob(m) under the public key of Bob and also EPKBob(m) to EPKAlice(m). In a unidirectional
scheme, the re-encryption key RKAlice→Bob allows the transformation of the ciphertext only in one direction, i.e.,
EPKAlice(m) to EPKBob(m) but not vice versa. Again, the re-encryption algorithm can be single-hop or multi-hop.
In a single-hop scheme, the re-encrypted ciphertext cannot be re-encrypted any further. In a multi-hop scheme, the
re-encrypted ciphertext can be re-encrypted multiple times. We focus on unidirectional single-hop PRE schemes in
this paper.
PRE can be used in many applications, including encrypted email forwarding, distributed file systems, secure certified
email mailing lists, the DRM of Apple’s iTunes, access control and privacy for public transportation [1,2,21,14,22].

?
Postdoctoral researcher supported by Project No. CCE/CEP/22/VK&CP/CSE/14-15 on Information Security & Awareness(ISEA) Phase-II by

Ministry of Electronics & Information Technology, Government of India.
??

Work partially supported by Project No. CCE/CEP/22/VK&CP/CSE/14-15 on ISEA-Phase II.

In 1998, Blaze, Bleumer and Strauss [5] proposed the first Elgamal-based bidirectional proxy re-encryption scheme.
However, their scheme is transitive and not collusion resistant. In a transitive PRE scheme, given the re-encryption
keys RKAlice→Bob and RKBob→Carol, the proxy can compute RKAlice→Carol. Also, collusion resistance is an impor-
tant property of PRE, which prevents a colluding proxy and the delegatees to extract the delegator’s private key.
Besides, bidirectionality may not be always desirable. Dodis and Ivan [15] proposed a CCA security model for PRE
and designed the first unidirectional PRE scheme. However, in their protocol, the decryption key of the delegatee Bob
requires a part of the the private key of the delegator Alice.
In 2005, Ateniese et al. [1,2] gave the first construction of a unidirectional PRE scheme based on bilinear maps. Their
scheme is non-transitive and collusion resistant. But, their scheme only offers chosen plaintext security which is insuf-
ficient for many practical applications.
In 2007, Canetti and Hohenberger [6] proposed the security notion of PRE satisfying chosen-ciphertext attack and
presented a bidirectional CCA secure PRE scheme using bilinear pairing satisfying the same in the standard model. In
2008, Libert and Vergnaud [17] presented a single-hop unidirectional PRE scheme in the standard model using pairing.
Their scheme is secure against replayable chosen-ciphertext attack (RCCA). RCCA security is a weaker variant of
the CCA security in the sense that a harmless mauling of the challenge ciphertext is tolerated. Green and Ateniese
[13] also proposed a pairing based CCA-secure PRE scheme for ID-based cryptosystems.
Note that, despite recent advances in implementation techniques, bilinear pairing takes more than twice the time taken
by modular exponentiation computation [4] and is an expensive operation. Weng et al. [10] proposed a CCA secure
pairing-free bidirectional PRE scheme, but their scheme is not collusion resilient [23]. Subsequently, Shao and Cao [20]
proposed a unidirectional PRE scheme without pairing, which was later shown to be vulnerable to CCA attack by
Chow et al. [8]. In Africacrypt 2010, Chow et al. [8] proposed a CCA secure PRE scheme that does not use bilinear
pairing. Their scheme is unidirectional and resists collusion attack. This is the only scheme that offers these properties
without pairing. However, in this work, we expose a critical weakness in the security proof of the scheme.

2 Our Contributions

Although several PRE schemes have been proposed in the literature, a majority of the schemes relies on costly bilinear
pairing operations. As stated by Chow et al.[8], removing pairing operations from PRE constructions is one of the open
problems left by [6]. Weng et al. [10] proposed the first CCA secure pairing-free PRE scheme, which was however shown
to be vulnerable to collusion attack [23]. Note that collusion resistance is an important property in the PRE setting,
which prevents a colluding proxy and malicious delegatees from recovering the private key of the delegator. Collusion
resistance, also termed as delegator secret security is a desirable property in many practical scenarios such as secure
cloud services. In 2010, Chow et al.[8] proposed the first construction of a collusion-resistant CCA secure pairing-free
PRE scheme. However, in our work, we point out a major weakness in the security proof of the scheme by Chow et al.,
which clearly shows that the scheme is not provably secure. Further, we justify that a trivial fix to the scheme is not
possible. We also provide the first construction of a CCA-secure collusion-resistant pairing-free unidirectional single-
hop proxy re-encryption scheme under the Computational Diffie-Hellman(CDH) and the Divisible Computational
Diffie-Hellman(DCDH) hardness assumptions in the random oracle model. To the best of our knowledge, ours is the
first construction of pairing-free PRE that affirmatively satisfies the collusion-resistance property.

3 Definition and Security Model

We provide the definitions and security notions of unidirectional proxy re-encryption systems in this section.

3.1 A Generic Model for Single-hop Unidirectional Proxy Re-Encryption Scheme

A single-hop unidirectional PRE scheme consists of the following algorithms described below:

– Setup(λ): The setup algorithm is run with the security parameter λ as input, and it returns the public parameters
PARAMS.

– KeyGen(Ui, PARAMS): The key generation algorithm takes the user information Ui and public parameters
PARAMS as inputs, and returns the private key SKi and its corresponding public key PKi for a user Ui.

– ReKeyGen(SKi, PKi, PKj , PARAMS): The re-encryption key (re-key) generation algorithm takes the private
key SKi and public key PKi of the delegator, the public key of the delegatee PKj and the public parameters
PARAMS as inputs and returns the re-encryption key RKi→j . This algorithm is run by the user Ui.

– Encrypt(m,PKi, PARAMS): The encryption algorithm takes a message m ∈M, public key PKi of the receiver
and the public parameters PARAMS as inputs, and returns the ciphertext σi, which is an encryption of m under
PKi. The generated ciphertext σi is termed original ciphertext, which can be further re-encrypted.

2

– ReEncrypt(σi, PKi, PKj , RKi→j , PARAMS): The re-encryption algorithm takes a ciphertext σi (encryption of
a message m ∈ M under PKi), the public key of delegator PKi, the public key of the delegatee PKj , the re-
encryption key RKi→j and the public parameters PARAMS as inputs, and returns the re-encrypted ciphertext
σ̂j which is an encryption of m under PKj . This algorithm is run by the proxy who does not learn anything about
the message m. The re-encrypted ciphertext σ̂j is termed transformed ciphertext.

– Encrypt1(m,PKi, PARAMS): The encryption algorithm takes a message m ∈M, public key PKi of the receiver
and the public parameters PARAMS as inputs, and returns a non-transformable ciphertext σ̂i, which is an
encryption of m under PKi. The generated ciphertext σ̂i is termed non-transformable since it cannot be further
re-encrypted.

– Decrypt(σi, PKi, SKi, PARAMS): The decryption algorithm takes the ciphertext σi (original,transformed or
non-transformable) which is an encryption of a message m ∈M under PKi, the public key PKi, the private key
SKi and the public parameters PARAMS as inputs. It returns the message m ∈M if σi is a valid encryption of
m under PKi, or the error symbol ⊥ otherwise.

3.2 Security Model

We adopt the game based definitions of ciphertext security of a single-hop unidirectional PRE scheme from the security
model of Chow et al. [8]. The security of a unidirectional PRE scheme is modelled in the form of a security game
between two entities : the challenger C and the adversary A. C simulates an environment running PRE for A, who can
adaptively query the oracles (to be listed later) which C answers. Our security model is based on the Knowledge of
Secret Key (KOSK) model [6,16]. The challenger computes and provides the public keys of the honest users (HU) and
the public/private key pairs of the corrupt users (CU) beforehand and the adversary cannot determine which parties
are to be compromised adaptively. C executes the key generation algorithm nh times and nc times to generate the
public/private key pairs of the honest and corrupt users respectively. Due to the presence of three types of ciphertexts:
original, transformed and non-transformable ciphertexts, it is essential to prove the security for all the three types.
Hence, we consider separate security models for the original, transformed and non-transformable ciphertexts in our
scheme.

Original ciphertext security The original ciphertext security model involves an adversary A challenged with an
original ciphertext under the target public key PKT . The security of the scheme is shown by a game between an
adversary A and the challenger C as demonstrated below:

– Phase I: C takes the security parameter λ as input, runs the algorithm Setup(λ) and gives the resulting system
parameters PARAMS to A. C runs the KeyGen algorithm and provides the public keys of the honest users and
the public/private key pairs of the corrupt users to A. Additionally, A can adaptively query the following oracles
provided by C.
• OReKeyGen(PKi, PKj): C runs the algorithm ReKeyGen(SKi, PKi, PKj , PARAMS) and returns the re-

encryption key RKi→j to A.
• OReEncrypt(σi, PKi, PKj): C runs the algorithm ReEncrypt(σi, PKi, PKj, ReKeyGen(SKi, PKi, PKj ,
PARAMS), PARAMS) and returns the re-encrypted ciphertext σ̂j to A.

• ODecrypt(σi, PKi) or ODecrypt(σ̂i, PKi): C runs the algorithm Decrypt(σi, PKi, SKi, PARAMS) and returns
the result to A. Here, ODecrypt(σi, PKi) is a query to decrypt the original ciphertexts and ODecrypt(σ̂i, PKi)
to decrypt the transformed/non-transformable ciphertexts.

– Challenge Phase: After taking sufficient training, A provides a target public key PKT (T ∈ HU), and two
messages m0,m1 ∈ M of equal length. C flips a random coin δ ∈ {0, 1}, sets the challenge ciphertext to be
σT = Encrypt(mδ, PKT , PARAMS) and provides σT as the challenge ciphertext to A.

– Phase II: A adaptively issues queries to the oracles simulated by C and C responds as in Phase I. However, A
is restricted from placing the following queries to C, which trivially lets A decrypt the challenge ciphertext σT :

• OReKeyGen(PKT , PKj) is allowed only if PKj ∈ HU .
• A cannot issue a re-encryption query OReEncrypt(σi, PKi, PKj) where PKj ∈ CU , if (σi, PKi) is a challenge
derivative (See Definition 1) of (σT , PKT).

• A cannot issue a decryption query ODecrypt(σi, PKi) if (σi, PKi) is a challenge derivative of (σT , PKT).
• A cannot issue a corrupted key generation query on user UT to obtain the target private key SKT .
• A cannot issue decryption queries on σT under PKT .

3

Definition 1. (Challenge Derivative for Chosen-Ciphertext Security). A challenge derivative (σi, PKi)
in the CCA setting is defined below. The definition is adopted from [8]:
• Reflexitivity: (σi, PKi) is a challenge derivative of itself.
• Derivative by re-encryption: (σ̂j , PKj) is a challenge derivative of (σi, PKi) if σ̂j ← OReEncrypt

(σi, PKi, PKj).
• Derivative by re-encryption key: (σ̂j , PKj) is a challenge derivative of (σi, PKi) if RKi→j ←
OReKeyGen(PKi, PKj) and σ̂j = Re-Encrypt(σi, PKi, PKj , RKi→j , PARAMS).

– Guess: Finally, A outputs a guess δ′ ∈ {0, 1} and wins the game if δ′ = δ.

Transformed ciphertext security In a single-hop PRE scheme, it is essential to also prove the security for the
transformed ciphertext as the ciphertexts cannot be further re-encrypted in a single-hop environment. The adversary
A is challenged with a transformed ciphertext, and does not have access to its corresponding original ciphertext. A
is challenged with a ciphertext σ̂T (re-encryption of σi′ under the public key PKi′ to σ̂T under PKT) re-encrypted
using the re-key RKi′→T . The security for the transformed ciphertext remains unaffected by the fact whether Ui′ is a
corrupt user or not. The security of the scheme is shown by a game between an adversary A and the challenger C and
is demonstrated below:

– Phase I: C takes the security parameter λ as input and runs the algorithm Setup(λ) and gives the resulting
system parameters PARAMS to A. C runs the KeyGen algorithm and provides the public keys of the honest
users and the public/private key pairs of the corrupt users to A. Additionally, A can adaptively query the re-key
generation oracle OReKeyGen(PKi, PKj), re-encryption oracle OReEncrypt(σi, PKi, PKj) and decryption oracles
ODecrypt(σi, PKi) provided by C.

– Challenge Phase: After taking sufficient training, A provides the delegator’s public key PKi′ , the delegatee’s
(target) public key PKT (T ∈ HU), and two messages m0,m1 ∈M of equal length. C flips a random coin δ ∈ {0, 1}
and sets the challenge ciphertext to be σ̂T = ReEncrypt(mδ, PK

′
i, PKT , RKi′→T , PARAMS) and provides σ̂T as

challenge ciphertext to A.

– Phase II: A adaptively issues queries and C responds as in Phase I. However, the adversary A is subjected to
the following restrictions during this phase :
1. If PK ′i ∈ CU , A cannot query RKi′→T .
2. If A has already obtained RKi′→T where PK ′i ∈ CU , PK ′i cannot be the delegator in the challenge phase.
3. A cannot issue a corrupted key generation query on user UT to obtain the target private key SKT .
4. A cannot issue decryption queries on σ̂T under PKT .

– Guess: Finally, A outputs a guess δ′ ∈ {0, 1} and wins the game if δ′ = δ.

Nontransformable Ciphertext Security Non-transformable ciphertexts are the encryptions of very sensitive
information that should not be further encrypted. The Encrypt1 algorithm produces non-transformable ciphertexts
σ̂i, indistinguishable from re-encrypted ciphertexts generated by the ReEncypt algorithm. The security of the
scheme is shown by a game between an adversary A and the challenger C and is demonstrated below:
• Phase I: C runs the algorithm Setup(λ) and gives the system parameters PARAMS to A. C runs the KeyGen

algorithm and provides the public keys of the honest users and the public/private key pairs of the corrupt users
to A. Additionally, A can adaptively query the re-key generation oracle OReKeyGen(PKi, PKj) and decryption
oracles ODecrypt(σi, PKi) provided by C.

• Challenge Phase: After taking sufficient training, A provides the target public key PKT (T ∈ HU) and two
messages m0,m1 ∈ M of equal length. C flips a random coin δ ∈ {0, 1}, and sets the challenge ciphertext to
be σ̂T = Encrypt1(mδ, PKT , PARAMS) and provides σ̂T as challenge ciphertext to A.

• Phase II: A adaptively issues queries and C responds as in Phase I. However, the adversary A is subjected
to the following restrictions during this phase :
1. A cannot issue a corrupted key generation query on user UT to obtain the target private key SKT .
2. A cannot issue decryption queries on σ̂T under PKT .

• Guess: Finally, A outputs a guess δ′ ∈ {0, 1} and wins the game if δ′ = δ.

4

We refer to the above adversary A against all the three types of ciphertexts as IND-PRE-CCA adversary. A’s
advantage in attacking the PRE scheme is defined as :

AdvIND−PRE−CCAPRE,A = |2Pr[δ′ − δ]− 1|,

where, the probability is over the random coin tosses performed by C and A. Given a t-time IND-PRE-CCA
adversary A who makes at most qRK re-encryption key generation queries, qRE re-encryption queries and qd
decryption queries, a single-hop unidirectional PRE scheme is defined as (t, ε)-IND-PRE-CCA secure if the
advantage of A is AdvIND−PRE−CCAPRE,A ≤ ε.

Delegator Secret Security

Delegator secret security or collusion-resistance prevents a colluding dishonest proxy and delegatees to derive the
delegator’s private key in full [8]. This attack is also captured by the transformed/non-transformable ciphertext security,
since the challenger provides the adversary with all the re-encryption keys, which makes decryption of ciphertexts
encrypted under the delegator’s public key easy when the adversary can derive the delegator’s private key completely.
We adopt the delegator secret security model from the definition in Chow et al.[7]. The security is defined by the
following game between the challenger C and the adversary A as demonstrated below:

– Setup: C takes the security parameter λ as input, runs Setup(λ) and gives the resulting system parameters
PARAMS to A.

– Queries: A issues the following queries adaptively to C:
• Uncorrupted-Key Generation: C runs the KeyGen(Ui, PARAMS) algorithm to generate the public/private

key pair (PKi, SKi) of user Ui and returns PKi to A.
• Corrupted-Key Generation: C runs the KeyGen(Ui, PARAMS) algorithm to generate the public/private key

pair (PKi, SKi) of user Ui and returns (PKi, SKi) to A.
• Re-encryption Key Generation (PKi, PKj): C generates the public/private key pairs(corrupted or uncor-

rupted) of users Ui and Uj and runs the ReKeyGen(SKi, PKi, PKj , PARAMS) algorithm to generate the
re-encryption key RKi→j from users Ui to Uj .

– Output: A returns SK∗i as the private key of public key PK∗i . A wins the game if SK∗i is a valid private key of
an uncorrupted user with public key PK∗i .

We refer to the above adversary A as the DSK adversary. The advantage of A in attacking the delegator secret
security of the scheme is defined as:

AdvDSKPRE,A = Pr[A wins].

where, the probability is over the random coin tosses performed by C and A. Given a t-time DSK adversary A
who makes at most qRK re-encryption key generation queries, a single-hop unidirectional PRE scheme is defined as
(t, ε)-DSK secure if the advantage of A is AdvDSKPRE,A ≤ ε.

Complexity Assumptions

We define the complexity assumptions used in the proof of security of our PRE scheme.

Definition 2. Computational Diffie Hellman Assumption (CDH): Let G be a cyclic multiplicative group of
prime order q. The Computational Diffie Hellman problem in G is, given (g, ga, gb) ∈ G3, compute gab, where a, b← Z∗q .

Definition 3. Divisible Computational Diffie Hellman Assumption (DCDH): Let G be a cyclic multiplicative
group of prime order q. The Divisible Computational Diffie Hellman problem in G is, given (g, ga, gb) ∈ G3, compute
gb/a, where a, b← Z∗q .

Definition 4. Discrete Logarithm Assumption (DL): Let G be a cyclic multiplicative group of prime order q.
The Discrete Logarithm problem in G is, given (g, ga) ∈ G2, compute a, where a← Z∗q .

4 Analysis of a Unidirectional PRE Scheme by Chow et al.[8]

We review the scheme due to Chow et al. [8] and point out the weakness of the scheme in this section.

5

4.1 Review of the scheme

– Setup(λ): Choose two primes p and q such that q|p− 1 and the security parameter λ defines the bit-length of q.
Let G be a subgroup of Z∗q with order q and let g be a generator of the group G. Choose four hash functions:

H1 : {0, 1}l0 × {0, 1}l1 → Z∗q ,

H2 : G→ {0, 1}l0+l1 ,

H3 : {0, 1}∗ → Z∗q ,
H4 : G→ Z∗q .

The hash functions H1, H2, H3 are modelled as random oracles in the security proof reduction. Here l0 and l1 are
security parameters determined by λ, and the message space M is {0, 1}l0 .
Return the public parameters PARAM = (q,G, g,H1, H2, H3, H4, l0, l1).

– KeyGen(Ui, PARAMS): To generate the private key (SKi) and the corresponding public key (PKi) of user Ui:
• Pick xi,1, xi,2 ∈R Z∗q and set SKi = (xi,1, xi,2).
• Compute PKi = (PKi,1, PKi,2) = (gxi,1 , gxi,2).

– ReKeyGen(SKi, PKi, PKj , PARAMS): On input of the private key of user Ui: SKi = (xi,1, xi,2) and public
key PKi = (PKi,1, PKi,2) and user j’s public key PKj = (PKj,1, PKj,2), generate the re-encryption key RKi→j
as shown:
• Pick h ∈R {0, 1}l0 , π ∈R {0, 1}l1 .
• Compute v = H1(h, π).
• Compute V = PKv

j,2 and W = H2(gv)⊕ (h||π).

• Define RK
〈1〉
i→j = h

xi,1H4(PKi,2)+xi,2
.

• Return RKi→j = (RK
〈1〉
i→j , V,W).

– Encrypt(m,PKi, PARAMS): To encrypt a message m ∈M under the public key PKi:
• Pick u ∈R Z∗q .
• Compute D =

(
PK

H4(PKi,2)
i,1 PKi,2

)u
.

• Pick ω ∈R {0, 1}l1 .
• Compute r = H1(m,ω).

• Compute E =
(
PK

H4(PKi,2)
i,1 PKi,2

)r
and F = H2(gr)⊕ (m||ω).

• Compute s = u+ r ·H3(D,E, F) mod q.
• Output the ciphertext σi = (D,E, F, s).

– ReEncrypt(σi, PKi, PKj , RKi→j , PARAMS): On input of an original ciphertext σi = (D,E, F, s) encrypted
under the public key of the delegator PKi = (PKi,1, PKi,2), the public key of the delegatee PKj = (PKj,1, PKj,2),

the re-encryption key RKi→j = (RK
〈1〉
i→j , V,W), re-encrypt σi into a ciphertext σ̂j under PKj as follows:

• Check if the following condition holds to satisfy the well-formedness of ciphertexts:(
PK

H4(PKi,2)
i,1 PKi,2

)s ?
= D · EH3(D,E,F) (1)

If it does not hold, return ⊥.

• Else, compute Ê = ERK
〈1〉
i→j = grh.

• Output σ̂j = (Ê, F, V,W) = (grh, H2(gr)⊕ (m||ω), PKv
j,2, H2(gv)⊕ (h||π)).

– Encrypt1(m,PKi, PARAMS): To generate a non-transformable ciphertext under public key PKi of a message
m ∈M:
• Pick h ∈R {0, 1}l0 and π ∈R {0, 1}l1 .
• Compute v = H1(h, π).
• Compute V = PKv

j,2 and W = H2(gv)⊕ (h||π).

• Pick ω ∈R {0, 1}l1 and compute r = H1(m,ω).
• Compute Ê = (gr)h and F = H2(gr)⊕ (m||ω).
• Output the non-transformable ciphertext σ̂j = (Ê, F, V,W).

6

– Decrypt(σi, PKi, SKi, PARAMS): On input of a ciphertext σi, public key PKi and its corresponding private
key SKi = (xi,1, xi,2) ,decrypt according to two cases:
• Original Ciphertext σi = (D,E, F, s):
∗ If equation (1) does not hold, return ⊥.
∗ Otherwise, compute:

(m||ω) = F ⊕H2(E
1

xi,1H4(PKi,2)+xi,2). (2)

∗ Return m if E
?
=

(
PK

H4(PKi,2)
i,1 PKi,2

)H1(m,ω)
holds; else return ⊥.

• Transformed /Non-transformable Ciphertext σ̂i = (Ê, F, V,W):

∗ Compute (h||π) = W ⊕H2(V 1/SKi,2) and (m||ω) = F ⊕H2(Ê1/h).

∗ Return m if V
?
= PK

H1(h,π)
i,2 and Ê

?
= gH1(m,ω)·h holds; else return ⊥.

4.2 Our Attack

In this section, we point out the weakness of the scheme by Chow et al. [8]. We show that the simulation of the oracles
defined in the security proof of the scheme is not consistent with the real algorithm. This allows the adversary to
distinguish the simulation run by the challenger from the real system. We demonstrate this flaw by considering the
validity of the ciphertexts with respect to the ReEncrypt and Decrypt algorithm in the simulation and in the real
system. To make it simple, we consider PKT as the public key of the target user in the challenge phase and the attack
is posed in Phase-II after the challenge phase is over. We re-encrypt a ciphertext σT under PKT into a ciphertext σ̂j
under PKj (PKj is corrupt) and further decrypt σ̂j . All the computations hereafter are done using PKT and PKj .
Before we explain the flaw, let us partially review the re-encryption and decryption oracles of the scheme in [7] which
is relevant to our attack. We note that the re-encryption keys are maintained in a list Rlist in the form of tuples

〈PKT , PKj , (RK
〈1〉
T→j , V,W), h, τ〉. In order to respond to the random oracle queries of the adversary, the challenger

maintains list H list
1 with tuples 〈m,ω, r〉 such that H1(m,ω) = r and list H list

2 with tuples 〈R, β〉 such that H2(R) = β.
The description of the re-encryption and decryption oracles are as follows:

– Re-encryption Oracle (ORE(PKT , PKj , σT)):
• Parse σT to obtain (D,E, F, s). Note that σT (UT is honest) is to be re-encrypted to σ̂j (Uj is corrupt).

• Search for tuple 〈m,ω, r〉 in H1
list such that (PK

H4(PKT,2)
T,1 PKT,2)r

?
= E. If no such tuple exists, return ⊥.

• Else, retrieve tuple 〈PKT , PKj , (∗, V,W), h,′−′〉 in list Rlist.

• If found, compute Ê = Er·h.
• Else, prepare the partial re-encryption key as follows:
∗ Pick h ∈R {0, 1}l0 , π ∈R {0, 1}l1 . Compute v = H1(h, π).
∗ Compute V = PKv

j,2 and W = H2(gv)⊕ (h||π).

∗ Update list Rlist with tuple 〈PKi, PKj , (⊥, V,W), h,′−′〉, define Ê = Er·h.

• Return σ̂j = (Ê, F, V,W) to A.

– Decryption Oracle (ODec(PKT , σT)) or (ODec(PKj , σ̂j)):
• To decrypt an original ciphertext σT = (D,E, F, s) under the public key PKT (uncorrupt), search lists H list

1

and H list
2 for tuples 〈m,ω, r〉 and 〈R, β〉 such that:

(PK
H4(PKi,2)
T,1 PKT,2)r

?
= E, β ⊕ (m||ω)

?
= F, R

?
= gr. (3)

If yes, return m to the adversary. Else, return ⊥.
• To decrypt a transformed ciphertext σ̂j = (Ê, F, V,W) under public key PKj (corrupt), run algorithm
Decrypt(σ̂j , PKj , SKj , PARAMS) and return the result to A.

First, we encrypt a message m under PKT . Let us consider two forms of ciphertext σReal = 〈DReal, EReal, FReal, sReal〉
and σFake = 〈DFake, EFake, FRand, sFake〉. σReal is the ciphertext obtained from the encryption algorithm Encrypt
(i.e., encryption of m under PKT by executing the Encrypt(m,PKT , PARAMS)). σFake is a cooked-up ciphertext
that can pass the verification tests of ReEncrypt algorithm but not the Decrypt algorithm. We list down the steps to
construct σReal and σFake.

– Construction of σReal: σReal is the encryption of a message m under the public key PKT obtained from the real
system, i.e., σReal ← Encrypt(m,PKT , PARAMS). The construction of σReal is as follows:

7

• Pick uReal ∈R Z∗q .

• Compute DReal =
(

(PKT,1)H4(PKT,2)PKT,2

)uReal
.

• Pick ωReal ∈R {0, 1}l1 .
• Compute rReal = H1(m,ωReal).

• Compute EReal =
(

(PKT,1)H4(PKT,2)PKT,2

)rReal
.

• Compute FReal = H2(grReal)⊕ (m||ωReal).
• Compute sReal = uReal + rRealH3(DReal, EReal, FReal) mod q.
• Output the ciphertext σReal = (DReal, EReal, FReal, sReal). It is clear that σT passes the ciphertext verification

test of equation (1).

– Construction of σFake: σFake is a cooked-up ciphertext that clears the verification tests of the ReEncrypt
algorithm but fails against the verification of the Decrypt algorithm. We denote the algorithm for the construction
of σFake as EncryptFake(m,PKT), which is as follows:
• Pick uFake ∈R Z∗q .

• Compute DFake =
(

(PKT,1)H4(PKT,2)PKT,2

)uFake
.

• Pick rRand ∈R Z∗q . Here it should be noted that rRand does not follow the actual algorithm, instead it is picked
at random from Z∗q .

• Pick ωFake ∈R {0, 1}l1 and compute rFake = H1(m,ωFake). Note that in the Encrypt algorithm, rFake is the
output of H1 oracle on giving a message and a random string (ωFake) of size {0, 1}l1 as input.

• Compute EFake =
(

(PKT,1)H4(PKT,2)PKT,2

)rRand
.

• Choose FRand ∈R {0, 1}l0+l1 . In the Encrypt algorithm, F is the encryption of the message to be encrypted
along with a random string ωFake of length {0, 1}l1 . But in the construction of σFake, we note that FRand is
chosen at random.

• Compute sFake = uFake + rRandH3(DFake, EFake, FRand) mod q.
• Output the ciphertext σFake = (DFake, EFake, FRand, sFake). It should be noted that the components FRand

and rRand violate the definitions given in the Encrypt algorithm. However, σFake passes the ciphertext
validation test of equation (1). In fact:

RHS = DFake · (EFake)H3(DFake,EFake,FRand)

=
(

(PKT,1)H4(PKT,2)PKT,2

)uFake
·
(

(PKT,1)H4(PKT,2)PKT,2

)rRandH3(DFake,EFake,FRand)

=
(

(PKT,1)H4(PKT,2)PKT,2

)sFake
= LHS.

The important properties possessed by σReal and σFake are:

1. Output of Decrypt(σReal, PKT , SKT , PARAMS) is m and the output of ODecrypt(PKT , σReal) is m. This is
because σReal is a legitimate ciphertext of m produced by Encrypt algorithm.

2. Output of Decrypt(σFake, PKT , SKT , PARAMS) is ⊥ and the output of the ODecrypt(PKT , σFake) is ⊥. This
is because:
– In Decrypt algorithm: Since FRand ∈R {0, 1}l0+l1 , according to equation (2), we obtain (mk||ωk) ← F ⊕
H2(E

1
xi,1H4(PKi,2)+xi,2) where (mk||ωk) is a junk message which does not satisfy the validity check: E 6=

(PK
H4(PKi,2)
i,1 PKi,2)H1(mk,ωk). Consequently, ⊥ is returned.

– In ODecrypt Simulation: Note that rRand is used for the construction of σFake and there exists no tuples
〈m,ωFake, r〉 ∈ H list

1 and 〈R, β〉 ∈ H list
2 such that condition (3) holds. Hence, ⊥ is returned.

3. σReal is a valid ciphertext and σFake is an invalid ciphertext with respect to both Decrypt algorithm and ODecrypt
oracle. Therefore, the simulation of the decryption algorithm is perfect.

4. Both σReal and σFake are valid ciphertexts corresponding to the ReEncrypt algorithm. This is because σReal is a
legitimate ciphertext of m produced by the Encrypt algorithm. Again, σFake passes the ciphertext verification test
of equation (1) and the algorithm computes the re-encrypted ciphertext σ̂Fake = (Ê, F, V,W) as per the protocol
where ÊFake = grFakeh, where rFake = H1(m,ωFake) has already been computed.

Next, we re-encrypt both σReal and σFake under the public key PKj of a corrupt user. Let us consider the following

notations. We use σ̂
(Scheme)
Real to denote the result of re-encryption of σReal obtained from the re-encryption algorithm

8

ReEncrypt i.e., σ̂
(Scheme)
Real ← ReEncrypt(σReal, PKT , PKj , RKT→j , PARAMS) and σ̂

(Oracle)
Real to denote the result

of re-encryption of σReal obtained from the re-encryption oracleOReEncrypt i.e., σ̂
(Oracle)
Real ← OReEncrypt(PKT , PKj , σReal).

Also, we use σ̂
(Scheme)
Fake to denote the result of re-encryption of σFake obtained from the re-encryption algorithm ReEn-

crypt i.e., σ̂
(Scheme)
Fake ←ReEncrypt(σFake, PKT , PKj , RKT→j , PARAMS) and σ̂

(Oracle)
Fake to denote the result of re-

encryption of σFake obtained from the re-encryption oracle OReEncrypt i.e., σ̂
(Oracle)
Fake ← OReEncrypt(PKT , PKj , σFake).

Observations on σ̂
(Scheme)
Real and σ̂

(Oracle)
Real :

1. σ̂
(Scheme)
Real = σ̂

(Oracle)
Real .

2. σ̂
(Scheme)
Fake 6= σ̂

(Oracle)
Fake .

The reason for observation 1 follows directly from the fact that σReal is a valid ciphertext. The reason for the violation
in observation 2 is that the ReEncrypt algorithm is only a function of the re-encryption key but OReEncrypt oracle

makes use of the knowledge of rFake to generate σ̂
(Oracle)
Fake . However, in the construction of σFake, rRand is used in the

generation of σ̂
(Oracle)
Fake . The question here is, how will the adversary find this difference, that is σ̂

(Scheme)
Fake 6= σ̂

(Oracle)
Fake .

Let us now demonstrate how the adversary captures this difference shown by the OReEncrypt oracle simulation and

the ReEncrypt algorithm. We first analyse the ciphertexts σ̂
(Scheme)
Fake and σ̂

(Oracle)
Fake .

Closer Look at σ̂
(Scheme)
Fake :

– σ̂
(Scheme)
Fake =

(
Ê

(Scheme)
Fake , F

(Scheme)
Rand , V

(Scheme)
Fake ,W

(Scheme)
Fake

)
←ReEncrypt(σFake, PKT , PKj , RKT→j , PARAMS).

– ÊSchemeFake = E
RKi→j
Fake =

(
PK

H4(PKT,2)
T,1 PKT,2

)rRand(h
xT,1H4(PKT,2)+xT,2

)
= (grRand)h.

– v = H1(h, π) where h ∈R {0, 1}l0 and π ∈R {0, 1}l1 .
– VFake = PKv

j,2 and WFake = H2(gv)⊕ (h||π).

– So, we have σ̂
(Scheme)
Fake =

(
grRandh, FRand, PK

v
j,2, H2(gv)⊕ (h||π)

)
.

Closer look at σ̂
(Oracle)
Fake :

– ⊥ ← OReEncrypt(PKT , PKj , σFake).

Since there exists no tuples 〈m,ω, r〉 in H list
1 such that (PK

H4(PKT,2)
T,1 PKT,2)r

?
= E, the oracle returns ⊥. This is

because, although there exists a tuple 〈m,ωFake, rFake〉 in H list
1 , rRand is used in the construction of EFake.

Distinguishing The Oracle From The Real Algorithm:

Using the above observations, the adversary can easily distinguish between the real algorithm and the simulated
environment provided by the challenger C. The adversary A can perform the following simple test to distinguish the
simulated OReEncrypt and the real algorithm ReEncrypt:

Distinguisher

1. C provides the system parameters PARAMS to A.
2. After getting training in Phase-I, A provides two messages m0 and m1 of equal length and a target public key
PKT to C.

3. C generates the challenge ciphertext σT and gives as challenge to A.
4. A now does the following:

(a) Generate σFake =EncryptFake(m0, PKT) = (DFake, EFake, FRand, sFake) where:

– DFake =
(

(PKT)H4(PKT)PKT

)uFake
.

– EFake =
(

(PKT)H4(PKT)PKT

)rRand
where rRand ∈R Z∗q .

– FRand ∈R {0, 1}l0+l1 .
– sFake = uFake + rRandH3(DFake, EFake, FRand) mod q.

Here A knows rRand and uFake.
(b) A queries OReEncrypt(σFake, PKT , PKj , RKT→j , PARAMS). It should noted that v, V, h, π,W are fixed for

T → j delegation.
(c) Test: If ⊥ ← OReEncrypt((σFake, PKT , PKj , RKT→j , PARAMS)), then ReEncrypt 6= OReEncrypt and A

knows that it is not the real system and will abort. Else, A learns no clue about the simulation.

9

4.3 Fixing the flaw

Note that modifying the re-encryption algorithm to fix the flaw is not possible since re-encryption of a valid ciphertext
σT will always require the knowledge of r = H1(m,ω) as no other trapdoor exists to obtain a re-encrypted ciphertext
σ̂j . Again, the knowledge of the private key of the delegator is necessary to generate the re-encryption keys and re-
encrypted ciphertexts. Consequently, we cannot provide a trivial fix to the scheme in order to address the problem.
As a solution, we propose a new collusion-resistant unidirectional proxy re-encryption scheme without any pairing
operation. We have incorporated additional information to the existing Encrypt algorithm along with ciphertext
validity checks in both the Re-Encrypt and the Decrypt algorithm. Our technique prevents any cooked up ciphertexts
violating the definitions of Encrypt algorithm to clear the ciphertext validity checks of both the Re-Encrypt and
Decrypt algorithms.

5 A Unidirectional Proxy Re-Encryption Scheme

– Setup(λ): Choose two primes p and q such that q|p − 1 and the bit-length of q is the security parameter λ. Let
G be a subgroup of Z∗q with order q. g is a generator of the group G. Choose five hash functions:

H1 : {0, 1}l0 × {0, 1}l1 → Z∗q ,

H2 : G→ {0, 1}l0+l1 ,

H3 : {0, 1}∗ → Z∗q
H4 : G→ Z∗q ,

H5 : G4 × {0, 1}l0+l1 → G.

The hash functions are modelled as random oracles in the security proof reduction. Here l0 and l1 are security
parameters determined by λ, and the message space M is {0, 1}l0 .
Return the public parameters PARAMS = (q,G, g,H1, H2, H3, H4, H5, l0, l1).

– KeyGen(Ui, PARAMS): To generate the private key (SKi) and the corresponding public key (PKi) of user Ui:
• Pick xi,1, xi,2 ∈R Z∗q and set SKi = (xi,1, xi,2).
• Compute PKi = (PKi,1, PKi,2) = (gxi,1 , gxi,2).

– ReKeyGen(SKi, PKi, PKj , PARAMS): On input of a user i’s private key SKi = (xi,1, xi,2) and public key
PKi = (PKi,1, PKi,2) and user j’s public key PKj = (PKj,1, PKj,2), generate the re-encryption key RKi→j as
shown:
• Pick h ∈R {0, 1}l0 , π ∈R {0, 1}l1 .
• Compute v = H1(h, π).
• Compute V = PKv

j,2 and W = H2(gv)⊕ (h||π).

• Define RK
〈1〉
i→j = h

xi,1H4(PKi,2)+xi,2
.

• Return RKi→j = (RK
〈1〉
i→j , V,W).

– Encrypt(m,PKi, PARAMS): To encrypt a message m ∈M:
• Pick u ∈R Z∗q .
• Compute D =

(
PK

H4(PKi,2)
i,1 PKi,2

)u
.

• Compute D̄ = H5(PKi,1, PKi,2, D,E, F)u.
• Pick ω ∈R {0, 1}l1 .
• Compute r = H1(m,ω).

• Compute E =
(
PK

H4(PKi,2)
i,1 PKi,2

)r
.

• Compute Ē = H5(PKi,1, PKi,2, D,E, F)r.
• Compute F = H2(gr)⊕ (m||ω).
• Compute s = u+ r ·H3(D, Ē, F) mod q.
• Output the ciphertext σi = (D, Ē, F, s).

– ReEncrypt(σi, PKi, PKj , RKi→j , PARAMS): On input of an original ciphertext σi = (D, Ē, F, s) encrypted un-

der public key PKi = (PKi,1, PKi,2), the public keys PKi and PKj , a re-encryption key RKi→j = (RK
〈1〉
i→j , V,W),

re-encrypt σi into a ciphertext σ̂j under the public key PKj = (PKj,1, PKj,2) as follows:

10

• Compute E and D̄ as follows:

E =
((
PK

H4(PKi,2)
i,1 PKi,2

)s ·D−1
)H3(D,Ē,F)−1

=
((
PK

H4(PKi,2)
i,1 PKi,2

)(u+r·H3(E,Ē,F))

·
(
PK

H4(PKi,2)
i,1 PKi,2

)−u)H3(D,Ē,F)−1

=
((
PK

H4(PKi,2)
i,1 PKi,2

)rH3(D,Ē,F)
)H3(D,Ē,F)−1

=
(
PK

H4(PKi,2)
i,1 PKi,2

)r
.

D̄ = H5(PKi,1, PKi,2, D,E, F)s · (ĒH3(D,Ē,F))−1

= H5(PKi,1, PKi,2, D,E, F)(u+r·H3(D,Ē,F)) ·
(
H5(PKi,1, PKi,2, D,E, F)rH3(D,Ē,F)

)−1

= H5(PKi,1, PKi,2, D,E, F)u.

• Check if the following verification for the well-formedness of the ciphertext holds:(
PK

H4(PKi,2)
i,1 PKi,2

)s ?
= D · EH3(D,Ē,F) (4)

(
H5(PKi,1, PKi,2, D,E, F)

)s ?
= D̄ · ĒH3(D,Ē,F) (5)

If the above checks do not hold, return ⊥.

• Else, compute Ē = ERK
〈1〉
i→j = grh.

• Output σ̂j = (Ē, F, V,W) = (gr·h, H2(gr)⊕ (m||ω), PKv
j,2, H2(gv)⊕ (h||π)).

– Encrypt1(m,PKi, PARAMS): To generate a non-transformable ciphertext under public key PKi of a message
m ∈M:
• Pick h ∈R {0, 1}l0 and π ∈R {0, 1}l1 .
• Compute v = H1(h, π).
• Compute V = PKv

j,2 and W = H2(gv)⊕ (h||π).

• Pick ω ∈R {0, 1}l1 and compute r = H1(m,ω).
• Compute Ê = (gr)h and F = H2(gr)⊕ (m||ω).
• Output the non-transformable ciphertext σ̂j = (Ê, F, V,W).

– Decrypt(σi, PKi, SKi, PARAMS): On input a ciphertext σi, public key PKi and private key SKi = (xi,1, xi,2),
decrypt according to two cases:
• Original ciphertext of the form σi = (D, Ē, F, s) :

∗ Check if the ciphertext is well-formed by computing the values of E and D̄ and checking if equations (4)
and (5) holds. If they do not hold, return ⊥.

∗ Otherwise, extract the message as:

(m||ω) = F ⊕H2(E
1

xi,1H4(PKi,2)+xi,2) (6)

∗ Return m if the following checks hold, else return ⊥.

D
?
=

(
PK

H4(PKi,2)
i,1 PKi,2

)s · (E)H5(D,Ē,F)−1

Ē
?
= H5(PKi,1, PKi,2, D,E, F)H1(m,ω)

• Transformed ciphertext or a non-transformable ciphertext of the form σi = (Ê, F, V,W):

∗ Compute (h||π) = W ⊕H2(V 1/SKi,2) and extract the message as:

(m||ω) = F ⊕H2(Ê1/h) (7)

∗ Return m if V
?
= PK

H1(h,π)
i,2 and Ê

?
= gH1(m,ω)·h holds; else return ⊥.

11

5.1 Correctness

– Correctness of ciphertext verification from equation (4):

RHS = D · EH3(D,Ē,F)

= (PK
H4(PKi,2)
i,1 PKi,2)u · (PKH4(PKi,2)

i,1 PKi,2)rH3(D,Ē,F)

= (PK
H4(PKi,2)
i,1 PKi,2)u+rH3(D,Ē,F)

= (PK
H4(PKi,2)
i,1 PKi,2)s

= LHS.

– Correctness of ciphertext verification from equation (5):

RHS = D̄ · ĒH3(D,Ē,F)

= H5(PKi,1, PKi,2, D,E, F)u ·H5(PKi,1, PKi,2, D,E, F)rH3(D,Ē,F)

= H5(PKi,1, PKi,2, D,E, F)u+rH3(D,Ē,F)

= H5(PKi,1, PKi,2, D,E, F)s

= LHS.

– Consistency of Encryption and Decryption of Original Ciphertext from equation (6):

RHS = F ⊕H2(E
1

xi,1H4(PKi,2)+xi,2)

= F ⊕H2((PK
H4(PKi,2)
i,1 PKi,2)

r× 1
xi,1H4(PKi,2)+xi,2)

= H2(gr)⊕ (m||ω)⊕H2(gr)

= (m||ω)

= LHS.

– Consistency of Encryption and Decryption of Transformed/Non-transformable ciphertext from equation (7):

RHS = F ⊕H2(Ê
1
h)

= H2(gr)⊕ (m||ω)⊕H2(grh×
1
h)

= (m||ω).

5.2 Security Proof

Original Ciphertext Security:

Theorem 1. The proposed scheme is CCA-secure for the original ciphertext under the DCDH assumption and the
EUF −CMA security of Schnorr signature scheme [19]. If a (t, ε)IND-PRE-CCA A with an advantage ε breaks the
IND-PRE-CCA security of the given scheme in time t, C can solve the DCDH problem with advantage ε′ within time
t′ where:

ε′ ≥ 1

qH2

(
ε

e(qRK + 1)
− qH1

2l1
− qH3

+ qH5

2l0+l1
− qd

(qH1
+ qH2

2l0+l1
+

2

q

)
− ε1 − ε2

)
,

t′ ≤ t+ (qH1
+ qH2

+ qH3
+ qH4

+ qH5
+ nh + nc + qRK + qRE + qd)O(1)

+ (2nh + 2nc + 2qRK + 5qRE + 2qd + qH1
qRE + (2qH2

+ 2qH1
)qd)te,

We note that e is the base of natural logarithm, ε1 denotes the advantage in breaking the CCA security of the hashed
Elgamal encryption scheme and ε2 denotes the advantage in breaking the EUF-CMA security of the Schnorr Signature
scheme and te denotes the time taken for exponentiation in group G.

Proof. Given an adversary A that breaks the (t, ε)IND-PRE-CCA security of the scheme, we show how to construct
a polynomial time algorithm C which breaks the DCDH assumption in G or the existential unforgeability against
chosen message attack (EUF -CMA) of the Schnorr Signature with a non-negligible advantage. C maintains two lists
Lkey and LRK to store the lists of the public/private key pairs and the re-encryption keys of the users respectively.
Both the lists are initially empty consisting of tuples of the form:

12

• Lkey : 〈PKi, xi,1, xi,2, ci〉.
• LRK : 〈PKi, PKj , RK

〈1〉
i→j , V,W, h, τ〉.

− Key Generation: C maintains the list Lkey that contains information of all the user keys. C generates the keys
of the users in the following ways:
• Uncorrupted User Keys: C uses Coron’s coin tossing technique [9] to generate the uncorrupted user keys by

flipping a coin ci ∈ {0, 1} that takes the value 1 with probability ρ, which we shall determine later. C chooses
xi,1, xi,2 ∈R Z∗q and computes PKi according to the following cases:
∗ If ci = 1, compute PKi = (PKi,1, PKi,2) = (gxi,1 , gxi,2). Add the tuple 〈PKi, xi,1, xi,2, ci = 1〉 to Lkey.
∗ If ci = 0, compute PKi = (PKi,1, PKi,2) = ((ga)xi,1 , (ga)xi,2). Add the tuple 〈PKi, xi,1, xi,2, ci = 0〉 to
Lkey.

• Corrupted User Keys: C chooses xi,1, xi,2 ∈R Z∗q and computes PKi = (PKi,1, PKi,2) = (gxi,1 , gxi,2). It adds
the tuple 〈PKi, xi,1, xi,2, ci = −〉 to Lkey.

− Phase 1: C answers the queries issues by A as follows:
• Oracle Queries:

H1(m,ω): C maintains a list LH1
with tuples 〈m,ω, r〉. If a tuple 〈m,ω, r〉 already appears in LH1

list, respond
with H1(m,ω) = r. Else pick r ∈R Z∗q , add the tuple 〈m,ω, r〉 to LH1

and return r.

H2(R): C maintains a list LH2 with tuples 〈R, θ〉. If a tuple 〈R, θ〉 already appears in LH2 list, respond
with H2(R) = θ. Else pick θ ∈R {0, 1}l0+l1 , add the tuple 〈R, θ〉 to LH2

and return θ.

H3(D, Ē, F): C maintains a list LH3
with tuples 〈D, Ē, F, ψ〉. If a tuple 〈D, Ē, F, ψ〉 already appears in LH3

list, respond with H3(D, Ē, F) = ψ. Else pick ψ ∈R Z∗q , add the tuple 〈D, Ē, F, ψ〉 to LH3 and return ψ.

H4(PKi,2): C maintains a list LH4
with tuples 〈PKi,2, ν〉. If a tuple 〈PKi,2, ν〉 already appears in LH4

list,
respond with H4(PKi,2) = ν. Else pick ν ∈R Z∗q , add the tuple 〈PKi,2, ν〉 to LH4

and return ν.

H5(PKi,1, PKi,2, D,E, F): C maintains a list LH5
with tuples 〈PKi,1, PKi,2, D,E, F, β, γ〉. If a tuple 〈PKi,1,

PKi,2, D,E, F, β, γ〉 already appears in LH5 list, respond with H5(PKi,1, PKi,2, D,E, F) = γ. Else, pick
β ∈R Z∗q . Compute γ = gβ and set H5(PKi,1, PKi,2, D,E, F) = γ.

• OReKeyGen(PKi, PKj): C maintains the list LRK that contains information of the re-encryption keys of the
users. If the re-encryption keys from PKi to PKj already exists in LRK , retrieve and return RKi→j =

(RK
〈1〉
i→j , V,W). Else, C computes the re-encryption keys as shown:

∗ Select h ∈R {0, 1}l0 , π ∈R {0, 1}l1 .
∗ Compute v = H1(h, π), V = (PKj,2)v, W = H2(gv)⊕ (h||π).

∗ Compute the value of RK
〈1〉)
i→j according to the following cases:

· If ci = 1 ∨ ci = −, compute RK
〈1〉
i→j = h

xi,1H4(PKi,2)+xi,2
. Set τ = 1 and update the list LRK .

· If ci = 0 ∧ (cj ∈ {0, 1}), pick RK
〈1〉
i→j ∈R Z∗q and set τ = 0. Since a random value of RKi→j would

not match the value h associated with (V,W), we rely on the security of hashed Elgamal encryption
scheme [3,11,12] as shown in the security proof of original paper [7].
· If ci = 0 ∧ cj = −, abort and report failure.

∗ Return the re-encryption key RKi→j = (RK
〈1〉
i→j , V,W) to A.

• OReEncrypt(σi, PKi, PKj): Check for the well-formedness of σi by computing E and D̄ and verifying if equa-
tions (4) and (5) hold (both the checks ensure that only legitimate ciphertexts obeying the definition of the
Encrypt algorithm can clear the verification condition). If they do not hold, return ⊥. Else, compute the
re-encrypted ciphertext σ̂j according to the following cases:

∗ If (ci = 0∧cj = −) does not hold, check for the existence of a tuple 〈PKi, PKj , RK
〈1〉
i→j , V,W, h, τ〉 in LRK .

If not found, compute the re-encryption keys by issuing a re-key generation query OReKeyGen(PKi, PKj)
and obtain σ̂j = ReEncrypt(σi, PKi, PKj , RKi→, PARAMS). Return σ̂j to A.

∗ Otherwise if (ci = 0 ∧ cj = −) holds, retrieve tuple 〈PKi,1, PKi,2, D,E, F, β, γ〉 from LH5
. Compute

R = (Ē)
1
β and extract (m||ω) = F ⊕ H2(R). Search list LRK for a tuple 〈PKi, PKj ,⊥, V,W, h,−〉. If

found, compute Ê = gr·h and return σ̂j = (Ê, F, V,W) to A. Else, select h ∈R {0, 1}l0 , π ∈R {0, 1}l1 .

13

Compute v = H1(h, π), V = (PKj,2)v, W = H2(gv)⊕ (h||π) and Ê = gr·h. Update the list LRK with the

tuple 〈PKi, PKj ,⊥, V,W, h,−〉. Return σ̂j = (Ê, F, V,W) to A.

• ODecrypt(σi, PKi): The challenger decrypts the original ciphertexts and transformed ciphertexts respectively
as follows:
∗ σi is an Original ciphertext: Check for the well-formedness of σi by computing E and D̄ and verifying if

equations (4) and (5) hold. If they do not hold, return ⊥. Else, if ci = − or ci = 1, run Decrypt algorithm
to extract and return m. Else, if ci = 0, retrieve tuple 〈PKi,1, PKi,2, D,E, F, β, γ〉 from LH5 . Compute

R = (Ē)
1
β and extract (m||ω) = F ⊕H2(R). Return m to A.

∗ σi is a transformed ciphertext: C decrypts according to the following two scenarios:

- If there exists a tuple 〈PKj , PKi, (RK
〈1〉, V,W), h, 0〉 in LRK , compute E = Ê

1

RK〈1〉 . Search for the
existence of a tuple 〈m,ω, r〉 in LH1

and 〈R, θ〉 in LH2
such that the following conditions hold:(

PK
H4(PKj,2)
j,1 PKj,2

)r ?
= E,

θ ⊕ (m||ω) = F,

R = gr.

If they hold, return m, else return ⊥.
- Else, search LH1 for two tuples 〈m,ω, r〉 and 〈h, π, v〉 and LH2 for two tuples 〈R, θ〉 and 〈R′, θ′〉 such

that the following conditions hold:

gr·h = Ê,

θ ⊕ (m||ω) = F,

R = gr,

PKv
i,2 = V,

θ′ ⊕ (h||π) = W,

R′ = gv.

If all the checks are satisfied, return m. Otherwise, return ⊥.

− Challenge: A outputs two messages m0,m1 ∈R {0, 1}l0 and the target public key PK∗i . C recovers tuple
〈PK∗i , x∗i,1, x∗i,2, c∗i 〉 from list Lkey and check if c∗i = 1. If so, C aborts and reports failure. Else, if c∗i = 0, C
picks δ ∈R {0, 1} and computes the challenge ciphertext σ∗i in the following steps:
1. Pick ω∗ ∈R {0, 1}l1 and implicitly define H1(mδ, ω

∗) = b/a.
2. Pick ē∗, f∗ ∈R Z∗q . Set u , ē∗ − b

af
∗.

3. Compute D∗ = (ga)(x∗i,1H4(PK∗i,2)+x∗i,2)ē∗(gb)−(x∗i,1H4(PK∗i,2)+x∗i,2)f∗

=
(
ga(x∗i,1H4(PK∗i,2)+x∗i,2)

)ē∗− ba f∗
=

(
ga(x∗i,1H4(PK∗i,2)+x∗i,2)

)u
=

(
PK

H4(PKi∗,2)
i,1 PKi∗,2

)u
.

4. Compute E∗ = (gb)x
∗
i,1H4(PK∗i,2)+x∗i,2 = (gax

∗
i,1H4(PK∗i,2)+ax∗i,2)

b
a =

(
PK

H4(PKi∗,2)
i∗,1 PKi∗,2

)r
.

5. Set H5(PKi∗,1, PKi∗,2, D
∗, E∗, F ∗) = γ = (ga)β , where β ∈R Z∗q . Update list LH5

.

6. Compute Ē∗ = (gb)β = (gaβ)
b
a = H5(PKi∗,1, PKi∗,2, D

∗, E∗, F ∗)r.
7. Choose F ∗ ∈R {0, 1}l0+l1 and define H3(E∗, Ē∗, F ∗) = f∗.
8. Implicitly define H2(gb/a) = (mδ||ω∗)⊕ F ∗.
9. Set s∗ = ē.

10. Output the challenge ciphertext σ∗i = (E∗, Ē∗, F ∗, s∗) to A.

− Phase 2: A issues queries to C as shown in Phase 1, with the restrictions described for IND-PRE-CCA game.

− Guess: A returns its guess δ′ ∈R {0, 1} to C. C randomly picks a tuple 〈R, θ〉 from LH2
list and outputs R as the

solution to the DCDH instance.

− Probability Analysis: We first analyse the simulation of the random oracles. The simulations of the hash function
H4 is perfect. Also, the simulations of H1, H2, H3 and H5 are perfect unless the following event occurs:

14

− EH∗1 : (mδ, ω
∗) has been queried to H1.

− EH∗2 : (gb/a) has been queried to H2.
− EH∗3 : (D∗, Ē∗, F ∗) has not been queried to H3 before the Challenge phase.
− EH∗5 : (PKi∗,1, PKi∗,2, D

∗, E∗, F ∗) has not been queried to H5 before the Challenge phase.

Note that, in the Challenge phase, F ∗ is chosen uniformly at random from {0, 1}l0+l1 by the Challenger C, and
hence Pr[EH3] ≤ qH3

2l0+l1
. Also, Pr[EH5

] ≤ qH5

2l0+l1
.

Next we analyse the probability with which C aborts during the simulation. Let Abort denote the probability that
C aborts during the re− encryption key generation or Challenge phase. In both these phases, C does not abort
in the following events:
− E1: ci = 1 in the re-encryption key generation query.
− E2: c∗i = 0 in the Challenge phase.

We have Pr[¬Abort] ≥ ρqRK (1− ρ), which has a maximum value at ρOPT = qRK
1+qRK

. Using ρOPT , we obtain:

Pr[¬Abort] ≥ 1
e(1+qRK) .

The simulation of the decryption oracle is perfect unless valid ciphertexts are rejected by the oracle. This error
occurs since a valid ciphertext can be produced without querying H1 and H2 i.e., without querying gr to H2

where r = H1(m,ω). Let Eval denote the event that the ciphertext is a valid ciphertext. We use EH1
and EH2

to denote the events that (m,ω) is queried to H1 and gr is queried to H2. We analyse Pr[Eval|¬EH1 ∨ ¬EH2] ≤
Pr[Eval|¬EH1] + Pr[Eval|¬EH2]:

Pr[Eval|¬EH1
] = Pr[Eval ∧ EH2

|¬EH1
] + Pr[Eval ∧ ¬EH2

|¬EH1
]

≤ Pr[Eval ∧ EH2
|¬EH1

] + Pr[Eval|¬EH2
∧ ¬EH1

]

=
Eval ∧ EH2 ∧ ¬EH1

¬EH1

+
1

q

≤ qH2

2l0+l1
+

1

q

Similarly, we obtain Pr[Eval|¬EH1
] ≤ qH1

2l0+l1
+ 1

q , and Pr[Eval|(¬EH1
+ ¬EH2

)] ≤ qH1
+qH2

2l0+l1
+ 2

q

Let Eder denote the event that Eval|(¬EH1
+ ¬EH2

) takes place during the entire simulation. We obtain:

Pr[Eder] ≤ qd
(
qH1

+qH2

2l0+l1
+ 2

q

)
.

Let Eerr denote the event (EH∗1 ∨ EH∗2 ∨ EH∗3 ∨ EH∗5 ∨ Eder)|¬Abort. If Eerr does not occur, the adversary A
does not gains no advantage greater than 1

2 in guessing δ due to the randomness in the output of H2, i.e.,
Pr[δ′ = δ|¬Eerr] = 1

2 . The probability that the adversary correctly guesses δ is:

Pr[δ′ = δ] = Pr[δ′ = δ|¬Eerr]Pr[¬Eerr] + Pr[δ′ = δ|Eerr]Pr[Eerr]
≤ 1/2Pr[¬Eerr] + Pr[Eerr] = 1/2 + 1/2Pr[Eerr].

Again,

Pr[δ′ = δ] ≥ Pr[δ′ = δ|¬Eerr]Pr[¬Eerr] ≥ 1/2− 1/2Pr[Eerr].

From the definition of the advantage of IND-PRE-CCA adversary, we know:

ε = |2Pr[δ′ = δ]− 1|
≤ Pr[Eerr] = Pr[(EH∗1 ∨ EH∗2 ∨ EH∗3 ∨ Eder)|¬Abort]

≤
Pr[EH∗1] + Pr[EH∗2] + Pr[EH∗3] + Pr[EH∗5] + Pr[Eder]

Pr[¬Abort].

Note that Pr[EH∗1] ≤ qH1

2l1
as C picks ω ∈R {0, 1}l1 , and we obtain the following bound on Pr[EH∗2]:

Pr[EH∗2] ≥ Pr[¬Abort] · ε− Pr[EH∗1]− Pr[EH∗3]− Pr[EH∗5]− Pr[Eder]

≥ ε

e(qRK + 1)
− qH1

2l1
− qH3

2l0+l1
− qH5

2l0+l1
− qd

(qH1
+ qH2

2l0+l1
+

2

q

)

15

We observe that, if event EH∗2 occurs, then the challenger C solves the DCDH instance with advantage:

ε′ ≥ 1

qH2

Pr[EH∗2] ≥ 1

qH2

(
ε

e(qRK + 1)
− qH1

2l1
− qH3

+ qH5

2l0+l1
− qd

(qH1
+ qH2

2l0+l1
+

2

q

))

We also bound the running time of C to solve DCDH instance by:

t′ ≤ t+ (qH1 + qH2 + qH3 + qH4 + qH5 + nh + nc + qRK + qRE + qd)O(1)

+ (2nh + 2nc + 2qRK + 5qRE + 2qd + qH1qRE + (2qH2 + 2qH1)qd)te.

This completes the proof of the theorem. ut

Transformed Ciphertext Security:

Theorem 2. The proposed scheme is CCA-secure for the transformed ciphertext under the DCDH assumption and
the EUF −CMA security of Schnorr signature scheme [19]. If a (t, ε)IND-PRE-CCA A with an advantage ε breaks
the IND-CPRE-CCA security of the given scheme, C can solve the DCDH problem with advantage ε′ within time t′

where:

ε′ ≥ 1

qH2

(
2ε

e(2 + qRK)2
− qH1

2l1
− qd

(qH1 + qH2

2l0+l1
+

2

q

)
− ε2

)
,

t′ ≤ t+ (qH1 + qH2 + qH3 + qH4 + qH5 + nh + nc + qRK + qRE + qd)O(1)

+ (2nh + 2nc + 2qRK + 3qRE + 2qd + (2qH2 + 2qH1)qd)te,

We note that e is the base of natural logarithm, ε2 denotes the advantage in breaking the EUF-CMA security of the
Schnorr Signature scheme and te denotes the time taken for exponentiation in group G.

Proof. Given an adversary A that breaks the (t, ε)IND-PRE-CCA security of the scheme, we show how to construct
a polynomial time algorithm C which breaks the DCDH assumption in G or the existential unforgeability against
chosen message attack (EUF -CMA) of the Schnorr Signature with a non-negligible advantage. As described in the
Original Ciphertext Security game, C maintains a list Lkey to store the lists of the public/private key pairs of the

users. C also maintains list LRK with tuples of the form 〈PKi, PKj , RK
〈1〉
i→j , V,W, h, z〉 to store the lists of re-encryption

keys of the users. Both the lists are initially empty.

− Key Generation: C maintains a list Lkey that contains tuples of the form 〈PKi, xi,1, xi,2, ci〉 which includes
information of all the user keys. C generates the keys of the users in the following ways:
• Uncorrupted User Keys: C uses Coron’s coin tossing technique [9] to generate the uncorrupted user keys by

flipping a biased coin ci ∈ {0, 1} that yields value 1 with probability ρ, which we shall determine later. C
chooses xi,1, xi,2 ∈R Z∗q and computes PKi according to the following cases:

∗ If ci = 1, compute PKi = (PKi,1, PKi,2) = ((ga)
1/H4(PKi,2)·gxi,1 , gxi,2/ga). Add the tuple 〈PKi, xi,1, xi,2, ci

= 1〉 to Lkey.
∗ If ci = 0, compute PKi = (PKi,1, PKi,2) = ((ga)xi,1 , (ga)xi,2). Add the tuple 〈PKi, xi,1, xi,2, ci = 0〉 to
Lkey.

• Corrupted User Keys: C chooses xi,1, xi,2 ∈R Z∗q and computes PKi = (PKi,1, PKi,2) = (gxi,1 , gxi,2). It adds
the tuple 〈PKi, xi,1, xi,2, ci = −〉 to Lkey.

− Phase 1: C answers the queries issues by A as follows:
• Oracle Queries: C responds to the hash function queries of A in the same way as it responds in the Original

Ciphertext Security.

• OReKeyGen(PKi, PKj): C maintains a list LRK with entries of the form 〈PKi, PKj , RK
〈1〉
i→j , V,W, h, τ〉. If the

re-encryption keys from PKi to PKj already exists in LRK , retrieve and return RKi→j = (RK
(1)
i→j , V,W).

Else, C computes the re-encryption keys as shown:
∗ If ci = 0 ∧ cj ∈ {1,′−′}: abort and report failure.
∗ If ci = 1 ∨ ci =′ −′:
· Define RK

〈1〉
i→j = h

xi,1H4(PKi,2)+xi,2
.

16

· Select h ∈R {0, 1}l0 , π ∈R {0, 1}l1 .
· Compute v = H1(h, π), V = (PKj,2)v, W = H2(gv)⊕ (h||π).
· Set τ = 1, z = 0.

We note that the computation of RK
〈1〉
i→j is correct for both the cases, as we have:

· For ci =′ −′, the correctness is trivial from the definition of the private key SKi = (xi,1, xi,2).

· For ci = 1, RK
〈1〉
i→j = h(

a
H4(PKi,2)

+xi,1

)
H4(PKi,2)−a+xi,2

= h
xi,1H4(PKi,2)+xi,2

.

∗ If ci = 0 ∧ cj = 0:

· Pick RK
〈1〉
i→j ∈R Z∗q and set τ = 0. Since a random value of RKi→j would not match the value h

associated with (V,W), we rely on the security of hashed Elgamal encryption scheme [3,11,12] as
shown in the security proof of original paper [7].
· Select z ∈R Z∗q and set V = (gb)

z
. Observe that bz = (axj,2)v i.e., gv = (gb/a)

axj,2 follows from the
definition in Scheme description.
· Select h ∈R {0, 1}l0 , π ∈R {0, 1}l1 .
· Pick W ∈R {0, 1}l0+l1 and implicitly define H2((gb/a)

axj,2) = (h||π)⊕W .

· Store tuple 〈PKi, PKj , RK
〈1〉
i→j , V,W, h, 0, z〉 in the list LRK .

∗ Return the re-encryption key RKi→j = (RK
〈1〉
i→j , V,W) to A.

• OReEncrypt(σi, PKi, PKj): The re-encryption oracle remains the same as demonstrated in the Original Ci-
phertext Security game.

• ODecrypt(σi, PKi): The decryption oracle is simulated in the exact manner as demonstrated in the Original
Ciphertext Security game.

− Challenge: A outputs two messages m0,m1 ∈R {0, 1}l0 , the delegator’s public key PKi′ and the target(delegatee)
public key PK∗i . C recovers tuples 〈PKi′ , xi′,1, xi′,2, c

′
i〉 and 〈PK∗i , x∗i,1, x∗i,2, c∗i 〉 from list Lkey. If c′i = 1 or c∗i = 1,

C aborts and reports failure. Else, C picks δ ∈R {0, 1} and computes the challenge ciphertext σ∗i as shown below.
Note that, c′i = − ∧ c∗i = 0 is a special case of the simulation below as A cannot query for the re-key RKi′→i∗ .

1. Pick t ∈R Z∗q and ω∗ ∈ {0, 1}l1 . Define Ê∗ = (gb)t, which implies r∗h∗ = bt, i.e., r∗ = H1(mδ, ω
∗) = bt/h∗.

2. Observe that RKi′→i∗ = h∗

a(xi′,1H4(PKi′,2)+xi′,2) . Therefore, h∗ = RKi′→i∗
(
a(xi′,1H4(PKi′,2) + xi′,2)

)
, which

implicitly defines r∗ = (b/a)(t/(RKi′→i∗(xi′,1H4(PKi′,2) + xi′,2)).

3. Pick F ∗ ∈R {0, 1}l0+l1 and implicitly define H2(g(b/a)(t/(RKi′→i∗ (xi′,1H4(PKi′,2)+xi′,2))
) = F ∗ ⊕ (mδ ⊕ ω∗).

4. Retrieve the tuple 〈PKi′ , PKi∗ , RK
〈1〉
i′→i∗ , V

∗,W ∗,⊥, 0, z∗〉 from LRK . If such a tuple does not exist, define
V ∗,W ∗, h∗, z∗ in the following way:

• Select z∗ ∈R Z∗q and set V ∗ = (gb)
z∗

. Observe that bz∗ = (axi∗,2)v i.e., gv = (gb/a)
axi∗,2 .

• Select h∗ ∈R {0, 1}l0 , π∗ ∈R {0, 1}l1 .
• Pick W ∗ ∈R {0, 1}l0+l1 and implicitly define H2((gb/a)

axi∗,2) = (h∗||π∗)⊕W ∗.
• Store tuple 〈PKi′ , PKi∗ , RK

〈1〉
i′→i∗ , V

∗,W ∗, h∗, 0, z∗〉 in the list LRK .

5. Output the challenge ciphertext σ̂∗i = (Ê∗, F ∗, V ∗,W ∗) to A.

− Phase 2: A issues queries to C as shown in Phase 1, with the restrictions described for IND-PRE-CCA game.

− Guess: A returns its guess δ′ ∈R {0, 1} to C, who first retrieves tuple 〈mδ′ , ω, r〉 from LH1
and checks if

(ga)
r·RKi′→i∗ (xi′,i∗H4(PKi′,2)+xi′,2)/t

= gb. If no such entry exists, C randomly picks a tuple 〈R, θ〉 from LH2 list
and outputs R as the solution to the DCDH instance.

− Probability Analysis: We first analyse the simulation of the random oracles. The simulations of the hash
functions H3, H4 and H5 are perfect. Also, the simulations of H1 and H2 are perfect unless the following event
occurs:
− EH∗1 : (h∗, π∗) has been queried to H1.

− EH∗2 : (gb/a) or (gb/a)
t/RKi′→i∗ (xi′,1H4(PKi′,2+xi′,2)) ⊕ (mδ||ω∗) has been queried to H2.

Next we analyse the probability with which C aborts during the simulation. Let Abort denote the probability that
C aborts during the re− encryption key generation or Challenge phase. In both these phases, C does not abort
in the following events:
− E1: ci = 1 in the re− encryption key generation query.

17

− E2: c∗i = 0 ∧ c′i 6= 1 in the Challenge phase.
We have Pr[¬Abort] ≥ ρqRK (1− ρ)2, which has a maximum value at ρOPT = qRK

2+qRK
. Using ρOPT , we obtain:

Pr[¬Abort] ≥ 2
e(2+qRK)2 .

The analysis of the simulation of the decryption oracle is remains the same as shown for the original ciphertext
security. The probability of the decryption oracle rejecting valid ciphertexts throughout the entire simulation
denoted by Let Eder is:

Pr[Eder] ≤ qd
(
qH1

+qH2

2l0+l1
+ 2

q

)
.

Again, let Eerr denote the event (EH∗1 ∨EH∗2 ∨Eder)|¬Abort. Following a similar analysis as shown in Section 5.2
and from the definition of the advantage of IND-PRE-CCA adversary, we obtain the following bound on Pr[EH∗2]:

Pr[EH∗2] ≥ Pr[¬Abort] · ε− Pr[EH∗1]− Pr[Eder]

≥ 2ε

e(2 + qRK)2
− qH1

2l1
− qd

(qH1
+ qH2

2l0+l1
+

2

q

)
We observe that, if event EH∗2 occurs, then the challenger C solves the DCDH instance with advantage:

ε′ ≥ 1

qH2

Pr[EH∗2] ≥ 1

qH2

(
2ε

e(2 + qRK)2
− qH1

2l1
− qd

(qH1
+ qH2

2l0+l1
+

2

q

))

We also bound the running time of C to solve DCDH instance by:

t′ ≤ t+ (qH1
+ qH2

+ qH3
+ qH4

+ qH5
+ nh + nc + qRK + qRE + qd)O(1)

+ (2nh + 2nc + 2qRK + 3qRE + 2qd + (2qH2
+ 2qH1

)qd)te.

This completes the proof of the theorem. ut

Non-transformable Ciphertext Security:

Theorem 3. The proposed scheme is CCA-secure for the non-transformable ciphertext under the CDH assumption.
If a (t, ε − ε2)IND-PRE-CCA A with an advantage ε − ε2 breaks the IND-PRE-CCA security of the given scheme,
C can solve the CDH problem with advantage ε′ within time t′ where:

ε′ ≥ 1

qH2

(
ε− ε2 −

qH1

2l1
− qd

(qH1
+ qH2

2l0+l1
+

2

q

))
,

t′ ≤ t+ (qH1
+ qH2

+ qH3
+ qH4

+ qH5
+ nh + nc + qRK + qd)O(1)

+ (2nh + 2nc + 2qRK + 2qd + (2qH2
+ 2qH1

)qd)te,

We note that ε2 is the advantage of an attacker against EUF −CMA security game of the Schnorr signature scheme.
e is the base of natural logarithm and te denotes the time taken for exponentiation in group G.

Proof. Let us assume that the Schnorr Signature is (t′, ε2) − EUF − CMA where the probability ε2 < ε. Given an
adversary A that breaks the (t, (ε − ε2))IND-PRE-CCA of the scheme, we show how to construct a polynomial
time algorithm C which breaks the CDH assumption in G with a non-negligible advantage. C maintains two lists
Lkey in the same manner as described in Original Ciphertext Security game and LRK with tuples of the form

〈PKi, PKj , RK
〈1〉
i→j , V,W, h〉 to store the lists of the public/private key pairs and the re-encryption keys of the users

respectively. Both the lists are initially empty.

− Key Generation: C maintains a list Lkey that contains tuples of the form 〈PKi, xi,1, xi,2, ci〉 which includes
information of all the user keys. C generates the keys of the users in the following ways:
• Uncorrupted User Keys: C chooses xi,1, xi,2 ∈R Z∗q and computes PKi = (PKi,1, PKi,2) = ((ga)1/H4(PKi,2) ·
gxi,1 , gxi,2/ga). Add the tuple 〈PKi, xi,1, xi,2, ci = 0〉 to Lkey.

• Corrupted User Keys: C chooses xi,1, xi,2 ∈R Z∗q and computes PKi = (PKi,1, PKi,2) = (gxi,1 , gxi,2). It adds
the tuple 〈PKi, xi,1, xi,2, ci = 1〉 to Lkey.

18

− Phase 1: C answers the queries issues by A as follows:
• Oracle Queries: C responds to the hash function queries of A in the same way as it responds in the Original

Ciphertext Security.

• OReKeyGen(PKi, PKj): C maintains a list LRK with entries of the form 〈PKi, PKj , RK
〈1〉
i→j , V,W, h〉. If the

re-encryption keys from PKi to PKj already exists in LRK , retrieve and return RKi→j = (RK
(1)
i→j , V,W).

Else, C computes the re-encryption keys as shown:
∗ ci = 1: Return the re-encryption key obtained by calling the re-encryption algorithm ReKeyGen

(SKi, PKi, PKj , PARAMS) to A.
∗ ci = 0: Compute the re-encryption key as shown below:
· Pick h ∈R {0, 1}l0 , π ∈R {0, 1}l1 .
· Compute RK

〈1〉
i→j = h

(a
H4(PKj,2)

+xi,1)H4(PKi,2)−a+xi,2
= h

xi,1H4(PKi,2)+xi,2
. Note that the knowledge of a

is not needed to compute RK
〈1〉
i→j .

· Compute v = H1(h, π), V = gv.
· Compute W = H2(PKv

j,2)⊕ (h||π).

· Return RKi→j = (RK
〈1〉
i→j , V,W).

• ODecrypt(σi, PKi): The decryption oracle is simulated in the exact manner as demonstrated in the Original
Ciphertext Security game.

− Challenge: A outputs two messages m0,m1 ∈R {0, 1}l0 and the target public key PK∗i . C recovers tuple
〈PK∗i , x∗i,1, x∗i,2, c∗i 〉 from list Lkey, picks δ ∈R {0, 1} and computes the challenge ciphertext σ̂∗i in the following
steps:
1. Pick ω∗ ∈R {0, 1}l1 and issues a H1 query H1(mσ, ω

∗) to obtain r∗.
2. Pick h∗ ∈R {0, 1}l0 , π ∈R {0, 1}l1 . Implicitly define H1(h∗, π∗) = b (b is not known to C).
3. ChooseW ∗ ∈R {0, 1}l0+l1 and implicitly defineH2(g−abgbxi∗,2) = (h∗||π∗)⊕W ∗. Note thatW ∗ = H2(g−abgbxi∗,2)⊕

(h∗||π∗) = H2(gv)⊕ (h∗||π∗).
4. Compute V ∗ = gb = PKv

i∗,2.

5. Compute Ê∗ = gr
∗h∗ , F ∗ = H2(gr

∗
)⊕ (mσ||ω∗).

6. Return the ciphertext σ̂i∗ = (Ê∗, F ∗, V ∗,W ∗).

− Phase 2: A issues queries to C as shown in Phase 1, with the restrictions described for IND-PRE-CCA game.

− Guess: A returns its guess δ′ ∈R {0, 1} to C. C randomly picks a tuple 〈R, θ〉 from LH2
list and outputs

(
R

g
bxi∗,2

)−1

as the solution to the CDH instance.

− Probability Analysis: We first analyse the simulation of the random oracles. The simulations of the hash
functions H3, H4 and H5 are perfect. Also, the simulations of H1 and H2 are perfect unless the following event
occurs:
− EH∗1 : (h∗, π∗) has been queried to H1.

− EH∗2 : (gb/a) or (gb/a)
t/RKi′→i∗ (xi′,1H4(PKi′,2+xi′,2)) ⊕ (mδ||ω∗) has been queried to H2.

The analysis of the simulation of the decryption oracle is remains the same as shown for the original ciphertext
security. The probability of the decryption oracle rejecting valid ciphertexts throughout the entire simulation
denoted by Let Eder is:

Pr[Eder] ≤ qd
(
qH1

+qH2

2l0+l1
+ 2

q

)
.

Again, let Eerr denote the event that EH∗1 , EH∗2 or Eder occurs i.e., Eerr = (EH∗1 ∨EH∗2 ∨Eder). From the analysis
as shown in the Original Ciphertext security game and from the definition of the advantage of IND-PRE-CCA
adversary, we obtain:

ε− ε2 = |2Pr[δ′ = δ]− 1|
≤ Pr[Eerr] = Pr[(EH∗1 ∨ EH∗2 ∨ Eder)]
≤ Pr[EH∗1] + Pr[EH∗2] + Pr[Eder]

We obtain the following bound on Pr[EH∗2]:

Pr[EH∗2] ≥ ε− ε2 − Pr[EH∗1]− Pr[Eder]

≥ ε− ε2 −
qH1

2l1
− qd

(qH1
+ qH2

2l0+l1
+

2

q

)

19

We observe that, if event EH∗2 occurs, then the challenger C solves the DCDH instance with advantage:

ε′ ≥ 1

qH2

Pr[EH∗2]

≥ 1

qH2

(
ε− ε2 −

qH1

2l1
− qd

(qH1
+ qH2

2l0+l1
+

2

q

))

We also bound the running time of C to solve DCDH instance by:

t′ ≤ t+ (qH1 + qH2 + qH3 + qH4 + qH5 + nh + nc + qRK + qRE + qd)O(1)

+ (2nh + 2nc + 2qRK + 2qd + (2qH2 + 2qH1)qd)te.

This completes the proof of the theorem. ut

Delegator Secret Security:

Theorem 4. The proposed scheme is DSK-secure under the DL assumption. If a (t, ε)DSK A with an advantage ε
breaks the DSK security of the given scheme in time t, C can solve the DL problem with advantage ε within time t′

where:

t′ ≤ t+O(2qRK + 2nh + 2nc)te,

We note that te denotes the time taken for exponentiation in group G.

Proof. Given an adversary A that breaks the (t, ε)DSK security of the scheme, we show how to construct a polynomial
time algorithm C which breaks the DL assumption in G with a non-negligible advantage. Note that we do not model
the hash functions H1, H2, H3, H4 and H5 as random oracles in this proof. C maintains a list Lkey with tuples of
the form 〈PKi, xi,1, xi,2, ci〉 to store the lists of the public/private key pairs of the users, with the list being initially
empty. C plays the DSK game with A in the following way:

– Setup: C runs Setup(λ) and gives the resulting system parameters PARAMS = (q,G, g,H1, H2, H3, H4, H5, l0, l1)
to A.

– Queries: C responds to the queries of A in the following way:
• Uncorrupted-Key Generation (Ui): C chooses xi,1, xi,2 ∈R Z∗q and computes PKi = (PKi,1, PKi,2) = ((ga)1/H4(PKi,2)·
gxi,1 , gxi,2/ga). Add the tuple 〈PKi, xi,1, xi,2, ci = 0〉 to Lkey. C returns PKi to A.

• Corrupted-Key Generation (Ui): C chooses xi,1, xi,2 ∈R Z∗q and computes PKi = (PKi,1, PKi,2) = (gxi,1 , gxi,2).
It adds the tuple 〈PKi, xi,1, xi,2, ci = 1〉 to Lkey.

• Re-encryption Key Generation (PKi, PKj): C computes the re-encryption keys as shown:
∗ ci = 1: Return the re-encryption key obtained by calling the re-encryption algorithm ReKeyGen

(SKi, PKi, PKj , PARAMS) to A.
∗ ci = 0: Compute the re-encryption key as shown below:
· Pick h ∈R {0, 1}l0 , π ∈R {0, 1}l1 .
· Compute RK

〈1〉
i→j = h

(a
H4(PKj,2)

+xi,1)H4(PKi,2)−a+xi,2
= h

xi,1H4(PKi,2)+xi,2
. Note that the knowledge of a

is not needed to compute RK
〈1〉
i→j .

· Compute v = H1(h, π), V = gv.
· Compute W = H2(PKv

j,2)⊕ (h||π).

· Return RKi→j = (RK
〈1〉
i→j , V,W).

– Output: Eventually, A returns SK∗i as the private key corresponding to the public key PK∗i , where PK∗i is
uncorrupt (c∗i = 0). C recovers the tuple 〈PK∗i , xi∗,1, xi∗,2, c∗i = 0〉 from list Lkey and returns xi∗,2 − SKi∗,2 as a
solution to the DL problem. Note that for a valid private key SK∗i = (SKi∗,1, SKi∗,2) corresponding to the public
key PK∗i , SKi∗,1 = a

H4(PKi∗,2)+xi∗,1
and SKi∗,2 = −a+ xi∗,2.

– Probability Analysis: We note that, if a DSK adversary returns a valid private key SK∗i with advantage ε
and breaks the (t, ε)DSK security of the scheme, C breaks the DL assumption with the same advantage ε. This
is because C provides valid responses to all the queries issues by A and the simulation is perfect. We bound the
running time of C as:

t∗ ≤ t+O(2qRK + 2nh + 2nc)te

This completes the proof of the theorem. ut

20

6 Conclusion

Although pairing is an expensive operation, only a few pairing-free unidirectional PRE schemes have been proposed in
the literature, of which only one scheme due to Chow et al. [8] reported the collusion-resistance property. However, in
this paper, we point out that the security proof in the scheme is flawed. We have shown that the adversary will be able
to determine that the simulation provided by the challenger is not consistent with the real system. This makes the
proof incomplete and the scheme is not provable secure. Additionally, we remark that the flaw cannot be corrected.
Also, we present the first construction of a unidirectional proxy re-encryption scheme without bilinear pairing that
provides collusion-resistance. Our scheme is proven CCA-secure under a variant of the computational Diffie-Hellman
assumption in the random oracle model.

References

1. Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-encryption schemes with
applications to secure distributed storage. In Proceedings of the Network and Distributed System Security Symposium,
NDSS 2005, San Diego, California, USA, 2005.

2. Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-encryption schemes with
applications to secure distributed storage. ACM Trans. Inf. Syst. Secur., 9(1):1–30, 2006.

3. Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Certificateless public key encryption without pairing. In Infor-
mation Security, 8th International Conference, ISC 2005, Singapore, September 20-23, 2005, Proceedings, pages 134–148,
2005.

4. Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott. Efficient algorithms for pairing-based cryptosystems.
In Advances in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 2002, Proceedings, pages 354–368, 2002.

5. Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy cryptography. In Advances in
Cryptology - EUROCRYPT ’98, International Conference on the Theory and Application of Cryptographic Techniques,
Espoo, Finland, May 31 - June 4, 1998, Proceeding, pages 127–144, 1998.

6. Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-encryption. In Proceedings of the 2007 ACM
Conference on Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007, pages
185–194, 2007.

7. Sherman S. M. Chow, Jian Weng, Yanjiang Yang, and Robert H. Deng. Efficient unidirectional proxy re-encryption. IACR
Cryptology ePrint Archive, 2009:189, 2009.

8. Sherman S. M. Chow, Jian Weng, Yanjiang Yang, and Robert H. Deng. Efficient unidirectional proxy re-encryption. In
Progress in Cryptology - AFRICACRYPT 2010, Third International Conference on Cryptology in Africa, Stellenbosch,
South Africa, May 3-6, 2010. Proceedings, pages 316–332, 2010.

9. Jean-Sébastien Coron. On the exact security of full domain hash. In Annual International Cryptology Conference, pages
229–235. Springer, 2000.

10. Robert H. Deng, Jian Weng, Shengli Liu, and Kefei Chen. Chosen-ciphertext secure proxy re-encryption without pairings.
In Cryptology and Network Security, 7th International Conference, CANS 2008, Hong-Kong, China, December 2-4, 2008.
Proceedings, pages 1–17, 2008.

11. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes. In Advances
in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara, California, USA, August
15-19, 1999, Proceedings, pages 537–554, 1999.

12. Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In Advances in Cryptology,
Proceedings of CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984, Proceedings, pages 10–18, 1984.

13. Matthew Green and Giuseppe Ateniese. Identity-based proxy re-encryption. In Applied Cryptography and Network Security,
5th International Conference, ACNS 2007, Zhuhai, China, June 5-8, 2007, Proceedings, pages 288–306, 2007.

14. Thomas S. Heydt-Benjamin, Hee-Jin Chae, Benessa Defend, and Kevin Fu. Privacy for public transportation. In Privacy
Enhancing Technologies, 6th International Workshop, PET 2006, Cambridge, UK, June 28-30, 2006, Revised Selected
Papers, pages 1–19, 2006.

15. Anca-Andreea Ivan and Yevgeniy Dodis. Proxy cryptography revisited. In Proceedings of the Network and Distributed
System Security Symposium, NDSS 2003, San Diego, California, USA, 2003.

16. Benôıt Libert and Damien Vergnaud. Unidirectional chosen-ciphertext secure proxy re-encryption. In International Work-
shop on Public Key Cryptography, pages 360–379. Springer, 2008.

17. Benôıt Libert and Damien Vergnaud. Unidirectional chosen-ciphertext secure proxy re-encryption. IEEE Trans. Information
Theory, 57(3):1786–1802, 2011.

18. Masahiro Mambo and Eiji Okamoto. Proxy cryptosystems: Delegation of the power to decrypt ciphertexts. IEICE trans-
actions on fundamentals of electronics, Communications and computer sciences, 80(1):54–63, 1997.

19. Claus-Peter Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3):161–174, 1991.
20. Jun Shao and Zhenfu Cao. Cca-secure proxy re-encryption without pairings. In Public Key Cryptography - PKC 2009,

12th International Conference on Practice and Theory in Public Key Cryptography, Irvine, CA, USA, March 18-20, 2009.
Proceedings, pages 357–376, 2009.

21

21. Anat Talmy and Oren Dobzinski. Abuse freedom in access control schemes. In 20th International Conference on Advanced
Information Networking and Applications (AINA 2006), 18-20 April 2006, Vienna, Austria, pages 77–86, 2006.

22. Smith. Tony. Dvd jon: buy drm-less tracks from apple itunes. http://www.theregister.co.uk/2005/03/18/itunes pymusique,
2005.

23. Jian Weng, Robert H. Deng, Shengli Liu, and Kefei Chen. Chosen-ciphertext secure bidirectional proxy re-encryption
schemes without pairings. Inf. Sci., 180(24):5077–5089, 2010.

22

	A Provably-Secure Unidirectional Proxy Re-Encryption Scheme Without Pairing in the Random Oracle Model
	S. Sharmila Deva Selvi, Arinjita Paul and C. Pandu Rangan

