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Abstract. A shuffle argument is a cryptographic primitive for proving
correct behaviour of mix-networks without leaking any private informa-
tion. Several recent constructions of non-interactive shuffle arguments
avoid the random oracle model but require the public key to be trusted.

We augment the most efficient argument by Fauzi et al. [Asiacrypt 2017]
with a distributed key generation protocol that assures soundness of the
argument if at least one party in the protocol is honest and additionally
provide a key verification algorithm which guarantees zero-knowledge
even if all the parties are malicious. Furthermore, we simplify their con-
struction and improve security by using weaker assumptions while retain-
ing roughly the same level of efficiency. We also provide an implementa-
tion to the distributed key generation protocol and the shuffle argument.
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1 Introduction

Due to convenience for voters and lower election costs, internet voting (i-voting)
is becoming an increasingly popular alternative to paper-based voting. In fact,
some countries have already provided i-voting solutions in regional (e.g., Aus-
tralia, Switzerland) or even national (e.g., Estonia) elections. While i-voting has
many benefits, the opposing requirements of election transparency and voter’s
privacy are not easy to guarantee in the digital setting.

One common tool to improve voter’s privacy is the mix-network [Cha81]. Es-
sentially, a mix-network can be seen as a digital analogue to ballot-box shaking
in paper-based voting. During the voting phase, encrypted votes are sent to a
bulletin board, a secure append-only storage system. After the voting phase ends,
the ciphertexts are processed sequentially by a mix-network consisting of multi-
ple independent servers, called mixers. Each mixer receives the ciphertexts from
the previous mixer (or, in the case of the first mixer, from the bulletin board)
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and sends shuffled (permuted and rerandomized) ciphertext to the next mixer.
Finally, only the output of the last mixer is decrypted. Assuming that at least
one mixer is honest, it will be impossible to associate the decrypted votes to the
voters that gave the original ciphertexts.

However, observe that a malicious mixer could easily switch out the ciphertexts
and thus break the integrity of the election outcome. We can avoid such be-
haviour by requiring each mixer to provide a proof that the shuffling was done
correctly. Additionally, to still maintain voters’ privacy, this proof should not re-
veal any1 information about the permutation or ciphertext randomizers used in
the shuffle. This can be achieved with a zero-knowledge (ZK) shuffle argument.

Many efficient interactive arguments [FS01,TW10,Gro10,BG12] are known for
shuffling, but interaction is not preferable in practice. For instance, we might
want to audit elections months after it occurred, but mixers storing the pri-
vate information might not be available anymore. Hence a better solution
would be a non-interactive zero-knowledge (NIZK) argument, where the prover
outputs a single message which can be later verified by anyone. Most inter-
active shuffle arguments can be made non-interactive using the Fiat-Shamir
heuristic [FS87], but this only guarantees security in the random oracle model
(ROM), where there are known cases in which the resulting argument is inse-
cure [GK03,BDG+13,BBH+19].

As an alternative, the Common Reference String (CRS) model assumes
a trusted party that samples a public string from some predefined dis-
tribution and provides it to both the prover and the verifier. In re-
cent years several NIZK shuffle arguments have been proposed in this
model [GL07,LZ13,GR16,FL16,FLZ16,FLSZ17a,FFHR19] that do not need
ROM2. Arguably, the most practical proposal among these is the construction
of Fauzi et al. [FLSZ17a]3, which we refer to as FLSZ throughout the text – it
has comparable efficiency to interactive arguments and uses a standard ElGamal
cryptosystem. However, a drawback of the CRS model is that it is unclear who
should produce the CRS in practice. Sampling the CRS incorrectly, or even just
leaking some side information (e.g., the simulation trapdoor), typically breaks
the security of the argument. Several works have tried to alleviate this issue.

The Bare Public Key (BPK) model [CGGM00] requires significantly less trust
than the CRS model. It removes the CRS and only requires the verifier to reg-
ister a public key in a publicly accessible file before the protocol has started.
A malicious verifier may choose the public key in any way she likes. However,
BPK model NIZK with a standard auxiliary input ZK property can be cast as a

1 Actually since the argument presented in this paper is statistically but not perfectly
zero-knowledge, then it can leak information, but only with negligible probability.

2 Even most of the interactive shuffle arguments require a CRS, but typically they
have a less complicated structure and a uniformly random string usually suffices.

3 The full version [FLSZ17a] mentions a security flaw in the conference ver-
sion [FLSZ17b]. We follow the full version.
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two-round ZK protocol, which is known to be impossible [GO94]. On the positive
side, Wee [Wee07] has shown that BPK model NIZK is possible for a weaker non-
uniform ZK. More recently, [ALSZ18] shows that NIZK with a related notion
called no-auxiliary-string non-black-box ZK is also possible.

From a different perspective, Ben-Sasson et al. [BCG+15] proposed a secure
multi-party computation (MPC) protocol for CRS generation to distribute trust
requirements. Essentially it is a distributed key generation (DKG) protocol that
is secure if at least one party is honest. However, that protocol requires the
ROM and only works for CRS-s with a very specific structure. Hence, it cannot
be used as a black box, say, for the FLSZ argument. Subsequently, Abdolmaleki et
al. [ABL+19b], proposed a UC-secure variant of the Ben-Sasson et al.’s protocol
which avoids the ROM by using a DL-extractable UC-commitment [ABL+19a].

A series of results [BFS16,ABLZ17,Fuc18] have shown that CRS-based NIZK
arguments can satisfy subversion-ZK (Sub-ZK), i.e., the argument’s ZK prop-
erty holds even if the CRS is generated by an untrusted party. In particular,
it has been shown [ABLZ17,Fuc18] that many existing succinct non-interactive
arguments of knowledge (SNARKs) can be enhanced with a CRS verification al-
gorithm CV, such that if CV(crs) accepts, then the proof will not leak any (non-
negligible) information. So far, there is no general transformation which would
give Sub-ZK property to any NIZK argument, and each new argument needs to
be studied separately. Finally, recent work by Abdolmaleki et al. [ALSZ18] es-
tablishes a straightforward connection between Sub-ZK NIZK in the CRS model
and BPK NIZK. Namely, a Sub-ZK NIZK can be transformed into a BPK NIZK
(with non-auxiliary-input non-black-box ZK) where the verifier uses the CRS as
her public key. This is also the direction we take in this paper as the BPK model
is a more established and better-understood notion.

Our Contribution. We propose a new shuffle argument that we call a transparent
FLSZ (denoted tFLSZ) which builds upon the result of [FLSZ17a] by significantly
reducing the trust requirements, using weaker security assumptions, and also
having a somewhat less complex structure.

FLSZ contains four subarguments: (i) a unit vector argument for showing that
a committed message is a unit vector, i.e., a binary vector with exactly one
1, (ii) a permutation matrix argument for showing that n committed vectors
form a permutation matrix, (iii) a same-message argument for showing that two
committed vectors are equal, and (iv) a consistency argument for showing that
the ciphertexts are shuffled according to the committed permutation matrix.
However, in their case (i) the unit vector argument is not sound unless one also
provides a related same-message argument and (ii) the consistency argument is
only culpably sound, that is, soundness only holds against adversaries that can
provide a witness of their cheating.

In tFLSZ, we combine the unit vector argument and the same-message argument
into a new unit vector argument and prove its knowledge-soundness in the al-
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gebraic group model (AGM) [FKL18] which is a weaker model compared to the
generic bilinear group model (GBGM) used in [FLSZ17a]. Roughly speaking, in
the GBGM an adversary is only allowed to perform group operations using an
oracle which hides the actual structure of the group elements. On the other hand,
the AGM allows the adversary to freely use the actual representation of elements
in the group. Therefore security proofs in the AGM are usually reductions to
some known assumption rather than unconditional proofs as in the GBGM. We
show that knowledge-soundness of our new unit vector argument can be reduced
to a quite standard q-type assumption in the algebraic group model.

The permutation argument is proven knowledge-sound assuming that the com-
mitment scheme is binding and the unit vector argument is knowledge-sound.
This again is a much weaker assumption compared to [FLSZ17a], where the au-
thors prove a similar result but in the GBGM. Finally, we skip the consistency
argument altogether, and directly prove that the shuffle argument is sound given
that the permutation argument is knowledge-sound and that a variant of the
Kernel Matrix Diffie-Hellman (KerMDH) assumption holds. We call this variant
GapKerMDH and prove that in the AGM, it also reduces to the previously men-
tioned q-type assumption. The GapKerMDH assumption is weaker compared to
the auxiliary-input KerMDH assumption used in [FLSZ17a] for their consistency
argument. Interestingly, after simplifying the structure, the unit vector argument
is the only subargument which depends on the AGM; the rest of the protocol
is based on falsifiable assumptions [Nao03], i.e., assumptions where a challenger
can efficiently verify that an adversary breaks the assumption (e.g., in the dis-
crete logarithm assumption the challenger sends gx, the adversary responds with
x′, and the challenger checks if x = x′). Falsifiable assumptions are much better
understood and thus usually preferred over non-falsifiable assumptions such as
knowledge assumptions [Dam92].

Secondly (and perhaps more importantly), we apply the efficient DKG protocol
of Abdolmaleki et al. [ABL+19b] which takes us from a setting of completely
trusting the setup generator to a setting where we need to trust only one out of k
parties in DKG. The modification, however, turns out to be non-trivial. We start
by observing that the CRS of FLSZ is outside of the class of verification-friendly
CRS-s that the DKG protocol can generate. Hence, in addition to simplifying
the structure of FLSZ we also modify the CRS and make it verification-friendly,
which mostly involves adding some well-chosen elements to the CRS. These
additional elements are not needed for the honest prover or verifier but are
available to dishonest parties. Therefore, after the DKG protocol finishes, these
new CRS elements can be stored somewhere (in case someone wants to verify
them in the future) and the effective CRS size (i.e., the size of the CRS used in
the actual computation) does not change at all. If there is no need for transcript
verification in the future, these additional elements can be safely disregarded
after the computations are done. Hence, the CRS size in practice stays the same,
but the security proofs must now consider a more powerful adversary.
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As mentioned, the DKG protocol guarantees security (soundness and zero-
knowledge) if at least one honest party participated. We take it one step further
and prove that the protocol is also secure in the BPK model, following the
ideas of [ALSZ18]. Namely, we construct a public key verification algorithm Vpk

that the prover runs before outputting an argument. If Vpk is satisfied, then zero-
knowledge holds even if the public key was generated by a single malicious party,
or equivalently, if all of the parties in the DKG protocol colluded. However, if
Vpk rejects the key, then the prover simply declines to output anything.

In Table 1 we compare efficiency and assumptions of the state-of-the-art non-
interactive shuffle arguments. The argument by Groth [Gro10] has the best ef-
ficiency, but requires ROM and a trusted random string4. It is also worth to
mention the argument by Bayer and Groth [BG12] which has sublinear com-
munication but otherwise has the same drawbacks as [Gro10]. The argument
of González and Rálfols [GR16] (and the slight improvement in [DGP+19]) is
based solely on falsifiable assumptions, but requires a quadratic size CRS which
is not efficient enough for many applications. Similarly, Faonio et al. [FFHR19]
use falsifiable assumptions but require pairings for all operations, making it in-
efficient. The Fauzi et al. [FLSZ17a] construction can be seen as a compromise
between [Gro10] and [GR16]: efficiency is only slightly worse than [Gro10], does
not require ROM, but some subarguments are proven in the GBGM. Our work
retains almost the same efficiency as [FLSZ17a] by only adding n group elements
to the CRS (we do not count elements solely needed by the DKG), but we make
a significant reduction in the trust requirements for the setup phase and also
prove security under weaker assumptions.

In summary, our new NIZK shuffle argument has the following properties:

1. Soundness holds assuming at least one honest party participated in the dis-
tributed key generation protocol and zero-knowledge holds even if all the
parties were malicious.

2. Compared to the most-efficient shuffle argument without ROM [FLSZ17a]:
(a) We simplify the structure of the argument.
(b) We improve the security assumptions and isolate the unit vector argu-

ment as the only subargument which requires AGM.
(c) The efficiency of the argument remains essentially the same.

Additionally, we implement our solution in Python 3.5+. See Section 7 for details.

2 Preliminaries

Let λ denote the security parameter. We write f(λ) ≈λ 0, if a function f is
negligible in λ. PPT stands for probabilistic polynomial time. We write (a, b)←
4 Namely, [Gro10] requires a commitment key for the extended Pedersen commitment
which could be obtained from a uniformly random string
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Table 1. Comparison of state-of-the-art shuffles. Exp. stands for exponentiations, pair.
for pairings, n is the number of input ciphertexts and m is the number of mixers.
Constant terms are neglected, shuffling is included to prover’s efficiency, and shuffled
ciphertexts are included to proof size.

Prover
efficiency

Verifier
efficiency

Decryption
efficiency

Proof
size

CRS size Reference
string

Assum-
ptions

[Gro10] 8n exp. 6n exp. n exp. 3n × Zp,
2n×G

n×G Uniform ROM,
DDH

[GR16] 13n exp. 13n pair. n exp. 4n × G1,
2n×G2

(n2+24n)×
G1, 23n×G2

Structured Falsifiable

[FLSZ17a]11n exp. 7n exp.,
3n pair.

n exp. 4n × G1,
3n×G2

4n×G1, n×
G2

Structured GBGM

[FFHR19] 72n exp.,
5n pair.

22n pair. 2n exp., 46n
pair.

12n×G1,
11n×G2,
4n×GT

2m × G1,
2m×G2

Uniform Falsifiable

This
work

11n exp. 7n exp.,
3n pair.

n exp. 4n × G1,
3n×G2

5n×G1, n×
G2

Verifiable AGM

(A‖Ext)(x) if algorithms A and Ext on the same input x and random tape r
output a← A(x; r) and b← Ext(x; r). By RND(A) we denote the random tape
of A and by Range(A(x)) the set of all possible outputs of A given input x.

We write x←$A if x is sampled uniformly randomly from the set A. By default
x = (xi)

n
i=1 ∈ An is a column vector and 1n := (1)ni=1, 0n := (0)ni=1. A set

of permutations on n elements is denoted by Sn. A matrix A ∈ {0, 1}n×n is a
permutation matrix of the permutation σ ∈ Sn when Ai,j = 1 iff σ(i) = j. We
call a a unit vector if it contains exactly one 1 and all other positions are 0. Let
Fp be a finite field of prime order p and F∗p := Fp\{1}. For vectors x,y ∈ Fnp , x◦y
denotes the entry-wise product. We use the bracket notation where [x] denotes
the group element with discrete logarithm x. We consider additive groups, thus
[a] + [b] = [a+ b]. For integers a < b we denote [a .. b] := {a, a+ 1, . . . , b}.

Bilinear Pairing. A bilinear group generator BGen(1λ) outputs a tuple (p,G1,
G2,GT ,P1,P2, •) such that (i) p is a prime of length Θ(λ), (ii) for k ∈ {1, 2},
Gk is an additive group of order p with a generator Pk, and (iii) • is a map
G1 ×G2 → GT . We set PT := P1 • P2 and use the bracket notation by defining
[a]k := a · Pk, for k ∈ {1, 2, T }. We require that

– [a]1 • [b]2 = [ab]T for all a, b ∈ Fp (bilinearity),
– PT 6= [0]T (non-degeneracy), and
– • is efficiently computable.

In the following we use asymmetric bilinear groups where there is no efficiently
computable isomorphism between G1 and G2. For the state of the art in pairing
constructions see [BD17].
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Bracket notation extends naturally to matrices and vectors, e.g., we may write
[A]1 • [B]2 = [I]1 • (A[B]2) = [I]1 • [AB]2 for A ∈ Fn×mp , B ∈ Fm×kp , and
identity matrix I ∈ Fn×np . Occasionally we write [a]z for z ∈ {1, 2} and use
z̄ := 3− z to denote the number of the other non-target group. Then [a]z • [b]z̄
would mean [a]1 • [b]2 for z = 1 and [b]1 • [a]2 for z = 2.

Lagrange basis. Let ω1, . . . , ωn+1 be distinct points in Fp. For i ∈ [1 .. n+ 1], the
i-th Lagrange basis polynomial is defined as `i(X) :=

∏
j 6=i

X−ωj

ωi−ωj
. Hence, it is

the unique degree n polynomial such that `i(ωi) = 1 and `i(ωj) = 0 for all j 6= i.
As the name suggests, {`i(X)}n+1

i=1 is a basis for {f ∈ Fp[X] : deg(f) ≤ n}.

Encryption scheme. A public key encryption scheme is a triple of PPT algo-
rithms (KGen,Enc,Dec) such that

– KGen(1λ) outputs a public key and a secret key pair (pke, ske).
– Encpke(m; r) outputs a ciphertext c encrypting the message m with random-

ness r under the public key pke.
– Decske(c) outputs the decryption of the ciphertext c using the secret key ske.

We require that Decske(Encpke(m; r)) = m for every message m and randomizer
r. Intuitively, an encryption scheme is IND-CPA-secure if no PPT adversary A
can distinguish between the ciphertext distributions of any two messages.

We use the ElGamal encryption scheme over a group G2 defined as follows. The
algorithm KGen(1λ) samples ske←$Fp and outputs (pke := [1, ske]2, ske). An
encryption of a message [m]2 is Encpke([m]2; r) := [0,m]2 + r · pke where r←$Fp.
A ciphertext [c]2 = [c1, c2]2 is decrypted by computing Decske([c]2) := [c2]2 −
ske · [c1]2. ElGamal is IND-CPA-secure if the DDH assumption holds in group
G2. ElGamal is also blindable, meaning that Encpke([m] ; r) + Encpke([0] , r′) =
Encpke([m] , r+r′) and, assuming that r′←$Fp, no PPT adversary can distinguish
if Encpke([m] ; r) and Encpke([m] ; r + r′) encrypt the same message or not.

Non-Interactive Zero-Knowledge. Let R = {(x,w)} be a relation such that
LR = {x : ∃w (x,w) ∈ R} is an NP language where w is a witness for x. Fol-
lowing [ALSZ18], we define a NIZK argument in the BPK model as follows.

A NIZK argument Ψ in the BPK model for relation R is a tuple efficient algo-
rithms (Pgen,Ktd,Kpk,Vpk,P,V,Sim), where

– Pgen(1λ) is a deterministic algorithm that outputs a setup parameter gk.
– Ktd(gk) is a PPT algorithm that on input gk outputs a trapdoor td.
– Kpk(gk, td) is a deterministic algorithm that on input gk and td ∈

Range(Ktd(gk)) outputs a public key pk.
– Vpk(gk, pk) is a PPT algorithm that on input gk and a public key pk outputs

0 (if the key is malformed) or 1 (if the key is well-formed).
– P(gk, pk, x,w) is a PPT algorithm that given a setup parameter gk, public

key pk, and (x,w) ∈ R, outputs an argument π.
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– V(gk, pk, x, π) is a PPT algorithm that on input a setup parameter gk, public
key pk, statement x, and argument π, outputs 0 (reject) or 1 (accept).

– Sim(gk, pk, td, x) is a PPT algorithm that on input a setup parameter gk,
public key pk, trapdoor td, and x ∈ LR outputs a simulated argument π.

For the sake of brevity, we sometimes use the algorithm K(gk) :=
Kpk(gk,Ktd(gk)). By a NIZK argument in the CRS model we mean a tuple
(Pgen,Ktd,Kpk,P,V,Sim) of the above algorithms (i.e., all except Vpk).

Completeness simply requires that an honestly generated key and argument are
respectively accepted by Vpk and V. We give the definition for the BPK model.
The definition for the CRS model neglects the condition Vpk(gk, pk) = 1.

Definition 1. The argument Ψ in BPK model is perfectly complete if for all
λ, and (x,w) ∈ R, the following probability is 1,

Pr
[
gk← Pgen(1λ), pk← K(gk) : Vpk(gk, pk) = 1 ∧ V(gk, pk, x,P(gk, pk, x,w)) = 1

]
.

Soundness guarantees that a malicious prover cannot create a valid argument for
a false statement. The definitions match in the BPK model and the CRS model.

Definition 2. The argument Ψ is sound if for any PPT adversary A,

Pr

[
gk← Pgen(1λ), (pk, td)← K(gk), (x, π)← A(gk, pk) :

x 6∈ LR ∧ V(gk, pk, x, π) = 1

]
≈λ 0.

Knowledge-soundness strengthens the previous definition by requiring that the
prover “knows” the witness, i.e., there exists an extractor that outputs the witness
given the code and random coins of the adversary.

Definition 3. The argument Ψ is knowledge-sound if for any PPT adversary
A, there exists a PPT extractor Ext, such that

Pr

[
gk← Pgen(1λ), (pk, td)← K(gk), ((x, π),w)← (A‖Ext)(gk, pk) :

(x,w) 6∈ R ∧ V(gk, pk, x, π) = 1

]
≈λ 0.

Lastly, zero-knowledge guarantees that the argument leaks no information be-
sides that x ∈ LR by giving an algorithm Sim which, given a trapdoor, can create
a valid argument for any x ∈ LR without knowing the corresponding witness.

Definition 4. An argument Ψ in the CRS model is statistically zero-knowledge,
if for any adversary A, and any (x,w) ∈ R, ε0 ≈λ ε1, where

εb := Pr

[
gk← Pgen(1λ), (crs, td)← K(gk), if b = 0 then π ← P(gk, crs, x,w)

else π ← Sim(gk, crs, td, x) fi : A(gk, crs, π) = 1

]
.

We say that Ψ is perfectly zero-knowledge if ε0 = ε1.
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In the BPK model, we use the no-auxiliary-string non-black-box zero-knowledge
definition of [ALSZ18] (as mentioned, NIZK is impossible with the standard
BPK ZK definition). Essentially the prover first runs a public key verification
algorithm Vpk to check well-formedness of the key pk and only then outputs
a proof. Compared to the previous definition, we require that there exists an
extractor that extracts a trapdoor for any well-formed pk given access to adver-
sary’s random coins. Intuitively this guarantees that the key generator knows
the trapdoor and thus could generate the proof himself using the simulator.

Definition 5 ([ALSZ18]). The argument Ψ in the BPK model is statistically
no-auxiliary-string non-black-box zero-knowledge (nn-ZK), if for any PPT sub-
verter X there exists a PPT extractor ExtX, s.t., for any (stateful) adversary A,
ε0 ≈λ ε1, where

εb := Pr

gk← Pgen(1λ), (pk, auxX‖td)← (X‖ExtX)(gk), (x,w)← A(auxX),

if b = 0 then π ← P(gk, pk, x,w) else π ← Sim(gk, pk, td, x) fi :

(x,w) ∈ R ∧ Vpk(gk, pk) = 1 ∧ A(π) = 1

 .
Here auxX is whatever information X wishes to send to A.

Assumptions. In AGM reductions we use q-PDL, a q-type version of discrete
logarithm assumption. We also require the KerMDH computational assumption,
and the BDH-KE knowledge assumption. The definitions are as follows.

Definition 6 (q-PDL [Lip12]). The q-Power Discrete Logarithm assumption
holds for BGen if for any PPT A,

Pr[gk← BGen(1λ), z←$Zp, z′ ← A(gk, [(zi)qi=1]1, [(z
i)qi=1]2) : z = z′] ≈λ 0.

Definition 7 (KerMDH [MRV16]). Let D`,k be a distribution over F`×kp .
The D`,k-KerMDH assumption holds for BGen and z ∈ {1, 2} if for any PPT A,

Pr[gk← BGen(1λ),M ←$D`,k, [c]z̄ ← A(gk, [M ]z) : c 6= 0 ∧ c>M = 0] ≈λ 0.

Definition 8 (BDH-KE [ABLZ17]). We say that BGen is BDH-KE secure
if for any PPT adversary A there exists a PPT extractor ExtA, such that

Pr
[
gk← BGen(1λ), ([α]1 , [α

′]2 ‖β)← (A‖ExtA)(gk) : α = α′ ∧ β 6= α
]
≈λ 0.

Commitment Scheme. A commitment scheme is a tuple of efficient algorithms
(KGen,Com) such that

– KGen(1λ) outputs a commitment key ck.
– Comck(m; r) outputs a commitment c given a message m and randomness r.

Typically a commitment scheme should satisfy at least the following properties.
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– (perfectly) hiding : the distribution Comck(m; r) (over r←$Fp) is the same
for any message m;

– (computationally) binding : it is infeasible for an adversary to find (m1, r1)
and (m2, r2) s.t. Comck(m1; r1) = Comck(m2; r2) and m1 6= m2.

Polynomial Commitment Scheme. For polynomials {Ti(X1, . . . , Xk)}n+1
i=1 ∈

Fp[X1, . . . , Xk] we define a (Ti)
n+1
i=1 -commitment scheme as follows:

– KGen(1λ) picks χ←$Fkp and returns a commitment key ck←
[
(Ti(χ))n+1

i=1

]
z
.

– Comck((a1, . . . , an); r) returns a commitment
∑n
i=1 ai[Ti(χ)]1 + r[Tn+1(χ)]1.

Clearly, this commitment is perfectly hiding when r←$Fp and Tn+1(χ) 6= 0. If
{Ti}n+1

i=1 is a linearly independent set, it is also computationally binding under
a suitably chosen KerMDH assumption, cf. [FLSZ17a, Theorem 1].

DL-Extractable Commitment Scheme. The DKG protocol of [ABL+19b] re-
quires a UC-secure Discrete Logarithm Extractable (DL-extractable) commit-
ment scheme as defined in [ABL+19a]. In DL-extractable commitments the
messages are field elements x, but commitments can be opened to [x]z thus
still leaving x itself private. However, since in the UC-model committing to x is
equivalent to giving it to an ideal functionality, then the committer knows x, i.e.,
the discrete logarithm x can be extracted from the commitment given a secret
key. For a formal definition and a construction, see [ABL+19a].

Algebraic Group Model. Recently Fuchsbauer et al. [FKL18] introduced the al-
gebraic group model (AGM) that lies between the standard and the generic
group model. In the AGM, an adversary A that returns a group element [x]z is
required to provide a linear representation of [x]z relative to all previously re-
ceived group elements. That is, if A received as input group elements [y]z then
she must submit along with [x]k a representation z such that [x]z = z> [y]z. Us-
ing techniques similar to [FKL18, Theorem 7.2] we prove knowledge-soundness
of the unit vector argument under the PDL assumption in the AGM.

2.1 FLSZ Shuffle Argument

We give a brief overview of the FLSZ shuffle argument for the shuffle relation

Rshn :=

{(
(gk, pke, [(c

′
i)
n
i=1]2, [(ci)

n
i=1]2), (σ, t)

)
| σ ∈ Sn ∧ t ∈ Fnp∧(

∀i ∈ [1 .. n] : [c′i]2 = [cσ(i)]2 + Encpke([0]2; ti)
) }

.

They use a ((Pi(X))ni=1, X%)-commitment scheme to commit to columns of a
permutation matrix, where Pi(X) := 2`i(X) + `n+1(X) for i ∈ [1 .. n].
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Lemma 1. Let P0(X) := `n+1(X)− 1 and Qi(X) := (Pi(X) + P0(X))2 − 1 for
i ∈ [1 .. n]. If (

∑n
i=1 aiPi(X) + P0(X))2 − 1 ∈ Span{Qi(X)}ni=1 and n < p − 1,

then (a1, . . . , an) is a unit vector.

Proof. Denote T (X) := (
∑n
i=1 aiPi(X) + P0(X))2 − 1. Firstly, observe that

for j ∈ [0 .. n], T (wj) = (
∑n
i=1 aiPi(ωj) + P0(ωj))

2 − 1 = (
∑n
i=1 ai(2`i(ωj) +

`n+1(ωj)) + `n+1(ωj) − 1)2 − 1 = (2aj − 1)2 − 1 = 4aj(aj − 1). On the other
hand, Qi(ωj) = (Pi(ωj) + P0(ωj))

2 − 1 = 0 for j ∈ [1 .. n]. Therefore, T (X) ∈
Span{Qi(X)}ni=1 implies that T (ωj) = 0. Hence aj ∈ {0, 1} for j ∈ [1 .. n].

Finally, T (ωn+1) = (
∑n
i=1 ai(2 ·0+1)+1−1))2−1 = (

∑n
i=1 ai)

2−1. Similarly as
before, Qi(ωn+1) = 0 so T (wn+1) = 0. Therefore, (

∑n
i=1 ai)

2 − 1 = (
∑n
i=1 ai −

1)(
∑n
i=1 ai + 1) = 0. Since

∑n
i=1 ai = n < p − 1 we must have

∑n
i=1 ai = 1, so

exactly one aj is 1 and all others are 0. Hence (a1, . . . , an) is a unit vector. ut

Given the above property, they propose a unit vector argument to show that the
prover could open each commitment to a unit vector. They then enhance it to a
permutation matrix argument by observing that n unit vectors form a permuta-
tion matrix exactly when their sum is 1n. Next, they would like to show that the
committed permutation matrix was used to shuffle the ciphertexts. However, due
to some technical challenges, they are unable to use the same commitment key.
Instead, they commit once more to the columns of the permutation matrix, but
this time with a ((P̂i(X))ni=1, X%̂)-commitment where P̂i(X) := X(i+1)(n+1) for
i ∈ [1 .. n]. They propose a same-message argument to show that both types of
commitments can be opened to the same matrix. Finally, a consistency argument
proves that the committed permutation was used to shuffle the ciphertexts.

The unit vector argument, the permutation matrix argument, and the same-
message argument are proven to be knowledge-sound in the GBGM. However,
the soundness of the unit vector argument depends on the soundness of the
same-message argument. The consistency argument is culpably sound5 under an
application specific variation of the KerMDH assumption. The shuffle argument
itself is sound assuming that other arguments are secure and assuming that
commitments are binding. The shuffle argument has perfect zero-knowledge.

3 Distributed Key Generation Protocol

We apply the UC-secure DKG protocol of Abdolmaleki et al. [ABL+19b] in the
public key generation of our shuffle argument. This protocol avoids the random
oracle model (unlike, e.g., [BCG+15]) and due to UC-security it will not affect
the soundness or zero-knowledge properties of the argument. Of course, any
general MPC protocol can be used as a DKG, but since we potentially require

5 Culpable soundness is a weaker form of soundness where an adversary additionally
provides a witness of his cheating.
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a large number of parties (e.g., mixers in the mix-network) and since evaluated
circuits can have a large multiplicative depth, specialized protocols will perform
much better. See [BCG+15] for further discussion on efficiency difference.

3.1 Verification-Friendly Public Key

Although the DKG protocols of [BCG+15] and [ABL+19b] are efficient, they are
not general MPC protocols and can only generate certain kinds of keys. Namely,
they require key computation to be represented as a circuit that comes from a
special class (CS, described below) and is evaluated on uniformly random field
inputs. Fortunately, the protocols are still sufficient for generating public keys for
many pairing-based arguments or, as we will later show, slightly modified ver-
sions. Compared to [ABL+19b] we give a more direct, but equivalent, description
of such keys which we call verification-friendly. Intuitively, a verification-friendly
public key means that even if one doesn’t trust the parties generating the public
key, one can at least ensure that it is of the correct structure.

We say that an argument Ψ has a verification-friendly public key if (i) output
td = (χi)

n
i=1 of Ktd(gk) is distributed uniformly randomly over (F∗p)n, and (ii)

Kpk(gk, td) = C(td) where C is a circuit from a class CSgk,n. Any circuit C ∈ CSgk,n
takes as input td = (χi)

n
i=1 ∈ (F∗p)n and contains two types of gates:

– multiplication-division (multdiv) gate MDχi,χj
([x]z) outputs [(χi/χj)x]z,

where z ∈ {1, 2} and [x]z is a gate input.
– linear combination (lincomb) gate LCc([y]z) outputs

[∑t
i=1 ciyi

]
z
, where

z ∈ {1, 2}, c ∈ Ftp is a constant, and [y]z ∈ Gtz is a gate input.

Gates in the circuit C are partitioned into interleaved layers C1, L1, . . . , Cd, Ld
where each Ci contains only multdiv gates and Li contains only lincomb gates.
Furthermore, C satisfies the following conditions:

1. Inputs of gates in Ci or Li can be either constants or outputs of the gates
on the current or lower layers of the circuit.

2. The output of each gate is part of the output of the circuit C.
3. Layer C1 always contains gates MDχi,1([1]z) for all i ∈ [1 .. n], z ∈ {1, 2}.

Therefore, [(χi)
n
i=1]1 and [(χi)

n
i=1]2 are always outputs of the circuit.

3.2 DKG Protocol for Verification-Friendly Keys

We describe the DKG protocol of [ABL+19b] where the parties collectively eval-
uate a CSgk,n-circuit to generate a verification-friendly public key. The protocol
retains soundness and zero-knowledge of the argument given that at least one
party in the protocol is honest and malicious parties are non-halting. We note
that with a suitable key verification algorithm it is possible to achieve zero-
knowledge even if all the parties are malicious.
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mpcMDχi,χj
([x]z):

1. Set cert0 ← [x]z.
2. For r = 1, . . . , k: Party Pr broadcasts certr ← (χi,r/χj,r) · certr−1.
3. Output certk.

VmpcMDχi,χj
([x]z , (certr)

k
r=1,

[
(χj,r)

k
r=1, (χi,r)

k
r=1

]
z̄
):

1. Set cert0 ← [x]z.
2. For r = 1, . . . , k: check that certr • [χj,r]z̄ = certr−1 • [χi,r]z̄.
3. If all checks pass output 1 and otherwise output 0.

Fig. 1. Multi-party protocol mpcMDχi,χj
and its transcript verifier VmpcMDχi,χj

Let P1, . . . ,Pk be the parties running the DKG protocol. Each party Pr samples
shares (χj,r)

n
j=1←$ (F∗p)n which allows us to define trapdoor elements as χj :=∏k

r=1 χj,r for j ∈ [1 .. n]. Note that if at least one value χj,r ∈ F∗p is picked
independently and uniformly at random, then χj is uniformly random in F∗p. For
ease of description, we set χ0 := 1 and similarly χ0,r := 1 for r ∈ [1 .. k].

The protocol starts with a commitment round where all the parties commit to
their shares χi,r with a UC-secure DL-extractable commitment scheme. This is
followed by an opening round where each Pi reveals [χi,r]1, [χi,r]2. Since the com-
mitment scheme is UC-secure, then it is also non-malleable and thus guarantees
that the adversary chooses her shares independently of the shares of the honest
parties. Next, the parties start to evaluate the circuit layer-by-layer. For evaluat-
ing a single multdiv gate MDχi,χj ([x]z) = [(χi/χj)x]z where i, j ∈ [0 .. n], parties
run the mpcMDχi,χj

([x]z) protocol given in Fig. 1. Assuming that [x]z is public,
P1 broadcasts (χi,1/χj,1) [a]z and each subsequent party Pr multiplies χi,r/χj,r
to the output of her predecessor Pr−1. If all the parties follow the protocol, then
the output of Pk is certk = (χi,1 · . . . · χi,k)/(χj,1 · . . . · χj,k) [a]z = (χi/χj) [a]z.
Computation of each party can be verified with pairings by using the algorithm
VmpcMDχi,χj

in Fig. 1. Any linear combination gate LCc([x]z) can be computed
locally by each party by simply evaluating the expression

∑t
i=1 ci [ai]z.

Let us make a slight restriction for now that multdiv gates on the same layer do
not depend on each other. Then each multi-division layer Ci can be evaluated by
running multiple instances of the mpcMD protocol in parallel. More precisely,
the computation begins with the party P1 doing its part of computation in
mpcMD for each multdiv gate in Ci. Then, given the output produced by P1,
the party P2 does her part of the computation for each gate in the layer Ci
and so on. Hence, a single multdiv layer can be evaluated in k rounds since
every party needs to contribute to the output of the previous party just once.
After each multi-division layer, the parties verify the computation by running
the algorithm VmpcMDχi,χj

for each gate. If the checks pass, the parties locally
evaluate gates on layer Li and proceed to compute the next layer Ci+1. Full
details are given in Fig. 2.
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Commitment: Each party Pr picks χ1,r, . . . , χn,r ←$F∗p and broadcasts DL-
extractable commitments of the values.
Opening: Once all the commitments are received, Pr broadcasts openings together
with [(χi,r)

n
i=1]1 and [(χi,r)

n
i=1]2. Each party verifies the openings and aborts if the

verification failed.
Layer computation: For a multi-division layer Ci containing a gateMDχi,χj ([a]z), par-
ties run the protocolmpcMDχi,χj

([a]z) and verify the computation with the algorithm
VmpcMDχi,χj

. All the gates in Ci can be evaluated in parallel. Linear combination
layers Li are locally evaluated by each party.
Output: Output of the protocol is the output of all the evaluated gates.

Fig. 2. Distributed key generation protocol for a circuit C = (C1, L1, . . . , Cd, Ld)

We refer the reader to [ABL+19b] for the more general protocol where k rounds
can be achieved even if the gates on the same layer depend on each other. That
version of the DKG is also used for our shuffle argument, but for this we provide
an explicit description in Appendix B. It is important to note that Abdolmaleki
et al. showed that if at least one party in the DKG is honest, then it UC-
realises the CRS ideal functionality (which essentially samples a public key in
the beginning and returns it to anyone that queries).

4 Transparent Shuffle Argument

The DKG protocol requires the public key to be verification-friendly. In partic-
ular, we need to guarantee the following properties:

– Each trapdoor ι ∈ td has to be sampled uniformly at random from F∗p and
the public key has to contain both [ι]1 and [ι]2.

– The public key has to be computable by interleaved multi-division and linear
combination circuit layers and the output of each gate has to be part of the
public key. For example, given that [a]1, [b]1, [c]1, [d]1 are part of the public
key, it is not possible to have [ab+cd]1 in the public key without also revealing
some intermediate gate outputs like [ab]1 and [cd]1.

In this section, we modify the FLSZ argument and construct a new transparent
shuffle argument tFLSZ which has a verification-friendly public key. Besides mak-
ing the argument verification-friendly, we also simplify the construction: (i) we
combine the unit vector argument and the same-message argument of tFLSZ into
a single argument, (ii) we skip the consistency argument and directly construct a
shuffle argument from the permutation argument, and (iii) we observe that one
of the trapdoors, %̂, can be set to 1 without affecting security. The new argument
is given in Fig. 3; we introduce the construction step-by-step in the following.

Let us take the public key of FLSZ in Fig. 4 as a starting point and observe
which modifications need to be introduced to make it verification-friendly.
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Ktd(gk): Return td = (χ, θ, β, β̂, %)←r (F∗p)5.

Kpk(gk, n, td): Let P = (Pi(χ))
n
i=1, P̂ = (P̂i(θ))

n
i=1, Q = ((Pi(χ) + P0(χ))

2 − 1)ni=1.

pkuv ←
(
[1, P0(χ), P , %, Q/%,

∑n
i=1 P̂i, β

2%, ββ̂, β2P + ββ̂P̂ ]1,

[1, P0(χ), P , %, β
2, ββ̂]2, [1]T

)
,

pkpkv ←
(
[β, β̂, (θ2i−1)ni=1]1,

[χ, θ, β, β̂]2

)
, pkvf ←

(
[(χi)2ni=1, (βχ

i, β̂θ2i)ni=1, β%]1,
[(χi)ni=2]2

)
.

Return pk← ([P̂ ]1, pkuv, pkpkv, pkvf ).

K(gk, n): Run td← Ktd(gk), pk← Kpk(gk, n, td), return (pk, td).

P(gk, (pke, pk), [C]2 = [(ci)
n
i=1]2 ∈ Gn×2

2 , (σ ∈ Sn, t ∈ Fnp )):
1. For i = 1 to n− 1: r̂i ←$Fp; [âi]1 ← [P̂σ−1(i)]1 + r̂i[1]1.
2. πper ← Pper(gk, pk, [(âi)

n−1
i=1 ]1, (σ, (r̂i)

n−1
i=1 )). // Permutation argument

3. r̂n ← −
∑n−1
i=1 r̂i; r̂ ←r Fp; [s]1 ← t>[P̂ ]1 + r̂[1]1.

4. For i = 1 to n: [t′i]2 ← ti · pke.
5. [N ]2 ← r̂>[C]2 + r̂ · pke. // Online
6. [C′]2 ← ([cσ(i)]2 + [t′i]2)

n
i=1. // Shuffling, online

7. Return
(
[C′]2, πsh ← ([(âj)

n−1
j=1 , s]1, [N ]2, πper)

)
.

V(gk, (pke, pk), ([C]2, [C
′]2), πsh):

1. Parse πsh = ([(âj)
n−1
j=1 , s]1, [N ]2, πper); set [ân]1 ← [

∑n
i=1 P̂i]1 −

∑n−1
i=1 [âi]1.

2. Check Vper(gk, pk, [(âi)
n−1
i=1 ]1, πper) = 1.

3. Check [P̂ ]>1 • [C′]2 − [â]>1 • [C]2 = [s]1 • pke − [1]1 • [N ]2.

Fig. 3. tFLSZ argument

K(gk, n): Generate random td = (χ, β, β̂, %, %̂, ske)←r (F∗p)6. Denote P = (Pi(χ))
n
i=1,

P0 = P0(χ), and P̂ = (P̂i(χ))
n
i=1, Q = ((Pi + P0)

2 − 1)ni=1. Let

crssm ←
(
[βP + β̂P̂ , β%, β̂%̂]1, [β, β̂]2

)
, crscon ← [ P̂%̂ ]1 , pke = [1, ske]2

crspm ←
(
[1, P0,Q/%,

∑n
i=1 Pi,

∑n
i=1 P̂i]1, [P0,

∑n
i=1 Pi]2, [1]T

)
.

Set crs←
(
pke, [

P
% ]1, [

P
% ]2, crssm, crspm, crscon

)
. Return (crs, td).

Fig. 4. CRS generation algorithm of FLSZ

– Firstly, we need to add all the trapdoor elements to both groups which means
adding [χ, β, β̂]1 and [χ]2 to the public key.

– To evaluate polynomials Pi(X) at point χ we add powers of χ in both groups
to the public key. Since Pi is at most degree n, it suffices to include elements
[(χi)ni=1]1 and [(χi)ni=1]2. However, since (Pi(X) + P0(X))2 − 1 has at most
degree 2n, we additionally add [(χi)2n

i=n+1]1.
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– Polynomials P̂i have a degree (i + 1)(n + 1), requiring, for the sake of ver-
ification friendliness, to include elements [(χi)

(n+1)2

i=1 ]1 which would cause
quadratic overhead. We avoid this by redefining the polynomials P̂i and eval-
uating them at a new random point θ. The first idea would be to set P̂i(Xθ) =
Xi
θ for i = 1, . . . , n and add [(θi)ni=1]1 and [θ]2 to the public key. However,

the ((P̂i(Xθ))
n
i=1, 1)-commitment scheme would not be binding since the Ker-

MDH assumption does not hold for [M ]1 = [P̂1(Xθ), . . . , P̂n(Xθ), 1]1, as the
adversary can output [c]2 = [θ,−1, 0, . . . , 0]2 such thatMc> = 0 and c 6= 0.
Instead we set P̂i(Xθ) = X2i

θ for i ∈ [1 .. n] and include [(θi)2n
i=1]1 and [θ]2

to the public key. Now the commitment scheme is binding under a slight
variation of the standard KerMDH assumption, which we prove in Section 5
to reduce to PDL assumption in the algebraic group model.

Another challenge is computing crssm since it contains elements [βPi + β̂P̂i]1. It
is not possible to reveal [βPi]1 and [β̂P̂i]1 since this breaks knowledge-soundness
of the same-message argument. We propose a new argument to overcome this.

New Unit Vector Argument. We combine the same-message argument and unit
vector argument from FLSZ to a new unit vector argument which is a proof of
knowledge for the relation Ruvn := {

(
[â]1, (I ∈ [1 .. n], r̂)

)
| â = P̂I + r̂}. The

new argument in Fig. 5 has two advantages: (i) it has a verification-friendly
public key, and (ii) the unit vector argument of FLSZ is sound only if we give a
corresponding proof for the same-message argument; the new argument avoids
this dependency. On a high level, the verification equation in Step 2 of Vuv and
the proof element [d]1 in Fig. 5 correspond to a variation of the same-message
argument in FLSZ and shows that [â]1 and [a]1 commit to the same message
m respectively with the ((P̂i(X))ni=1, 1)-commitment and the ((Pi(X))ni=1, X%)-
commitment. The verification equation in Step 3 of Vuv and elements [b]2 and
[e]1 in Fig. 5 use the result of Lemma 1 to show that [a]1 commits to a unit
vector. This part is identical to the unit vector argument in FLSZ.

The main differences in the new argument are the public key elements for
showing that [â]1 and [a]1 commit to the same message. Simply revealing el-
ements [βPi, β̂P̂i]1 would be sufficient for verification-friendliness, but breaks
the knowledge-soundness property: the same-message argument of FLSZ relies
on [βPi(χ)+ β̂P̂i(θ)]1 being the only G1 elements in the span of {[βχi+ β̂θj ]1}i,j
that are available to the adversary. Instead, we essentially substitute [βPi+β̂P̂i]1
with [β2Pi + ββ̂P̂i]1 (and other related elements accordingly), and equivalently
use the fact that those are the only G1 elements in the span of {[β2χi+ββ̂θj ]1}i,j
available to the adversary. This change is significant since the latter elements can
be computed with the DKG protocol without revealing [β2Pi]1 and [ββ̂P̂i]1:

(i) compute [βχi]1 and [β̂θ2i]1 = [β̂P̂i]1 to obtain [βPi + β̂P̂i]1;
(ii) compute [β2Pi + ββ̂P̂i]1 = MDβ,1([βPi + β̂P̂i]1);
(iii) similarly, from elements [β, β%, β̂]1 compute [β2%]1 and [ββ̂]1.
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Kuv(gk, n): Return (pk, td)← K(gk, n) from Fig. 3.
Puv(gk, pk, [â]1), (I, r̂)):

1. r←$Fp, [r′]1 ← r[%]1, [d]1 ← [β2PI + ββ̂P̂I ]1 + r[β2%]1 + r̂[ββ̂]1.
2. [a]1 ← [PI ]1 + [r′]1, [b]2 ← [PI ]2 + r[%]2.
3. [e]1 ← r · (2([a]1 + [P0]1)− [r′]1) + [

(
(PI + P0)

2 − 1
)
/%]1.

4. Return πuv ← ([d]1, [a]1, [b]2, [e]1).
Vuv(gk, pk, [â]1, πuv):

1. Parse πuv = ([d]1, [a]1, [b]2, [e]1) and pick α←$Fp.
2. Check [d]1 • [1]2 = [a, â]1 • [β2, ββ̂]>2 .
3. Check ([a]1 +α[1]1 + [P0]1) • ([b]2−α[1]2 + [P0]2) = [e]1 • [%]2 + (1−α2)[1]T .

Fig. 5. New unit vector argument

Kper(gk, n): Return (pk, td)← K(gk, n) from Fig. 3.
Pper(gk, pk, [(âi)

n−1
i=1 ]1, (σ ∈ Sn, (r̂i)n−1

i=1 )):
1. r̂n ← −

∑n−1
i=1 r̂i, [ân]1 ← [

∑n
i=1 P̂i]1 −

∑n−1
i=1 [âi]1.

2. For i ∈ [1 .. n]: πuv:i ← Puv(gk, pk, [âi]1, (σ
−1(i), r̂i)).

3. Return πper ← (πuv:i)
n
i=1.

Vper(gk, pk, [(âi)
n−1
i=1 ]1, πper):

1. Parse πper = (πuv:i)
n
i=1 and set [ân]1 ← [

∑n
i=1 P̂i]1 −

∑n−1
i=1 [âi]1.

2. For i ∈ [1 .. n] : check Vuv(gk, pk, [âi]1, πuv:i) = 1.

Fig. 6. Permutation argument

Additionally, in G2 we reveal [β2]2 and [ββ̂]2. We prove in Appendix C that
these changes retain security.

Permutation Argument. The permutation argument is a proof of knowledge for
the relation

Rper =
{

([â]1, (σ, r̂)) | σ ∈ Sn ∧
∑n
i=1 r̂i = 0 ∧ (∀i ∈ [1 .. n] : âi = P̂σ−1(i) + r̂i)

}
.

We show that this relation is fulfilled the same way as previous NIZK shuffle
arguments. Firstly, the prover gives a unit vector argument for each of the com-
mitments [âi]1 for i ∈ [1 .. n− 1]. Next, observe that only if those commitments
are to distinct values P̂i, is [ân]1 := [

∑n
i=1 P̂i]1−

∑n−1
i=1 [âi]1 a unit vector. Hence,

by giving a unit vector argument also for [ân]1, where [ân]1 is explicitly com-
puted by the verifier, we have proven the relation. Condition

∑n
i=1 r̂i = 0 in

Rper comes from the way that [ân]1 is computed. The protocol is given in Fig. 6.

Shuffle Argument. Finally, we prove that ciphertexts were shuffled according
to the permutation σ committed in [â]1. This is essentially equivalent to the
consistency argument in FLSZ. Intuitively, we check that

∑n
i=1[P̂i]1 • [m′i]2 =∑n

i=1[P̂σ−1(i)]1 • [mi]2 (see Step 3 for the actual equation) which guarantees
that

∑n
i=1[P̂i]1 • ([m′i]2 − [mσ(i)]2) = [0]T . If [m′i]2 6= [mσ(i)]2 for some i, then
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Input: (χ, θ, β, β̂, %) ∈ (F∗p)5.
Layer C1:
1. For ι ∈ {β, β̂, %}, z ∈ {1, 2}: [ι]z ← ι [1]z.
2. For i = 1 to 2n: [χi]1 ← χ[χi−1]1 , [θi]1 ← θ[θi−1]1.
3. Set [θ]2 ← θ[1]2 and denote [P̂i]1 = [θ2i]1 for i = 1 to n.
4. For i = 1 to n: [χi]2 ← χ[χi−1]2, [βχi]1 ← β[χi]1 , [β̂P̂i]1 ← β̂[P̂i]1.
5. [β2]2 ← β[β]2, [β%]1 ← β[%]1, [β2%]1 ← β[β%]1, [ββ̂]1 ← β[β̂]1, [ββ̂]2 ← β[β̂]2.

Layer L1:
1. Compute [(`i(χ), β`i(χ), `i(χ)

2)n+1
i=1 ]1, [(`i(χ))

n+1
i=1 ]2, [(`i(χ) · `n+1(χ))

n
i=1]1 from

[(χi)2ni=0]1, [(βχi)ni=0]1, and [(χi)ni=0]2 as shown in Appendix A.
2. [P0]1 ← [`n+1(χ)]1 − [1]1 , [P0]2 ← [`n+1(χ)]2 − [1]2.
3. For i = 1 to n:

(a) [Pi]1 ← 2[`i(χ)]1 + [`n+1(χ)]1, [Pi]2 ← 2[`i(χ)]2 + [`n+1(χ)]2
(b) [Qi]1 ← 4[`i(χ)

2]1+4[`n+1(χ)
2]1+8[`i(χ)·`n+1(χ)]1−4[`i(χ)]1−4[`n+1(χ)]1.

(c) [βPi + β̂P̂i]1 ← 2[β`i(χ)]1 + [β`n+1(χ)]1 + [β̂θ2i]1.
4. [

∑n
i=1 P̂i]1 ←

∑
i=1[P̂i]1.

Layer C2: For i = 1 to n: [Qi/%]1 ← [Qi]1/% , [β2Pi + ββ̂P̂i]1 ← β[βPi + β̂P̂i]1.

Fig. 7. Public key computation as a circuit

the adversary can find a non-zero element in the kernel of [P̂ ]1 and thus break
the KerMDH assumption. Of course, the actual messages mi are encrypted and
the verifier knows only a commitment to σ. We balance this in the equation
by allowing the prover to produce elements [s]1 and [N ]2, which cancels the
randomness in the ciphertexts and the commitments.

Verification-Friendliness of tFLSZ. After making all of the above modifications
we end up with a public key as presented in Fig. 3. There are two new sub-keys:
pkpkv which contains some elements later required by the Vpk algorithm (used by
prover to guarantee nn-ZK), and pkvf which is a by-product of making the public
key verification-friendly. After the public key generation protocol has finished the
elements in pkvf can be disregarded. It is now simple to verify that the public
key is verification-friendly. We present it as a series of multiplication-division
and linear combination layers in Fig. 7. Hence, the DKG protocol described
in Section 3 can be applied. For the sake of completeness, we provide an explicit
description of the DKG protocol in Appendix B.

For better modularity, we treat the encryption key pke separately from the ar-
gument’s public key. However, we assume it to be correctly generated by some
secure DKG protocol, such as the one by Gennaro et al. [GJKR99].

Theorem 1 ([ABL+19b]). If tFLSZ is complete, sound, and computational
zero-knowledge in the CRS model, then it is complete, sound, and computational
zero-knowledge if the adversary corrupts all but one party in the DKG protocol.
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Simper(gk, pk, (β, β̂), [(â)
n−1
i=1 ]1): Set [ân]1 ← [

∑n
i=1 P̂i]1 −

∑n−1
i=1 [âi]1, compute

πuv:i ← Simuv(gk, [âi]1, (β, β̂)) for i ∈ [1 .. n], and return πper ← (πuv:i)
n
i=1.

Fig. 8. Simulator of the permutation argument

5 Security in the CRS Model

In this section, we establish that tFLSZ is secure in the CRS model, where the
CRS is the public key generated by a trusted party. We first claim security of the
unit vector and permutation arguments, as stated in Theorem 2 and Theorem 3.

Theorem 2 (Security of unit vector argument). The unit vector argu-
ment in the CRS model (see Fig. 5) has perfect completeness and perfect zero-
knowledge. If the (3n − 1)-PDL assumption holds, then it has computational
knowledge-soundness in the AGM.

The proof of Theorem 2 is given in Appendix C. Soundness of the unit vector
argument uses a common trick of AGM proofs that first defines an idealised ver-
ification, where the verification equation holds true for polynomials V (X) (with
trapdoor elements as variables) rather than for polynomial evaluations V (χ)
only (real verification, for concrete trapdoor elements χ). We then show that
no element outside the unit vector language can pass the idealised verification.
Moreover, if an adversary manages to pass the real verification but not the ideal
one, then she can be used to break the (3n− 1)-PDL assumption. The proof of
the other properties are quite standard.

Theorem 3 (Security of permutation argument). The permutation ar-
gument in the CRS model (see Fig. 6) is perfectly complete and perfectly zero-
knowledge. If the unit vector argument is knowledge-sound and ((P̂i(X))ni=1, 1)-
commitment is binding, then the permutation argument is also knowledge-sound.

Proof. Perfect completeness. Observe that [ân]1 = [
∑n
i=1 P̂i]1 −

∑n−1
i=1 [âi]1 =

[
∑n
i=1 P̂i]1 −

∑n−1
i=1 [P̂σ−1(i) + r̂i]1 = [P̂σ−1(n) + r̂n]1. Therefore, completeness

follows from completeness of the unit vector argument.

Perfect zero-knowledge. Observe that Pper and Simper compute [ân]1 the same
way and the proof is just n unit vector arguments which we have already shown
to have perfect zero-knowledge.

Knowledge-soundness. Let Aper be a PPT adversary against knowledge-
soundness. According to the unit vector argument, for each i ∈ [1 .. n],
there exists an extractor Extuv:i such that

(
([(â)n−1

i=1 ]1, πper)‖(Ii, r̂i)
)
←

(Aper‖Extuv:i)(gk, pk) where the probability that Vper(gk, [(â)n−1
i=1 ]1, πper) = 1
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and âi 6= P̂Ii + r̂i is negligible. Hence, if verification accepts, with overwhelm-
ing probability âi = P̂Ii + r̂i. On the other hand ân =

∑n
i=1 P̂i −

∑n−1
j=1 âj =∑n

i=1 P̂i −
∑n−1
j=1

(
P̂Ij + r̂j

)
. Considering that P̂Ij for j ∈ [1 .. n − 1] might

not be distinct, we can express ân =
∑n
i=1 P̂i −

∑n
j=1 kjP̂j + (−

∑n−1
i=j r̂j) =∑n

i=1(1− ki)P̂i + (−
∑n−1
j=1 r̂j) where ki ∈ [0 .. n− 1]. Since also ân = P̂In + r̂n,

we must have (1 − ki) = 0 for i ∈ [1 .. n] \ {In}, kIn = 0, and r̂n = −
∑n−1
j=1 r̂j

since otherwise (1 − k1, . . . , 1 − kn,−
∑n−1
j=1 r̂j) and (eIn , r̂n), where eIn is the

In-th unit vector, are different openings for the commitment [ân]1. It follows
that PI1 , . . . , PIn are distinct, so we can find a unique permutation σ ∈ Sn such
that PIi = Pσ−1(i) for i ∈ [1 .. n]. The extractor Extper, that runs Extuv:i for
i ∈ [1 .. n], outputs (σ, (r̂i)

n−1
i=1 ) found in such a way. ut

We prove soundness of the shuffle argument under a weaker assumption com-
pared to [FLSZ17a]. The assumption, called the GapKerMDH assumption, is
novel, but we show that it reduces to the PDL assumption in the AGM. More pre-
cisely, since the KerMDH assumption is insecure for M = (1, θ, . . . , θn) ∈ Zn×1

p

if the adversary is given both [M ]1 and [θ]2, then a slightly modified assumption
is required. We still give the same information to the adversary, but require that
the output is in the kernel of a certain M ′ ⊂M that contains periodic gaps.

Definition 9. The n-GapKerMDH assumption holds for BGen if for any PPT
A,

Pr

[
gk← BGen(1λ), θ←$F∗p, [v]2 ← A(gk, [(θi)2n

i=1]1, [θ]2) :

v> · (θ2i)ni=0 = 0 ∧ v 6= 0n+1

]
≈λ 0.

Theorem 4. If the (2n)-PDL assumption holds, then the n-GapKerMDH as-
sumption holds in the AGM.

Proof. Let A be an algebraic PPT adversary that breaks n-GapKerMDH
assumption with probability εgap. More precisely, A gets as an input
(gk, [(θi)2n

i=1]1, [θ]2) for θ←$Zp, and outputs a non-zero [v]2 ∈ Gn+1
2 and its

linear representation U ∈ Z(n+1)×2
p (that is [v]2 = U · [1, θ]>2 ) such that∑n

i=0 θ
2i · vi+1 = 0.

We construct a PPT adversary B that breaks (2n)-PDL assumption using A.
First, B gets as an input (gk, [(θi)2n

i=1]1, [(θ
i)2n
i=1]2) and runs A(gk, [(θi)2n

i=1]1, [θ]2)
to get the output [v]2 and U . Let us define polynomials Vi(Xθ) := Ui,1 +Ui,2 ·Xθ

for i ∈ [1 .. n + 1] which in particular satisfies Vi(θ) = vi. Similarly for the
expression

∑n
i=0 θ

2i ·vi+1 we define a polynomial V (Xθ) :=
∑n
i=0X

2i
θ ·Vi+1(Xθ)

such that if A wins then V (θ) = 0. Adversary B will abort if A either outputs an
incorrect representation U or loses the n-GapKerMDH game. Otherwise B finds
roots of V (Xθ) (can be done efficiently), and returns the one which matches [θ]1.
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Finding roots of V (Xθ) is only possible if V (Xθ) is a non-zero polynomial, but
it is easy to see that this is always the case if A wins. We may express

V (Xθ) =

n∑
i=0

X2i
θ ·(Ui+1,1 +Ui+1,2 ·Xθ) =

n∑
i=0

Ui+1,1X
2i
θ +

n∑
i=0

Ui+1,2 ·X2i+1
θ .

So if V (Xθ) = 0 then U = 0 and therefore v = 0 which contradicts A winning.
It follows that B can break the (2n)-PDL assumption with probability εgap. ut

Theorem 5 (Security of shuffle argument). tFLSZ is perfectly complete
and perfectly zero-knowledge in the CRS model. If the permutation argument is
knowledge-sound and the n-GapKerMDH assumption holds, then tFLSZ is sound.

Proof. Perfect completeness. Can be straightforwardly verified by substituting
an honest proof to the verification equations.

Perfect zero-knowledge. We show that the simulator Sim in Fig. 9 outputs an
argument that has the same distribution as an argument output by an honest
prover. In both cases [(ai)

n
i=1]1, [(âi)

n−1
i=1 ]1, and [s]1 are uniformly randomly and

independently distributed group elements. Moreover, both honest and simulated
arguments have bi = ai for i ∈ [1 .. n] and [ân]1 =

∑n
i=1[P̂i]1 −

∑n−1
i=1 [âi]1.

Elements [d]1, [e]1, [N ]2 are now uniquely fixed by the verification equation and
the elements mentioned before. It is straightforward to check that the simulated
argument satisfies the verification equations. Thus the distributions are equal.

Soundness. Let Ash be a PPT adversary that breaks soundness of the shuffle
argument with probability εsh. Let Aper be the adversary Ash restricted only to
output ([(âi)

n−1
i=1 ]1, πper) and ExtAper

be an arbitrary extractor such that Aper
breaks knowledge-soundness of the permutation argument with probability εper.

We construct an adversary Agap against the n-GapKerMDH assumption that
on input (gk, [(θi)2n

i=1]1, [θ]2) proceeds as follows:

1. Sample χ, β, β̂, %← (F∗p)4 and ske←$Fp. Set pke ← [1, ske].
2. Compute pk using [(θi)2n

i=1]1, [θ]2, and χ, β, β̂, %. In particular, notice that
[βPi(χ) + β̂P̂i(θ)]1 = (βPi(χ)) · [1]1 + β̂ · [θ2i]1 and [β̂θ2i]1 = β̂ · [θ2i]1.

3. Sample rsh←$RND(Ash) and run ([C,C ′]2, πsh)← Ash(gk, (pke, pk); rsh).
4. If V(gk, (pke, pk), ([C]2, [C

′]2), πsh) 6= 1, then abort.
5. Parse πsh = ([(âj)

n−1
j=1 ]1, πper, πcon)

)
and set [ân]1 ← [

∑n
i=1 P̂i]1−

∑n−1
i=1 [âi]1.

6. Run (σ, r̂)← ExtAper
(gk, pk; rsh).

7. If ([â]1, (σ, r̂)) 6∈ Rper, then abort.
8. Set A ∈ {0, 1}n×n such that Ai,j = 1 iff σ−1(i) = j.
9. Set [m]2 ← Decske([C]2), [m′]2 ← Decske([C

′]2), and [z]2 ← Decske([N ]2).
10. Return [v]2 ←

(
[m′]2−A[m]2
[z]2−r̂>[m]2

)
.

Let us analyse the success probability of Agap. Let X be the event that Ash wins,
i.e., there is no abort on step 4, and for any permutation matrix P , we have
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Sim(gk, (pke, pk), td, ([C]2, [C
′]2)):

1. For i = 1 to n− 1: // commits to the identity permutation
(a) ri, r̂i ←$Fp;
(b) [ai]1 ← [Pi]1 + ri[%]1; [bi]2 ← [Pi]2 + ri[%]2; [âi]1 ← [P̂i]1 + r̂i[1]1;

2. rn ←$Fp; r̂n ← −
∑n−1
i=1 r̂i;

3. [an]1 ← [Pn]1 + rn[%]1; [bn]2 ← [Pn]2 + rn[%]2; [ân]1 ←
∑n
i=1[P̂i]1 −

∑n−1
i=1 [âi]1;

4. For i = 1 to n:
(a) [di]1 ← [β2Pi + ββ̂P̂i]1 + ri[β

2%]1 + r̂i[ββ̂]1;
(b) [ei]1 ← ri · (2([ai]1 + [P0]1)− ri[%]1) + [Qi/%]1;

5. r̂←$Fp; [s]1 ← 0>[P̂ ]1 + r̂[1]1; [N ]2 ← (P̂ + r̂)[C]2 − P̂ [C′]2 + r̂ · pke;
6. πper ← ([d]1, [a]1, [b]2, [e]1);
7. Return πsh ← ([(âi)

n−1
i=1 , s]1, [N ]2, πper).

Fig. 9. Simulator of tFLSZ

[m′]2 6= P [m]2. Let Y be the event that Aper wins, i.e., ([â]1, (σ, r̂)) 6∈ Rper.
Firstly, consider the case that X happens and Y does not happen. Then in
particular: (i) Ash does not abort, (ii) A is a permutation matrix that satisfies
[â]1 =

(
A
r̂>

)>
[ P̂

1
]1, (iii) [m′]2 6= A[m]2, and (iv) the verification equation [P̂ ]>1 •

[C ′]2−[â]>1 •[C]2 = [s]1•pke−[1]1•[N ]2 is satisfied. By decrypting the ciphertexts
in the last equation, we get

[0]T = [P̂ ]>1 • [m′]2 − [â]>1 • [m]2 + [1]1 • [z]2

= [P̂ ]>1 • [m′]2 − [ P̂
1

]>1
(

A
r̂>

)
• [m]2 + [1]1 • [z]2

= [P̂ ]>1 • [m′ −Am]2 + [1]1 • [z − r̂>m]2

= [ P̂
1

]>1 •
(

[m′]2−A[m]2
[z]2−r̂>[m]2

)
= [ P̂

1
]>1 • [v]2.

Since [m′]2 6= A[m]2, then [v]2 6= [0n+1]2 is a solution to the n-GapKerMDH
problem. Finally, we can express the success probability of Ash as follows:

εsh = Pr[X] = Pr[X ∧ Y ] + Pr[X ∧ ¬Y ] ≤ Pr[Y ] + Pr[X ∧ ¬Y ] ≤ εper + εgap.

Since there exists an extractor ExtAper
such that εper ≈λ 0, it follows that

εsh ≤ εper + εgap ≈λ 0. ut

6 Zero-Knowledge in the BPK Model

We augment the prover in the BPK model with a key verification algorithm Vpk

in Fig. 10 such that she outputs a proof only if the verification passes. Then we
prove that tFLSZ is nn-ZK in the BPK model with respect to the Vpk algorithm.
Firstly, we show that each subverter that creates a valid public key (one that is
accepted by Vpk) will know the trapdoors. Let [td′]1 denote the vector in pk that
is supposedly [χ, θ, β, β̂, %]1.
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Vpk(gk, pk) :
1. Check that pk can be parsed as in Fig. 3 and that each element belongs to the

correct group.
2. Check that [%]1 6= [0]1.
3. Check that [ι]1 • [1]2 = [1]1 • [ι]2 for ι ∈ {χ, θ, β, β̂, %}.
4. Check that [1]T = [1]1 • [1]2.
5. For i = 2 to 2n: check that [θi]1 • [1]2 = [θi−1]1 • [θ]2. // Note that P̂i = θ2i

6. Check that [1]1 • [β2]2 = [β]1 • [β]2.
7. Check that [β2%]1 • [1]2 = [%]1 • [β2]2.
8. Check that [ββ̂]1 • [1]2 = [β]1 • [β̂]2.
9. Check that [1]1 • [ββ̂]2 = [ββ̂]1 • [1]2.
10. Check that [1]1 • [P0]2 = [P0]1 • [1]2.
11. For i = 1 to n: check that

(a) [1]1 • [Pi]2 = [Pi]1 • [1]2,
(b) [β2Pi + ββ̂P̂i]1 • [1]2 = [Pi]1 • [β2]2 + [P̂i]1 • [ββ̂]2,
(c) [((Pi + P0)

2 − 1)/%]1 • [%]2 = ([Pi + P0]1 • [Pi + P0]2)− [1]T .

Fig. 10. The Vpk algorithm of tFLSZ. For ease of presentation, the algorithm is de-
scribed as if the public key was already well-formed.

Lemma 2. Consider Vpk in Fig. 10 and suppose the BDH-KE assumption holds.
Then, for any PPT subverter X, there exist a PPT extractor ExtX such that,

Pr
[
(pk, auxX‖td)← (X‖ExtX)(gk) : Vpk(gk, pk) = 1 ∧ [td]1 6= [td′]1 ⊂ pk

]
≈λ 0.

Proof. The proof is similar to Theorem 4 in [ABLZ17]. If Vpk(gk, pk) = 1, then:
(i) Since Step 1 in Vpk is satisfied, there exist elements [td′]1 = [χ′, θ′, β′, β̂′, %′]1
and [td′′]2 = [χ′′, θ′′, β′′, β̂′′, %′′]2 in pk that supposedly correspond to trapdoor
elements. (ii) By Step 3 [ι′]1 • [1]2 = [1]1 • [ι′′]2 and therefore ι′ = ι′′, for ι ∈
{χ, θ, β, β̂, %}. According to BDH-KE, there exists an extractor Extι that outputs
ι′ with overwhelming probability on the same random coins as X. Therefore, we
can construct ExtX(r) by simply returning (Extι(r))ι∈td. ut

Theorem 6. If BDH-KE assumption holds, then tFLSZ has statistical nn-ZK.

Proof. From Lemma 2, we know that for any PPT X, there exists an extractor
ExtX that with overwhelming probability outputs the trapdoor td given that
Vpk(gk, pk) = 1. Let us show that if Vpk(gk, pk) = 1 and the extractor outputs
the correct td, then Sim(gk, pke, pk, θ, x) and P(gk, pke, pk, x;w) have the same
distribution for any x = ([C]2, [C

′]2), w = (σ, t) in Rshn .

We analyse each element of the proof independently.

1. For i ∈ [1 .. n − 1], âi is chosen independently and uniformly at random in
both distributions since r̂i is picked uniformly at random. Moreover, in both
distributions ân = tsum−

∑n−1
i=1 âi where tsum equals

∑n
i=1 P̂i in the honest

case. Hence, ân also has the same distribution.
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2. Since Step 2 in Vpk is satisfied, then % is non-zero. By similar reasoning as in
the previous step, ai is chosen independently and uniformly at random for
i ∈ [1 .. n] in both distributions.

3. Given that Step 3 and Step 11a are satisfied in Vpk, then ai = bi for i ∈ [1 .. n]
in both distributions.

4. Given that Steps 6, 7, 8 9, 11b are satisfied, then the elements [β2%]1, [ββ̂]1,
and [β2Pi + ββ̂P̂i]1, for i ∈ [1 .. n], are well-formed (with respect to possibly
malformed values Pi and P̂i). This is sufficient to show that di = β2ai+ββ̂âi
for i ∈ [1 .. n] in both distributions. Hence, di is uniquely determined by β,
β̂, ai and âi.

5. Given that Steps 4, 10 and 11c are satisfied, then [((Pi + P0)2 − 1)/%]1 is
well-formed (again, with respect to a possibly malformed Pi and P0). Given
this, we can verify that ei = ((ai + P0)2 − 1)/% in both distributions.

6. In both distributions, s is chosen independently and uniformly at random
since r̂ is picked uniformly at random.

7. Step 5 in Vpk guarantees that P̂i = θ2i for i ∈ [1 .. n]. In that case, an hon-
estly generated proof will always satisfy the verification equation on Step 3
in Fig. 3. Given that â, s and pk are fixed, then there is a unique value of N
which satisfies that equation, and the simulator picks that exact value N .

Hence the simulator’s output and the prover’s output have the same distribution.
Thus tFLSZ is nn-ZK. ut

7 Implementation

We have created a reference implementation6 to validate the protocol. The im-
plementation uses Python 3.5+ and covers: (i) the computation of the public key
(K in Fig. 3) together with the distributed key generation protocol (Fig. 2), (ii)
the key verification algorithm Vpk (Fig. 10), and (iii) proof generation and verifi-
cation (Fig. 3), along with the accompanying new unit vector argument (Fig. 5)
and the permutation argument (Fig. 6). It follows our exposition closely, except
for some of the local computations in the DKG protocol.

In particular, the complexity of computing polynomials [`i(χ)]k (and other re-
lated elements) from

[
χi
]
k
can be reduced from Θ(n2) to Θ(n log n) scalar mul-

tiplications using recursive procedures borrowed from FFT(see Appendix A for
details). This however imposes the extra conditions that (n + 1) | (p − 1) and
n+ 1 is a power of 2. The current implementation uses a BN-256 curve7, where
the only value of n > 1 such that the conditions hold is n = 3. Work is in
progress for moving to a different curve where p− 1 is divisible by a large power
of two. Note, nevertheless, that the correctness of the implementation, protocol
testing, and verification of proofs is independent of this, as the output of local
computations are not affected, only their efficiency.
6 The code is open source and available at https://github.com/grnet/lta_shuffle
7 As provided by OpenPairing, https://github.com/dfaranha/OpenPairing.

https://github.com/grnet/lta_shuffle
https://github.com/dfaranha/OpenPairing
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The multi-party computation of the public key is performed among k peers
(bulletin board members) communicating via sockets (peers run the application
from different terminals). Roughly speaking, each peer computes and shares
their own part of the key with the rest, the final public key being the output
of the distributed procedure explained in Section 3.2. For simulation purposes,
the initial values for each peer, as well as their respective listening sockets, are
derived from a configuration file. The total number of exchanged messages is
independent of the number voters n and is equal to 9k(k − 1).
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A Computing Lagrange Polynomials

The circuit in Fig. 7 requires computing several Lagrange basis related ele-
ments:

[
(`i(χ))n+1

i=1

]
z
for z ∈ {1, 2}, [(β`i(χ))n+1

i=1 ]1, and also products of the basis
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[(`i(χ)2)n+1
i=1 ]1 and [(`i(χ)·`n+1(χ))ni=1]1. The naive way is to compute each of the

elements as a linear combination of
[
1, χ, χ2, . . .

]
z
(or [β, βχ, βχ2, . . . ]1). How-

ever, this would require Θ(n) scalar multiplications for each individual element
and thus Θ(n2) scalar multiplications altogether. We recall here some standard
FFT-based tricks to improve the efficiency to Θ(n log n) scalar multiplications.
For this we need to set the points ω1, . . . , ωn+1 in the definition of Lagrange
polynomials as (n+ 1)-th roots of unity.

A.1 Finding a Primitive Root of Unity

In order to compute the Lagrange basis [`i(χ)]1 for i ∈ [1 .. n + 1] efficiently,
we need to find the (n + 1)-th primitive root of unity modulo p. This exists if
and only if (n + 1) | (p − 1). SNARK-friendly elliptic curves such as BLS12-
381 have p − 1 divisible by a large power of 2. Hence we can restrict n + 1
to a power of 2. For example, if we expect 1 million voters, then we can take
n + 1 = 220 = 1, 048, 576. Excessive positions in the shuffle can be filled with
ciphertexts encrypting some special symbol which can be detected and removed
during the decryption phase.

Given the above restriction, the (n+ 1)-th primitive root of unity modulo p can
be computed as ω := g(p−1)/(n+1) where g is a generator (primitive element)
of the multiplicative group Z∗p. The generator itself can be found by sampling
g←$Z∗p and testing that all prime factors q of p−1 satisfy g(p−1)/q 6≡ 1 (mod p).
This can be repeated until the property holds which will eventually happen since
the multiplicative group of any finite field has a generator. Now we can define
ωi := ωi for i ∈ [1 .. n+ 1].

A.2 Multi-point Evaluation

Our strategy for computing Lagrange basis is similar to Bowe et al. [BGG17]. We
define four polynomials fk(Y ) =

∑n
j=0 ak,jY

j for k ∈ [1 .. 4] such that [fk(ωi)]z
are the elements we would like to compute and then apply an efficient FFT-
based multi-point evaluation algorithm to each polynomial. However, we only
know coefficients of the polynomials as group elements, but this turns out to be
enough.

Let us first recall the following characterization of a Lagrange basis.

Theorem 7 ([BGG17], Claim 3.1). ∀i ∈ [1 .. n+ 1], `i(X) =
∑n
j=0

ω−ij

n+1 X
j.

Let us define polynomials f1(Y ) :=
∑n
j=0

χj

n+1Y
j and f2(Y ) :=

∑n
j=0

βχj

n+1Y
j . We

may observe that based on the theorem above, f1(ω−i) = `i(χ) and f2(ω−i) =
β`i(χ) for i ∈ [1 .. n + 1]. Moreover, by just knowing

[
χj
]
z
(either z = 1 or

z = 2) and [βχj ]1, we can compute coefficients of f1 and f2 as group elements,
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i.e., [a1,j ]z :=
[
χj
]
z
/(n+ 1) and [a2,j ]1 := [βχj ]1/(n+ 1). Slightly more work is

needed to find similar polynomials for `i(χ)2 and `i(χ) · `n+1(χ).

Since ωij = ωi(n+1+j) for j ∈ [0 .. n− 1], we can derive that

`i(X)2 =
1

(n+ 1)2

n∑
s=0

n∑
t=0

1

ωi(s+t)
Xs+t =

1

(n+ 1)2

2n∑
j=0

j + 1

ωij
Xj

=
Xn

(n+ 1)ωin
+

1

(n+ 1)2

n−1∑
j=0

(j + 1)Xj + (j + n+ 2)Xj+n+1

ωij
.

This allows us to define a polynomial f3(Y ) := χn

n+1Y
n + 1

(n+1)2

∑n−1
j=0 ((j +

1)χj + (j + n + 2)χj+n+1)Y j such that f3(ω−i) = `2i (χ) for i ∈ [1 .. n + 1].
Again, we can compute coefficients as group elements: [a3,n]1 = 1

n+1 [χn]1 and
[a3,j ]1 = j+1

(n+1)2 [χj ]1 + j+n+2
(n+1)2 [χj+n+1]1 for j ∈ [0 .. n− 1].

Finally, considering that ωn+1 = 1, we can express

`i(X)`n+1(X) =
1

(n+ 1)2

n∑
s=0

n∑
t=0

1

ωis
1

ω(n+1)t
Xs+t =

n∑
s=0

a4,s(X)
1

ωis
,

where a4,s(X) = 1
(n+1)2

∑n
t=0X

s+t and define f4(Y ) :=
∑n
j=0 a4,jY

j with
a4,j = a4,j(χ). Then f4(ω−i) = `i(χ)`n+1(χ) for i ∈ [1 .. n+ 1]. We can compute
[a4,j ]1 for j ∈ [0 .. n] with the following recursive procedure which takes just
θ(n) additions. First, we compute [a4,0]1 = 1

(n+1)2

∑n
t=0[χt]1 and then we may

observe that [a4,j+1]1 = [a4,j ]1 + [χj+n+1]1− [χj ]1 which allows us to recursively
compute all the rest of the values.

Now we are equipped to evaluate all of the Lagrange basis related elements in the
public key by using a standard FFT-based multi-point evaluation algorithm in
Fig. 11 which due to the master theorem for divide-and-conquer recurrences takes
only Θ(n log n) scalar multiplications. The only deviation from the text-book
version is that coefficients of the polynomials are group elements and variables
of the polynomials are field elements.

Now, considering that ω−i = ωn+1−i, we can compute

[(`n+1−j(χ))nj=0]1 ← PolyEval(gk,
(
[a1,j ]1

)n
j=0

, ω, n),

[(`n+1−j(χ))nj=0]2 ← PolyEval(gk,
(
[a1,j ]2

)n
j=0

, ω, n),

[β(`n+1−j(χ))nj=0]1 ← PolyEval(gk,
(
[a2,j ]1

)n
j=0

, ω, n),

[(`2n+1−j(χ))nj=0]1 ← PolyEval(gk,
(
[a3,j ]1

)n
j=0

, ω, n),

[(`n+1−j(χ) · `n+1(χ))nj=0]1 ← PolyEval(gk,
(
[a4,j ]1

)n
j=0

, ω, n).

Therefore, all of the those elements can be computed with just Θ(n log n) scalar
multiplications.
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PolyEval(gk, [(ai)
n
i=0]z , ω, n): //n+ 1 is a power of 2

1. If n = 1: Return
(
[a0]z + ω [a1]z , [a0]z + ω2 [a1]z

)
2. n′ ← (n+ 1)/2

3. [u]z ← PolyEval(gk, [(a2i)
n′−1
i=0 ]z, ω

2, n′ − 1)

4. [v]z ← PolyEval(gk, [(a2i+1)
n′−1
i=0 ]z, ω

2, n′ − 1)
5. For i ∈ [1 .. n′]: [wi]z ← [ui]z + ωi [vi]z
6. For i ∈ [n′ + 1 .. n+ 1]: [wi]z ← [ui−n′ ]z + ωi [vi−n′ ]z
7. Return [w]z

Fig. 11. Efficient multi-point evaluation of [f(X)]z = [
∑n
j=0 aiX

j ]z at points X = ωi

for i ∈ [1 .. n+ 1].

Commit Phase: Each party Pi:
1. Samples tdi = (χi, θi, βi, β̂i, %i)← Ktd(gk) with Ktd from Fig. 3.
2. Submits ci ← dlComck(tdi) to BB.

Open Phase: Each party Pi:
1. Verifies that c1, . . . , cNp on BB.
2. Submits commitment opening together with ([tdi]1, [tdi]2) to BB.

Key Generation (Phase 1): For i = 1 to Np:

1. If i = 1: P1 sets pk(0)
1 ← Setup1(gk).

2. Pi submits pk(i)
1 ← Update1(gk, pk

(i−1)
1 , tdi) to BB.

Key Generation (Phase 2): For i = 1 to Np:

1. If i = 1: P1 sets pk(0)
2 ← Setup2(pk

(Np)
1 ).

2. Pi submits pk(i)
2 ← Update2(gk, pk

(i−1)
2 , (βi, %i)) to BB.

Verification: By anyone:
1. Set pk(0)

1 ← Setup1(gk) and pk
(0)
2 ← Setup2(gk, pk

(Np)
1 ).

2. Verify that commitments are opened correctly.
3. Check that for i ∈ [1 ..Np], ι ∈ tdi: [ι]1 • [1]2 = [1]1 • [ι]2 and [ι]1 6= [0]1.
4. For i = 1 to Np:

(a) Check that UpdateVer1(gk, pk
(i−1)
1 , pki1, ([tdi]1, [tdi]2)) = 1.

(b) Check that UpdateVer2(gk, pk
(i−1)
2 , pki2, [%i, βi]2) = 1.

5. Return Finalize(pk
(Np)
1 , pk

(Np)
2 )

Fig. 12. DKG Protocol for tFLSZ

B DKG Protocol for tFLSZ

For concreteness, we provide the complete DKG protocol for tFLSZ in Fig. 12.
The protocol here is an instantiation of the general protocol by Abdolmaleki
et al. [ABL+19b] which UC-securely realises the CRS functionality for any
verification-friendly CRS. We assume to have access to a secure append-only
storage system that we call a bulletin board (BB) (more generally, any secure
broadcast protocol suits here, as was suggested by Abdolmaleki et al.) and to any
DL-extractable commitment dlComck. We note that the DL-extractable commit-
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ment of [ABL+19a] is an interactive protocol and therefore each pair of parties
should run it. For simplicity we represent it in the figure as a non-interactive
commitment.

The protocol starts with each party picking trapdoor shares and submitting a
commitment of it to the bulletin board. Once all parties have submitted the
commitment starts the open phase where parties open their commitments to
group elements (since this is DL-extractable commitment). The point of these
first two phases is to guarantee that shares are picked independently. This is
followed by two phases of public key generation described respectively in Fig. 13
and Fig. 14. Each of the phases takes Np rounds where Np is the number of
parties in the DKG protocol. A key generation phase k ∈ {1, 2} contains:

Setupk(gk): Publicly computable function which for k = 1 initiates the public
key with all 1s and for k = 2 evaluates those linear combination gates of
layer L1 (as described in Fig. 7) that are required by the subsequent layer
C2 as an input.

Updatek(gk, pk
(i−1)
k , tdi): On an input the public key pk

(i)
k of the previous party

and trapdoor shares tdi of the current party, updates elements corresponding
to multdiv layer Ck with shares tdi by multiplying.

UpdateVerk(pk
(i−1)
k , pk

(i)
k , ([tdi]1, [tdi]2)): Verifies that the Pi computed Updatek

correctly with respect to his shares tdi.
Finalize(pk

(Np)
1 , pk

(Np)
2 ): Takes as an input the last output pk(Np)

1 of phase 1 and
the last output pk(Np)

2 of phase 2 (i.e., the outputs of party PNp
), computes

the remaining linear combination gates of layer L1, and composes everything
into a well-formed public key pk.

Finally, each party in the protocol runs the verification phase which outputs the
key and verifies that all parties followed the protocol.

C Security Proof of Unit Vector Argument

Theorem 8. The unit vector argument (see Fig. 5) in the CRS model has perfect
completeness and perfect zero-knowledge with respect to the simulator in Fig. 15.

Proof. Perfect completeness. This is easy to verify by plugging honestly gener-
ated values to the verification equations. From the right hand side of the equation
in step 2 of Fig. 5 we can derive [a, â]1•[β2, ββ̂]>2 = [β2PI+β

2r%+ββ̂P̂I+ββ̂r̂]T =
[d]1 • [1]2. On the left hand side of the equation in step 3 of Fig. 5, considering
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Setup1(gk): Return pk1 ←
(
[1, . . . , 1]1, [1, . . . , 1]2

)
∈ G6n+6

1 ×Gn+6
2 .

Update1(gk, pk1, (χu, θu, βu, β̂u, %u)):

1. Parse pk1 =

(
[β, β̂, %, β%, β2%, ββ̂, (χi, θi)2ni=1, (βχ

i, γθ2i)ni=1]1
[θ, β, β̂, %, β2, ββ̂, (χi)ni=1]2

)
.

2. Return

p̃k1 ←

βu[β]1, β̂u[β̂]1, %u[%]1, (βu%u)[β%]1, ((β
2
u%u)[β

2%]1, (βuβ̂u)[ββ̂]1,(
χiu[χ

i]1, θ
i
u[θ

i]1
)2n
i=1

,
(
(βuχ

i
u)[βχ

i]1, (β̂uθ
2i
u )[β̂θ2i]1

)n
i=1

θu[θ]2, βu[β]2, β̂u[β̂]2, %u[%]2, β
2
u[β

2]2, βuβ̂u[ββ̂]2, (χ
i
u[χ

i]2)
n
i=1

 .

UpdateVer1(gk, pk1, p̃k1, πp̃k1
):

1. Parse pk1, p̃k1 as above.
2. Parse πp̃k1

as ([χu, θu, βu, β̂u, %u]1, [χu, θu, βu, β̂u, %u]2).
3. For ι ∈ {χ, θ, β, β̂, %}: check

(a) [ιιu]1 • [1]2 = [ι]1 • [ιu]2,
(b) [1]1 • [ιι̃]2 = [ιι̃]1 • [1]2.

4. Check [βu%uβ%]1 • [1]2 = [βuβ]1 • [%u%]2.
5. Check [β2

u%uβ
2%]1 • [1]2 = [βu%uβ%]1 • [βuβ]2.

6. Check [βuβ̂uββ̂]1 • [1]2 = [βuβ̂u]1 • [ββ̂]2.
7. Check [1]1 • [βuβ̂uββ̂]2 = [βuβ̂u]1 • [ββ̂]2.
8. Check [1]1 • [β2

uβ
2]2 = [βuβ]1 • [βuβ]2.

9. For i = 2 to 2n: check
(a) [χiuχ

i]1 • [1]1 = [χi−1
u χi−1]1 • [χuχ]2,

(b) [θiuθ
i]1 • [1]1 = [θi−1

u θi−1]1 • [θuθ]2,
10. For i = 2 to n: check

(a) [βuχ
i
uβχ

i]1 • [1]1 = [χiuχ
i]1 • [βuβ]2,

(b) [β̂uθ
2i
u β̂θ

2i]1 • [1]1 = [θ2i
u θ

2i]1 • [β̂uβ̂]2,
(c) [1]1 • [χiuχiu]2 = [χiuχ

i]1 • [1]2.

Fig. 13. Phase 1 algorithms for DKG

that a = b, we get

[(a+ P0)2 − α2]T = [(PI + r%+ P0)2 − α2]T

= [(PI + P0)2 + 2r(PI + P0)%+ (r%)2 − α2]T

= [(PI + P0)2 + r(2(PI + P0)%+ r%2)− α2 + (1− 1)]T

= [r(2(PI + P0)%+ r%2) + ((PI + P0)2 − 1) + (1− α2)]T

= %[r(2(PI + P0) + r%) + ((PI + P0)2 − 1)/%]T + [(1− α2)]T

= %[r(2(a+ P0)− r%) + ((PI + P0)2 − 1)/%]T + [(1− α2)]T

= [e]1 • [%]2 + (1− α2)[1]T .

Perfect zero-knowledge. Let ([â]1, (I, r̂)) ∈ Ruv and (pk, td) ← Kuv(gk, n). We
show that Puv(gk, pk, [â]1, (I, r̂)) and Simuv(gk, (β, β̂), [â]1) are identical distri-
butions. In both cases [a]1 is a uniformly random group element and [b]2 = [a]2.
Given that the latter are fixed, there is exactly one possible value of [e]1
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Setup2(gk, pk1):
1. Parse pk1 as in Step 1 of Update1.
2. Compute [`i(χ)]1, [β`i(χ)]1, [`i(χ)2]1, [`i(χ) · `n+1(χ)]1 for i ∈ [1 .. n + 1] as

a linear combination of [(χi)2ni=0]1 and [(βχi)ni=0]1. (see Appendix A).
3. For i = 1 to n:

(a) [Qi]1 ← 4[`i(χ)
2]1 + 4[`n+1(χ)

2]1 + 8[`i(χ) · `n+1(χ)]1 − 4[`i(χ)]1 −
4[`n+1(χ)]1.

(b) [βPi + β̂P̂i]1 ← 2[β`i(χ)]1 + [β`n+1(χ)]1 + [β̂θ2i]1
4. Return pk2 ← [Q, βP + β̂P̂ ]1.

Update2(gk, pk2, (βu, %u)):
1. Parse pk2 = [Q/%′, β′(βP + β̂P̂ )]1.
2. Return p̃k2 ←

(
(1/%u)[Q/%

′]1, βu[β
′(βP + β̂P̂ ]1

)
.

UpdateVer2(gk, pk2, p̃k2, πp̃k2
):

1. Parse pk2, p̃k2 as above and πp̃k2
as [%u, βu]2.

2. Check [βuβ
′(βP + β̂P̂ )]1 • [1]2 = [β′(βP + β̂P̂ )]1 • [βu]2.

3. Check [Q/(%′%u)]1 • [%u]2 = [Q/%′]1 • [1]2.
Finalize(pk1, pk2):

1. Parse pk1 as in Update1 and pk2 as [Q/%, β2P + ββ̂P̂ ]1.
2. Compute [`i(χ)]1, [`i(χ)]2 for i ∈ [1 .. n + 1] as a linear combination of

[(χi)ni=0]1 and [(χi)ni=0]2. (see Appendix A).
3. [P0]1 ← [`n+1(χ)]1 − [1]1 , [P0]2 ← [`n+1(χ)]2 − [1]2.
4. For i = 1 to n: [Pi]1 ← 2[`i(χ)]1 + [`n+1(χ)]1, [Pi]2 ← 2[`i(χ)]2 + [`n+1(χ)]2

5. pkuv ←
(
[1, P0, P , %, Q/%,

∑n
i=1 P̂i, β

2%, ββ̂, β2P + ββ̂P̂ ]1,

[1, P0, P , %, β
2, ββ̂]2, [1]1 • [1]2

)
.

6. pkpkv ←
(
[(θ2i−1)ni=1, (`i(χ))

n+1
i=1 , β, β̂, (χ

i)n+1
i=1 ]1, [χ, θ, β, β̂]2

)
.

7. Return ([P̂ ]1, pkuv, pkpkv). //Note that pkvf is never used

Fig. 14. Phase 2 algorithms for DKG

Simuv(gk, pk, (β, β̂), [â]1)
1. r←$Fp, [a]1 ← [P1]1 + r[%]1, [b]2 ← [P1]2 + r[%]2.
2. [e]1 ← r · (2([a]1 + [P0]1)− r[%]1) + [

(
(P1 + P0)

2 − 1
)
/%]1.

3. [d]1 ← β2[a]1 + ββ̂[â]1.
4. Return ([d]1, [a]1, [b]2, [e]1).

Fig. 15. Simulator of unit vector argument

that would satisfy the verification equation on Step 3 of Vuv and Simuv picks
that value. Finally, since honest [d]1 = [β2PI + ββ̂P̂I ]1 + r[β2%]1 + r̂[ββ̂]1 =

[β2(PI + r%) + ββ̂(P̂I + r̂)]1, then [a, â]1 and (β, β̂) uniquely determine [d]1,
namely, Simuv picks it as [d]1 = β2[a]1 + ββ̂[â]1. ut

In the rest of this section, we follow the ideas from [FKL18, Section 7] and prove
the following result.
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Theorem 9. If the (3n− 1)-PDL assumption holds, then the unit vector argu-
ment has computational knowledge-soundness in the AGM.

We define a notion of idealised verification, where the verification equation holds
true for polynomials (with trapdoor elements as variables) rather than for poly-
nomial evaluations only (real verification, for concrete trapdoor elements). We
show that no element outside the language (i.e., no non-unit vectors) can pass
the idealised verification and if an adversary manages to pass the real verification
but no ideal one, then she can be used to break the (3n− 1)-PDL assumption.

C.1 Idealised Verification

In the idealised verification the unit vector argument verification equations de-
scribed in Step 3 of Fig. 5 hold for polynomials. That is, instead of concrete 5
group elements (an instance x and proof π = ([a, d, e]1, [b]2)), the adversary sub-
mits 5 polynomials Z(X) (corresponding to the instance x), and A(X), B(X),
D(X), E(X) (constituting to the proof elements), such that the verification
equations hold as polynomials:

D(X)−A(X)X2
β − Z(X)XβX

2
β , (1)

(A(X) + P0(X))(B(X) + P0(X))−X%C(X)− 1 +Xα(B(X)−A(X)) = 0 .
(2)

The adversary does not have full freedom in designing the polynomials but can
create them as affine combinations of CRS elements. In [FKL18] such an ad-
versary is called affine, and an explanation is given why considering such lim-
ited adversaries is actually enough. Thus, the polynomials A(X), D(X) and
E(X) are of form G(X), cf. Eq. 3, and B(X) of form H(X), cf. Eq. 4, where
X = (X,Xθ, Xβ , Xβ̂ , X%, Xske) denotes the formal variables corresponding to
the trapdoor td.

G(X) :=
∑
ι∈S1

Gι ·M(X, ι) + g1(X) + g̃(X) + gQ(X)/X% + gθ(Xθ)+ (3)

+ gsm(X) +Xβ · g2(X) +Xβ̂ · ĝ(Xθ)

H(X) :=
∑
ι∈S2

Hι ·M(X, ι) + h(X) (4)

where

– M(X, ι) is the monomial Xi1Xi2
θ X

i3
β X

i4
β̂
Xi5
% X

i6
ske

for a symbolic value ι =

χi1θi2βi3 β̂i4%i5ske
i6 .

– S1 = {β, β̂, %, β%, β2%, ββ̂} and S2 = {θ, β, β̂, %, ske, β2, ββ̂}.
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– Gι, Hι ∈ Fp, g1, g2, h ∈ Span({Xi}ni=0), g̃ ∈ Span({Xi}2ni=n+1),
gQ ∈ Span({(Pi(X) + P0(X))2 − 1}ni=1), ĝ ∈ Span({P̂i(Xθ)}ni=1),
gθ ∈ Span({Xi

θ)}2ni=1), gsm ∈ Span({X2
βPi(X) +XβXβ̂P̂i(Xθ)}ni=1).

We show that if that is the case, then the unit vector argument holds.

Suppose that a PPT adversary A given gk outputs an instance polynomial Z(X)
and the corresponding proof polynomials A(X), B(X), D(X), E(X).

Since all random variables in X are independent and from verification equation
2 follows that

T1(X) := (A(X) + P0(X))(B(X) + P0(X))−X% · C(X)− 1 = 0 , and
T2(X) := B(X)−A(X) = 0 .

It follows that A(X) = B(X) =
∑
ι∈{θ,β,β̂,%}AιXι + Aββ̂XβXβ̂ + a1(X). Now

T1(X) = (A(X) + P0(X))2 − X% · C(X) − 1 = 0. We may observe that in
T1(X) coefficients of monomials X2

θ , X
2
β , X

2
β̂
, X2

βX
2
β̂
are respectively A2

δ = 0,
A2
β = 0, A2

β̂
= 0, A2

ββ̂
= 0. Therefore we can simplify A(X) = a1(X) +A%X% =∑n

i=0AiPi(X) + A%X%. Moreover, let us denote X ′ = (Xθ, Xβ , Xβ̂ , X%, Xske).
Then the constant value in T1(X ′) is

(

n∑
i=0

AiPi(X) + P0(X))2 − 1− cQ(X) = 0 . (5)

Let us now turn to the Eq. 1 that guaranteesX2
β ·A(X)+XβXβ̂ ·Z(X)−D(X) =

0. We multiply it by X% to remove the possible division in Z(X) and D(X),
then

X2
β · (X%A(X)) +XβXβ̂ · (X%Z(X))−X%D(X) = 0. (6)

All the non-zero monomials of X%D(X) must contain X2
β or XβXβ̂ , hence

X%D(X) = Dβ2%X
2
βX

2
%+Dββ̂XβXβ̂X%+X%·dsm(X) where dsm(X) =

∑n
i=1Di·

(X2
βPi(X) + XβXβ̂P̂i(Xθ)). Additionally, let us consider that X%X

2
β · A(X) =∑n

i=0AiPi(X)X%X
2
β +A%X

2
%X

2
β . Hence X%XβXβ̂Z(X) can only contain mono-

mials present in X%X
2
β · A(X) or X%D(X) that are divisible by XβXβ̂ i.e.,

Z(X) = Z0X
0 +

∑n
i=1 ZiP̂i(Xθ). Then substituting into Eq. 6 we get that that

A0P0(X)X%X
2
β +

n∑
i=1

(Ai −Di)Pi(X)X%X
2
β + (A% −Dβ2%)X

2
βX

2
%+

(Z0 −Dββ̂)XβXβ̂X% +

n∑
i=1

(Zi −Di)P̂i(Xθ)XβXβ̂X% = 0.

Since the above monomials are linearly independent, then A0 = 0, Ai = Di = Zi
for i ∈ [1 .. n], A% = Dβ2%, and Z0 = Dββ̂ . Now A(X) =

∑n
i=1 aiPi(X) + A%X%
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and then from Eq. (5) we get also (
∑n
i=i aiPi(X) +P0(X))2− 1 = cQ(X) which

together with Lemma 1 implies that (A1, . . . , An) is a unit vector. Considering
that Ai = Zi, we can extract I and Z0 such that [â]1 = [P̂I + Z0]1.

C.2 Security Against Algebraic Adversaries

We show the security against algebraic adversaries by contradiction. That is,
we assume an adversary A breaks the knowledge-soundness, i.e., she provides
an instance and corresponding valid proof such that no extractor can efficiently
extract the witness. However, as shown in Appendix C.1, if the verification equa-
tions hold as polynomials (cf. Eq. 1 and 1), then the extractor can always obtain
the correct witness. Thus, it must be the case that verification equations as de-
fined in Fig. 5 accept, but only as polynomial evaluations at trapdoor td, not as
polynomials (at least one of two verification equation polynomials is non-zero).
Using this distinction, we construct an adversary B which uses A to break the
(3n− 1)-PDL assumption.

First of all, we define algebraic adversaries:

Definition 10 (Algebraic adversary). Let [x1]1, [x2]2 be vectors of group
elements. We call an adversary A algebraic if on input [x1]1, [x2]2 it returns
[y1]1, [y2]1,Z1,Z2 such that [y1]1 = Z1 · [x1]1 and [y2]2 = Z2 · [x2]1 for some
matrices Z1,Z2 over Fp.

Intuitively, we call an adversary A algebraic if for each output group element she
also outputs a linear representation in the input group elements. An algebraic
adversary is stronger than a generic group model adversary since A sees the
bit-level structure of the group elements. However, this also means that proofs
in the AGM are reductions to assumptions rather than unconditional proofs like
in the generic group model.

Assume that an algebraic adversary A breaks the soundness of the unit vec-
tor argument. Then there exists an adversary B that breaks the (3n − 1)-PDL
assumption and proceeds as follows.

First, B gets as input two vectors of group elements [(zi)3n−1
i=0 ]1, [(z

i)3n−1
i=0 ]2. Sec-

ond, she sets

χ = r1z + s1 , τ = r2z + s2 , β = r3z + s3 ,

β̂ = r4z + s4 , % = r5z + s5

for some randomly picked {ri, si}5i=1, and builds a CRS for the unit vector argu-
ment that will be provided for A. Since the adversary A is algebraic she returns
elements [â]1, [a]1, [d]1, [e]1, [b]2 as her instance and proof along with vectors
{zι}ι∈â,a,b,d,e – their representation as the combination of the CRS elements.
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Let R1 and R2 be the verification equations. Since the adversary B picked si, ri
on her own, B knows all coefficients of R1 and R2 as polynomials in Z – a
formal variable corresponding to z. The degree of R1, R2 is upper-bounded by
the highest degree of the CRS element from G1, 2n−1, plus the highest degree of
the CRS element from G2, n. Thus deg(Ri) is at most 3n− 1. Let R ∈ {R1, R2}
be the equation that holds for the concrete z, i.e., R(z) = 0 but does not hold
as a polynomial in Z, i.e., R(Z) 6= 0. Then B can factor R and find z′, such that
R(z′) = 0. With probability at least 1/(3n− 1)) holds z = z′.

With this, we have proven the result in Theorem 9.
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