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Abstract. Secure electronic voting is a relatively easy exercise if a single
authority can be completely trusted. In contrast, the construction of
efficient and usable schemes which provide strong security without strong
trust assumptions is still an open problem, particularly in the remote
setting. Coercion-resistance is one of, if not the hardest property to add
to a verifiable e-voting system. Numerous secure e-voting systems have
been designed to provide coercion-resistance. One of these systems is
VoteAgain (Usenix Security 2020) whose security we revisit in this work.
We discovered several pitfalls that break the security properties of Vote-
Again in threat scenarios for which it was claimed secure. The most
critical consequence of our findings is that there exists a voting author-
ity in VoteAgain which needs to be trusted for all security properties.
This means that VoteAgain is as (in)secure as a trivial voting system
with a single and completely trusted voting authority. We argue that
this problem is intrinsic to VoteAgain’s design and could thus only be
resolved, if possible, by fundamental modifications.
We hope that our work will ensure that VoteAgain is not employed for
real elections in its current form. Further, we highlight subtle security
pitfalls to avoid on the path towards more efficient, usable, and rea-
sonably secure coercion-resistant e-voting. To this end, we conclude the
paper by describing the open problems which need to be solved to make
VoteAgain’s approach secure.

1 Introduction

In Australia, Brazil, India, the US, and many other countries, systems for elec-
tronic voting (e-voting) are often used for political elections. It is crucial for such
elections to protect voters against being coerced to vote or not to vote for a cer-
tain candidate, to abstain from voting, or to sell their votes. A legal approach to
mitigate the risk of coercion is to ensure that “[any] coercion of voters should be
prohibited by penal laws and those laws should be strictly enforced”, as required
by the international standards of elections of the UN Committee on Human
Rights [25]. Since, realistically, the risk of being penalized may not be sufficient
to deter possible coercers, the threat of coercion must also be counteracted at a
technical level. To this end, numerous e-voting systems have been designed that



aim to protect against coercion (see, e.g., [1, 2, 6, 7, 11, 15, 21, 28, 31]), or to
mitigate its risk (see, e.g., [5, 13, 18, 26, 27]), by technical means. This property
is called coercion-resistance.

In a coercion-resistant e-voting system, each coerced voter has the option
to run some counter-strategy instead of obeying the coercer. By running the
counter-strategy, the coerced voter can achieve her own goal (e.g., to vote for
her favorite candidate). At the same time, the coercer cannot distinguish whether
the coerced voter followed his instructions (e.g., voted for the coercer’s favorite
candidate) or ran the counter-strategy. From a technical perspective, there exist
three different approaches in the literature which implement this concept: fake
credentials, masking, and deniable vote updating. We will briefly explain these
different approaches next.

Fake credentials are used, for example, in [1, 6, 7, 11, 28], and they work as
follows. Each voter is provided with a unique and secret credential ĉ. A voter uses
ĉ to submit her vote when she is not under coercion. Otherwise, if a voter is under
coercion, she can create a so-called fake credential c to submit her coerced vote.
Since the voter’s fake credential is invalid, the respective vote will be secretly
removed by the voting authorities. At the same time, the fake credential c and
the real one ĉ are indistinguishable from a coercer’s perspective.

The masking technique is employed, for example, in [2, 31]. Its idea is the
following one. Each voter is provided with a unique and secret mask m̂. A voter
uses m̂ to blind her actual vote v̂ when she is not under coercion. Otherwise, if a
voter is being coerced to vote for a different choice v, then she computes a fake
mask m such that the resulting blinded vote still remains a vote for her actual
choice v̂.

In both the fake credential and masking approach, the counter-strategies
appear to be hardly usable by human voters (see, e.g., [20, 24]) so that these
two concepts may be rendered completely ineffective for real practical elections.
Achieving coercion-resistance via deniable vote updating, as described next, is
more promising.

The idea of e-voting with deniable vote updating (e.g., [15, 21]) is to en-
able each voter to overwrite her previously submitted ballot, that she may have
cast under coercion, such that no-one else, including a possible coercer, can see
whether or not the voter has subsequently updated her vote.

VoteAgain is an e-voting system that follows the concept of coercion-resistance
via deniable vote updating. It was recently proposed by Lueks, Querejeta-Azur-
mendi, and Troncoso [23] (Usenix Security 2020). VoteAgain aims to provide
superior usability to previous approaches by relieving voters to store crypto-
graphic state (e.g., secret signing keys). Lueks et al. implemented a prototype
of VoteAgain to evaluate its practicality: their benchmarks demonstrate that
VoteAgain is very efficient, even for large-scale elections.

Importantly, Lueks et al. formally analyzed the security of VoteAgain in
terms of coercion-resistance as well as ballot privacy, which guarantees that the
protocol does not leak more information on each single voter’s choice than what
can be derived from the final election result, and verifiability, which guarantees



Ballot Privacy Verifiability Coercion-resistance

PA Untrusted Trusted Trusted
TS Untrusted Untrusted Trusted

PBB Untrusted Untrusted Untrusted?

Trustees k-out-of-n Untrusted Untrusted

Fig. 1: Trust assumptions under which VoteAgain was originally claimed to provide the
respective security properties. PA denotes the polling authority, TS the tally server,
and PBB the public bulletin board. (?We consider the case that voters submit their
ballots anonymously.)

that it can be verified whether the election result corresponds to the voters’
choices. In a nutshell, they stated that VoteAgain provides

– ballot privacy if the trustees, the voting authorities under whose joint public
key voters encrypt their votes, are trusted,

– verifiability if the polling authority, the party which provides voters with
anonymous voting tokens, is trusted, and

– coercion-resistance if the tally server, the voting authority which hides the
voters’ re-voting pattern, and the polling authority are trusted.

These trust assumptions are summarized in Fig. 1. They specify those threat
scenarios for which VoteAgain was claimed secure originally [23].

Our contributions. In this work, we revisit VoteAgain from a security per-
spective. We will show that VoteAgain falls short of the security it aimed to
achieve:

1. We demonstrate that the polling authority needs to be trusted for all security
properties (see Fig. 2), not only for verifiability and coercion-resistance, as
claimed originally (see Fig. 1). We show that this issue immediately relates
to the core of VoteAgain.

2. We disprove the original claim [23] that the public bulletin board in Vote-
Again does not need to be trusted for any security property (see Fig. 1). We
will demonstrate that a malicious public bulletin board can break privacy,
verifiability, and coercion-resistance (see Fig. 2). While trust on the public
bulletin board can be mitigated by means independent of the VoteAgain
protocol, our findings are yet another example that the importance of the
public bulletin board for secure e-voting must not be underestimated.

3. We will show that the trustees, unlike claimed originally [23], and thus all
voting authorities, need to be trusted in VoteAgain for coercion-resistance
(see Fig. 2).

The most critical of these observations is the first one, i.e., that the polling
authority in VoteAgain needs to be trusted for all security properties. If the
overall security of a voting protocol reduces to a single voting authority being
uncorrupted, then one could as well replace all voting authorities by the com-
pletely trusted one without affecting security. This means that VoteAgain, in



its original state, is insecure. But can this problem be fixed or is it intrinsic to
VoteAgain’s approach?

Ballot Privacy Verifiability Coercion-resistance

PA Trusted Trusted Trusted
TS Untrusted Untrusted Trusted

PBB Trusted Trusted Trusted
Trustees k-out-of-n Untrusted k-out-of-n

Fig. 2: Trust assumptions which are actually necessary in VoteAgain to provide the re-
spective security properties. Differences to originally claimed trust assumptions (Fig. 1)
are bold.

We will show that, as long as the polling authority needs to be trusted for
verifiability, it also needs to be trusted for privacy. We will see that the only
possibility to remove this trust from the polling authority would be to let vot-
ers store private credentials not shared with the polling authority. However, as
mentioned above, VoteAgain was explicitly designed to avoid this assumption
in order to provide a superior level of usability. This argument demonstrates
that VoteAgain’s approach is not suited to achieve all originally desired proper-
ties (i.e., high efficiency, superior usability, reasonable security) simultaneously.
Designing such a coercion-resistance e-voting system thus remains an open prob-
lem. Our work helps to avoid subtle security pitfalls on the path towards this
goal.

Given that VoteAgain has been implemented and its (fallacious) security
claims published at a top venue, we believe highlighting its substantial failings
is important not only as an academic exercise but to highlight that the scheme
should not be deployed in practice without substantial changes.

Outline of the paper. In Sec. 2, we give an overview of the VoteAgain protocol
and the idea of the pitfalls we discovered. In Sec. 3, we describe VoteAgain with
full technical details. In Sec. 4, we present the pitfalls of VoteAgain and several
attacks to exploit them. In Sec. 5, we summarize and discuss our observations.
We conclude in Sec. 6.

2 Overview

In this section, we describe the concept of VoteAgain and the pitfalls of its
approach. In Sec. 2.1, we briefly recall the security properties that VoteAgain
aimed to achieve. In Sec. 2.2, we explain the idea of VoteAgain; the complete
protocol description can be found in Sec. 3. In Sec. 2.3, we present the pitfalls
of VoteAgain’s approach that we discovered, with full technical details on our
attacks in Sec. 4.



2.1 Security Properties

We recall the security notions of ballot privacy, verifiability, and coercion-resistance.

Ballot privacy. For most elections, it is important that outside or even in-
side observers (e.g., voting authorities) should not be able to tell how individual
voters voted. This property is called (ballot) privacy [4]. It guarantees that the
data published during the election (including, for example, voters’ ballots, tal-
liers’ proofs of integrity, etc.) does not leak more information on the voters’ plain
choices than what can be derived from the final election result.

Verifiability. Numerous e-voting systems suffer from flaws which open up the
opportunity for inside or outside attackers to change the election result without
being detected (see, e.g., [14, 29, 30]). Therefore, modern secure e-voting systems
strive for what is called (end-to-end) verifiability [8]. This fundamental security
property enables voters or external auditors to verify whether the published
election result is correct, i.e., corresponds to the votes cast by the voters, even if,
for example, voting devices and servers have programming errors or are outright
malicious.

Coercion-resistance. A voting protocol is coercion-resistant [22] if any coerced
voter, instead of obeying the coercer, can run some counter-strategy such that
(i) by running the counter-strategy, the coerced voter achieves her goal (e.g.,
successfully votes for her favorite candidate), and (ii) the coercer is not able
to distinguish whether the coerced voter followed his instructions or tried to
achieve her own goal. There exist several concepts in the literature to construct
coercion-resistant e-voting systems. The approach taken in VoteAgain is called
deniable vote updating : if a voter is coerced to vote for a certain candidate, then
the voter’s counter-strategy is to update her vote after the coercer has left. In
this way, she can overwrite her previously cast choice. At the same time, due to
some technical mechanisms in the background, it is guaranteed that the coercer
is not able to distinguish whether or not the voter has subsequently updated her
vote.

2.2 VoteAgain

We now recall the VoteAgain protocol. In this section, we present VoteAgain
in such a way that the idea of the pitfalls below can be followed. Full technical
details of VoteAgain are provided in Sec. 3.

Idea. As mentioned above, VoteAgain follows the concept of coercion-resistance
via deniable vote updating : each voter can overwrite her previously submitted
ballots, that she may have cast under coercion, such that no-one else, including
a possible coercer, can see whether or not the voter has updated her vote.

VoteAgain implements this idea as follows. In addition to the standard voting
authorities which are commonly used in modern secure e-voting systems, namely
a public bulletin board (PBB) and a trustee (T), VoteAgain employs two further
parties, the polling authority (PA) and the tally server (TS). The role of the PA
is to guarantee that each voter can cast ballots without revealing her identity



to the public bulletin board. At the same time, the PA ensures that it can be
verified whether incoming ballots were submitted by eligible voters only. The role
of the TS is to hide the voters’ re-voting/vote-updating pattern. In combination,
these two voting authorities are supposed to securely guarantee deniable vote
updating: on the one hand, every observer can verify that only eligible voters
have cast the ballots on the bulletin board and that each eligible voter did not
overwrite any other voter’s ballot (under the assumption the PA is honest),
while, on the other hand, it remains secret to any outsider whether or not a
given voter has updated her ballot.

In what follows, we describe VoteAgain’s approach more precisely, with full
technical details provided in Sec. 3.

Participants. VoteAgain is run among the following participants:

– Voters V1, . . . ,Vn: Each voter Vi interacts with the polling authority and
the public bulletin board to cast her ballots. It is assumed that each voter
can authenticate herself to the polling authority. The voters encrypt their
choices under the trustee’s public key.

– Polling Authority (PA): The PA provides each eligible voter with a one-time
voting token. The voter can then use this token to sign her ballot without
revealing her identity to the public bulletin board.

– Public Bulletin Board (PBB): The PBB is an append-only list which contains
all public information, including the voters’ cast ballots, as well as proofs
and results published by the election/tallying authorities during the tally
phase.

– Tally Server (TS): The TS adds dummy ballots (encryptions of 0 under the
trustee’s public key), shuffles all ballots, groups them by voter, and selects
the last ballot for each voter.

– Trustee (T):3 The trustee shuffles and decrypts the last ballots per voter
that were selected by TS.

Protocol phases. VoteAgain proceeds in three phases (the invoked procedures
are defined in Sec. 3):

1. Pre-election phase: The election authorities set up their public/private key
material. The polling authority PA initializes the voters’ anonymous identi-
fiers (Procedure 1).

2. Election phase: Voters authenticate to PA every time they vote to obtain
a one-time voting token (Procedure 2). They then use the token to cast a
ballot (Procedure 3). The public bulletin board PBB verifies the correctness
and eligibility of each incoming ballot (Procedure 4). Note that voters can
re-vote multiple times.

3. Tally phase: The tally server TS adds dummy ballots to hide the voters’
re-voting pattern, makes real and dummy ballots publicly indistinguishable,

3 The role of the trustee T is distributed in the original VoteAgain protocol [23]. For
the sake of brevity, we assume that the trustee is a single entity.



selects the last ballot for each real and dummy voter, and removes the dum-
mies again (Procedure 5). The trustee T shuffles and decrypts the ballots
previously returned by TS (Procedure 6).

The verification program of VoteAgain follows immediately from the protocol
description: essentially, the proofs published by the different parties on PBB are
checked. We refer to [23] (Procedures 7 and 8) for details.

2.3 Pitfalls

We show that VoteAgain [23] is not secure under the trust assumptions for which
it was claimed to be (Fig. 1). We describe our findings in what follows, with full
details presented in Sec. 4. Our results are summarized in Fig. 2.

Impact of corrupted PA. Recall that the polling authority PA provides each
eligible voter with one-time voting tokens. In order to guarantee deniable vote
updating (and thus coercion-resistance), the links between the individual voters
and their ballots signed with the voting tokens remain hidden. Since a malicious
PA could tamper with the distribution of the voting tokens undetectably, the
PA needs to be trusted for verifiability. This was already stated in the original
VoteAgain paper but its implication to ballot privacy was apparently overlooked
(Fig. 1). In secure e-voting, there is a strong relationship between verifiability
and ballot privacy: if ballots can be dropped or replaced undetectably, then
privacy of the remaining ballots is undermined [9].

In Sec. 4, we show how this general threat applies to VoteAgain in its worst
form. Unlike in most other e-voting protocols (e.g., Helios) where only a small
number of ballots can be dropped without being detected, a malicious PA in
VoteAgain can replace an arbitrary number of ballots completely secretly. This
vulnerability results into two risks which, in combination, can have a devastat-
ing effect: (1) By replacing many ballots except for just a few, privacy of the
untouched ballots can be broken with extremely high probability. (To see this,
assume that all but one ballot are replaced.) Since, in political elections, typi-
cally the final result of each district is published, such an attack can be executed
in each district separately so that, in total, ballot privacy of many voters may
be put at risk. (2) By replacing ballots with reasonably distributed choices, the
tracks of the privacy attack can easily be covered.

The consequence of this observation is disillusioning: there exists a voting
authority in VoteAgain (namely the PA) which needs to be trusted for all secu-
rity properties: ballot privacy, verifiability, and coercion-resistance. This means
that VoteAgain is as (in)secure as a trivial voting protocol with a single and
completely trusted voting authority which is responsible for the whole voting
process.

Impact of corrupted trustee. The role of the tally server TS is to hide
the voters’ re-voting pattern by adding indistinguishable dummy ballots which
are later removed. Clearly, the PA and the TS need to be trusted for coercion-
resistance because both of them know whether a voter re-voted. This was already



stated in the original VoteAgain paper (Fig. 1). We discovered that, additionally,
there exists a subtle yet momentous relationship between coercion-resistance and
a possibly corrupted trustee. Assume that a coercer forces a voter to submit a
sequence of ballots in which each ballot encrypts a vote for a randomly chosen
candidate. By this, the coerced voter’s sequence of plain votes is essentially
unique and thus a “fingerprint”. Now, if the trustee is corrupted, then the coerced
voter’s submitted ballots can be linked to the voter, even if some dummy ballots
are added to the voter’s ciphertexts. In other words, the secrecy of the vote
updating process is undermined, even if the PA and the TS are trusted. As a
result, the trustee needs to be trusted for coercion-resistance as well (Fig. 2).
Therefore, all voting authorities need to be trusted for coercion-resistance which
is an assumption arguably too strong as well.

Impact of corrupted PBB. We discovered that the importance of the public
bulletin board PBB was underestimated originally. Lueks et al. [23] stated that
even if the PBB is malicious, VoteAgain provides ballot privacy, verifiability, and
coercion resistance (Fig. 1). We discovered that, in fact, the PBB needs to be
trusted for all security properties (Fig. 2), as explained next.

If the PBB is malicious, then it can show a “faked” view on the bulletin
board to a voter which includes this voter’s submitted ballot. At the same time,
the PBB does not append the ballot to the “real” bulletin board which it shows
to the remaining parties [16]. In this way, the voter’s ballot is effectively dropped
even though the voter verified that her ballot is on “the” bulletin board. This
demonstrates that the PBB needs to be trusted for verifiability.

By executing the above attack against verifiability for several voters, the
choices of the remaining ballots are hidden behind less further choices, which
undermines ballot privacy. We note, however, that the effect of this privacy
attack (which applies to virtually all e-voting protocols) is much weaker than
the devastating privacy attack of a malicious PA described above because the
number of ballots that can be dropped undetectably is more limited for the
following two reasons. Firstly, if at least one of the affected voter cross-checks
her view on PBB, the attack is detected. Secondly, in order to obtain significant
information on the remaining votes, many ballots have to be dropped but this
is then reflected in the low number of votes of the final result which would raise
suspicion. However, at least formally, it follows that the PBB needs to be trusted
for ballot privacy as well, which disproves the original security claim.

Furthermore, a malicious PBB can break coercion-resistance as follows, even
if voters submit their ballots anonymously. The coercer forces a voter to sub-
mit a ballot for a certain candidate and to reveal all secret information on the
submitted ballot. The PBB identifies and accepts this ballot but drops all subse-
quently incoming ballots (similarly to the attack on verifiability above). By this,
the coerced voter can no longer update her choice, even if the coercer is absent
for the rest of the submission phase.

The PBB is a critical bottleneck in all e-voting systems, not only VoteAgain.
There are several approaches to mitigate trust on the PBB which could also
be used in VoteAgain (see, e.g., [10, 16, 17]). Nevertheless, our findings are yet



another example to demonstrate that the importance of the PBB for secure
e-voting must not be underestimated.

3 Protocol Description

In this section, we precisely describe the VoteAgain protocol. The original Vote-
Again protocol [23] employs specific cryptographic primitives centered around
ElGamal public-key encryption [12]. We chose to abstract away from this con-
crete instantiation because our attacks on VoteAgain (Sec. 4) exploit the protocol
design but no specific cryptographic details. We also think that our slightly more
abstract presentation simplifies comprehension of the complex protocol.

Cryptographic primitives. VoteAgain employs the following cryptographic
primitives:

– A homomorphic IND-CPA-secure public-key encryption (PKE) scheme E =
(EncKeyGen,Enc,Dec).

– A NIZKP of correct encryption (ProveEnc,VerifyEnc) for the PKE scheme E
and a voting relation R which specifies valid choices.

– A NIZKP of correct decryption (ProveDec,VerifyDec) for the PKE scheme E .
– A shuffle algorithm Shuffle [3] which takes as input a vector of ciphertexts
C (w.r.t. E), re-encrypts each entry of C, permutes the vector uniformly
at random, and returns the resulting shuffled ciphertext vector C ′ together
with a proof πShuffle that C ′ is correct.

– An EUF-CMA-secure signature scheme (SigKeyGen,Sign,Verify).

Procedure 1 (Setup). The election authorities generate their public/private
key pairs and send the public keys to the bulletin board. The polling authority
PA runs (pkPA, skPA)← SigKeyGen(1`) and sends pkPA to PBB. The tally server
TS runs (pkTS, skTS) ← EncKeyGen(1`) and sends pkTS to PBB. The trustee T
runs (pkT, skT)← EncKeyGen(1`) and sends pkT to PBB.

For each voter Vi, the polling authority PA generates a pair (vidi,mi) uni-
formly at random where vidi is the voter’s (secret) identifier, and mi is (the
initial state of) the voter’s ballot counter. More precisely, PA runs the following
program for each Vi:

1. vidi
r←−MEnc

4

2. mi
r←− {2`−2, . . . , 2`−1 − 1} ⊂ MEnc

3. store (Vi, vidi,mi) internally

Procedure 2 (GetToken). Each time a voter Vi wants to submit a ballot, the
voter needs to authenticate herself to the polling authority PA. If authentication
of Vi is successful, then PA sends certain one-time credentials to Vi which enable
Vi to cast a single ballot without having to reveal her identity. For this purpose,

4 MEnc denotes the message space of the PKE scheme E (for public key pkTS).



PA essentially encrypts Vi’s identifier vidi as well as her ballot counter mi under
the public key pkTS of the tally server TS.

By this, on the one hand, it is not possible to coerce Vi into revealing vidi or
mi, while, on the other hand, it can be verified that Vi’s ballot was submitted
by an eligible voter and that only Vi’s last ballot is counted (if PA is trusted).

More precisely, PA executes the following steps after voter Vi authenticated
herself correctly:

1. γ ← Enc(pkTS, vidi)
2. I ← Enc(pkTS,mi)
3. mi ← mi + 1
4. (pk, sk)← SigKeyGen(1`)
5. στ ← Sign(skPA, pk‖γ‖I)
6. send τ ← (pk, sk, γ, I, στ ) to Vi

The voter can then check whether Verify(pkPA, σ
τ , (pk‖γ‖I)) = > holds true.

If this is the case, then Vi can use τ to cast a vote, as described next.

Procedure 3 (Vote). Voter Vi takes as input τ = (pk, sk, γ, I, στ ) from PA
(see GetToken) as well as a candidate c ∈ C and executes the following steps to
cast her ballot β:

1. (v, aux)← Enc(pkT, c)
2. πEnc ← ProveEnc((pkT , v), (aux, c))
3. σ ← Sign(sk, v‖πEnc‖pk‖γ‖I‖στ )
4. β ← (v, πEnc, pk, γ, I, στ , σ)
5. send β to PBB

For each incoming ballot β, PBB checks whether Valid(β) = > holds true
(see below for algorithm Valid), and if this is the case, then PBB appends β.
Voter Vi can then verify whether β was appended to PBB.

Procedure 4 (Valid). For each incoming ballot β, PBB verifies whether β
contains a valid choice, whether eligibility was acknowledged by the polling au-
thority PA, and whether it does not contain a duplicate entry of a ballot β′ that
was already appended.

More precisely, Valid returns > if and only if the following conditions are
satisfied:

1. VerifyEnc(pkT, v, π
Enc) = >, and

2. Verify(pk, σ, v‖πEnc‖pk‖γ‖I‖στ ) = >, and
3. Verify(pkPA, σ

τ , (pkEnc‖γ‖I)) = >, and
4. (v, . . .) /∈ β′ and (. . . , pk, . . .) /∈ β′ for some appended β′

Procedure 5 (Filter). The tally server TS reads the list of ballots B ← (βi)
nB
i=1

from PBB and verifies for each β ∈ B whether Valid(β) = > holds true. If this
is not the case, then TS aborts. Otherwise, TS continues as follows.

Adding dummies. For each ballot βi = (vi, . . . , γi, Ii, . . .) ∈ B, the tally server
executes the following steps:



Ballots

β1

...

βnB

add

dummies

Ballots

with dummies

β′
1

...

β′
nT

shuffle

Shuffled ballots

(without proofs)

v′1

...

v′nT

γ′
1

...

γ′
nT

I ′1

...

I ′nT

θ′1

...

θ′nT

decrypt γ′
i, I

′
i

and group

Grouped ballots

v1,1

...

v1,χ1

m1

...

m1 + χ1

vid1

θ1,1

...

θ1,χ1

· · ·
vK,1

...

vK,χK

mK

...

mK + χK

vidK

θK,1

...

θK,χK

compute selected votes

V 1 · · · V K

Selected votes including dummy votersSelected votes

V1 · · · Vn

Shuffle, then
remove dummies

Fig. 3: Overview of Procedure 5 (Filter), adopted from [23]. Notation: nB denotes the
number of ballots, nD the number of dummies added by TS, nT = nB + nD denotes
their sum, K the number of (real) voters plus the number of dummy voters, and χi
the number of ballots for voter i (including dummy voters).

1. θR ← Enc(pkTS, 1; 0)
2. β′i ← (vi, γi, Ii, θR)

In other words, TS creates a “stripped” ballot β′i which consists of the re-
spective voter’s encrypted candidate vi, the voter’s encrypted identifier γi, the
encrypted ballot counter Ii, as well as a deterministic ciphertext θR to “tag”
real ballots.

Additionally, and this is one of the main ideas of VoteAgain, the tally server
TS generates a number of dummy ballots which are used to hide the re-voting
pattern of real voters. To this end, the tally server TS creates nD further ballots
β′i = (vε, γi, Ii, θD), where

– vε ← Enc(pkT, 0; 0)
– θD ← Enc(pkTS, g; 0) for some g 6= 1

holds true.
This means that each dummy ballot contains a 0-vote (with trivial random-

ness 0), as well as a deterministic ciphertext θD to “tag” dummy ballots. The
ciphertext γi either encrypts the identifier of a real voter Vi in which case the
encrypted ballot counter Ii of the dummy ballot is smaller than the one of the
last ballot cast by Vi, or the ciphertexts γi encrypts the identifier of a “fake”
voter.5

The tally server TS sends the resulting list of ballots B′ ← (β′i)
nB+nD
i=1 to

PBB.

Shuffling. The tally server TS verifiably shuffles the ciphertext vector B′:

5 We refer to [23] (Sec. 5.2) for a detailed description of how dummy ballots are
constructed precisely because the vulnerabilities of VoteAgain presented in this paper
are independent of the specific cover.



1. (B′′, πσ)← Shuffle(B′)
2. send (B′′, πσ) to PBB.

Grouping. For each β′′ = (v′′i , γ
′′
i , I
′′
i , θ
′′
i ) ∈ B′′, the tally server TS uses its secret

key skTS to verifiably decrypt the encrypted identifiers and ballot counters:

1. for all i ≤ nB + nD:

(a) vidi ← Dec(skTS, γ
′′
i )

(b) πDec
i,1 ← ProveDec((pkTS, γ

′′
i ), skTS)

(c) mi ← Dec(skTS, I
′′
i )

(d) πDec
i,2 ← ProveDec((pkTS, I

′′
i ), skTS)

(e) πDec
i ← (πDec

i,1 , π
Dec
i,2 )

2. C ← (vidi,mi, π
Dec
i )nB+nD

i=1

3. send C to PBB

If there exist i 6= j such that (vidi,mi) = (vidj ,mj) holds true, then TS
aborts. Otherwise, TS groups all (vidi, vi,mi, θ?) according to the identifiers
vid. We denote the resulting groups by (Gj)

K
j=1.

Selecting. For each group Gj , the tally server TS opts for the ciphertext vj?
assigned to the highest ballot counter m in Gj . If the respective tag θ refers
to a real voter, then TS re-encrypts the ciphertext vj?, and otherwise, the TS
replaces the ciphertext by a 0-vote:

1. j?← index of maximal m in Gj
2. if Dec(skTS, θj?) = 0, then V j ← vj? · Enc(pkT, 0)
3. else V j ← Enc(pkT, 0)
4. πSel

j ← NIZKP of correctness of previous steps6

5. F ← (vidj , V j , π
Sel
j )j≤K

6. send F to PBB

Removing dummies. The tally server TS verifiably shuffles the vector of selected
encrypted votes SD ← (V j)j≤K , i.e., TS computes (S ′D, π′σ)← Shuffle(SD) and
sends (S ′D, π′σ) to PBB.

Next, TS creates the list of indices D of encrypted dummy votes V
′
j in the

shuffled ciphertext vector S ′D, and for each j ∈ D, the tally server proves that

V
′
j is an encryption of 0:

1. D ← indices of dummy votes in S ′D
2. R← (rj)j∈D such that V

′
j = Enc(pkT, 0; rj)

7

3. send (D, R) to PBB

6 We refer to [23] for the precise relation to be proven by this NIZKP. The details are
not relevant for our purposes.

7 Each rj is a simple combination of the randomness that TS used to create V k and

of the randomness that TS then used to re-encrypt V k to obtain V
′
j .



Finally, the tally server TS publishes the list of votes to be decrypted by the
trustee T, i.e., TS computes S ← (S ′D \ S ′D) and sends S to PBB.

Procedure 6 (Tally). In order to obtain the final election result, the trustee
T verifiably shuffles S and then uses its secret key skT to verifiably decrypt the
resulting shuffled ciphertexts.

4 Pitfalls of VoteAgain

We elaborate on the pitfalls of VoteAgain’s approach that we sketched in Sec. 2.3.

4.1 Impact of corrupted PA

It was claimed in the original VoteAgain paper [23] that VoteAgain provides
ballot privacy if the trustee is honest, while PA, TS, and PBB can be malicious
(Fig. 1). We will now show that a malicious PA can break privacy. The idea is that
the PA can impersonate any voter by simulating Procedure 2 and Procedure 3.

Attack: Let V1, . . . ,Vn be the voters. Assume that the PA is malicious and
wants to know how V1, . . . ,Vl voted. After all voters Vl+1, . . . ,Vn have submitted
their (last) ballots, the PA runs the voting process n− (l + 1) times. In each of
these processes i ∈ {l + 1, . . . , n}, the malicious PA runs Procedure 2 for voter
Vi, uses Vi’s token to run Procedure 3 to submit a ballot for some arbitrary
candidate ci, and stores (i, ci).

Impact: By design, it is not possible to verify whether Vi, i ∈ {l + 1, . . . , n},
has updated her vote. Therefore, the final election result consists of V1, . . . ,Vl’s
votes plus n − (l + 1) votes (i, ci) submitted by PA. The adversary can now
substract all (i, ci)i≥l+1 from the public election result to obtain the (aggregated)
choices of V1, . . . ,Vl.

Remarks: We have described the attack in its most general form, i.e., for some
arbitrary l. In order to obtain much information about the votes of V1, . . . ,Vl
from the aggregation of their votes, it is necessary to restrict l. Clearly, for
l = 1, ballot privacy of V1 is completely broken, but even for l > 1, significant
information can be leaked, e.g., if the adversary wants to know whether all voters
V1, . . . ,Vl voted for the same candidate.

Recall from Sec. 2.3 that in political elections, typically the final result of
each district is published, so that the above attack can be executed in each
district separately and thus privacy of many voters in total may be put at risk.

Observe that, in order to not raise any suspicion, the adversary can easily
choose the replacing choices ci such that the manipulated final election result
appears completely reasonable.

4.2 Impact of corrupted trustee

It was claimed in the original VoteAgain paper [23] that VoteAgain provides
coercion-resistance if the PA and TS are honest, while the PBB (if voters submit
anonymously) and the trustees can be malicious (Fig. 1). We now describe how



an honest-but-curious trustee T can break coercion-resistance of VoteAgain. The
idea is that for each voter, trustee T can decrypt the individual sequences of
ciphertexts assigned to this voter’s (anonymous) voter id vid.

Attack: The adversary chooses a sequence (cj)
l
j=1 over the set of candidates C

uniformly at random. The coercer instructs a targeted voter V to submit a ballot
βj (i.e., run Procedure 2 and Procedure 3) for each element cj of this sequence
(preserving the order of the sequence) and then a ballot β for the adversary’s
favorite candidate c.

Impact: Since the trustee is corrupted, the adversary can use skT to decrypt
all vi,? for each vid in the grouped ballots (Gj)

K
j=1 (at the end of phase “group-

ing” in Procedure 5). The coercer (removes all dummy votes injected by TA and)
verifies whether there exists a group Gj which contains the chosen sequence of
candidates. If this is the case, the adversary knows that the voter obeyed (with
overwhelming probability in l).

4.3 Impact of corrupted PBB

We show that a malicious PBB can break verifiability, ballot privacy, and coercion-
resistance of VoteAgain.

Verifiability. It was claimed in the original VoteAgain paper [23] that Vote-
Again provides verifiability if the PA is honest, while the TS, PBB, and the
trustee can be malicious (Fig. 1). We will now describe an attack of a malicious
PBB which breaks verifiability of VoteAgain. Note that the effect of this attack
can be increased by repeating it multiple times for different voters.

Attack: Let V be an arbitrary voter. In Procedure 3, the PBB shows a “faked”
view on the bulletin board to voter V which includes V’s ballot β. However, PBB
does not append β to the “real” bulletin board which it shows to the remaining
parties.

Impact: At the end of Procedure 3, the voter verifies successfully that β was
appended to the “faked” bulletin board. However, V’s choice is not included in
the input to Procedure 5 and therefore not in the final election result. Because
this manipulation remains undetected, verifiability is broken.

Ballot Privacy. It was claimed in the original VoteAgain paper [23] that
VoteAgain provides ballot privacy if the trustee is honest, while PA, TS, and
PBB can be malicious (Fig. 1). We will now show that a malicious PBB can
break ballot privacy.

Attack: Let V1, . . . ,Vn be the voters. Assume that the PA is malicious and
wants to know how V1, . . . ,Vl voted. For each voter Vi, i ∈ {l + 1, . . . , n}, the
PBB executes the verifiability attack described above.

Impact: The final election result consists only of V1, . . . ,Vl’s aggregated votes.

Remark: As already noted in Sec. 2.3 this vulnerability (which applies to
virtually all e-voting protocols) is of rather theoretical concern in contrast to
the privacy attack of a malicious PA described above which can be devastating
in real practical elections.



Coercion-Resistance. It was claimed in the original VoteAgain paper [23] that
VoteAgain provides coercion-resistance if the PA and TS are honest, while the
PBB (if voters submit anonymously) and the trustee can be malicious (Fig. 1).
We will now show that a malicious PBB can break coercion-resistance even if
all voters submit their ballots anonymously.

Attack: The coercer chooses a candidate c ∈ C and instructs an arbitrary
voter V to submit a ballot for this candidate (i.e., run Procedure 2 and Proce-
dure 3). Furthermore, the coercer tells the voter to reveal the submitted ballot
β, including all secret information from Procedure 3. The malicious PBB iden-
tifies the incoming (no longer anonymous) ballot β, append it, and drop all
subsequently incoming ballots by any voter (see PBB’s attack on verifiability).

Impact: The affected voter can no longer “overwrite” the coercer’s choice c
even if the coercer is absent for the rest of submission phase.

5 Discussion

Based on our insights from the previous sections, we first elaborate on related
coercion-resistant or coercion-mitigating e-voting systems and their relation to
VoteAgain, and then extract the challenges to be addressed for solving Vote-
Again’s main pitfall.

Related work. Two different forms of coercion are typically considered in the
e-voting literature: vote-selling/vote-buying and forced abstention. Depending
on which form of coercion should be addressed and how powerful an adversary
can possibly be, different e-voting systems have been proposed.

The most challenging goal is to design e-voting systems which provide full
coercion-resistance (i.e., protection against vote-buying and forced abstention)
and overall security against inside adversaries (which can corrupt voting au-
thorities). There exist many different e-voting systems in the literature which
aim for this objective (e.g., [7]) but none of them provides a reasonable level of
security, usability, and efficiency at once. VoteAgain [23] was constructed to over-
come these limitations but we have demonstrated that it falls short of protecting
against (reasonably strong) inside adversaries (see Sec. 4).

Some e-voting systems aim to provide a weaker notion of coercion-resistance
which is called receipt-freeness. This property guarantees that voters are not able
to prove to a vote-buyer how they voted. By protecting against this more specific
threat but not against forced abstention, it is possible to come up with better
solutions (see, e.g., [5, 21]). It is interesting to note that VoteAgain [23] and KTV-
Helios [21] follow a similar approach; this was not mentioned in [23]. In both
systems, each voter’s ballots are hidden within a “swarm” of indistinguishable
dummy ballots which enables voters to undetectably update their votes. Unlike in
VoteAgain, the voters’ identifiers in KTV-Helios are not anonymous but public
and dummy ballots are being added during the ballot submission phase not
afterwards. Therefore, one of VoteAgain’s advantages compared to KTV-Helios
is that the timing of the items on the bulletin board does not affect the level of
coercion-resistance. Furthermore, it is easier in VoteAgain than in KTV-Helios



for human voters [19] to (secretly) update their votes, as explained next. If a
voter was coerced to submit a vote for c and wants to submit a vote for c′ by
overwriting c, then in VoteAgain the voter can simply submit a ballot for c′,
whereas in KTV-Helios the voter has to submit a ballot for c′ · c−1. Then again,
from a security perspective, receipt-free e-voting systems like BeleniosRF [5]
or KTV-Helios [21] are secure against inside adversaries under reasonable trust
assumptions, unlike VoteAgain.

We note that while BeleniosRF [5] superficially shares the weakness with
VoteAgain that verifiability and privacy do not hold against a corrupted regis-
ter. However, in BeleniosRF other parties need to be corrupted to break these
properties and moreover the issue can be easily fixed at the cost of adding an
interactive voter registration phase. No such solution is possible with VoteAgain,
which inherently requires the register to be trusted.

Altogether, we can conclude that there does not yet exist a fully coercion-
resistant (remote) e-voting system in the literature which can be used securely
for real practical elections with possible insider adversaries. In what follows, we
elaborate on the open questions that need to be addressed so that, if possible, the
first such solution could be constructed following VoteAgain’s general approach.

Challenges. Because trust on the PBB can be mitigated by means independent
of the VoteAgain protocol (see, e.g., [10, 16, 17]), we restrict our attention to
the remaining pitfalls. We have demonstrated that all voting authorities in Vote-
Again need to be trusted for coercion-resistance. This is a strong assumption
compared to other coercion-resistant e-voting systems, e.g., Civitas [7]. This
assumption could be mitigated by (further) distributing the secret key under
which voters encrypt their candidates. However, this issue cannot be resolved
completely because each voter’s submitted ciphertexts are publicly grouped and
can therefore always be de-anonymized, as explained in Sec. 4.2, by whoever
holds enough shares of the secret key.

To provide a non-trivial level of security, VoteAgain needs to prevent the
PA from submitting ballots on behalf of voters without their consent. For this
purpose, the ballots must be authenticated in a way which is unforgeable by the
PA (and any other voter). The only viable option is to assume that each voter
possesses private credentials that she does not share with the PA or any other
voter. However, this assumption would no longer be in line with VoteAgain’s
original scenario where voters are explicitly relieved to store cryptographic state
for higher usability (recall Sec. 1). We therefore conclude that VoteAgain’s ap-
proach is not suited to achieve all of its original objectives simultaneously. We
argue that the assumption that voters are not required to store cryptographic
state needs to be dropped. This results into the following question: How can
VoteAgain be modified such that ballots are unforgeable by the PA, but also de-
niable by the target voter, without undermining VoteAgain’s efficiency? Despite
several attempts, we were not able to solve this challenge which we therefore
leave for interesting future work.



6 Conclusion

We demonstrated that, despite the published claims, VoteAgain is not secure
against (reasonably strong) internal adversaries. Indeed, it is no more secure than
a straightforward system built around a single trusted party. While VoteAgain
has been implemented, it should not be used in a situation requiring verifiability
or privacy until these issues are addressed.

Moreover, there does not yet exist an e-voting system in the literature which
can be used for practically efficient, usable, and reasonably secure e-voting with
full coercion-resistance. We hope that our work will help to avoid further sub-
tle pitfalls on the path towards this goal. To this end, we described the open
problems which need to be solved to make VoteAgain’ approach secure.
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[5] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo.
BeleniosRF: A Non-interactive Receipt-Free Electronic Voting Scheme. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, Vienna, Austria, October 24-28, 2016, pages 1614–
1625, 2016.

[6] Jeremy Clark and Urs Hengartner. Selections: Internet Voting with Over-
the-Shoulder Coercion-Resistance. In George Danezis, editor, Financial
Cryptography and Data Security - 15th International Conference, FC 2011,
Gros Islet, St. Lucia, February 28 - March 4, 2011, Revised Selected Papers,
volume 7035 of Lecture Notes in Computer Science, pages 47–61. Springer,
2011.

[7] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: To-
ward a Secure Voting System. In 2008 IEEE Symposium on Security and
Privacy (S&P 2008), 18-21 May 2008, Oakland, California, USA, pages
354–368. IEEE Computer Society, 2008.
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[28] Michael Schläpfer, Rolf Haenni, Reto E. Koenig, and Oliver Spycher. Effi-
cient Vote Authorization in Coercion-Resistant Internet Voting. In Aggelos
Kiayias and Helger Lipmaa, editors, E-Voting and Identity - Third Interna-



tional Conference, VoteID 2011, Tallinn, Estonia, September 28-30, 2011,
Revised Selected Papers, volume 7187 of Lecture Notes in Computer Science,
pages 71–88. Springer, 2011.

[29] Michael A. Specter and J. Alex Halderman. Security Analysis of the Democ-
racy Live Online Voting System. In 30th USENIX Security Symposium,
USENIX Security 2021. USENIX Association, 2021.

[30] Michael A. Specter, James Koppel, and Daniel J. Weitzner. The Ballot
is Busted Before the Blockchain: A Security Analysis of Voatz, the First
Internet Voting Application Used in U.S. Federal Elections. In Srdjan Cap-
kun and Franziska Roesner, editors, 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020, pages 1535–1553. USENIX
Association, 2020.

[31] Roland Wen and Richard Buckland. Masked Ballot Voting for Receipt-Free
Online Elections. In Peter Y. A. Ryan and Berry Schoenmakers, editors,
E-Voting and Identity, Second International Conference, VoteID 2009, Lux-
embourg, September 7-8, 2009. Proceedings, volume 5767 of Lecture Notes
in Computer Science, pages 18–36. Springer, 2009.


	How not to VoteAgain: Pitfalls of Scalable Coercion-Resistant E-Voting

