
How to Prove Schnorr Assuming Schnorr:
Security of Multi- and Threshold Signatures

Elizabeth Crites1, Chelsea Komlo2, and Mary Maller3

1 University of Edinburgh
2 University of Waterloo, Zcash Foundation

3 Ethereum Foundation

Abstract. This work investigates efficient multi-party signature schemes
in the discrete logarithm setting. We focus on a concurrent model, in
which an arbitrary number of signing sessions may occur in parallel.
Our primary contributions are: (1) a modular framework for proving the
security of Schnorr multisignature and threshold signature schemes, (2)
an optimization of the two-round threshold signature scheme FROST that
we call FROST2, and (3) the application of our framework to prove the
security of FROST2 as well as a range of other multi-party schemes.

We begin by demonstrating that our framework is applicable to
multisignatures. We prove the security of a variant of the two-round
MuSig2 scheme with proofs of possession and a three-round multisigna-
ture SimpleMuSig. We introduce a novel three-round threshold signature
SimpleTSig and propose an optimization to the two-round FROST thresh-
old scheme that we call FROST2. FROST2 reduces the number of scalar
multiplications required during signing from linear in the number of sign-
ers to constant. We apply our framework to prove the security of FROST2
under the one-more discrete logarithm assumption and SimpleTSig under
the discrete logarithm assumption in the programmable random oracle
model.

Table of Contents

1 Introduction . 3

1.1 Our Contributions . 5

2 Related Work . 6

3 Preliminaries . 8

4 Proving the Security of Multisignatures . 8

4.1 Definition of Security for Multisignatures . 9

4.2 Three-Round Multisignature SimpleMuSig . 10

4.3 Proving the Security of SimpleMuSig . 12

4.4 Two-Round Multisignature SpeedyMuSig . 19

4.5 Proving the Security of SpeedyMuSig . 21

5 Proving the Security of Threshold Signatures . 26

5.1 Definition of Security for Threshold Signatures 27

5.2 Three-Round Threshold Signature SimpleTSig 28

5.3 Proving the Security of SimpleTSig . 29

5.4 Optimized Two-Round Threshold Signature FROST2 30

5.5 Proving the Security of FROST2 . 32

6 Conclusion . 37

A Proof of the Schnorr Knowledge of Exponent Assumption 41

B Proof of the Schnorr Computational Assumption 44

C Background on the Two-Nonce Fix . 45

D Proof of the Binonce Schnorr Computational Assumption 46

E Proof of Security for SimpleTSig . 49

F Changelog . 53

G Figures . 54

1 Introduction

Schnorr signatures are one of the most widely used and studied primitives in
public key cryptography [41]. In this work, we are interested in proving the
security of multi-party signature schemes whose output is a Schnorr signature. In
particular, we focus on multisignatures and threshold signatures. A multisignature
scheme allows a group of n signers, each in possession of a public/private key
pair, to jointly compute a signature σ on a message m. A threshold signature
scheme defines a t-out-of-n access structure of a private key that is shared
by a set of n parties, at least t of whom are required to cooperate in order
to issue a valid signature. Each multi- and threshold signature scheme in this
work produces a standard (single-party) Schnorr signature, which is a Sigma-
protocol zero-knowledge proof of knowledge of the discrete logarithm of the
group public key, made non-interactive and bound to the message m by the
Fiat-Shamir transform [20]. All are suitable as drop-in replacements in systems
that implement Schnorr signatures.

Great care is required when proving the concurrent security of multi- and
threshold signatures, wherein an adversary that corrupts some number of sign-
ers may open an arbitrary number of signing sessions with any honest signer
simultaneously. Even a seemingly intuitive analysis can contain subtle errors that
render the proof completely invalid. Indeed, Drijver’s et al. [18] demonstrated
that a wide range of multisignature schemes cannot be proven secure under the
one-more discrete logarithm assumption. Benhamouda et al. [12] later confirmed
that there exists a polynomial-time ROS attack against these multisignatures
as well as against various blind and threshold signature schemes. The attack
assumes a concurrent adversary; prior security reductions either did not consider
concurrency or had an incorrect arguments arising from the complexity of using
forking lemmas in reductions.

Our methods for proving security concentrate on cleanly separating the parts
of the reduction that involve complex interactions between multiple parties, and
the parts of the reduction that require rewinding or forking the adversary. By
modularizing our reductions in this manner, we avoid having to argue about
rewinding adversaries and concurrency at the same time. An immediate conse-
quence is that concurrent security comes for free, and our reductions hold against
adversaries that can open multiple signing sessions at the same time.

In this work, we prove the security of four different schemes: (1) a three-round
multisignature scheme SimpleMuSig with “proofs of possession” (to be discussed
shortly); (2) a more efficient version of the two-round multisignature scheme
MuSig2 [36] with proofs of possession, which we call SpeedyMuSig; (3) a novel
three-round threshold signature SimpleTSig; and (4) an optimized version of the
two-round threshold signature FROST [31] that we call FROST2. SimpleTSig and
FROST2 are both proven in combination with an adaptation of the Pedersen
distributed key generation protocol by Komlo and Goldberg [31] that uses proofs
of possession, which we call PedPoP. The security models and assumptions on
which our schemes rely are outlined in Figure 1.

3

Fig. 1. Comparison of security models and assumptions underpinning the multisignature
and threshold signature constructions in this work. PROM is the Programmable Random
Oracle Model, KoE is Knowledge of Exponent Assumption, DL is the Discrete Logarithm
Problem, and OMDL is the One-More Discrete Logarithm Problem. PoP is the Proof-
of-Possession key generation protocol employed for our multisignature schemes. PedPoP
is the distributed key generation protocol employed for our threshold schemes.

All of the constructions in this work have an explicit dependence on proofs of
possession; that is, parties prove in zero knowledge that they know the discrete
logarithm of some group element or public key. They are independent from
signing and appear only during key generation. While proofs of possession exist
in the standard model [21], we work directly with Schnorr signatures instead. This
choice was motivated by a desire to prioritize scheme simplicity. As a result, we
introduce a non-falsifiable assumption, called the Schnorr knowledge of exponent
assumption (schnorr-koe). The schnorr-koe assumption says that an adversary that
forges a Schnorr proof with respect to a public key of its choosing can extract the
corresponding secret key. We prove that schnorr-koe holds without any tightness
loss in the algebraic group model (AGM) [22] using similar methods to [1]. It is
similar in style to knowledge of exponent assumptions that are widely used in
the SNARK literature [16]. While non-falsifiable, we argue that this assumption
has already stood the test of time in sense that Schnorr signatures are one of the
most widely used and studied proofs of knowledge in the cryptographic literature.
The schnorr-koe assumption allows us to use Schnorr signatures as proofs of
possession that cost no more to store, verify, and implement than a standard
Schnorr signature (512 bit proofs verify in 0.5 milliseconds [46]) and are practical
when the same key may be used multiple times.

Our three-round schemes SimpleMuSig and SimpleTSig rely on the discrete
logarithm assumption (as well as proofs of possession for key generation). The
two-round schemes SpeedyMuSig and FROST2 rely on the one-more discrete
logarithm assumption (as well as proofs of possession as part of key generation).

4

Our proofs of security encompass nuanced attacks that prior security models did
not consider, such as ROS-style attacks that emerge in the concurrent setting.
Our security reductions are in the programmable random oracle model and use
two iterations of the adversary. To increase confidence in our arguments, we
implement our FROST2 reduction in python and see that the algorithm succeeds
when the adversary does and that the oracle responses are structured correctly.

Our variant of the MuSig2 multisignature scheme with proofs of possession,
SpeedyMuSig, is likely of independent interest, as it offers significant efficiency
improvements over alternative schemes in the literature. This is because proofs
of possession allow the aggregate public key under which the multisignature
verifies to be simply the product of the signers’ individual public keys. It involves
group multiplications instead of costly group exponentiations and remains secure
against rogue-key attacks. See Table 2 for a breakdown of costs.

1.1 Our Contributions

The contributions of this paper are as follows:

– We present a new, modular framework for proving the concurrent security
of multi- and threshold signatures and demonstrate its applicability to a
variety of multi-party schemes. Concurrency applies to signing, but not key
generation.

– We introduce and prove the tight security of the Schnorr knowledge of
exponent assumption in the algebraic group model. This is of independent
interest and useful for any application involving proofs of possession.

– We introduce and prove secure a three-round multisignature SimpleMuSig.
– We present and prove secure a three-round threshold signature SimpleTSig

that is the threshold analogue of SimpleMuSig.
– We introduce and prove secure a variant of the two-round MuSig2 multisig-

nature scheme with proofs of possession, called SpeedyMuSig. To the best of
our knowledge, SpeedyMuSig is the most efficient Schnorr multisignature in
the literature.

– We propose and prove secure an optimized variant of the two-round threshold
signature FROST that we call FROST2. FROST2 allows for improved efficiency
during signing over FROST, reducing the number of exponentiations from
linear in the number of signers to constant.

– We provide an open source python implementation of our reduction for
FROST2.4

History of this paper. Parts of this work appear in the CRYPTO 2022 paper
“Better than Advertised Security for Non-Interactive Threshold Signatures” by
Bellare, Crites, Komlo, Maller, Tessaro and Zhu [5]. It introduces the optimization
FROST2 (Section 5.4) and includes the proof of security for FROST2 together
with distributed key generation (Section 5.5). We thank Bellare, Tessaro, and
Zhu for their invaluable feedback, which led to the current version of this paper.
SimpleTSig is a new contribution to this edition; see Appendix F for details.

4 https://github.com/mmaller/multi_and_threshold_signature_reductions

5

https://github.com/mmaller/multi_and_threshold_signature_reductions

Scheme KeyGen KeyVerify Sign Combine Verify
exp G F exp rounds exp G F exp exp

Multisignatures

BN06 [8] 1 1 0 - 3 1 1 1 0 n+ 1
mBCJ [18] 2 2 1 2 2 4 2 3 0 8
MuSig [34] 1 1 0 - 3 n+ 1 1 2 n n+ 1
MuSig2 [36] 1 1 0 - 2 n+ 3 2 1 n+ 1 n+ 2
DWMS [3] 1 1 0 - 2 3n+ 2 2 1 n+ 1 n+ 1

SimpleMuSig 2 2 1 2 3 1 1 2 0 2
SpeedyMuSig 2 2 1 2 2 3 2 1 1 2

Threshold signatures

FROST [31] 3n+ nt+ t+ 1 t+ 2 1 - 2 t+ 2 2 1 t 2
FROST2 3n+ nt+ t+ 1 t+ 2 1 - 2 3 2 1 1 2

Fig. 2. Efficiency of Multi-Party Schnorr Schemes. All multi- and threshold signatures
output a standard Schnorr signature except mBCJ. exp stands for the number of
group exponentiations. The number of network rounds between participants is given
in the round column. The number of group and field elements is denoted by G and F,
respectively, and is given as the total number of elements sent per signer.

2 Related Work

Bellare and Neven [8] introduced a multisignature scheme with three rounds of
signing and verification matching that of a standard Schnorr signature (BN06).
Maxwell et al. [34] expanded upon this scheme to allow for key aggregation
(MuSig). Drijvers et al. [18] gave the first two-round scheme that is secure
under the discrete logarithm assumption (and not susceptible to ROS attacks),
but the resulting signature format is custom made (mBCJ). Nick et al. [37]
presented an alternative two-round multisignature scheme that outputs a Schnorr
signature. They rely on relatively expensive zero-knowledge proofs, which hurt the
performance of the signer. Nick et al. [36] proposed a two-round multisignature
scheme with efficient signing under the one-more discrete logarithm assumption
(MuSig2). A variant of this two-round multisignature scheme was simultaneously
proposed by Alper and Burdges [3]. Our work improves on these schemes in
efficiency and also because our security reductions are more modular. Unlike prior
schemes, we separate the part of the security reduction that depends on rewinding
the adversary from the part of the reduction that analyzes the interactive nature
of the multisignature scheme.

Proofs of security for multisignatures can alternatively be given in the algebraic
group model (AGM) [36, 3]; however, AGM proofs in more complicated settings
have their own delicacies and have been known to result in serious errors [23].
We limit the intricate linear algebra arguments inherent in algebraic group model

6

proofs to our analysis of the Schnorr knowledge of exponent assumption, for
which the AGM proof can be kept simple.

Fuchsbauer et al. [22] demonstrated that the security of Schnorr signatures
can be tightly reduced to the discrete logarithm assumption in the algebraic group
model. However, they showed that the adversary cannot forge a signature under a
public key given to them by the challenger. In the proof of the Schnorr knowledge
of exponent assumption (Theorem 1), we show a stronger property: there exists
an extractor that can output the secret key even when the adversary can forge
under a public key of its choosing. In other words, we allow the adversary to
produce new signatures, but when they do, they must also know the secret key.

Boldyreva [13] and Ristenpart and Yilek [40] showed that proofs of possession
can be used to efficiently instantiate knowledge-of-secret-key assumptions for cer-
tain schemes in pairing-based groups. Boneh et al. [14] considered key aggregation
in pairing-based groups. They also proposed a three-round multisignature scheme
MSDL as well as a variant that included proofs of possession, called MSDL-pop.
The modified scheme was claimed to have a proof of security similar to that of
DG-CoSi [17] and was therefore omitted; however, in a follow-up work [18], the
proof of DG-CoSi was determined to be flawed, leaving open the question of how
to prove the security of MSDL-pop. We relabel MSDL-pop as SimpleMuSig and
prove security, thus filling this gap in the literature.

Regarding two-round Schnorr-based threshold signature schemes, Gennaro
et al. [27] proposed a protocol that is not secure in the concurrent setting due
to ROS attacks. Komlo and Goldberg proposed FROST [31], which is concretely
efficient and secure in the concurrent setting. We present an optimization to
FROST that we call FROST2, which reduces the number of scalar multiplications
required during signing from linear in the threshold to one single scalar multipli-
cation. Further, the security proof presented by Komlo and Goldberg requires an
interactive construction and cannot extend to the non-interactive variant without
a heuristic assumption. Our techniques allow for a direct proof of security.

Concurrently to this work, Lindell [32] proposed a three-round Schnorr thresh-
old signature scheme. To be secure in the programmable random oracle model
under the discrete logarithm assumption only, the protocol requires the Fischlin
transform [21], which is expensive due to the requirement that the prover brute-
force a weak hash function. Our three-round threshold signature SimpleTSig can
also be proven in the programmable random oracle model under the discrete
logarithm assumption. To avoid Fischlin, we instantiate SimpleTSig with the
PedPoP key generation algorithm, which uses the schnorr-koe assumption.

Bellare and Dai [6] recently proposed a new proving framework for mul-
tisignatures via a chain of sub-reductions and proved the security of existing
three-round schemes [34, 8] as well as their own two-round scheme. However,
their scheme is incompatible with standard Schnorr signature verification. This
work proves the security of two- and three-round Schnorr multisignatures and
threshold signatures.

7

3 Preliminaries

Let λ ∈ N denote the security parameter and 1λ its unary representation. A
function ν : N→ R is called negligible if for all c > 0, there exists k0 such that
ν(k) < 1

kc for all k > k0. For a non-empty set S, let x←$ S denote sampling an
element of S uniformly at random and assigning it to x.

Let PPT denote probabilistic polynomial time. Algorithms are randomized
unless explicitly noted otherwise. Let y ← A(x;ω) denote running algorithm A
on input x and randomness ω and assigning its output to y. Let y←$A(x) denote
y ← A(x;ω) for a uniformly random ω. The set of values that have non-zero
probability of being output by A on input x is denoted by [A(x)].

Code-based games are used in security definitions [10]. A game GamesecA (λ),
played with respect to a security notion sec and adversaryA, has a main procedure
whose output is the output of the game.

Let GrGen be a deterministic polynomial-time algorithm that takes as input
a security parameter 1λ and outputs a group description G = (G, p, g) consisting
of a group G of order p, where p is a λ-bit prime, and a generator g of G.

Definition 1 (Schnorr Signatures [41]). Let GrGen be a group generator that
outputs G = (G, p, g), and let H be a hash function. The signer’s secret key is
a value x←$ Zp, and its public key is X ← gx. In order to sign a message m,
the signer samples r←$ Zp and computes a nonce R ← gr, hash H(m,R), and
z = r + cx. The signature is the pair (R, z), and it is valid if RXc = gz.

Assumption 1 (Discrete Logarithm Assumption (DL)) Let GrGen be a
group generator that outputs G = (G, p, g). The discrete logarithm assumption
holds with respect to G if for all PPT adversaries A, there exists a negligible
function ν such that Pr[G ← GrGen(1λ);X ←$ G;x←$A(G, X) : X = gx] < ν(λ).

Assumption 2 (One-More Discrete Logarithm Assumption (OMDL))
Let GrGen be a group generator that outputs G = (G, p, g), and let Odl be a dis-
crete logarithm oracle that can be called at most n times. The one-more discrete
logarithm assumption holds with respect to G if for all PPT adversaries A, there
exists a negligible function ν such that Pr[G ← GrGen(1λ); (X0, . . . , Xn)←$ Gn+1;

(x0, . . . , xn)←$AOdl

(G, X0, . . . , Xn) : Xi = gxi ∀ 0 ≤ i ≤ n] < ν(λ).

Assumption 3 (Algebraic Group Model (AGM) [22]) An adversary is al-
gebraic if for every group element Z ∈ G = 〈g〉 that it outputs, it is required
to output a representation a = (a0, a1, a2, . . .) such that Z = ga0

∏
Yi
ai , where

Y1, Y2, · · · ∈ G are group elements that the adversary has seen thus far.

4 Proving the Security of Multisignatures

We begin by providing the definition of a multisignature scheme that employs
proofs of possession as a component of key generation. We then introduce
SimpleMuSig, a three-round multisignature scheme with proofs of possession

8

(Fig. 3). This construction was proposed in [17] as MSDL-pop, but without
a proof of security. We prove that SimpleMuSig is EUF-CMA secure in the
programmable random oracle model under the discrete logarithm assumption
and a new assumption linked to the proofs of possession: the Schnorr knowledge
of exponent (schnorr-koe) assumption. We define and justify this assumption in
Section 4.3. We then construct a variant of the two-round multisignature scheme
MuSig2 [36] that employs proofs of possession in lieu of key aggregation, which
we call SpeedyMuSig (Fig. 7). We prove the security of SpeedyMuSig under the
one-more discrete logarithm assumption and the Schnorr knowledge of exponent
assumption in the programmable random oracle model.

4.1 Definition of Security for Multisignatures

We build upon the definition of a multisignature scheme with proofs of possession
given by Ristenpart and Yilek [40], assuming without loss of generality that there
is a single honest signer whose index is 1.

Definition of Multisignatures. A multisignature schemeM with proofs of pos-
session is a tuple of algorithmsM = (Setup,KeyGen,KeyVerify, (Sign,Sign′,Sign′′),
Combine,Verify). The public parameters are generated by a trusted party par←
Setup and given as input to all other algorithms. Each of the n signers generates
a public/private key pair (pki, ski)←$ KeyGen(), where pki consists of a standard
public key component Xi and a proof of possession πi of Xi. Participants output
their public keys and verify the public keys of others using KeyVerify. To collec-
tively sign a message m, each of the signers calls the interactive signing protocol
(Sign,Sign′,Sign′′) on its individual secret key ski, a set PK of public keys, and the
message m. At the end of the signing protocol, the signers’ individual signature
shares are combined using the Combine algorithm to form the multisignature σ.
Note that Combine may be performed by one of the signers or an external party.
The multisignature σ on m is valid if Verify(PK,m, σ) = 1.

A multisignature scheme is secure if it is correct and unforgeable.

Correctness. Correctness requires that for all λ, for all n, and for all messages
m, if (pki, ski)←$ KeyGen() for 1 ≤ i ≤ n and all signers input (PK =
{X1, . . . , Xn}, ski,m) to the signing protocol (Sign,Sign′,Sign′′), then every
signer will output a signature share that, when combined with all other
shares, results in a signature σ satisfying Verify(PK,m, σ) = 1.

Unforgeability. EUF-CMA security is described by the following game. (See
Fig. 11 in Appendix G for a formal definition.)

Setup. The challenger generates the public parameters par← Setup and a
challenge key pair (pk1, sk1)←$ KeyGen(), where pk1 = (X1, π1). It runs
the adversary A on input pk1.

9

Signature Queries. A is allowed to make signature queries on any message
m for any set of signer public keys PK with X1 ∈ PK, meaning that
it has access to oracles OSign,OSign′ ,OSign′′ that will simulate the single
honest signer interacting in a signing protocol with the other signers
of PK to sign message m. Note that A may make any number of such
queries concurrently.

Output. Finally, the adversary outputs a multisignature forgery σ∗, a
message m∗, and a set of public keys PK∗ = {X∗1 , . . . , X∗n}. The ad-
versary wins if X∗1 = X1, A made no signing queries on m∗, and
Verify(PK∗,m∗, σ∗) = 1.

4.2 Three-Round Multisignature SimpleMuSig

We now define a three-round multisignature scheme with proofs of possession
for key generation, called SimpleMuSig (Fig. 3). The proofs of possession allow
the aggregated public key X̃ to be computed simply as the product of the public
keys PK = {X1, . . . , Xn} without being susceptible to rogue-key attacks. The
public parameters par generated during setup are provided as input to all other
algorithms and protocols.

SimpleMuSig Description.

Parameter Generation. On input the security parameter 1λ, the setup al-
gorithm runs (G, p, g) ← GrGen(1λ), selects hash functions Hreg,Hcm,Hsig :
{0, 1}∗ → Zp, and outputs public parameters par← ((G, p, g),Hreg,Hcm,Hsig).

Key Generation. Each signer generates a public/private key pair as follows.
They first sample x←$ Zp and compute X ← gx. They then compute a
proof of possession of X as a Schnorr signature on X as follows. They sample
r̄←$ Zp and compute R̄← gr̄. They then compute the hash c̄← Hreg(X,X, R̄)
and z̄ ← r̄ + c̄x. Their proof of possession is the signature π ← (R̄, z̄). The
signer outputs their public/private key pair (pk, sk) = ((X,π), x).

Key Verification. On input a public key pk = (X,π) = (X, (R̄, z̄)), the verifier
computes c̄← Hreg(X,X, R̄) and accepts if R̄X c̄ = gz̄, adding X to the set
LPK of potential signers.

Signing Round 1 (Sign). Let (pki, ski) be the public/private key pair of a
specific signer. They sample ri←$ Zp, compute Ri ← gri and cmi ← Hcm(Ri),
and output their commitment cmi.

Signing Round 2 (Sign′). On input a set PK = {X1, . . . , Xn} of public keys,
the corresponding commitments {cm1, . . . , cmn}, and the message m to be
signed5, the signer outputs their nonce Ri.

Signing Round 3 (Sign′′). On input a set PK = {X1, . . . , Xn} of public keys,
the corresponding commitments and nonces {(R1, cm1), . . . , (Rn, cmn)}, and
the message m, the signer first checks that cmj = Hcm(Rj) for all j 6= i.

5 While the input values are not explicitly used at this stage of signing, revealing
nonces before these values are fixed leads to known insecurities [35].

10

Setup(1λ)

LPK ← ∅ // registered public keys

(G, p, g)← GrGen(1λ)

select three hash functions

Hreg,Hcm,Hsig : {0, 1}∗ → Zp
par← ((G, p, g),Hreg,Hcm,Hsig)

return par

KeyGen()

x←$ Zp; X ← gx

r̄←$ Zp; R̄← gr̄

c̄← Hreg(X,X, R̄)

z̄ ← r̄ + c̄x

π ← (R̄, z̄) // PoP: Schnorr sig on X

pk← (X,π); sk← x

return (pk, sk)

KeyVerify(X,π)

parse (R̄, z̄)← π

c̄← Hreg(X,X, R̄)

if R̄X c̄ = gz̄

LPK ← LPK ∪ {X}
return 1

else return 0

Sign()

// local signer has index 1

r1←$ Zp; R1 ← gr1

cm1 ← Hcm(R1)

ρ1 ← cm1

st1 ← r1

return (ρ1, st1)

Sign′(st1, sk1,m, (X2, ρ2), . . . , (Xn, ρn))

parse r1 ← st1

R1 ← gr1

ρ′1 ← R1; st′1 ← st1

return (ρ′1, st
′
1)

Sign′′(st′1, sk1,m, {(Xi, ρi, ρ
′
i)}2≤i≤n)

parse r1 ← st′1; x1 ← sk1

X1 ← gx1

parse cmi ← ρi, Ri ← ρ′i, 2 ≤ i ≤ n
if cmi 6= Hcm(Ri) for some 2 ≤ i ≤ n return ⊥

else X̃ ←
n∏
i=1

Xi; R̃←
n∏
i=1

Ri

c← Hsig(X̃,m, R̃)

z1 ← r1 + cx1

ρ′′1 ← z1; st′′1 ← R̃

return (ρ′′1 , st
′′
1)

Combine(m, (X1, ρ
′
1, ρ
′′
1), . . . , (Xn, ρ

′
n, ρ
′′
n))

parse Ri ← ρ′i, zi ← ρ′′i , 1 ≤ i ≤ n

X̃ ←
n∏
i=1

Xi; R̃←
n∏
i=1

Ri; z ←
n∑
i=1

zi

σ ← (R̃, z)

return σ

Verify(PK,m, σ)

parse {X1, . . . , Xn} ← PK; (R̃, z)← σ

X̃ ←
n∏
i=1

Xi

c← Hsig(X̃,m, R̃)

if R̃X̃c = gz return 1

else return 0

Fig. 3. The three-round SimpleMuSig multisignature scheme with proofs of possession.
The public parameters par are implicitly given as input to all algorithms.

11

Fig. 4. Security models and intermediate assumptions underpinning the multisignature
and threshold signature constructions in this work.

If for some j′, cmj′ 6= Hcm(Rj′), abort. Otherwise, the signer computes

the aggregate key X̃ ←
∏n

1 Xj , aggregate nonce R̃ ←
∏n

1 Rj , hash c ←
Hsig(X̃,m, R̃), and zi ← ri + cxi and outputs zi.

Combining Signatures. On input a set PK = {X1, . . . , Xn} of public keys
and the corresponding signatures {(R1, z1), . . . , (Rn, zn)} on the message m,
the combiner computes X̃ ←

∏n
1 Xj , R̃ ←

∏n
1 Rj , c ← Hsig(X̃,m, R̃), and

z ←
∑n

1 zj and outputs the signature σ ← (R̃, z).
Verification. On input a set of public keys PK = {X1, . . . , Xn}, a message

m, and a signature σ = (R̃, z), the verifier computes X̃ =
∏n

1 Xj and

c← Hsig(X̃,m, R̃) and accepts if R̃X̃c = gz.

Correctness of SimpleMuSig is straightforward to verify. Note that verification
of the multisignature σ is identical to verification of a standard, key-prefixed
Schnorr signature with respect to the aggregate nonce R̃ and aggregate key X̃.

4.3 Proving the Security of SimpleMuSig

Here we introduce our framework for proving the concurrent security of multi-
party signature schemes. Our framework captures the two parts of each scheme:
key generation and signing. For key generation, we introduce and justify the
Schnorr knowledge of exponent (schnorr-koe) assumption. For signing, we intro-
duce two intermediate assumptions, the Schnorr computational (schnorr) assump-
tion and the binonce Schnorr computational (bischnorr) assumption. (Discussion
of bischnorr is deferred to Section 4.5, where it is first used.)

These assumptions allow us to separate the parts of the reduction that involve
complex interactions between multiple parties from the parts of the reduction
that require rewinding or forking the adversary. Specifically, the schnorr and
bischnorr assumptions reduce to the discrete logarithm problem and one-more

12

discrete logarithm problem, respectively, using two iterations of the adversary.
The reductions from our multi-party schemes to these assumptions are straight
line. We present our modular framework in Figure 4.

We first apply our techniques to SimpleMuSig, demonstrating that it is EUF-
CMA secure in the programmable random oracle model under the discrete
logarithm assumption and the Schnorr knowledge of exponent assumption.

Schnorr Knowledge of Exponent Assumption. Here we formally introduce
the Schnorr knowledge of exponent (schnorr-koe) assumption, which we show
is true under the discrete logarithm assumption in the algebraic group model
without any tightness loss. The schnorr-koe assumption allows us to prove the
security of multi-party signatures in the setting where each participant is required
to provide a proof of possession of their secret key during a key generation and
registration phase. By formatting our desired security property directly as an
assumption, we avoid the complexity of rewinding adversaries, which is required
when proving security of Schnorr signatures in the random oracle model only,
and which may result in a loss of tightness exponential in the number of parties
that the adversary controls [44]. The schnorr-koe assumption implies that if an
adversary can forge a Schnorr signature for some public key, then it must know
the corresponding secret key. It is a non-falsifiable assumption. While new to the
setting of multi-party signatures, schnorr-koe is reminiscent of prior knowledge of
exponent assumptions [16, 9] employed to prove the security of Succinct NIZK
arguments (SNARKs). We give more background on knowledge of exponent
assumptions and their use in Appendix A.

For the definition, consider the game in Figure 5 associated to group G,
adversary A, and an algorithm Ext, called an extractor. The adversary A is run
with random coins ω. A has access to a signing oracle Osch-pop that outputs a
Schnorr signature under a randomly sampled key X on the message X. (The
oracle samples a fresh public key with each invocation.) It can call its challenge
oracle Ochal with a triple (X∗, R̄∗, z̄∗). If this is not a triple returned by Osch-pop,
yet verifies as a Schnorr signature under public key X∗, the extractor is asked
to find the discrete logarithm x∗ of X∗, and the adversary wins (the game sets
win to true) if the extractor fails. The inputs to the extractor are the coins of
the adversary, the description of the group G, and the sets Qsch-pop,Qreg. The

latter, for every query (X,X, R̄) that A made to random oracle H̃reg, stores the
response of the oracle. Note that multiple queries to Ochal are allowed, so that
this captures the ability to perform multiple extractions.

Assumption 4 (The Schnorr Knowledge of Exponent Assumption) Let
GrGen be a group generator that outputs G = (G, p, g) in which the discrete loga-
rithm assumption holds, and let H̃reg be a hash function. Let Advschnorr-koeA,Ext (λ) =

Pr[Gameschnorr-koeA,Ext (λ) = 1], where Gameschnorr-koeA,Ext (λ) is defined in Figure 5. The

Schnorr knowledge of exponent assumption holds with respect to G and H̃reg if for
all PPT adversaries A, there exists a PPT extractor Ext and a negligible function
ν such that Advschnorr-koeA,Ext (λ) < ν(λ).

13

main Gameschnorr-koeA,Ext (λ)

G ← GrGen(1λ)

Qsch-pop,Qreg ← ∅
ω←$ {0, 1}rlA // coins given to A

{0, 1}∗←$AO
sch-pop,chal,R̃O

(G, ω)

// A outputs a bit string

return win

Osch-pop()

// PoP: Schnorr signature on X

x, r̄←$ Zp
X ← gx; R̄← gr̄

c̄← H̃reg(X,X, R̄)

z̄ ← r̄ + c̄x // proof of knowledge of x

Qsch-pop ← Qsch-pop ∪ {(X, R̄, z̄)}
return (X, R̄, z̄)

Ochal(X∗, R̄∗, z̄∗)

c̄∗ ← H̃reg(X
∗, X∗, R̄∗)

if (X∗, R̄∗, z̄∗) ∈ Qsch-pop or

R̄∗(X∗)c̄
∗
6= gz̄

∗
return ⊥

else

x∗←$ Ext(G, ω,Qsch-pop,Qreg)

if gx
∗
6= X∗ then win← true

return x∗

OR̃O(θ) // random oracle

if H̃(θ) = ⊥ then H̃(θ)←$ Zp
return H̃(θ)

Fig. 5. Game used to define the Schnorr knowledge of exponent (schnorr-koe) assump-
tion, where G = (G, p, g) defines a cyclic group G of order p with generator g. PoP
refers to “proof of possession,” which in this setting means demonstrating knowledge of
x. By rlA we denote the randomness length of A. H̃ is initialized to be an empty table.
The hash functions H̃reg, H̃cm, H̃non, H̃sig are computed as H̃(i, ·) for i = 1, 2, 3, 4.

Theorem 1 (dl⇒ schnorr-koe). Let GrGen be a group generator that outputs
G = (G, p, g), and let H̃reg be a random oracle. The Schnorr knowledge of exponent
assumption (Assumption 4) is implied by the discrete logarithm assumption in
the algebraic group model with respect to G and H̃reg.

We present our proof of the schnorr-koe assumption in Appendix A.

Schnorr Computational Assumption. The Schnorr computational assump-
tion is simply that (single-party) Schnorr signatures are unforgeable. An adversary
with access to a Schnorr signing oracle Oschnorr wins the Schnorr computational
game if it can forge a Schnorr signature (m∗, R∗, z∗) under the challenge public
key Ẋ. For more discussion on this assumption, see Appendix B.

Assumption 5 (The Schnorr Computational Assumption) Let GrGen be
a group generator that outputs G = (G, p, g) in which the discrete logarithm as-
sumption holds, and let Ĥsig be a hash function. Let AdvschnorrA (λ) = Pr[GameschnorrA
(λ) = 1], where GameschnorrA (λ) is defined in Figure 6. The Schnorr computational

14

main GameschnorrA (λ)

G ← GrGen(1λ)

ẋ←$ Zp; Ẋ ← gẋ

Qschnorr ← ∅

(m∗, R∗, z∗)←$AO
schnorr,R̂O

(G, Ẋ)

if R∗Ẋ Ĥsig(Ẋ,m
∗,R∗) = gz

∗

∧m∗ /∈ Qschnorr return 1

else return 0

Oschnorr(m)

// Schnorr signature under secret key ẋ

r←$ Zp; R← gr

c← Ĥsig(Ẋ,m,R)

z ← r + cẋ

Qschnorr ← Qschnorr ∪ {m}
return (R, z)

OR̂O(θ) // random oracle

if Ĥ(θ) = ⊥ then Ĥ(θ)←$ Zp
return Ĥ(θ)

Fig. 6. Game used to define the Schnorr computational (schnorr) assumption, where
G = (G, p, g) defines a cyclic group G of order p with generator g. Ĥ is initialized to be
an empty table. The hash functions Ĥreg, Ĥcm, Ĥsig are computed as Ĥ(i, ·) for i = 1, 2, 3.

assumption holds with respect to G and Ĥsig if for all PPT adversaries A, there

exists a negligible function ν such that AdvschnorrA (λ) < ν(λ).

Theorem 2 (dl ⇒ schnorr). Let GrGen be a group generator that outputs
G = (G, p, g), and let Ĥsig be a random oracle. The Schnorr computational
assumption (Assumption 5) is implied by the discrete logarithm assumption with
respect to G and Ĥsig.

For completeness, we have included the proof in Appendix B, although we
note that multiple versions of this reduction appear in the literature [39, 38, 42].

We are now ready to prove the following theorem.

Theorem 3 (SimpleMuSig). SimpleMuSig is EUF-CMA secure under the dis-
crete logarithm assumption and the Schnorr knowledge of exponent assumption
in the programmable random oracle model.

Proof. Let A be a PPT adversary attempting to break the EUF-CMA security of
SimpleMuSig. We construct a PPT adversary B1 playing game Gameschnorr-koeB1,Ext (λ)
and thence, from the schnorr-koe assumption, obtain an extractor Ext for it. We
construct a PPT adversary B2 playing game GameschnorrB2

(λ) such that whenever
A outputs a valid forgery, either B1 breaks the schnorr-koe assumption or B2

breaks the schnorr assumption. Formally, we have

AdvEUF-CMA
A (λ) ≤ Advschnorr-koeB1,Ext (λ) + AdvschnorrB2

(λ) + negl(λ)

where λ is the security parameter.

15

The Reduction B1: We first define the reduction B1 against schnorr-koe. B1

is responsible for simulating oracle responses for key registration and queries
to Hreg, Hcm, and Hsig. B1 receives as input group parameters G = (G, p, g) and

random coins ω. It can query the random oracle OR̃O from Gameschnorr-koeB1,Ext (λ). It

can also query Oschnorr-koe to receive signatures under H̃reg and Ochal on inputs
(X∗, R̄∗, z̄∗) to challenge the extractor Ext to output a discrete logarithm x∗ for
X∗.

Initialization. B1 may program Hreg,Hcm, and Hsig, but not H̃reg (because it is
part of B1’s challenge). Let Qreg be the set of Hreg queries and their responses.

Simulating Hash Queries. B1 handles A’s hash queries throughout key regis-
tration as follows.

Hreg: When A queries Hreg on (X,X, R̄), B1 checks whether (X,X, R̄, c̄) ∈ Qreg

and, if so, returns c̄. Else, B1 queries c̄← H̃reg(X,X, R̄), appends (X,X, R̄, c̄) to
Qreg, and returns c̄.

Hcm: When A queries Hcm on R, B1 queries cm← H̃cm(R) and returns cm.

Hsig: When A queries Hsig on (X,m,R), B1 queries ĉ← H̃sig(X,m,R) and returns
ĉ.

Simulating Key Registration. B1 first queriesOsch-pop and receives (Ẋ, R̄1, z̄1).
B1 runs A on input random coins ω and simulates key registration as follows. B1

embeds Ẋ as the public key X1 of the honest party and adds X1 to the list LPK
of potential signers. When A queries ORegister to register pk∗ = (X∗, π∗) such
that KeyVerify(X∗, π∗) = 1, B1 adds X∗ to LPK (if X∗ isn’t already included).

We now argue that: (1) A cannot distinguish between a real run of key
registration and its interaction with B1; and (2) Ext(G, ω,Qsch-pop,Qreg) outputs
x∗ such that X∗ = gx

∗
whenever B1 queries Ochal(X∗, R̄∗, z̄∗).

(1) We will see shortly that (Ẋ, R̄1, z̄1) is computed as R̄1 ← gz̄1Ẋ−c̄1 for
random c̄1, z̄1, so performing validation of the honest party’s (X1, R̄1, z̄1) holds
and B1’s simulation of key registration is correct.

(2) Observe that Hreg(X
∗, X∗, R̄∗) = H̃reg(X

∗, X∗, R̄∗) unless (X∗, R̄∗) =

(Ẋ, R̄1). The latter happens only if X∗ = Ẋ, but in this case key registration
outputs ⊥. We thus have that (X∗, R̄∗, z̄∗) is a verifying signature under H̃reg

and either Ext succeeds, or B1 breaks the schnorr-koe assumption. Therefore, the
probability of the event occurring where Ext fails to outputs x∗ is bounded by
Advschnorr-koeB1,Ext (λ).

The Reduction B2: We next define the reduction B2 against schnorr. B2 is
responsible for simulating the honest party during signing and queries to Hreg,
Hcm, and Hsig. B2 receives as input group parameters G = (G, p, g) and a challenge

public key Ẋ. It can query Oschnorr and OR̂O from GameschnorrB2
(λ).

Initialization. B2 may program Hreg,Hcm, and Hsig, but not Ĥsig (because it is

part of B2’s challenge). Let QSign, Q
′
Sign, Q

′′
Sign be the set of OSign,OSign′ ,OSign′′

queries and responses in Signing Round 1, 2, 3, respectively.

16

DKG Extraction. B2 first simulates a Schnorr proof of possession of Ẋ as follows.
B2 samples c̄1, z̄1←$ Zp, computes R̄1 ← gz̄1Ẋ−c̄1 , and appends (Ẋ, Ẋ, R̄1, c̄1)
to Qreg. Then, B2 runs B1(G;ω) on random coins ω. B2 handles B1’s queries as

follows. When B1 queries H̃reg on (X,X, R̄), B2 checks whether (X,X, R̄, c̄) ∈ Qreg

and, if so, returns c̄. Else, B2 queries c̄← Ĥreg(X,X, R̄), appends (X,X, R̄, c̄) to

Qreg, and returns c̄. When B1 queries H̃cm, H̃sig, B2 handles them the same way
it handles A’s Hcm,Hsig queries, described below. The first time B1 queries its

Osch-pop oracle, B2 returns (Ẋ, R̄1, z̄1). When B1 queries Ochal(X∗j , R̄
∗
j , z̄
∗
j), B2

runs x∗j ← Ext(G, ω,Qsch-pop,Qreg) to obtain x∗j such that X∗j = gx
∗
j and aborts

otherwise.

Simulating Hash Queries. B2 handles A’s hash queries throughout the signing
protocol as follows.

Hreg: When A queries Hreg on (X,X, R̄), B2 checks whether (X,X, R̄, c̄) ∈ Qreg

and, if so, returns c̄. Else, B2 queries c̄← Ĥreg(X,X, R̄), appends (X,X, R̄, c̄) to
Qreg, and returns c̄. Note that B1 and B2 share the state of Qreg.

Hcm: When A queries Hcm on R, B2 checks whether (R, cm) ∈ Qcm and, if so,
returns cm. Else, B2 samples cm←$ Zp, appends (R, cm) to Qcm, and returns cm.

Hsig: When A queries Hsig on (X,m,R), B2 checks whether (X,m,R, m̂, ĉ) ∈
Qsig and, if so, returns ĉ. Else, B2 samples a random message m̂, queries ĉ ←
Ĥsig(Ẋ, m̂, R), appends (X,m,R, m̂, ĉ) to Qsig, and returns ĉ.

Simulating SimpleMuSig Signing. After B1 completes the simulation of key
registration, B2 then simulates the honest party in the SimpleMuSig signing
protocol.

Signing Round 1 (Sign). In the first round of signing, all parties who
intend to participate send commitments cm1, . . . , cmn. For A’s query to OSign,
B2 samples a random message ṁ and queries Oschnorr on ṁ to get a signature
(R1, z1). B2 checks whether (R1, cm1) ∈ Qcm and, if so, returns cm1. Else, B2

samples cm1←$ Zp, appends (R1, cm1) to Qcm, and returns cm1.

Signing Round 2 (Sign′). In the second round of signing, all parties corre-
sponding to PK = {X1, . . . , Xn} take as input the message m to be signed and
reveal nonces R1, . . . , Rn such that cmi = Hcm(Ri). B2 looks up cm2, . . . , cmn for
records (Ri, cmi) ∈ Qcm. If there exists some j for which a record (Rj , cmj) does

not exist, then B2 aborts. If all records exist, then B2 computes X̃ ←
∏n
i=1Xi and

R̃ =
∏n
i=1Ri, queries ċ← Ĥsig(X1, ṁ, R1) (not R̃), and appends (X̃,m, R̃, ṁ, ċ)

to Qsig. (However, if A has already queried Hsig on (X̃,m, R̃), then B2 aborts.)

For A’s query to OSign′ , B2 returns R1.

Signing Round 3 (Sign′′). The third round of signing only proceeds if the
second round terminated, i.e., all parties revealed their nonces in the second
round. For A’s query to OSign′′ , B2 returns z1.

Output. When A returns (PK∗,m∗, σ∗) such that PK∗ = {X∗1 , . . . , X∗n}, X∗i ∈
LPK ∀i,X∗1 = X1, σ

∗ = (R̃∗, z∗), and Verify(PK∗,m∗, σ∗) = 1, B2 computes its
output as follows. B2 looks up x∗2, . . . , x

∗
n (from extraction) such that X∗i = gx

∗
i . B2

17

also looks up m̂∗ from when A queried Hsig on (X̃∗,m∗, R̃∗) and B2 had responded

with ĉ∗ ← Ĥsig(X1, m̂
∗, R̃∗). B2 outputs (m̂∗, R̃∗, z∗ − ĉ∗(x∗2 + · · ·+ x∗n)).

To complete the proof, we must argue that: (1) B2 only aborts with negligible
probability; (2) A cannot distinguish between the real EUF-CMA game and its
interaction with B2; and (3) whenever A succeeds, B2 succeeds.

(1) B2 aborts if Ext fails to return x∗j such that X∗j = gx
∗
j for some j. This

happens with maximum probability Advschnorr-koeB1,Ext (λ).

B2 aborts in Signing Round 2 if A reveals Rj such that cmj = Hcm(Rj) but
A never queried Hcm on Rj . This requires A to have guessed cmj ahead of time,
which occurs with negligible probability 1/p.

B2 also aborts in Signing Round 2 if A had previously queried Hsig on

(X̃,m, R̃). In that case, B2 had returned ĉ ← Ĥsig(X1, m̂, R̃) for some random
message m̂, so the reduction fails. However, this implies that A guessed R1 before
B2 revealed it, which occurs with negligible probability 1/p.

(2) As long as B2 does not abort, B2 is able to simulate the appropriate
responses to A’s oracle queries so that A cannot distinguish between the real
EUF-CMA game and its interaction with B2.

When A queries Hreg on (X,X, R̄) 6= (X1, X1, R̄1), B2 queries its Ĥreg oracle
on (X,X, R̄), so A receives a random value. For (X1, X1, R̄1), B2 programmed
Hreg to output its simulated c̄1 at the beginning of the game. The simulation of
the proof of possession of X1 is perfect because c̄1 is random and π1 = (R̄1, z̄1)
verifies as R̄1X

c̄1
1 = gz̄1 .

When A queries Hsig on (X,m,R), B2 queries ĉ← Ĥsig(X1, m̂, R) on a random
message m̂. The random message prevents trivial collisions; for example, if A
were to query Hsig on (X,m,R) and (X ′,m,R), where X ′ 6= X, A would receive

the same value c ← Ĥsig(X1,m,R) for both and would know it was operating
inside a reduction. Random messages ensure that the outputs are random, so
A’s view is correct.

When the three signing rounds have been completed, A may verify the

signature share z1 on m as follows. A checks if R1X
Hsig(X̃,m,R̃)
1 = gz1 , where

Hsig(X̃,m, R̃) was programmed by B2 as Ĥsig(X1, ṁ, R1). When B2 queried
Oschnorr on ṁ in Signing Round 1, the signature share z1 was computed such that

R1X
Ĥsig(X1,ṁ,R1)
1 = gz1 , so B2 simulates z1 correctly.

(3) A’s forgery satisfies Verify(PK∗,m∗, σ∗) = 1 and X∗1 = X1, which implies:

R̃∗(X̃∗)Hsig(X̃
∗,m∗,R̃∗) = gz

∗

R̃∗(X∗1 · · ·X∗n)Hsig(X̃
∗,m∗,R̃∗) = gz

∗

R̃∗(X1g
x2∗ · · · gx

∗
n)Hsig(X̃

∗,m∗,R̃∗) = gz
∗

R̃∗X
Hsig(X̃

∗,m∗,R̃∗)
1 = gz

∗−Hsig(X̃
∗,m∗,R̃∗)(x∗2+···+x∗n)

18

B2 ran Ext to obtain x∗2, . . . , x
∗
n. At some point, A queried Hsig on (X̃∗,m∗, R̃∗)

and received ĉ∗ ← Ĥsig(X1, m̂
∗, R̃∗). Thus, A’s forgery satisfies

R̃∗X
Ĥsig(X1,m̂

∗,R̃∗)
1 = gz

∗−Ĥsig(X1,m̂
∗,R̃∗)(x∗2+···+x∗n)

and B2’s output (m̂∗, R̃∗, z∗ − ĉ∗(x∗2 + · · ·+ x∗n)) under X1 = Ẋ is correct.

4.4 Two-Round Multisignature SpeedyMuSig

We now construct SpeedyMuSig (Fig. 7), a variant of the two-round multisignature
scheme MuSig2 [36] that includes proofs of possession. The proofs of possession
allow the aggregated public key X̃ to be computed simply as the product of
the public keys PK = {X1, . . . , Xn}, rather than X̃ ←

∏n
1 X

aj
j , where aj ←

Hagg(PK, Xj), as in the original MuSig2 scheme. The public parameters par
generated during setup are provided as input to all other algorithms and protocols.

SpeedyMuSig Description.

Parameter Generation. On input the security parameter 1λ, the setup al-
gorithm runs (G, p, g) ← GrGen(1λ), selects hash functions Hreg,Hnon,Hsig :
{0, 1}∗ → Zp, and outputs public parameters par← ((G, p, g),Hreg,Hnon,Hsig).

Key Generation. Each signer generates a public/private key pair as follows.
They first choose x←$ Zp and compute X ← gx. They then compute a proof
of possession of X as a Schnorr signature on X as follows. They choose r̄←$ Zp
and compute R̄← gr̄. They then compute the hash c̄← Hreg(X,X, R̄) and
z̄ ← r̄ + c̄x. Their proof of possession is the signature π ← (R̄, z̄). The signer
outputs their public/private key pair (pk, sk) = ((X,π), x).

Key Verification. On input a public key pk = (X,π) = (X, (R̄, z̄)), the verifier
computes c̄← Hreg(X,X, R̄) and accepts if R̄X c̄ = gz̄, adding X to the set
LPK of potential signers.

Signing Round 1 (Sign). Let (pki, ski) be the public/private key pair of a
specific signer. They choose ri, si←$ Zp, compute Ri, Si ← gri , gsi , and
output their two nonces (Ri, Si).

Signing Round 2 (Sign′). On input a set PK = {X1, . . . , Xn} of public keys,
the corresponding nonces {(R1, S1), . . . , (Rn, Sn)}, and the message m to be
signed, first check if (Ri, Si) = (Rj , Sj) for any i 6= j and if so, abort. Else, the

signer computes the aggregate key X̃ ←
∏n

1 Xj , a← Hnon(X̃,m, {(R1, S1), . . . ,

(Rn, Sn)}), and the aggregate nonce R̃ ←
∏n

1 RjS
a
j . The signer computes

the hash c← Hsig(X̃,m, R̃) and zi ← ri + asi + cxi and outputs zi.
Combining Signatures. On input a set of public keys PK = {X1, . . . , Xn}, the

corresponding nonces {(R1, S1), . . . , (Rn, Sn)}, and the message m, the com-
biner computes X̃ ←

∏n
1 Xj , a← Hnon(X̃,m, {(R1, S1), . . . , (Rn, Sn)}), R̃←∏n

1 RjS
a
j , and c ← Hsig(X̃,m, R̃). Finally, it computes z ←

∑n
1 zj and

outputs the signature σ ← (R̃, z).

19

Setup(1λ)

LPK ← ∅ // registered public keys

(G, p, g)← GrGen(1λ)

select three hash functions

Hreg,Hnon,Hsig : {0, 1}∗ → Zp
par← ((G, p, g),Hreg,Hnon,Hsig)

return par

KeyGen()

x←$ Zp; X ← gx

r̄←$ Zp; R̄← gr̄

c̄← Hreg(X,X, R̄)

z̄ ← r̄ + c̄x

π ← (R̄, z̄) // PoP: Schnorr sig on X

pk← (X,π); sk← x

return (pk, sk)

KeyVerify(X,π)

parse (R̄, z̄)← π

c̄← Hreg(X,X, R̄)

if R̄X c̄ = gz̄

LPK ← LPK ∪ {X}
return 1

else return 0

Sign()

// local signer has index 1

r1←$ Zp; R1 ← gr1

s1←$ Zp; S1 ← gs1

ρ1 ← (R1, S1)

st1 ← (r1, s1)

return (ρ1, st1)

Sign′(st1, sk1,m, (X2, ρ2), . . . , (Xn, ρn))

// Sign′ must be called at most once per st1

parse (r1, s1)← st1; x1 ← sk1

R1 ← gr1 ; S1 ← gs1 ; X1 ← gx1

parse (Ri, Si)← ρi, 2 ≤ i ≤ n
if (Ri, Si) = (Rj , Sj) for i 6= j return ⊥

else X̃ ←
n∏
i=1

Xi

a← Hnon(X̃,m, (R1, S1), . . . , (Rn, Sn))

R̃←
n∏
i=1

RiS
a
i

c← Hsig(X̃,m, R̃)

z1 ← r1 + as1 + cx1

ρ′1 ← z1; st′1 ← R̃

return (ρ′1, st
′
1)

Combine(m, (X1, ρ1, ρ
′
1), . . . , (Xn, ρn, ρ

′
n))

parse (Ri, Si)← ρi, zi ← ρ′i, 1 ≤ i ≤ n

X̃ ←
n∏
i=1

Xi

a← Hnon(X̃,m, (R1, S1), . . . , (Rn, Sn))

R̃←
n∏
i=1

RiS
a
i ; z ←

n∑
i=1

zi

σ ← (R̃, z)

return σ

Verify(PK,m, σ)

parse {X1, . . . , Xn} ← PK; (R̃, z)← σ

X̃ ←
n∏
i=1

Xi

c← Hsig(X̃,m, R̃)

if R̃X̃c = gz return 1

else return 0

Fig. 7. The two-round SpeedyMuSig multisignature scheme with proofs of possession.
The public parameters par are implicitly given as input to all algorithms.

20

Verification. On input a set of public keys PK = {X1, . . . , Xn}, a message
m, and a signature σ = (R̃, z), the verifier computes X̃ =

∏n
1 Xj and

c← Hsig(X̃,m, R̃) and accepts if R̃X̃c = gz.

Correctness of SpeedyMuSig is straightforward to verify. Note that verification
of the multisignature σ is identical to verification of a standard, key-prefixed
Schnorr signature with respect to the aggregate nonce R̃ and aggregate key X̃.

4.5 Proving the Security of SpeedyMuSig

We now prove the EUF-CMA security of SpeedyMuSig in the programmable
random oracle model under the one-more discrete logarithm assumption and the
Schnorr knowledge of exponent assumption (Assumption 4). Since SpeedyMuSig
consists of two rounds of signing, there is no need for a Sign′′() algorithm, but for
the purpose of aligning with our generic EUF-CMA definition, one may assume
it returns no value. We apply our framework (Fig. 4), introduced in Section 4.2,
by providing a straight-line reduction from SpeedyMuSig to the binonce Schnorr
computational assumption.

The Binonce Schnorr Computational Assumption. We introduce the
binonce Schnorr computational (bischnorr) assumption, which we prove under
the one-more discrete logarithm assumption in the programmable random oracle
model. It is inspired by the work of Nick et al. [36] and Komlo and Goldberg [31],
whose constructions employ the approach of using two nonces to thwart a
concurrent forgery attack [18]. We expand on this attack and why it does not
affect our assumption in Appendix C.

The bischnorr assumption equips an adversary with two oracles, Obinonce

and Obisign, and two hash functions, Ĥnon and Ĥsig, and asks it to forge a new

Schnorr signature with respect to a challenge public key Ẋ. The Obinonce oracle
takes no input and responds with two random nonces (R,S). The Obisign ora-
cle takes as input a message m, an index k, and a set of nonces and scalars
{(γ1, R1, S1), . . . , (γ`, R`, S`)}. It checks that (Rk, Sk) is a Obinonce response and
that it has not been queried on (Rk, Sk) before. If these checks fail, it returns ⊥.

It then computes an aggregated randomized nonce R̃ =
∏`
i=1RiS

a
i , where a =

Ĥnon(Ẋ,m, (γ1, R1, S1), . . . , (γ`, R`, S`)). Obisign then returns zk = rk+ask+cγkx,
where c = Ĥsig(Ẋ,m, R̃). The adversary wins if it can output a verifying (m∗, R∗)
that was not output by Obisign.

The oracle Obisign can only be queried once for each pair of nonces (R,S)
output by Obinonce. The index k denotes which (γk, Rk, Sk) out of the list
{(γ1, R1, S1), . . . , (γ`, R`, S`)} is being queried; the remaining scalars and nonces
appear only to inform Obinonce what to include as input to Ĥnon. The scalar
γk allows the response zk to be given as zk = rk + ask + cγkx, as opposed to
rk + ask + cx. We will see that this is useful for threshold signatures, where γk
will correspond to the Lagrange coefficient. Note that (γ1, . . . , γ`) (in addition to
the nonces) must be included as input to Ĥnon or else there is an attack.

21

main GamebischnorrA (λ)

G ← GrGen(1λ)

ẋ←$ Zp; Ẋ ← gẋ

Qbinonce, Qused, Qbisign ← ∅

(m∗, R∗, z∗)←$AO
binonce,bisign,R̂O

(G, Ẋ)

if R∗Ẋ Ĥsig(Ẋ,m
∗,R∗) = gz

∗

∧ (m∗, R∗) /∈ Qbisign return 1

else return 0

Obinonce()

r, s←$ Zp
R,S ← gr, gs

Qbinonce ← Qbinonce ∪ {(R,S, r, s)}
return (R,S)

Obisign(m, k, (γ1, R1, S1), . . . , (γ`, R`, S`))

if (Rk, Sk, rk, sk) 6∈ Qbinonce

∨ (Rk, Sk) ∈ Qused return ⊥
else

Qused ← Qused ∪ {(Rk, Sk)}

a← Ĥnon(Ẋ,m, (γ1, R1, S1), . . . , (γ`, R`, S`))

R̃←
∏̀
i=1

RiS
a
i

c← Ĥsig(Ẋ,m, R̃)

zk ← rk + ask + cγkẋ

Qbisign ← Qbisign ∪ {(m, R̃)}
return zk

OR̂O(θ) // random oracle

if Ĥ(θ) = ⊥ then Ĥ(θ)←$ Zp
return Ĥ(θ)

Fig. 8. Game used to define the binonce Schnorr computational (bischnorr) assumption,
where G = (G, p, g) defines a cyclic group G of order p with generator g. Ĥ is initialized
to be an empty table. The hash functions Ĥreg, Ĥnon, Ĥsig are computed as Ĥ(i, ·) for
i = 1, 2, 3.

Assumption 6 (The Binonce Schnorr Computational Assumption) Let
GrGen be a group generator that outputs G = (G, p, g) in which the discrete loga-
rithm assumption holds, and let Ĥnon, Ĥsig be hash functions. Let AdvbischnorrA (λ) =

Pr[GamebischnorrA (λ) = 1], where GamebischnorrA (λ) is defined in Figure 8. The bi-
nonce Schnorr computational assumption holds with respect to G and Ĥnon, Ĥsig

if for all PPT adversaries A, there exists a negligible function ν such that
AdvbischnorrA (λ) < ν(λ).

Theorem 4 (omdl⇒ bischnorr). Let GrGen be a group generator that outputs
G = (G, p, g), and let Ĥnon, Ĥsig be random oracles. The binonce Schnorr compu-
tational assumption (Assumption 6) is implied by the one-more discrete logarithm
assumption with respect to G and Ĥnon, Ĥsig.

We provide a proof of the bischnorr assumption in Appendix D.

We are now ready to prove the following theorem.

22

Theorem 5 (SpeedyMuSig). SpeedyMuSig is EUF-CMA secure under the one-
more discrete logarithm assumption and the Schnorr knowledge of exponent
assumption in the programmable random oracle model.

Proof. Let A be a PPT adversary attempting to break the EUF-CMA security of
SpeedyMuSig. We construct a PPT adversary B1 playing game Gameschnorr-koeB1,Ext (λ)
(Fig. 5) and thence, from the schnorr-koe assumption, obtain an extractor Ext
for it. We construct a PPT adversary B2 playing game GamebischnorrB2

(λ) such that
whenever A outputs a valid forgery, either B1 breaks the schnorr-koe assumption
or B2 breaks the bischnorr assumption. Formally, we have

AdvEUF-CMA
A (λ) ≤ Advschnorr-koeB1,Ext (λ) + AdvbischnorrB2

(λ) + negl(λ)

where λ is the security parameter.

The Reduction B1: We first define the reduction B1 against schnorr-koe. B1 is
responsible for simulating oracle responses for key registration and queries to
Hreg, Hnon, and Hsig. B1 receives as input group parameters G = (G, p, g) and

random coins ω. It can query the random oracle OR̃O from Gameschnorr-koeB1,Ext (λ). It

can also query Oschnorr-koe to receive signatures under H̃reg and Ochal on inputs
(X∗, R̄∗, z̄∗) to challenge the extractor Ext to output a discrete logarithm x∗ for
X∗.

Initialization. B1 may program Hreg,Hnon, and Hsig, but not H̃reg (because it is
part of B1’s challenge). Let Qreg be the set of Hreg queries and their responses.

Simulating Hash Queries. B1 handles A’s hash queries throughout key regis-
tration as follows.

Hreg: When A queries Hreg on (X,X, R̄), B1 checks whether (X,X, R̄, c̄) ∈ Qreg

and, if so, returns c̄. Else, B1 queries c̄← H̃reg(X,X, R̄), appends (X,X, R̄, c̄) to
Qreg, and returns c̄.

Hnon: WhenA queries Hnon on (X,m, {(idi, Ri, Si)}i∈S), B1 queries â← H̃non(X,m,
{(idi, Ri, Si)}i∈S) and returns â.

Hsig: When A queries Hsig on (X,m,R), B1 queries ĉ← H̃sig(X,m,R) and returns
ĉ.

Simulating Key Registration. B1 first queriesOsch-pop and receives (Ẋ, R̄1, z̄1).
B1 runs A on input random coins ω and simulates key registration as follows. B1

embeds Ẋ as the public key X1 of the honest party and adds X1 to the list LPK
of potential signers. When A queries ORegister to register pk∗ = (X∗, π∗) such
that KeyVerify(X∗, π∗) = 1, B1 adds X∗ to LPK (if X∗ isn’t already included).

We now argue that: (1) A cannot distinguish between a real run of key
registration and its interaction with B1; and (2) Ext(G, ω,Qsch-pop,Qreg) outputs
x∗ such that X∗ = gx

∗
whenever B1 queries Ochal(X∗, R̄∗, z̄∗).

(1) We will see shortly that (Ẋ, R̄1, z̄1) is computed as R̄1 ← gz̄1Ẋ−c̄1 for
random c̄1, z̄1, so performing validation of the honest party’s (X1, R̄1, z̄1) holds
and B1’s simulation of key registration is correct.

23

(2) Observe that Hreg(X
∗, X∗, R̄∗) = H̃reg(X

∗, X∗, R̄∗) unless (X∗, R̄∗) =

(Ẋ, R̄1). The latter happens only if X∗ = Ẋ, but in this case key registration
outputs ⊥. We thus have that (X∗, R̄∗, z̄∗) is a verifying signature under H̃reg

and either Ext succeeds, or B1 breaks the schnorr-koe assumption. Therefore, the
probability of the event occurring where Ext fails to outputs x∗ is bounded by
Advschnorr-koeB1,Ext (λ).

The Reduction B2: We next define the reduction B2 against bischnorr. B2 is
responsible for simulating the honest party during signing and queries to Hreg,
Hnon, and Hsig. B2 receives as input group parameters G = (G, p, g) and a challenge

public key Ẋ. It can query Obinonce,Obisign, and OR̂O from GamebischnorrB2
(λ).

Initialization. B2 may program Hreg,Hnon, and Hsig, but not Ĥnon or Ĥsig (because
they are part of B2’s challenge). Let QSign be the set of OSign queries and responses

in Signing Round 1, and let QSign′ be the set of OSign′ queries and responses in
Signing Round 2.

DKG Extraction. B2 first simulates a Schnorr proof of possession of Ẋ as fol-
lows. B2 samples c̄1, z̄1←$ Zp, computes R̄1 ← gz̄1Ẋ−c̄1 , and appends (Ẋ, Ẋ, R̄1,
c̄1) to Qreg. Then, B2 runs B1(G;ω) on random coins ω. B2 handles B1’s queries as

follows. When B1 queries H̃reg on (X,X, R̄), B2 checks whether (X,X, R̄, c̄) ∈ Qreg

and, if so, returns c̄. Else, B2 queries c̄ ← Ĥreg(X,X, R̄), appends (X,X, R̄, c̄)

to Qreg, and returns c̄. When B1 queries H̃non, H̃sig, B2 handles them the same
way it handles A’s Hnon,Hsig queries, described below. The first time B1 queries

its Osch-pop oracle, B2 returns (Ẋ, R̄1, z̄1). When B1 queries Ochal(X∗j , R̄
∗
j , z̄
∗
j), B2

runs x∗j ← Ext(G, ω,Qsch-pop,Qreg) to obtain x∗j such that X∗j = gx
∗
j and aborts

otherwise.

Simulating Hash Queries. B2 handles A’s hash queries throughout the signing
protocol as follows.

Hreg: When A queries Hreg on (X,X, R̄), B2 checks whether (X,X, R̄, c̄) ∈ Qreg

and, if so, returns c̄. Else, B2 queries c̄← Ĥreg(X,X, R̄), appends (X,X, R̄, c̄) to
Qreg, and returns c̄. Note that B1 and B2 share the state of Qreg.

Hnon: When A queries Hnon on (X,m,R1, S1, . . . , Rn, Sn), B2 checks whether
(X,m,R1, S1, . . . , Rn, Sn, m̂, â) ∈ Qnon and, if so, returns â. Else, B2 samples
a random message m̂ (to prevent trivial collisions), sets γi = 1 ∀i6, computes
â ← Ĥnon(Ẋ, m̂, (γ1, R1, S1), . . . , (γn, Rn, Sn)), and appends (X,m,R1, S1, . . . ,
Rn, Sn, m̂, â) to Qnon. B2 then checks if there exists a record (X,m,

∏n
1 RiS

â
i , ṁ, ċ) ∈

Qsig and, if so, aborts. Else, B2 computes ĉ← Ĥsig(Ẋ, m̂,
∏n

1 RiS
â
i) and appends

(X,m,
∏n

1 RiS
â
i , m̂, ĉ) to Qsig. Finally, B2 returns â.

Hsig: When A queries Hsig on (X,m,R), B2 checks whether (X,m,R, m̂, ĉ) ∈
Qsig and, if so, returns ĉ. Else, B2 samples a random message m̂, queries ĉ ←
Ĥsig(Ẋ, m̂, R), appends (X,m,R, m̂, ĉ) to Qsig, and returns ĉ.

6 Lagrange coefficients for multisignatures are 1.

24

Simulating SpeedyMuSig Signing. After B1 completes the simulation of key
registration, B2 then simulates the honest party in the SpeedyMuSig signing
protocol.

Signing Round 1 (Sign). In the first round of signing, all parties who intend
to participate send two nonces (R1, S1), . . . , (Rn, Sn). B2 queries Obinonce to get
(Ṙ1, Ṡ1). For A’s query to OSign, B2 returns (Ṙ1, Ṡ1).

Signing Round 2 (Sign′). In the second round of signing, all parties PK =
{X1, . . . , Xn} take as input the message m to be signed. B2 checks if (Ri, Si) =
(Rj , Sj) for any i 6= j and if so, aborts. Else, B2 computes X̃ =

∏n
1 Xi, checks

if there exists a record (X̃,m, Ṙ1, Ṡ1, . . . , Rn, Sn, m̂
′, â′) ∈ Qnon and, if so, sets

γi = 1 ∀i and queries Obisign on (m̂′, 1, (γ1, Ṙ1, Ṡ1), . . . , (γn, Rn, Sn)) to get z1.
Else, B2 samples a random message m̂′, programs Hnon and Hsig as described

above, and queries Obisign on (m̂′, 1, (γ1, Ṙ1, Ṡ1), . . . , (γn, Rn, Sn)) to get z1. For
A’s query to OSign′ , B2 returns z1.

Output. WhenA returns (PK∗,m∗, σ∗) such that PK∗ = {X∗1 , . . . , X∗n}, X∗i ∈
LPK ∀i,X∗1 = X1, σ

∗ = (R̃∗, z∗), and Verify(PK∗,m∗, σ∗) = 1, B2 computes its
output as follows. It looks up x∗2, . . . , x

∗
n (from extraction) such that X∗i = gx

∗
i .

B2 also looks up m̂∗ from when A queried Hsig on (X̃∗,m∗, R̃∗) and B2 had

responded with ĉ∗ ← Ĥsig(Ẋ, m̂∗, R̃∗). B2 outputs (m̂∗, R̃∗, z∗− ĉ∗(x∗2 + · · ·+x∗n)).

To complete the proof, we must argue that: (1) B2 only aborts with negligible
probability; (2) A cannot distinguish between the real EUF-CMA game and its
interaction with B2; and (3) whenever A succeeds, B2 succeeds.

(1) B2 aborts if Ext fails to return x∗j such that X∗j = gx
∗
j for some j. This

happens with maximum probability Advschnorr-koeB1,Ext (λ).

B2 aborts if A queries Hsig on (X,m,
∏n

1 RiS
â
i) without having first queried

Hnon on (X,m,R1, S1, . . . , Rn, Sn). This requires A to have guessed â ahead of
time, which occurs with negligible probability qH/p.

(2) As long as B2 does not abort, B2 is able to simulate the appropriate
responses to A’s oracle queries so that A cannot distinguish between the real
EUF-CMA game and its interaction with B2.

Indeed, as already observed, B1’s simulation of key generation is correct.

When A queries Hnon on (X,m,R1, S1, . . . , Rn, Sn), B2 queries â← Ĥnon(Ẋ,
m̂, (γ1, R1, S1), . . . , (γn, Rn, Sn)) on a random message m̂. The random message
prevents trivial collisions; for example, ifA were to query Hnon on (X,m,R1, S1, . . . ,
Rn, Sn) and (X ′,m,R1, S1, . . . , Rn, Sn) for X ′ 6= X, A would receive the same
value a← Ĥnon(Ẋ,m, (γ1, R1, S1), . . . , (γn, Rn, Sn)) for both and would know it
was operating inside a reduction. Random messages ensure that the outputs are
random, so A’s view is correct. B2 also ensures that A receives Hnon values that
are consistent with Hsig queries.

After the signing rounds have been completed, A may verify the signature
share z1 on m as follows. A checks if

Ṙ1Ṡ
Hnon(X̃,m,Ṙ1,Ṡ1,...,Rn,Sn)
1 ẊHsig(X̃,m,

∏n
1 RiS

Hnon(X̃,m,Ṙ1,Ṡ1,...,Rn,Sn)
i = gz1

25

When B2 queriedObisign on (m̂′, 1, (γ1, Ṙ1, Ṡ1), . . . , (γn, Rn, Sn)) in Signing Round
2, the signature share z1 was computed such that

Ṙ1Ṡ
Ĥnon(Ẋ,m̂

′,(γ1,Ṙ1,Ṡ1),...,(γn,Rn,Sn))
1 ẊĤsig(Ẋ,m̂

′,
∏n

1 RiS
Ĥnon(Ẋ,m̂

′,(γ1,Ṙ1,Ṡ1),...,(γn,Rn,Sn))
i) = gz1

B2 has programmed the hash values to be equal and therefore simulates z1

correctly.
(3) A’s forgery satisfies Verify(PK∗,m∗, σ∗) = 1 and X∗1 = Ẋ, which implies:

R̃∗(X̃∗)Hsig(X̃
∗,m∗,R̃∗) = gz

∗

R̃∗(X∗1 · · ·X∗n)Hsig(X̃
∗,m∗,R̃∗) = gz

∗

R̃∗(X1g
x2∗ · · · gx

∗
n)Hsig(X̃

∗,m∗,R̃∗) = gz
∗

R̃∗ẊHsig(X̃
∗,m∗,R̃∗) = gz

∗−Hsig(X̃
∗,m∗,R̃∗)(x∗2+···+x∗n)

B2 has employed Ext to obtain x∗2, . . . , x
∗
n. At some point, A queried Hsig on

(X̃∗,m∗, R̃∗) and received one of two values: (1) ĉ∗ ← Ĥsig(Ẋ, m̂∗,
∏n

1 R
∗
i (S
∗
i)â
∗
)

related to a query A made to Hnon on (X̃∗,m∗, R∗1, S
∗
1 , . . . , R

∗
n, S

∗
n), where it re-

ceived â∗ ← Ĥnon(Ẋ, m̂∗, (1, R∗1, S
∗
1), . . . , (1, R∗n, S

∗
n)), or (2) ċ∗ ← Ĥsig(Ẋ, ṁ∗, R̃∗)

without having queried Hnon on (X̃∗,m∗, R̃∗). In either case, B2 has a record
(X̃∗,m∗, R̃∗, m̂∗, ĉ∗) ∈ Qsig such that ĉ∗ ← Ĥsig(Ẋ, m̂

∗, R̃∗). (Note that B2 can
check which case occurred by looking for m̂∗ in its Qnon records.) Thus, A’s
forgery satisfies:

R̃∗ẊĤsig(Ẋ,m̂
∗,R̃∗) = gz

∗−Ĥsig(Ẋ,m̂
∗,R̃∗)(x∗2+···+x∗n)

and B2’s output (m̂∗, R̃∗, z∗ − ĉ∗(x∗2 + · · ·+ x∗n)) under Ẋ is correct.

5 Proving the Security of Threshold Signatures

In this section, we introduce and prove secure a three-round threshold signa-
ture scheme, called SimpleTSig (Fig. 9). We also propose and prove secure an
optimization of the two-round threshold signature scheme FROST, which we call
FROST2. Our optimization reduces the number of scalar multiplications required
during signing from linear in the threshold to one. We prove the security of
SimpleTSig and FROST2 together with distributed key generation (DKG). In
particular, we prove the security of both schemes with the variant of the Pedersen
DKG protocol [26] with proofs of possession originally proposed in combination
with FROST [31]. We call this protocol PedPoP and provide a description in
Figure 12.

Efficient distributed key generation. The Pedersen DKG can be viewed as n
parallel instantiations of Feldman verifiable secret sharing (VSS) [19], which
itself is derived from Shamir secret sharing [43] but additionally requires each
participant to provide a vector commitment C to ensure their received share is

26

consistent with all other participants’ shares. In addition, PedPoP requires each
participant to provide a Schnorr proof of knowledge of the secret corresponding
to the first term of their commitment. This is to ensure that unforgeability (but
not liveness) holds even if more than half of the participants are dishonest.

We prove SimpleTSig+PedPoP secure under the discrete logarithm assumption
and the Schnorr knowledge of exponent (schnorr-koe) assumption (Assumption 4)
in the programmable random oracle model. We prove FROST2 + PedPoP secure
under the one-more discrete logarithm assumption and the Schnorr knowledge of
exponent assumption in the programmable random oracle model. The purpose of
the schnorr-koe assumption is to ensure that the Pedersen DKG can be run in
the honest minority setting, where we assume the existence of at least a single
honest party and up to t − 1 corrupt parties. The schnorr-koe assumption can
be avoided if we assume an honest majority in the DKG. However, we prefer to
allow more corruptions with the tradeoff of a stronger assumption.

5.1 Definition of Security for Threshold Signatures

We build upon prior definitions of threshold signature schemes in the litera-
ture [25, 28, 24], but define an additional algorithm for combining signatures
that is separate from the signing rounds.

Definition of Threshold Signatures. A threshold signature scheme T is a
tuple of algorithms T = (Setup,KeyGen,KeyVerify, (Sign,Sign′,Sign′′),Combine,
Verify). The public parameters are generated by a trusted party par ← Setup
and given as input to all other algorithms. We assume the use of a distributed
key generation protocol (DKG) for KeyGen, which outputs the signing group’s
public key X̃ and n secret keys, one held by each signer. To collectively sign
a message m, at least t signers participate in an interactive signing protocol
(Sign,Sign′,Sign′′). At the end of the signing protocol, the signers’ individual
signature shares are combined using the Combine algorithm to form the threshold
signature σ. Note that Combine may be performed by one of the signers or an
external party. The threshold signature σ on m is valid if Verify(X̃,m, σ) = 1.

A threshold signature scheme is secure if it is correct and unforgeable.

Correctness. Correctness requires that for all λ, for all t ≤ ` ≤ n, and for all
messages m, if KeyGen outputs X̃ and ` signers input (ski,m) to the signing
protocol (Sign,Sign′,Sign′′), then every signer will output a signature share
that, when combined with all other shares, results in a signature σ satisfying
Verify(X̃,m, σ) = 1.

Unforgeability. EUF-CMA security is described by the following game. Assume
without loss of generality that there are t− 1 adversarial signers and at least
one honest signer.
Setup. The challenger generates the parameters par← Setup and a challenge

public key Ẋ used when running KeyGen with the adversary A to derive
the joint public key X̃.

27

Signature Queries. A is allowed to make signature queries on any message
m, meaning that it has access to oracles OSign,OSign′ ,OSign′′ that will
simulate the honest signers interacting in a signing protocol to sign a
message m with respect to X̃. Note that A may make any number of
such queries concurrently.

Output. Finally, A outputs a threshold signature forgery σ∗ and a message
m∗. A wins if it made no signing queries on m∗ and Verify(X̃,m∗, σ∗) = 1.

5.2 Three-Round Threshold Signature SimpleTSig

We now introduce a three-round threshold signature scheme, called SimpleTSig
(Fig. 9). We employ the PedPoP DKG protocol for key generation. The public
parameters par generated during setup are provided as input to all other algo-
rithms and protocols. We assume some external mechanism to choose the set of
signers S ⊆ {1, . . . , n}, where t ≤ |S| ≤ n and S is ordered to ensure consistency.

We employ a model where the Lagrange coefficients are added to each partic-
ipant’s signature share after signing (by multiplying zi by λi). While doing so
is less efficient (as each nonce Ri must also be exponentiated by λi), the proof
of security is simple, as there is a closer match to the assumptions defined in
Section 4. While SimpleTSig is a less efficient construction than FROST, its proof
of security relies on different assumptions and so is of theoretical interest.

Parameter Generation. On input the security parameter 1λ, the setup al-
gorithm runs (G, p, g) ← GrGen(1λ), selects hash functions Hreg,Hcm,Hsig :
{0, 1}∗ → Zp, and outputs public parameters par← ((G, p, g),Hreg,Hcm,Hsig).

Key Generation. On input the number of signers n and the threshold t, all
n signers cooperate to perform PedPoP.KeyGen (Fig. 12). At the end of the
protocol, each signer holds a secret share x̄i, and the output is the group’s
public key X̃.

Signing Round 1 (Sign). Each participant Pi, i ∈ S, chooses ri←$ Zp, com-
putes Ri ← gri and cmi ← Hcm(Ri), and outputs their commitment cmi.

Signing Round 2 (Sign′). On input commitments {cmj}j∈S and the message
m to be signed, participant Pi outputs their nonce Ri.

Signing Round 3 (Sign′′). On input commitments and nonces {(Rj , cmj)}j∈S
and the message m, participant Pi first checks that cmj = Hcm(Rj) for all
j ∈ S. If for some j′, cmj′ 6= Hcm(Rj′), abort. Otherwise, Pi computes the

aggregate nonce R̃ =
∏
j∈S Rj

λj , where λj is the jth Lagrange coefficient. It

then computes the hash c← Hsig(X̃,m, R̃) and zi ← ri + cxi and outputs zi.
Combining Signatures. On input the joint public key X̃ and a set of signature

shares {zj}j∈S on a message m, the combiner computes R̃ ←
∏
j∈S R

λj
j ,

c← Hsig(X̃,m, R̃), and z ←
∑
j∈S λjzj and outputs the signature σ ← (R̃, z).

Verification. On input the joint public key X̃, a message m, and a signature
σ = (R̃, z), the verifier computes c← Hsig(X̃,m, R̃) and accepts if R̃X̃c = gz.

Correctness of SimpleTSig is straightforward to verify. Note that verification of
the threshold signature σ is identical to verification of a standard, key-prefixed
Schnorr signature with respect to the aggregate nonce R̃ and joint public key X̃.

28

Setup(1λ)

(G, p, g)← GrGen(1λ)

select three hash functions

Hreg,Hcm,Hsig : {0, 1}∗ → Zp
par← ((G, p, g),Hreg,Hcm,Hsig)

return par

KeyGen(t, n)

(X̃, trans)←$ PedPoP.KeyGen(t, n)

// Pedersen DKG with PoP

return X̃

Sign(idk)

rk←$ Zp; Rk ← grk

cmk ← Hcm(Rk)

ρk ← cmk

stk ← rk

return (ρk, stk)

Sign′(k, stk, skk,m, {ρi}i∈S)

parse rk ← stk

Rk ← grk

ρ′k ← Rk; st′k ← stk

return (ρ′k, st
′
k)

Sign′′(k, st′k, skk,m, {(ρi, ρ′i)}i∈S)

parse rk ← st′k; xk ← skk

parse cmi ← ρi, Ri ← ρ′i, i ∈ S
if cmi 6= Hcm(Ri) for some i ∈ S return ⊥
else

R̃←
∏
i∈S

Rλii

// λi is the i
th

Lagrange coefficient

c← Hsig(X̃,m, R̃)

zk ← rk + cxk

ρ′′k ← zk; st′′k ← R̃

return (ρ′′k , st
′′
k)

Combine(m, {(ρ′i, ρ′′i)}i∈S)

parse Ri ← ρ′i, zi ← ρ′′i , i ∈ S

R̃←
∏
i∈S

Rλii ; z ←
∑
i∈S

λizi

σ ← (R̃, z)

return σ

Verify(X̃,m, σ)

parse (R̃, z)← σ

c← Hsig(X̃,m, R̃)

if R̃X̃c = gz return 1

else return 0

Fig. 9. The three-round SimpleTSig threshold signature scheme. The public parameters
par are implicitly given as input to all algorithms and protocols. SimpleTSig assumes
an external mechanism to choose the set S ⊆ {1, . . . , n} of signers, where t ≤ |S| ≤ n.
S is required to be ordered to ensure consistency.

5.3 Proving the Security of SimpleTSig

We prove the security of SimpleTSig together with distributed key generation
protocol PedPoP (Fig. 12) in Appendix E.

Theorem 6 (SimpleTSig + PedPoP). SimpleTSig is with distributed key gener-
ation protocol PedPoP is unforgeable under the discrete logarithm assumption
and the Schnorr knowledge of exponent assumption (Assumption 4) in the pro-
grammable random oracle model.

29

5.4 Optimized Two-Round Threshold Signature FROST2

A direct result of our new proving framework is that we are able to uncover a
more efficient version of FROST, reducing the number of exponentiations required
during signing from at least t to one. In particular, we show that security can be
proven when using the same hash value for all signers. We call this optimization
FROST2 (Fig. 10). We prove the security of FROST2 together with PedPoP
distributed key generation.

First, the joint public key X̃ is generated using PedPoP (Fig. 12). At the end
of key generation, there exists a degree t− 1 polynomial f(Z) such that f(0) = x̃,
where X̃ = gx̃, and each party idi knows f(idi). The first round of signing can be
run in advance of knowing the participants or the message (or even X̃); signers
simply generate two random nonces Ri = gri and Si = gsi .

In the second round of signing, signers hash X̃, the message, the participant
identifiers, and the nonces of all of the parties that are expected to sign:

a← Hnon(X̃,m, {(idi, Ri, Si)}i∈S) (1)

where t ≤ |S| ≤ n and S is ordered to ensure consistency. They then compute
the aggregate nonce and hash it together with X̃ and m:

c← Hsig(X̃,m,
∏
i∈S

RiS
a
i) (2)

They also compute the Lagrange coefficients {λi}i∈S , where λi = Li(0) and
{Li(Z)}i∈S are the Lagrange polynomials relating to the set {idi}i∈S . Finally,
the ith signer returns zi = ri + asi + cλif(idi).

A combine algorithm computes the value a and the aggregate nonce R̃ =∏
i∈S RiS

a
i the same as the signers in the second round of signing. It then

computes z =
∑
i∈S zi and returns the signature (R̃, z).

The difference between FROST and FROST2 is that, for FROST, Equa-
tions 1 and 2 are computed as

aj ← Hnon(j, X̃,m, {(idi, Ri, Si)}i∈S)

c← Hsig(X̃,m,
∏
i∈S

RiS
ai
i)

which requires an additional exponentiation for each signer.

Additionally, in FROST2 signers must check that (Ri, Si) 6= (Rj , Sj) for i 6=
j ∈ S. The check to prevent identical nonces is an artifact of our proof of security
for FROST2. Note that using a generalized forking lemma instead of the local
forking lemma obviates the need for this check, as shown in [11].

30

Setup(1λ)

(G, p, g)← GrGen(1λ)

select three hash functions

Hreg,Hnon,Hsig : {0, 1}∗ → Zp
par← ((G, p, g),Hreg,Hnon,Hsig)

return par

KeyGen(t, n)

(X̃, trans)←$ PedPoP.KeyGen(t, n)

// Pedersen DKG with PoP

return X̃

Sign(idk)

rk←$ Zp;Rk ← grk

sk←$ Zp;Sk ← gsk

ρk ← (idk, Rk, Sk)

stk ← (rk, sk)

return (ρk, stk)

Sign′(k, stk, skk,m, {ρi}i∈S)

// Sign′ must be called at most once per stk

// S ⊆ {1, . . . , n} is the ordered signing set

parse (rk, sk)← stk; xk ← skk

Rk ← grk ; Sk ← gsk

parse (idi, Ri, Si)← ρi, i ∈ S

if (Ri, Si) = (Rj , Sj) for i 6= j return ⊥

else

a← Hnon(X̃,m, {(idi, Ri, Si)}i∈S)

// aj ← Hnon(j, X̃,m, {(idi, Ri, Si)}i∈S)

R̃←
∏
i∈S RiS

a
i // R̃← Πi∈SRiS

ai
i

c← Hsig(X̃,m, R̃)

zk ← rk + ask + cλkxk

// λk is the k
th

Lagrange coefficient

st′k ← R̃; ρ′k ← zk

return (ρ′k, st
′
k)

Combine(m, {(ρi, ρ′i)}i∈S)

parse (idi, Ri, Si)← ρi, zi ← ρ′i, i ∈ S

a← Hnon(X̃,m, {(idi, Ri, Si)}i∈S)

R̃←
∏
i∈S

RiS
a
i ; z ←

∑
i∈S

zi

σ ← (R̃, z);

return σ

Verify(X̃,m, σ)

parse (R̃, z)← σ

c← Hsig(X̃,m, R̃)

if R̃X̃c = gz return 1

else return 0

Fig. 10. The two-round FROST2 threshold signature scheme. The public parameters par
are implicitly given as input to all algorithms. FROST2 assumes an external mechanism
to choose the set S ⊆ {1, . . . , n} of signers, where t ≤ |S| ≤ n. S is required to be
ordered to ensure consistency. We highlight the differences between FROST2 (solid
boxes) and FROST (dashed boxes).

31

5.5 Proving the Security of FROST2

We demonstrate the strength of our framework (Section 4.3) by proving the
unforgeability of FROST2 together with distributed key generation protocol
PedPoP (Fig. 12).

Theorem 7 (FROST2 + PedPoP). FROST2 with distributed key generation
protocol PedPoP is unforgeable under the one-more discrete logarithm assump-
tion and the Schnorr knowledge of exponent assumption (Assumption 4) in the
programmable random oracle model.

Proof. Let A be a PPT adversary attempting to break the unforgeability of
FROST2. We construct a PPT adversary B1 playing game Gameschnorr-koeB1,Ext (λ)
(Fig. 5) and thence, from the schnorr-koe assumption, obtain an extractor Ext
for it. We construct a PPT adversary B2 playing game GamebischnorrB2

(λ) (Fig. 8)
such that whenever A outputs a valid forgery, either B1 breaks the schnorr-koe
assumption or B2 breaks the bischnorr assumption. (Recall that bischnorr is
implied by the OMDL assumption (Theorem 4)). Formally, we have

AdvEUF-CMA
A (λ) ≤ Advschnorr-koeB1,Ext (λ) + AdvbischnorrB2

(λ) + negl(λ)

where λ is the security parameter.

The Reduction B1: We first define the reduction B1 against schnorr-koe. Let
cor = {idj} be the set of corrupt parties, and let hon = {idk} be the set of honest
parties. Assume without loss of generality that |cor| = t−1 and |hon| = n−(t−1).
We will show that when PedPoP outputs public key share X̃k = gx̄k for each
honest party idk ∈ hon, B1 returns (αk, βk) such that X̃k = Ẋαkgβk .
B1 is responsible for simulating honest parties in PedPoP (Fig. 12) and queries

to Hreg, Hnon, and Hsig. B1 receives as input group parameters G = (G, p, g) and

random coins ω. It can query the random oracle OR̃O from Gameschnorr-koeB1,Ext (λ). It

can also query Oschnorr-koe to receive signatures under H̃reg and Ochal on inputs
(Xj,0, R̄j , z̄j) to challenge the extractor Ext to output a discrete logarithm aj,0
for Xj,0.

Initialization. B1 may program Hreg,Hnon, and Hsig, but not H̃reg (because it is
part of B1’s challenge). Let Qreg be the set of Hreg queries and their responses. B1

computes αk for each honest party idk ∈ hon as follows. First, B1 computes the t
Lagrange polynomials {L′k(Z), {L′j(Z)}idj∈cor} relating to the set idk ∪ cor. Then,

B1 sets αk ← L′k(0)−1. It will later become clear why αk is computed this way.

Simulating Hash Queries. B1 handles A’s hash queries throughout the DKG
protocol as follows.
Hreg: When A queries Hreg on (X,X, R̄), B1 checks whether (X,X, R̄, c̄) ∈ Qreg

and, if so, returns c̄. Else, B1 queries c̄← H̃reg(X,X, R̄), appends (X,X, R̄, c̄) to
Qreg, and returns c̄.

Hnon: WhenA queries Hnon on (X,m, {(idi, Ri, Si)}i∈S), B1 queries â← H̃non(X,m,
{(idi, Ri, Si)}i∈S) and returns â.

32

Hsig: When A queries Hsig on (X,m,R), B1 queries ĉ← H̃sig(X,m,R) and returns
ĉ.

Simulating the DKG. B1 runs A on input random coins ω and simulates
PedPoP as follows. B1 first queries Osch-pop and receives (Ẋ, R̄τ , z̄τ). B1 embeds
Ẋ as the public key of the honest party that the adversary queries first. Let
this first honest party be idτ . B1 simulates the public view of idτ but follows the
PedPoP protocol for all other honest parties {idk}k 6=τ as prescribed. Note that
A can choose the order in which it interacts with honest parties, so B1 must be
able to simulate any of them.

Honest Party idτ . B1 is required to output

(R̄τ , z̄τ),Cτ = (Aτ,0 = Xτ,0, Aτ,1, ..., Aτ,t−1)

that are indistinguishable from valid outputs as well as t−1 shares fτ (idj) = x̄τ,j ,
one to be sent to each corrupt party idj ∈ cor. Here, (R̄τ , z̄τ) is a Schnorr signature
proving knowledge of the discrete logarithm of Xτ,0, and Cτ is a commitment to
the coefficients that represent fτ . B1 simulates honest party idτ as follows.

1. B1 sets the public key Xτ,0 ← Ẋ.
2. B1 simulates a verifiable Shamir secret sharing of the discrete logarithm of
Ẋ by performing the following steps.

(a) B1 samples t− 1 random values x̄τ,j ←$ Zp for idj ∈ cor.
(b) Let fτ be the polynomial whose constant term is the challenge fτ (0) = ẋ

and for which fτ (idj) = x̄τ,j for all idj ∈ cor. B1 computes the t Lagrange
polynomials {L′0(Z), {L′j(Z)}idj∈cor} relating to the set 0 ∪ cor.

(c) For 1 ≤ i ≤ t− 1, B1 computes

Aτ,i = ẊL′0,i
∏

idj∈cor

gx̄τ,jL
′
j,i (3)

where L′j,i is the ith coefficient of L′j(Z) = L′j,0 +L′j,1Z+ · · ·+L′j,t−1Z
t−1.

(d) B1 outputs (R̄τ , z̄τ),Cτ = (Aτ,0 = Xτ,0, Aτ,1, ..., Aτ,t−1) for the broad-
cast round, and then sends shares x̄τ,j for each idj ∈ cor.

3. B1 simulates private shares fτ (idk) = x̄τ,k for honest parties idk ∈ hon

by computing α′k, β
′
k such that gx̄τ,k = Ẋα′kgβ

′
k . First, B1 computes the t

Lagrange polynomials {L′k(Z), {L′j(Z)}idj∈cor} relating to the set idk ∪ cor.
Then, implicitly,

fτ (0) = ẋ = x̄τ,kL
′
k(0) +

∑
idj∈cor

x̄τ,jL
′
j(0)

Solving for x̄τ,k, B1 sets α′k = L′k(0)−1 and β′k = −α′k
∑

idj∈cor x̄τ,jL
′
j(0).

All Other Honest Parties. For all other honest parties idk ∈ hon, k 6= τ , B1

follows the protocol: B1 samples fk(Z) = ak,0 +ak,1Z+ ...+ak,t−1Z
t−1←$ Zp[Z]

and sets Ak,i ← gak,i for all i = 0, . . . , t − 1. B1 provides a proof of possession

33

(R̄k, z̄k) of the public key Xk,0 = Ak,0 and computes the private shares x̄k,i =
fk(idi).

Adversarial Contributions. When A returns a contribution

(R̄j , z̄j),Cj = (Aj,0 = Xj,0, Aj,1, ..., Aj,t−1)

if (Xj,0, R̄j , z̄j) verifies (i.e., R̄jX
H̃reg(Xj,0,Xj,0,R̄j)
j,0 = gz̄j) and Xj,0 6= Ẋ, then B1

queries Ochal(Xj,0, R̄j , z̄j) from Gameschnorr-koeB1,Ext (λ).
Complaints. If A broadcasts a complaint, B1 reveals the relevant x̄k,j . If A

does not send verifying x̄j,k to party idk ∈ hon, then B1 broadcasts a complaint.
If x̄j,k fails to satisfy the equation, or should A not broadcast a share at all, then
idj is disqualified.

DKG Termination. When PedPoP terminates, the output is the joint public
key X̃ =

∏n
i=0Xi,0. B1 simulates private shares x̄k for honest parties idk ∈

hon by computing αk, βk such that X̃k = gx̄k = Ẋαkgβk . Implicitly, x̄k =
x̄τ,k +

∑n
i=1,i6=τ x̄i,k and x̄τ,k = ẋα′k + β′k from Step 2 above, so αk = α′k and

βk = β′k +
∑n
i=1,i6=τ x̄i,k. B1 returns {(αk, βk)}idk∈hon.

We now argue that: (1) A cannot distinguish between a real run of the DKG
protocol and its interaction with B1; and (2) Ext(G, ω,Qsch-pop,Qreg) outputs aj,0
such that Xj,0 = gaj,0 whenever B1 queries Ochal(Xj,0, R̄j , z̄j).

(1) Observe that B1’s simulation of PedPoP is perfect, as performing validation
of each player’s share (Step 4 in Fig. 12) holds, and by Equation 3, interpolation
in the exponent correctly evaluates to the challenge Ẋ.

(2) Observe that Hreg(Xj,0, Xj,0, R̄j) = H̃reg(Xj,0, Xj,0, R̄j) unless (Xj,0, R̄j) =

(Ẋ, R̄τ). The latter happens only if Xj,0 = Xτ,0, but in this case PedPoP will not

terminate. We thus have that (Xj,0, R̄j , z̄j) is a verifying signature under H̃reg

and either Ext succeeds, or B1 breaks the schnorr-koe assumption. Therefore, the
probability of the event occurring where Ext fails to outputs aj,0 is bounded by

Advschnorr-koeB1,Ext (λ).

The Reduction B2: We next define the reduction B2 against bischnorr. We
will show that when PedPoP outputs the joint public key X̃, B2 returns y
such that X̃ = Ẋgy. Together with the (αk, βk) returned by B1 such that
X̃k = Ẋαkgβk , this representation allows B2 to simulate FROST2 signing under
each public key share X̃k. B2 is responsible for simulating honest parties during
signing and queries to Hreg, Hnon, and Hsig. B2 receives as input group parameters

G = (G, p, g) and a challenge public key Ẋ. It can query Obinonce,Obisign and OR̂O

from GamebischnorrB2
(λ).

Initialization. B2 may program Hreg,Hnon, and Hsig, but not Ĥnon or Ĥsig (because
they are part of B2’s challenge). Let QSign be the set of OSign queries and responses

in Signing Round 1, and let QSign′ be the set of OSign′ queries and responses in
Signing Round 2.

34

DKG Extraction. B2 first simulates a Schnorr proof of possession of Ẋ as follows.
B2 samples c̄τ , z̄τ ←$ Zp, computes R̄τ ← gz̄τ Ẋ−c̄τ , and appends (Ẋ, Ẋ, R̄τ , c̄τ)
to Qreg. Then, B2 runs

{(αk, βk)}idk∈hon←$ B1(G;ω)

on random coins ω. B2 handles B1’s queries as follows. When B1 queries H̃reg on
(X,X, R̄), B2 checks whether (X,X, R̄, c̄) ∈ Qreg and, if so, returns c̄. Else,

B2 queries c̄ ← Ĥreg(X,X, R̄), appends (X,X, R̄, c̄) to Qreg, and returns c̄.

When B1 queries H̃non, H̃sig, B2 handles them the same way it handles A’s
Hnon,Hsig queries, described below. The first time B1 queries its Osch-pop ora-

cle, B2 returns (Ẋ, R̄τ , z̄τ). When B1 queries Ochal(Xj,0, R̄j , z̄j), B2 runs aj,0 ←
Ext(G, ω,Qsch-pop,Qreg) to obtain aj,0 such that Xj,0 = gaj,0 and aborts otherwise.

Then y =
∑n
i=1,i6=τ ai,0 such that X̃ = Ẋgy.

Simulating Hash Queries. B2 handles A’s hash queries throughout the signing
protocol as follows.

Hreg: When A queries Hreg on (X,X, R̄), B2 checks whether (X,X, R̄, c̄) ∈ Qreg

and, if so, returns c̄. Else, B2 queries c̄← Ĥreg(X,X, R̄), appends (X,X, R̄, c̄) to
Qreg, and returns c̄. Note that B1 and B2 share the state of Qreg.

Hnon: WhenA queries Hnon on (X,m, {(idi, Ri, Si)}i∈S), B2 checks whether (X,m,
{(idi, Ri, Si)}i∈S , m̂, â) ∈ Qnon and, if so, returns â. Else, B2 checks whether there
exists some k′ ∈ S such that (idk′ , Rk′ , Sk′) ∈ QSign. If not, B2 samples a random
message m̂ and a random value â, appends (X,m, {(idi, Ri, Si)}i∈S , m̂, â) to Qnon,
and returns â.

If there does exist some k′ ∈ S such that (idk′ , Rk′ , Sk′) ∈ QSign, B2 com-
putes the Lagrange coefficients {λi}i∈S , where λi = Li(0) and {Li(Z)}i∈S are
the Lagrange polynomials relating to the set {idi}i∈S . B2 sets γk = λkαk for
all idk ∈ hon and γj = λj for all idj ∈ cor in the set S. B2 then samples

a random message m̂, queries â ← Ĥnon(Ẋ, m̂, {(γi, Ri, Si)}i∈S), and appends
(X,m, {(idi, Ri, Si)}i∈S , m̂, â) to Qnon. B2 computes R̂ =

∏
i∈S RiS

â
i and checks

if there exists a record (X,m, R̂, m̂, ĉ) ∈ Qsig. If so, B2 aborts. Else, B2 queries

ĉ← Ĥsig(Ẋ, m̂, R̂) and appends (X̃,m, R̂, m̂, ĉ) to Qsig. Finally, B2 returns â.

Hsig: When A queries Hsig on (X,m,R), B2 checks whether (X,m,R, m̂, ĉ) ∈
Qsig and, if so, returns ĉ. Else, B2 samples a random message m̂, queries ĉ ←
Ĥsig(Ẋ, m̂, R), appends (X,m,R, m̂, ĉ) to Qsig, and returns ĉ.

Simulating FROST2 Signing. After B1 completes the simulation of PedPoP,
B2 then simulates honest parties in the FROST2 signing protocol.

Signing Round 1 (Sign). When A queries OSign on idk ∈ hon, B2 queries
Obinonce to get (Rk, Sk), appends (idk, Rk, Sk) to QSign, and returns (Rk, Sk).

Signing Round 2 (Sign′). WhenA queriesOSign′ on (k′,m, {(idi, Ri, Si)}i∈S),
B2 first checks whether (idk′ , Rk′ , Sk′) ∈ QSign and, if not, returns ⊥. Then, B2

checks whether (Rk′ , Sk′) ∈ QSign′ and, if so, returns ⊥.

35

If all checks pass, B2 internally queries Ĥnon on (X̃,m, {(idi, Ri, Si)}i∈S) to
get â′ and looks up m̂′ such that (X̃,m, {(idi, Ri, Si)}i∈S), m̂′, â′) ∈ Qnon. B2

computes R̂′ =
∏
i∈S RiS

â′

i and internally queries Ĥsig on (X̃,m, R̂′) to get ĉ′.

Next, B2 computes the Lagrange coefficients {λi}i∈S , where λi = Li(0) and
{Li(Z)}i∈S are the Lagrange polynomials relating to the set {idi}i∈S . B2 sets
γk = λkαk for all idk ∈ hon and γj = λj for all idj ∈ cor in the set S. Then, B2

queries Obisign on (k′, m̂′, {(γi, Ri, Si)}i∈S) to get zk′ . Finally, B2 computes

z̃k′ = zk′ + ĉ′λk′βk′ (4)

For A’s query to OSign′ , B2 returns z̃k′ .

Output. When A returns (X̃,m∗, σ∗) such that σ∗ = (R̃∗, z∗) and Verify(X̃,
m∗, σ∗) = 1, B2 computes its output as follows. B2 looks up m̂∗ such that
(X̃,m∗, R̃∗, m̂∗, ĉ∗) ∈ Qsig and outputs (m̂∗, R̃∗, z∗ − ĉ∗y).

To complete the proof, we must argue that: (1) B2 only aborts with negligible
probability; (2) A cannot distinguish between a real run of the protocol and its
interaction with B2; and (3) whenever A succeeds, B2 succeeds.

(1) B2 aborts if Ext fails to return aj,0 such that Xj,0 = gaj,0 for some idj ∈ cor.

This happens with maximum probability Advschnorr-koeB1,Ext (λ).

B2 aborts if A queries Hsig on (X̃,m,
∏
i∈S RiS

â
i) before having first queried

Hnon on (X̃,m, {(idi, Ri, Si)}i∈S). This requires A to have guessed â ahead of
time, which occurs with negligible probability qH/p.

(2) As long as B2 does not abort, B2 is able to simulate the appropriate
responses to A’s oracle queries so that A cannot distinguish between a real run
of the protocol and its interaction with B2.

Indeed, as already observed, B1’s simulation of PedPoP is perfect.

When A queries Hsig on (X,m,R), B2 queries ĉ← Ĥsig(Ẋ, m̂, R) on a random
message m̂. The random message prevents trivial collisions; for example, if A
were to query Hsig on (X,m,R) and (X ′,m,R), where X ′ 6= X, A would receive

the same value c ← Ĥsig(Ẋ,m,R) for both and would know it was operating
inside a reduction. Random messages ensure that the outputs are random, so A’s
view is correct. B2 also ensures that A receives Hnon values that are consistent
with Hsig queries.

After the signing rounds have been completed, A may verify the signature
share z̃k′ on m as follows. A checks if

Rk′S
Hnon(X̃,m,{(idi,Ri,Si)}i∈S)
k′ X̃

λk′Hsig(X̃,m,
∏
i∈S RiS

Hnon(X̃,m,{(idi,Ri,Si)}i∈S)

i)

k′ = gz̃k′(5)

When B2 queried Obisign on (k′, m̂′, {(γi, Ri, Si)}i∈S) in Signing Round 2, the
signature share zk′ was computed such that

Rk′S
Ĥnon(Ẋ,m̂

′,{(γi,Ri,Si)}i∈S)
k′ Ẋγk′ Ĥsig(Ẋ,m̂

′,
∏
i∈S RiS

Ĥnon(Ẋ,m̂
′,{(γi,Ri,Si)}i∈S)

i) = gzk′

36

B computed the signature share z̃k′ (Equation 4) as

z̃k′ = zk′ + ĉ′λk′βk′ = rk′ + ask′ + ĉ′γk′ ẋ+ ĉ′λk′βk′

= rk′ + ask′ + ĉ′λk′(αk′ ẋ+ βk′)

where ĉ′ = Ĥsig(Ẋ, m̂
′,
∏
i∈S RiS

Ĥnon(Ẋ,m̂
′,{(γi,Ri,Si)}i∈S)

i). Thus, z̃k′ satisfies

Rk′S
Ĥnon(Ẋ,m̂

′,{(γi,Ri,Si)}i∈S)
k′ X̃

λk′ Ĥsig(Ẋ,m̂
′,
∏
i∈S RiS

Ĥnon(Ẋ,m̂
′,{(γi,Ri,Si)}i∈S)

i)

k′ = gz̃k′

(6)

B2 has programmed the hash values in Equations 5 and 6 to be equal and
therefore simulates z̃k′ correctly.

(3) A’s forgery satisfies Verify(X̃,m∗, σ∗) = 1, which implies:

R̃∗(X̃)Hsig(X̃,m
∗,R̃∗) = gz

∗

R̃∗(Ẋgy)Hsig(X̃,m
∗,R̃∗) = gz

∗

R̃∗ẊHsig(X̃,m
∗,R̃∗) = gz

∗−Hsig(X̃,m
∗,R̃∗)y

At some point, A queried Hsig on (X̃,m∗, R̃∗) and received one of two values:

(1) ĉ∗ ← Ĥsig(Ẋ, m̂
∗,
∏
i∈S∗ R

∗
i (S
∗
i)â
∗
) related to a query A made to Hnon on

(m∗, {(id∗i , R∗i , S∗i)}i∈S∗), where it received â∗ ← Ĥnon(Ẋ, m̂
∗, (γ∗i , R

∗
i , S
∗
i)i∈S∗),

or (2) ĉ∗ ← Ĥsig(Ẋ, m̂∗, R̃∗) without having queried Hnon first. In either case, B2

has a record (X̃,m∗, R̃∗, m̂∗, ĉ∗) ∈ Qsig such that ĉ∗ ← Ĥsig(Ẋ, m̂
∗, R̃∗). (Note

that B2 can check which case occurred by looking for m̂∗ in its Qnon records.)
Thus, A’s forgery satisfies

R̃∗ẊĤsig(Ẋ,m̂
∗,R̃∗) = gz

∗−Ĥsig(Ẋ,m̂
∗,R̃∗)y

and B2’s output (m̂∗, R̃∗, z∗ − ĉ∗y) under Ẋ is correct.

6 Conclusion

We present new techniques for proving the security of multi- and threshold
Schnorr signature schemes. We demonstrate the strength of this methodology
by proving the security of a range of multi-party schemes, including a three-
round threshold signature SimpleTSig, a variant of the two-round multisignature
MuSig2 [36], and an optimization to the FROST [31] threshold signature scheme
that we call FROST2. A goal of this work is to provide a simple framework for
proving the security of other multi-party Schnorr signature schemes in the future,
perhaps even blinded or unlinkable variants.

Acknowledgements. Elizabeth Crites was supported by Input Output through
their funding of the Edinburgh Blockchain Technology Lab.

37

References

[1] M. Abdalla, F. Benhamouda, and P. MacKenzie. “Security of the J-PAKE
password-authenticated key exchange protocol”. In: 2015 IEEE Symposium on
Security and Privacy. IEEE. 2015, pp. 571–587.

[2] B. Abdolmaleki, K. Baghery, H. Lipmaa, and M. Zajac. “A Subversion-Resistant
SNARK”. In: ASIACRYPT 2017, Hong Kong, China, December 3-7, 2017. Ed. by
T. Takagi and T. Peyrin. Vol. 10626. LNCS. Springer, 2017, pp. 3–33.

[3] H. K. Alper and J. Burdges. “Two-Round Trip Schnorr Multi-signatures via
Delinearized Witnesses”. In: CRYPTO 2021, Virtual Event, August 16-20, 2021.
Ed. by T. Malkin and C. Peikert. Vol. 12825. LNCS. Springer, 2021, pp. 157–188.

[4] A. Bagherzandi, J. H. Cheon, and S. Jarecki. “Multisignatures secure under the
discrete logarithm assumption and a generalized forking lemma”. In: CCS 2008,
Alexandria, Virginia, USA, October 27-31, 2008. Ed. by P. Ning, P. F. Syverson,
and S. Jha. ACM, 2008, pp. 449–458.

[5] M. Bellare, E. Crites, C. Komlo, M. Maller, S. Tessaro, and C. Zhu. Better than
advertised security for non-interactive threshold signatures. CRYPTO 2022. To
appear. 2022.

[6] M. Bellare and W. Dai. “Chain Reductions for Multi-Signatures”. In: IACR
Cryptol. ePrint Arch. (2021), p. 404. url: https://eprint.iacr.org/2021/404.

[7] M. Bellare, W. Dai, and L. Li. “The Local Forking Lemma and Its Application
to Deterministic Encryption”. In: ASIACRYPT 2019, Kobe, Japan, December
8-12, 2019. Ed. by S. D. Galbraith and S. Moriai. Vol. 11923. LNCS. Springer,
2019, pp. 607–636.

[8] M. Bellare and G. Neven. “Multi-signatures in the plain public-Key model and
a general forking lemma”. In: CCS 2006, Alexandria, VA, USA, October 30 -
November 3, 2006. Ed. by A. Juels, R. N. Wright, and S. D. C. di Vimercati.
ACM, 2006, pp. 390–399.

[9] M. Bellare and A. Palacio. “The Knowledge-of-Exponent Assumptions and 3-
Round Zero-Knowledge Protocols”. In: CRYPTO 2004, Santa Barbara, California,
USA, August 15-19, 2004. Ed. by M. K. Franklin. Vol. 3152. LNCS. Springer,
2004, pp. 273–289.

[10] M. Bellare and P. Rogaway. “The Security of Triple Encryption and a Framework
for Code-Based Game-Playing Proofs”. In: EUROCRYPT 2006, St. Petersburg,
Russia, May 28 - June 1, 2006. Ed. by S. Vaudenay. Vol. 4004. LNCS. Springer,
2006, pp. 409–426.

[11] M. Bellare, S. Tessaro, and C. Zhu. “Stronger Security for Non-Interactive Thresh-
old Signatures”. In: IACR Cryptol. ePrint Arch. (2022), p. 833. url: https:

//eprint.iacr.org/2022/833.
[12] F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, and M. Raykova. “On the

(in)security of ROS”. In: EUROCRYPT 2021, Zagreb, Croatia, October 17-21,
2021. Ed. by A. Canteaut and F. Standaert. Vol. 12696. LNCS. Springer, 2021,
pp. 33–53.

[13] A. Boldyreva. “Threshold Signatures, Multisignatures and Blind Signatures Based
on the Gap-Diffie-Hellman-Group Signature Scheme”. In: PKC 2003, Miami, FL,
USA, January 6-8, 2003. Ed. by Y. Desmedt. Vol. 2567. LNCS. Springer, 2003,
pp. 31–46.

[14] D. Boneh, M. Drijvers, and G. Neven. “Compact Multi-signatures for Smaller
Blockchains”. In: ASIACRYPT 2018, Brisbane, QLD, Australia, December 2-6,

38

https://eprint.iacr.org/2021/404
https://eprint.iacr.org/2022/833
https://eprint.iacr.org/2022/833

2018. Ed. by T. Peyrin and S. D. Galbraith. Vol. 11273. LNCS. Springer, 2018,
pp. 435–464.

[15] D. Boneh and V. Shoup. A Graduate Course in Applied Cryptography. 2020. url:
http://toc.cryptobook.us/book.pdf.

[16] I. Damg̊ard. “Towards Practical Public Key Systems Secure Against Chosen
Ciphertext Attacks”. In: CRYPTO ’91, Santa Barbara, California, USA, August
11-15, 1991. Ed. by J. Feigenbaum. Vol. 576. LNCS. Springer, 1991, pp. 445–456.

[17] M. Drijvers, K. Edalatnejad, B. Ford, and G. Neven. “Okamoto Beats Schnorr:
On the Provable Security of Multi-Signatures”. In: IACR Cryptol. ePrint Arch.
(2018), p. 417. url: https://eprint.iacr.org/2018/417.

[18] M. Drijvers et al. “On the Security of Two-Round Multi-Signatures”. In: SP 2019,
San Francisco, CA, USA, May 19-23, 2019. IEEE, 2019, pp. 1084–1101.

[19] P. Feldman. “A Practical Scheme for Non-interactive Verifiable Secret Sharing”.
In: 28th Annual Symposium on Foundations of Computer Science, Los Angeles,
California, USA, October 27-29, 1987. IEEE, 1987, pp. 427–437.

[20] A. Fiat and A. Shamir. “How to Prove Yourself: Practical Solutions to Identifica-
tion and Signature Problems”. In: CRYPTO 1986, Santa Barbara, California,
USA, 1986. Ed. by A. M. Odlyzko. Vol. 263. LNCS. Springer, 1986, pp. 186–194.

[21] M. Fischlin. “Communication-Efficient Non-interactive Proofs of Knowledge with
Online Extractors”. In: CRYPTO 2005, Santa Barbara, California, USA, August
14-18, 2005. Ed. by V. Shoup. Vol. 3621. LNCS. Springer, 2005, pp. 152–168.

[22] G. Fuchsbauer, E. Kiltz, and J. Loss. “The Algebraic Group Model and its
Applications”. In: CRYPTO 2018, Santa Barbara, CA, USA, August 19-23, 2018.
Ed. by H. Shacham and A. Boldyreva. Vol. 10992. LNCS. Springer, 2018, pp. 33–
62.

[23] A. Gabizon. “On the security of the BCTV Pinocchio zk-SNARK variant”. In:
IACR Cryptol. ePrint Arch. (2019), p. 119. url: https://eprint.iacr.org/
2019/119.

[24] R. Gennaro and S. Goldfeder. “Fast Multiparty Threshold ECDSA with Fast
Trustless Setup”. In: CCS 2018, Toronto, ON, Canada, October 15-19, 2018.
Ed. by D. Lie, M. Mannan, M. Backes, and X. Wang. ACM, 2018, pp. 1179–1194.

[25] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Robust Threshold DSS
Signatures”. In: Inf. Comput. 164.1 (2001), pp. 54–84.

[26] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Secure Applications of Ped-
ersen’s Distributed Key Generation Protocol”. In: CT-RSA 2003, San Francisco,
CA, USA, April 13-17, 2003. Ed. by M. Joye. Vol. 2612. LNCS. Springer, 2003,
pp. 373–390.

[27] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Secure Distributed Key
Generation for Discrete-Log Based Cryptosystems”. In: J. Cryptol. 20.1 (2007),
pp. 51–83.

[28] R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk. “Robust and Efficient Sharing
of RSA Functions”. In: J. Cryptol. 20.3 (2007), p. 393.

[29] C. Gentry and D. Wichs. “Separating Succinct Non-Interactive Arguments From
All Falsifiable Assumptions”. In: STOC 2011, San Jose, CA, USA, 6-8 June 2011.
Ed. by L. Fortnow and S. P. Vadhan. ACM, 2011, pp. 99–108.

[30] J. Groth. “Short Pairing-Based Non-interactive Zero-Knowledge Arguments”. In:
ASIACRYPT 2010, Singapore, December 5-9, 2010. Ed. by M. Abe. Vol. 6477.
LNCS. Springer, 2010, pp. 321–340.

[31] C. Komlo and I. Goldberg. “FROST: Flexible Round-Optimized Schnorr Thresh-
old Signatures”. In: SAC 2020, Halifax, NS, Canada (Virtual Event), October

39

http://toc.cryptobook.us/book.pdf
https://eprint.iacr.org/2018/417
https://eprint.iacr.org/2019/119
https://eprint.iacr.org/2019/119

21-23, 2020. Ed. by O. Dunkelman, M. J. J. Jr., and C. O’Flynn. Vol. 12804.
LNCS. Springer, 2020, pp. 34–65.

[32] Y. Lindell. “Simple Three-Round Multiparty Schnorr Signing with Full Simulata-
bility”. In: IACR Cryptol. ePrint Arch. (2022), p. 374. url: https://eprint.
iacr.org/2022/374.

[33] C. Ma, J. Weng, Y. Li, and R. H. Deng. “Efficient discrete logarithm based
multi-signature scheme in the plain public key model”. In: Des. Codes Cryptogr.
54.2 (2010), pp. 121–133.

[34] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. “Simple Schnorr multi-
signatures with applications to Bitcoin”. In: Des. Codes Cryptogr. 87.9 (2019),
pp. 2139–2164.

[35] J. Nick. Insecure Shortcuts in MuSig. 2019. url: https://medium.com/blockstream/
insecure-shortcuts-in-musig-2ad0d38a97da.

[36] J. Nick, T. Ruffing, and Y. Seurin. “MuSig2: Simple Two-Round Schnorr Multi-
signatures”. In: CRYPTO 2021, Virtual Event, August 16-20, 2021. Ed. by T.
Malkin and C. Peikert. Vol. 12825. LNCS. Springer, 2021, pp. 189–221.

[37] J. Nick, T. Ruffing, Y. Seurin, and P. Wuille. “MuSig-DN: Schnorr Multi-
Signatures with Verifiably Deterministic Nonces”. In: CCS 2020, Virtual Event,
USA, November 9-13, 2020. Ed. by J. Ligatti, X. Ou, J. Katz, and G. Vigna.
ACM, 2020, pp. 1717–1731.

[38] D. Pointcheval and J. Stern. “Security Arguments for Digital Signatures and
Blind Signatures”. In: J. Cryptol. 13.3 (2000), pp. 361–396.

[39] D. Pointcheval and J. Stern. “Security Proofs for Signature Schemes”. In: EU-
ROCRYPT 1996, Saragossa, Spain, May 12-16, 1996. Ed. by U. M. Maurer.
Vol. 1070. LNCS. Springer, 1996, pp. 387–398.

[40] T. Ristenpart and S. Yilek. “The Power of Proofs-of-Possession: Securing Multi-
party Signatures against Rogue-Key Attacks”. In: EUROCRYPT 2007, Barcelona,
Spain, May 20-24, 2007. Ed. by M. Naor. Vol. 4515. LNCS. Springer, 2007, pp. 228–
245.

[41] C. Schnorr. “Efficient Signature Generation by Smart Cards”. In: J. Cryptol. 4.3
(1991), pp. 161–174.

[42] Y. Seurin. “On the Exact Security of Schnorr-Type Signatures in the Random
Oracle Model”. In: EUROCRYPT 2012, Cambridge, UK, April 15-19, 2012. Ed.
by D. Pointcheval and T. Johansson. Vol. 7237. LNCS. Springer, 2012, pp. 554–
571.

[43] A. Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (1979), pp. 612–
613.

[44] V. Shoup and R. Gennaro. “Securing Threshold Cryptosystems against Chosen
Ciphertext Attack”. In: EUROCRYPT ’98, Finland, May 31 - June 4, 1998.
Ed. by K. Nyberg. Vol. 1403. LNCS. Springer, 1998, pp. 1–16.

[45] E. Syta et al. “Scalable Bias-Resistant Distributed Randomness”. In: SP 2017,
San Jose, CA, USA, May 22-26, 2017. IEEE, 2017, pp. 444–460.

[46] M. Zochowski. Benchmarking Hash and Signature Algorithms. 2019. url: https://
medium.com/logos-network/benchmarking-hash-and-signature-algorithms-

6079735ce05.

40

https://eprint.iacr.org/2022/374
https://eprint.iacr.org/2022/374
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://medium.com/logos-network/benchmarking-hash-and-signature-algorithms-6079735ce05
https://medium.com/logos-network/benchmarking-hash-and-signature-algorithms-6079735ce05
https://medium.com/logos-network/benchmarking-hash-and-signature-algorithms-6079735ce05

A Proof of the Schnorr Knowledge of Exponent
Assumption

Here we frame our Schnorr knowledge of exponent (schnorr-koe) assumption
(Fig. 5) in the context of prior knowledge of exponent assumptions.

Signature schemes are not the only branch of cryptography where standard
model security proofs are evasive. For example, there exist CCA encryption
schemes that are provably secure in the random oracle model but not in the
standard model [15]. In arguing the security of a practical CCA encryption scheme
using assumptions that more closely resemble real restrictions on an adversary,
Damgard [16] introduced the knowledge of exponent (KoE) assumption. KoE
says that for every algorithm A given a generator g and random X = gx, if A
outputs (A,B) such that B = Ax, then there exists an extractor algorithm Ext
that, given the same input, outputs a such that (A,B) = (ga, Xa). Informally,
this means that, given a pair (g, gx), the only way to produce such a pair (A,B)
is by exponentiating the original pair (g, gx) by the exponent a, thereby implying
knowledge of a. This assumption is non-falsifiable, i.e., one cannot show the
non-existence of an extractor, and provides one of the few alternatives to the
random oracle model should a standard model proof be impossible.

Knowledge of exponent assumptions have subsequently been generalized, with
Abdolmaleki et al. [2] extending them to bilinear groups and Groth [30] suggesting
a “q-type” variation. They are used extensively in the security proofs of Succinct
NIZK Arguments (SNARKs). This is often justified by arguing that SNARKs
do not exist in the standard model due to an impossibility result of Gentry and
Wich’s [29]. One extreme variation is the algebraic group model (AGM) [22],
which suggests that all natural KoE assumptions hold but that security proofs
should still reduce to computational assumptions.

We now prove Theorem 1, which states that our schnorr-koe assumption is
implied by the discrete logarithm assumption in the algebraic group model.

Proof. (dl⇒ schnorr-koe) LetA be an algebraic adversary playing Gameschnorr-koeA,Ext (λ)
(Fig. 5). A takes as input the group description G = (G, p, g) and random
coins ω. Let Qsch-pop = {(X1, R̄1, z̄1), . . . , (XqS , R̄qS , z̄qS)} denote the responses
made by the signing oracle Osch-pop. Whenever A queries Ochal on verifying
(X∗, R̄∗, z̄∗) 6∈ Qsch-pop, it also outputs an algebraic representation of X∗ and R̄∗.
That is, it outputs a representation (α0, α1, β1, . . . , αqS , βqS) such that

X∗ = gα0

∏
j∈[qS]

X
αj
j R̄

βj
j

Let Ext be the extractor in Gameschnorr-koeA,Ext (λ) that returns x∗, where x∗ =
α0 +

∑
j βj z̄j . We argue that there exists a reduction B playing the discrete loga-

rithm game GamedlB(λ) such that whenever Ext does not succeed, i.e., X∗ 6= gx
∗
,

then B returns the solution to a discrete logarithm challenge. B is responsible

for simulating oracle responses for queries to Osch-pop,Ochal,OR̃O, and H̃reg. B
may program H̃reg and has access to its own oracle ORO. B sees A’s algebraic

41

representations (as the adversary is working within the AGM) but does not
rewind the adversary.

The reduction B. B takes as input the discrete logarithm challenge Ẋ and
aims to output ẋ such that Ẋ = gẋ. B initializes Qsch-pop,Qreg to the empty
set, chooses random coins ω←$ {0, 1}rlA and runs A(G, ω). We describe how B
responds to oracle queries below, such that if Ochal sets win to true at any point
in the execution, then B returns ẋ. If A terminates and win 6= true, A fails to
win Gameschnorr-koeA,Ext (λ) and B aborts.

Simulating Hash Queries. When A queries H̃reg on (X,X, R̄), B checks
whether (X,X, R̄, c̄) ∈ Qreg and, if so, returns c̄. Else, B samples c̄←$ Zp, appends
(X,X, R̄, c̄) to Qreg, and returns c̄.

When A queries OR̃O(θ), B queries ORO(θ) and forwards the response to A.

Osch-pop Queries. When A queries Osch-pop for the jth time, B samples aj , c̄j ,

z̄j ←$ Zp and sets Xj ← Ẋ āj and R̄j ← gz̄jX
−c̄j
j . B appends (Xj , Xj , R̄j , c̄j) to

Qreg, (Xj , R̄j , z̄j) to Qsch-pop, and returns (Xj , R̄j , z̄j).

Ochal Queries. When A queries Ochal on input (X∗, R̄∗, z̄∗), B queries c̄∗ ←
H̃reg(X

∗, X∗, R̄∗) and checks that (X∗, R̄∗, z̄∗) /∈ Qsch-pop and R̄∗(X∗)c̄
∗

= gz̄
∗
.

If these checks fail, B returns ⊥. Else, B runs Ext to obtain x∗ from the entries
in Qsch-pop and Qreg. Namely, the extractor uses the algebraic representation
(α0, α1, β1, . . . , αqS , βqS) such that

X∗ = gα0

∏
j∈[qS]

X
αj
j R̄

βj
j

and sets x∗ = α0 +
∑
j βj z̄j . If gx

∗
= X∗, then B outputs x∗.

If gx
∗ 6= X∗, then B looks up the algebraic representation (γ0, γ1, δ1, . . . , γqS , δqS)

(which A provides when querying Ochal on R̄∗) such that

R̄∗ = gγ0
∏
j∈[qS]

X
γj
j R̄

δj
j

Then B computes

f(W) = (α0 +

qS∑
j=1

βj z̄j) +

qS∑
j=1

aj(αj − c̄jβj)W = f0 + f1W

h(W) = (γ0 +

qS∑
j=1

δj z̄j) +

qS∑
j=1

aj(γj − c̄jδj)W = h0 + h1W

where W is some indeterminate value, X∗ = gf(ẋ), and R̄∗ = gh(ẋ). Now if
h1 + c̄∗f1 = 0, then B aborts. Else, B terminates with

ẋ =
z̄∗ − h0 − c̄∗f0

h1 + c̄∗f1

42

Advantage of B. First, observe that B perfectly simulates Gameschnorr-koeA,Ext (λ)

except in the event that Osch-pop randomly outputs some (X, R̄, z̄) such that
H̃reg(X,X, R̄) has already been programmed. This happens with maximum prob-
ability qSqH

p , where qS is the maximum number of signing queries and qH is the

maximum number of hash queries. If A wins, then there exists some Ochal query
(X∗, R̄∗, z̄∗) such that

R̄∗(X∗)c̄
∗

= gz̄
∗

and X∗ 6= gα0+
∑
j βj z̄j

Substituting in the algebraic representation, this implies

gz̄
∗

= gγ0
∏
j

X
γj
j R̄

δj
j

gα0

∏
j

X
αj
j R̄

βj
j

c̄∗

gz̄
∗

= gγ0+c̄∗α0

∏
j

X
γj+c̄

∗αj
j R̄

δj+c̄
∗βj

j

⇒ z̄∗ = γ0 + c̄∗α0 +
∑
j

ẋaj(γj + c̄∗αj) + (z̄j − c̄jaj ẋ)(δj + c̄∗βj)

⇒ ẋ =
−z̄∗ + γ0 + c̄∗α0 +

∑
j z̄j(δj + c̄∗βj)∑

j c̄jaj(δj + c̄∗βj)− aj(γj + c̄∗αj)

⇒ ẋ =
z̄∗ − h0 − c̄∗f0

h1 + c̄∗f1

Thus, B returns a correct discrete logarithm provided that h1 + c̄∗f1 6= 0. The
probability that h1 + c̄∗f1 = 0 for h1, f1 not both 0 and for (X∗, R̄∗, z̄∗) 6∈ Qsch-pop
is qSqH

p .

If h1 = f1 = 0, then f(ẋ) = f0 = (α0 +
∑qS
j=1 βj z̄j). Recall that

X∗ = gα0

∏
j

X
αj
j R̄

βj
j

= gα0+
∑
j ẋajαj+βj(z̄j−c̄jaj ẋ)

= gα0+
∑
j βj z̄j+ẋ(

∑
j αj−βj c̄jaj)

= gf(ẋ)

However, this implies that x∗ = α0 +
∑qS
j=1 βj z̄j output by the extractor is correct,

which is a contradiction.

Thus,

Advschnorr-koeA,Ext (λ) ≤ AdvdlB(λ) +
2qSqH
p

43

B Proof of the Schnorr Computational Assumption

The Schnorr signature scheme was proven to reduce to the hardness of the
discrete logarithm problem by Pointcheval and Stern [39]. There is a tightness
loss because the probability that the adversary outputs two distinct forgeries
with the same random oracle query Ĥsig(X,m

∗, R∗), which is needed to extract
the discrete logarithm solution, could be as low as 1/qH , where qH is the number
of random oracle queries the adversary makes. This is still non-negligible because
the adversary can only make a polynomial number of queries. Currently, the only
tight reduction is in the algebraic group model. While our Schnorr computational
(schnorr) assumption (Fig. 6) could be proven in the AGM, we find the proof
to be cleaner in the random oracle model. Note that even when the adversary
is allowed to interact with the simulator concurrently, the tightness loss for the
security reduction remains qH , since the simulator can always correctly program
the random oracle to return a valid signing response.

We now prove Theorem 2, which states that our schnorr assumption is implied
by the discrete logarithm assumption in the programmable random oracle model.

Proof. (dl⇒ schnorr) Let A be a PPT adversary playing GameschnorrA (λ) (Fig. 6)
that makes up to qH queries to Ĥsig. We describe a PPT reduction B playing

GamedlB(λ) that uses A as a subroutine such that

AdvschnorrA (λ) ≤

√
qHAdvdlB(λ) +

q2
H

p

The reduction B runs A two times. Suppose A makes no more than qH queries
to Ĥsig in total over the two iterations. On the second iteration, B programs Ĥsig

to output a different random value on a single point so that it can extract a
discrete logarithm solution from A’s outputs. B perfectly simulates GameschnorrA (λ).
However, B can only extract a discrete logarithm if A’s output (m∗, R∗, z∗) at
the end of each iteration verifies and includes the same nonce R∗. By the local
forking lemma [7], this happens with probability 1

qH
(AdvschnorrA (λ))2.

B is responsible for simulating oracle responses for queries to Oschnorr,OR̂O,
and Ĥsig. Let Qschnorr be the set of Oschnorr queries, and let Qsig be the set of Ĥsig

queries and responses as in GameschnorrA (λ). B may program Ĥsig.

DL Input. B takes as input the group description G = (G, p, g) and a discrete
logarithm challenge Ẋ. B aims to output ẋ such that Ẋ = gẋ.

Simulating Hash Queries. When A queries Ĥsig on (X,m,R), B checks
whether (X,m,R, c) ∈ Qsig and, if so, returns c. Else, B samples c←$ Zp, appends
(X,m,R, c) to Qsig, and returns c.

Simulating Oracle Queries. For A’s ith query to Oschnorr on input mi, B
samples ci, zi←$ Zp and sets Ri ← gziẊ−ci . B appends (Ẋ,mi, Ri, ci) to Qsig,
mi to Qschnorr, and returns (Ri, zi).

44

Extracting the Discrete Logarithm of Ẋ from the Adversary. B initial-
izes Qsig and Qschnorr to the empty set. B then runs A(Ẋ;ω) on the challenge Ẋ
and random coins ω.

Suppose A terminates with (m∗, R∗, z∗). If A succeeds, then R∗Ẋc∗ = gz
∗
,

where c∗ = Ĥsig(Ẋ,m∗, R∗). Here, z∗ does not suffice for B to extract the discrete

logarithm of Ẋ because it does not necessarily know the discrete logarithm of
R∗. Thus, B chooses c′←$ Zp and programs Ĥsig such that c′ = Ĥsig(Ẋ,m

∗, R∗).

B then runs A(Ẋ;ω) again on the same random coins ω.
After the second iteration, supposeA terminates with (m′, R′, z′). If (m′, R′) =

(m∗, R∗) but z′ 6= z∗, then B can extract ẋ = z∗−z′
c∗−c′ such that Ẋ = gẋ. If

(m′, R′) 6= (m∗, R∗) or A’s output does not verify, then B must abort. By the
local forking lemma [7], this occurs with probability less than 1

qH
(AdvschnorrA (λ))2.

If A succeeds having not queried Ĥsig on (Ẋ,m∗, R∗) or (Ẋ,m′, R′), then B
aborts. This occurs with probability less than qH

p . Thus,

1

qH
(AdvschnorrA (λ))2 ≤ AdvdlB(λ) +

qH
p

C Background on the Two-Nonce Fix

In Section 4.5, we introduce the binonce Schnorr computational (bischnorr)
assumption, which we use to prove the security of SpeedyMuSig and FROST2.
We now expand on the use of two nonces in SpeedyMuSig and FROST/FROST2.

Why two nonces are necessary for two-round schemes. There is a danger when
reducing two-round multi-party Schnorr signatures in the concurrent setting to the
discrete logarithm assumption that if the adversary can learn the nonce before the
reduction does, the reduction cannot always correctly program the random oracle
(unlike in the single-party setting). Specifically, when the reduction publishes its
nonce R1 (simulating the honest signer), it must guess when programming the
random oracle whether or not the adversary will query this nonce in the second
round (and so is only guaranteed to succeed with likelihood 1/qH). Consequently,
if κ is the number of signing requests the adversary can open at once, the
reduction might only be able to simulate responses with probability O(qH

κ). A
failure of the simulator in any “open” signing session requires re-setting all open
sessions. Therefore, an adversary that is allowed to open an unlimited number of
signing queries in parallel leads to an exponential tightness loss in the security
reduction when proving security purely in the random oracle model.

Two avoid this concurrency failure, many schemes in the literature instead
reduce security to the OMDL assumption, so that the reduction can adaptively
request information about the discrete logarithm and answer the oracle queries.
However, as observed by Drijvers et al. [18], many previous security proofs [4,
33, 45, 34] did not correctly count the number of OMDL queries made by the
reduction, which in fact might exceed the number of OMDL challenges. They
did not observe that the reduction might make up to twice as many queries with

45

respect to the same challenges should the messages that the adversary queries in
its second iteration be different. This invalidated the reductions, and Drijvers et
al. showed that a variety of schemes in the literature cannot be proven secure
under OMDL.

Confirming this danger for concrete protocols, Benhamouda et al. [12] designed
a concurrent ROS attack against many schemes with broken security proofs. This
ROS attack relies on the fact that the adversary can choose their nonce R∗ as a
linear combination of X1 and the simulated nonces such that any dependence on
X1 will ultimately cancel out. The idea in recent protocols to thwart this attack
is to essentially enforce that the honest signers only respond in the second round
with a nonce RiS

ai
i , where ai is the output of a hash function whose inputs

include all nonces for all signing parties as well as the message being signed. As
such, the forger cannot determine ai at the point of choosing their own nonce.
Preventing the forger from cancelling ai requires two nonces; otherwise, the forger
could simply incorporate a−1

i into the linear verifier’s equation. We implemented
a basic version of the attack in python against an early version of MuSig on the
BN254 curve. Our script generates a forgery in an average of 4.58 seconds over
100 trials on an Intel Core i5 processor with 2.3 GHz.7

Two nonces mean the number of OMDL challenges given to the reduction is
twice as large. Thus, the reduction succeeds when making twice as many OMDL
queries over the two iterations of the adversary.

D Proof of the Binonce Schnorr Computational
Assumption

We now prove Theorem 4, which states that our bischnorr assumption is implied
by the one-more discrete logarithm assumption in the programmable random
oracle model.

Proof. (omdl ⇒ bischnorr) Let A be a PPT adversary playing GamebischnorrA (λ)
(Fig. 8) that makes up to qH queries to Ĥnon, Ĥsig in total. We describe a PPT

reduction B playing Gameomdl
B (λ) that uses A as a subroutine such that

AdvbischnorrA (λ) ≤

√
qHAdvomdl

B (λ) +
q2
H

p

The reduction B runs A two times. Suppose A makes no more than qH queries
to Ĥnon, Ĥsig in total over the two iterations. On the second iteration, B programs

Ĥsig to output a different random value on a single point so that it can extract a
discrete logarithm solution from A’s outputs. Over the two iterations, B makes
no more than n queries to its discrete logarithm oracle Odl and aims to output
n+ 1 discrete logarithms that constitute a valid solution to the OMDL challenge.
If B makes fewer than n queries while responding to A’s oracle queries, then it

7 https://github.com/mmaller/multi_and_threshold_signature_reductions

46

https://github.com/mmaller/multi_and_threshold_signature_reductions

makes the additional queries necessary to extract a OMDL solution. B perfectly
simulates GamebischnorrA (λ). However, B can only extract a discrete logarithm if
A’s output (m∗, R∗, z∗) at the end of each iteration verifies and includes the
same nonce R∗. By the local forking lemma [7], this occurs with probability
1
qH

(AdvbischnorrA (λ))2.

B is responsible for simulating oracle responses for queries to Obinonce,Obisign,

OR̂O, Ĥnon, and Ĥsig. Let Qnon,Qsig be the set of Ĥnon, Ĥsig queries and responses.
B initializes them to the empty set and maintains them across both iterations
of the adversary. B may program Ĥnon, Ĥsig. Let Qbinonce, Qbisign be the set of

Obinonce,Obisign queries and Qused the set of used nonce pairs as in GamebischnorrA (λ).
B initializes them to the empty set. At the beginning of the second iteration, B
makes a copy Q̄used of Qused to ensure it responds to the same Obisign query with
the same answer across the two iterations. It then resets Qbinonce, Qused, Qbisign to
the empty set.

OMDL Input. B takes as input the group description G = (G, p, g) and a
OMDL challenge of n + 1 values (X0, . . . , Xn), where n/2 is greater than the
number qB of Obisign queries that A may make in an iteration. B has access to
a discrete logarithm oracle Odl, which it may query up to n times. B aims to
output (x0, . . . , xn) such that Xi = gxi for all 0 ≤ i ≤ n.

Simulating Hash Queries. B responds to A’s hash queries as follows.

Ĥnon: When A queries Ĥnon on (X,m, (γ1, R1, S1), . . . , (γ`, R`, S`)) (` can vary), B
checks whether (X,m, (γ1, R1, S1), . . . , (γ`, R`, S`), a) ∈ Qnon and, if so, returns a.
Else, B samples a←$ Zp, appends (X,m, (γ1, R1, S1), . . . , (γ`, R`, S`), a) to Qnon,
and returns a.

Ĥsig: When A queries Ĥsig on (X,m,R), B checks whether (X,m,R, c) ∈ Qsig

and, if so, returns c. Else, B samples c←$ Zp, appends (X,m,R, c) to Qsig, and
returns c.

Obinonce Queries. For A’s ith query to Obinonce, B adds (X2i−1, X2i, i) to a set
Q̃binonce and returns (Ri, Si) = (X2i−1, X2i). Note that B cannot keep track of
the set Qbinonce = {(R,S, r, s)} as in the real GamebischnorrA (λ) since it does not
know the discrete logarithms of (X2i−1, X2i); however, the OMDL challenge
components (X2i−1, X2i) are randomly distributed, so B’s simulation is perfect.

Obisign Queries. For A’s jth query to Obisign on queryj = (mj , kj , (γ1j , R1j , S1j),

. . . , (γ`j , R`j , S`j)),B checks if (Rkj , Skj) corresponds to (X2i−1, X2i, i) ∈ Q̃binonce

for some i and, if so, that ((Rkj , Skj), (i, ·, ·, ·), ·) /∈ Qused as in the real GamebischnorrA (λ).
If these checks hold, then the query is valid and B will respond. B checks whether
(Rkj , Skj) corresponds to the query ((Rkt , Skt), (i, zt, at, ctγkt), queryt) ∈ Q̄used

for some t. If so, B adds ((Rkj , Skj), (i, zt, at, ctγkt), queryt) to Qused and returns
zt.

If not, B computes aj ← Ĥnon(X0,mj , (γ1j , R1j , S1j), . . . , (γ`j , R`j , S`j)), R̃j ←∏`
i=1RijS

aj
ij

, and cj ← Ĥsig(X0,mj , R̃j). Now, B must return zj = x2i−1+ajx2i+

cjγjx0 without knowledge of x0, x2i−1, x2i. To accomplish this, B queries Odl on

47

RkjS
aj
kj
X
cjγkj
0 to get zj such that gzj = RkjS

aj
kj
X
cjγkj
0 . B appends (queryj , aj) to

Qnon, (queryj , cj) to Qsig, ((Rkj , Skj), (i, zj , aj , cjγkj), queryj) to Qused, (queryj , zj)

to Q̃used, and (mj , R̃j) to Qbisign. Finally, B returns zj to A.

Extracting the Discrete Logarithm of X0 from the Adversary. The
reduction B first selects some random coins ω. It then runs A(X0;ω) and responds
to A’s oracle queries as above.

Suppose A terminates with (m∗, R∗, z∗). If A succeeds, then R∗Xc∗

0 = gz
∗
,

where c∗ = Ĥsig(X0,m
∗, R∗) and (m∗, R∗) /∈ Qbisign. Here, z∗ does not suffice for

B to extract the discrete logarithm of X0 because it does not necessarily know
the discrete logarithm of R∗. Thus, B chooses c′←$ Zp and programs Ĥsig to
output c′ on input (X0,m

∗, R∗). B copies Q̄used = Qused to have a record of these
queries, and then resets Q̃binonce, Qused, Qbisign to the empty set. The sets Q̃used,
Qsig, Qnon are also kept for the second iteration of the adversary. B then runs
A(X0;ω) again on the same random coins.

After the second iteration, supposeA terminates with (m′, R′, z′). If (m′, R′) =

(m∗, R∗) and A’s outputs both verify, then B can extract x0 = z∗−z′
c∗−c′ such that

X0 = gx0 . If (m′, R′) 6= (m∗, R∗) or A’s output does not verify, then B must
abort. By the local forking lemma [7], this happens with probability less than
1
qH

(AdvbischnorrA (λ))2. If A succeeds having not queried Ĥsig on (X,m∗, R∗) or

(X,m′, R′), then B aborts. This occurs with probability less than qH
p . Thus,

1

qH
(AdvbischnorrA (λ))2 ≤ Pr[B extracts x0] +

qH
p

If B extracts x0, then we use this to extract a full OMDL solution as follows.

Extracting a OMDL Solution. The reduction B must now extract the re-
maining x1, . . . , xn such that Xi = gxi . For each Xi, the method for extracting
xi will be one of four cases, depending on how A queried Obinonce and Obisign over
the two iterations.

Case 1 ((X2i−1, X2i) has not appeared in an Obisign query over the two iterations).
In this case, X2i−1 and X2i have not yet been queried by B. Thus, B queries Odl

directly to obtain x2i−1 and x2i. Two queries are made for each i in this case.

Case 2 ((X2i−1, X2i) has appeared in an Obisign query in a single iteration). A
single query has been made by B to Odl containing (X2i−1, X2i). If it occurred in
the first iteration, then ((Rkj , Skj), (i, zj , aj , cjγkj), queryj) ∈ Q̄used is such that

zj = rkj + ajskj + cjγkjx0. To obtain a second value, B queries X2i to Odl and
thus learns x2i. Then B sets x2i−1 = zj − ajx2i − cjγkjx0. The case where the
query occurred in the second iteration is similar. In total, two queries are made
for each i in this case.

48

Now consider when (X2i−1, X2i) appears in an Obisign query in both iterations.
Let queryj be that query from the first iteration and queryj′ from the second

queryj = (mj , kj , (γ1j , R1j , S1j), . . . , (γ`j , R`j , S1,`j))

queryj′ = (mj′ , kj′ , (γ1j′ , R1j′ , S1j′), . . . , (γ`j′ , R`j′ , S`j′))

such that (X2i−1, X2i) = (Rkj , Skj) = (Rkj′ , Skj′).

Case 3 (The query containing (X2i−1, X2i) is the same in both iterations). In
this case, queryj = queryj′ . A single query has been made by B to Odl containing

(X2i−1, X2i), and ((Rkj , Skj), (i, zj , aj , cjγkj), queryj) ∈ Q̄used is such that zj =

rkj + ajskj + cjγkjx0. To obtain a second value, B queries X2i to Odl and thus
learns x2i. Then B sets x2i−1 = zj − ajx2i − cjγkjx0. In total, two queries are
made for each i in this case.

Case 4 (There exist two distinct queries containing (X2i−1, X2i) over the two it-
erations). In this case, queryj 6= queryj′ and ((Rkj , Skj), (i, zj , aj , cjγkj), queryj) ∈
Q̄used and ((Rkj′ , Skj′), (i, zj′ , aj′ , cj′γkj′), queryj′) ∈ Qused. Then B sets

x2i =
zj′ − zj + (cjγkj − cj′γkj′)x0

aj′ − aj
x2i−1 = zj − ajx2i − cjγkjx0 (7)

Suppose aj = aj′ . That is, Ĥnon(X0,mj , (γ1j , R1j , S1j), . . . , (γ`j , R`j , S`j)) =

Ĥnon(X0,mj′ , (γ1j′ , R1j′ , S1j′), . . . , (γ`j′ , R`j′ , S`j′)). With probability greater than
1 − qH/p, the inputs are equal. This implies mj = mj′ and (γij , Rij , Sij) =
(γij′ , Rij′ , Sij′) for all 1 ≤ i ≤ `. The only values in queryj and queryj′ not hashed

in Ĥnon are kj and kj′ . For queryj 6= queryj′ , we must have kj 6= kj′ . But it is
possible that (X2i−1, X2i) = (Rkj , Skj) = (Rkj′ , Skj′) in both queries. There must
be an explicit check for repeated nonce pairs within a query to eliminate this
Bad Case8. If Bad Case does not occur, then the probability that aj′ = aj for
queryj′ 6= queryj is less than qH/p. Two queries are made for each i in this case.

Thus, B has extracted xi for all Xi using exactly n queries and returns
(x0, x1, . . . , xn) to win the Gameomdl

B (λ) game.

E Proof of Security for SimpleTSig

We now prove Theorem 6, which states that SimpleTSig (Fig. 9) with distributed
key generation protocol PedPoP (Fig. 12) is unforgeable under the discrete
logarithm assumption and the Schnorr knowledge of exponent assumption (As-
sumption 4) in the programmable random oracle model.

8 We strongly suspect that using a generalized forking lemma instead of the local
forking lemma obviates the need for this check, due to [11].

49

Proof. (of Theorem 6) Let A be a PPT adversary attempting to break the
unforgeability of SimpleTSig. We construct a PPT adversary B1 playing game
Gameschnorr-koeB1,Ext (λ) (Fig. 5) and thence, from the schnorr-koe assumption, obtain an

extractor Ext for it. We construct a PPT adversary B2 playing game GameschnorrB2
(λ)

(Fig. 6) such that whenever A outputs a valid forgery, either B1 breaks the
schnorr-koe assumption or B2 breaks the schnorr assumption. (Recall that schnorr
is implied by the DL assumption (Theorem 2). Formally, we have

AdvEUF-CMA
A (λ) ≤ Advschnorr-koeB1,Ext (λ) + AdvschnorrB2

(λ) + negl(λ)

where λ is the security parameter.

The Reduction B1: We first define the reduction B1 against schnorr-koe. Let
cor = {idj} be the set of corrupt parties, and let hon = {idk} be the set of honest
parties. Assume without loss of generality that |cor| = t−1 and |hon| = n−(t−1).
We will show that when PedPoP outputs public key share X̃k = gx̄k for each
honest party idk ∈ hon, B1 returns (αk, βk) such that X̃k = Ẋαkgβk .
B1 is responsible for simulating honest parties in PedPoP (Fig. 12) and queries

to Hreg, Hcm, and Hsig. B1 receives as input group parameters G = (G, p, g) and

random coins ω. It can query the random oracle OR̃O from Gameschnorr-koeB1,Ext (λ). It

can also query Oschnorr-koe to receive signatures under H̃reg and Ochal on inputs
(Xj,0, R̄j , z̄j) to challenge the extractor Ext to output a discrete logarithm aj,0
for Xj,0.

Initialization. B1 may program Hreg,Hcm, and Hsig, but not H̃reg (because it is
part of B1’s challenge). Let Qreg be the set of Hreg queries and their responses. B1

computes αk for each honest party idk ∈ hon as follows. First, B1 computes the t
Lagrange polynomials {L′k(Z), {L′j(Z)}idj∈cor} relating to the set idk ∪ cor. Then,

B1 sets αk ← L′k(0)−1. It will later become clear why αk is computed this way.

Simulating Hash Queries. B1 handles A’s hash queries throughout the DKG
protocol as follows.

Hreg: When A queries Hreg on (X,X, R̄), B1 checks whether (X,X, R̄, c̄) ∈ Qreg

and, if so, returns c̄. Else, B1 queries c̄← H̃reg(X,X, R̄), appends (X,X, R̄, c̄) to
Qreg, and returns c̄.

Hcm: When A queries Hcm on R, B1 queries cm← H̃cm(R) and returns cm.

Hsig: When A queries Hsig on (X,m,R), B1 queries ĉ← H̃sig(X,m,R) and returns
ĉ.

Simulating the DKG. B1 runs A on input random coins ω and simulates
PedPoP as follows. B1 first queries Osch-pop and receives (Ẋ, R̄τ , z̄τ). B1 embeds
Ẋ as the public key of the honest party that the adversary queries first. Let
this first honest party be idτ . B1 simulates the public view of idτ but follows the
PedPoP protocol for all other honest parties {idk}k 6=τ as prescribed. Note that
A can choose the order in which it interacts with honest parties, so B1 must be
able to simulate any of them. The simulation of PedPoP is the same as in the

50

proof of FROST2 +PedPoP (Theorem 7). When the DKG terminates, B1 returns
{(αk, βk)}idk∈hon.

We now argue that: (1) A cannot distinguish between a real run of the DKG
protocol and its interaction with B1; and (2) Ext(G, ω,Qsch-pop,Qreg) outputs aj,0
such that Xj,0 = gaj,0 whenever B1 queries Ochal(Xj,0, R̄j , z̄j).

(1) B1’s simulation of PedPoP is perfect, as in the proof of FROST2 +PedPoP
(Theorem 7).

(2) Observe that Hreg(Xj,0, Xj,0, R̄j) = H̃reg(Xj,0, Xj,0, R̄j) unless (Xj,0, R̄j) =

(Ẋ, R̄τ). The latter happens only if Xj,0 = Xτ,0, but in this case PedPoP will not

terminate. We thus have that (Xj,0, R̄j , z̄j) is a verifying signature under H̃reg

and either Ext succeeds, or B1 breaks the schnorr-koe assumption. Therefore, the
probability of the event occurring where Ext fails to outputs aj,0 is bounded by

Advschnorr-koeB1,Ext (λ).

The Reduction B2: We next define the reduction B2 against schnorr. We will
show that when PedPoP outputs the joint public key X̃, B2 returns y such that
X̃ = Ẋgy. Together with the (αk, βk) returned by B1 such that X̃k = Ẋαkgβk ,
this representation allows B2 to simulate SimpleTSig signing under each public
key share X̃k. B2 is responsible for simulating honest parties during signing and
queries to Hreg, Hcm, and Hsig. B2 receives as input group parameters G = (G, p, g)

and a challenge public key Ẋ. It can query Oschnorr and OR̂O from GameschnorrB2
(λ).

Initialization. B2 may program Hreg,Hcm, and Hsig, but not Ĥsig (because it is

part of B2’s challenge). Let QSign, QSign′ , QSign′′ be the set of OSign,OSign′ ,OSign′′

queries and responses in Signing Round 1, 2, 3, respectively.

DKG Extraction. B2 first simulates a Schnorr proof of possession of Ẋ as follows.
B2 samples c̄τ , z̄τ ←$ Zp, computes R̄τ ← gz̄τ Ẋ−c̄τ , and appends (Ẋ, Ẋ, R̄τ , c̄τ)
to Qreg. Then, B2 runs

{(αk, βk)}idk∈hon←$ B1(G;ω)

on random coins ω. B2 handles B1’s queries as follows. When B1 queries H̃reg on
(X,X, R̄), B2 checks whether (X,X, R̄, c̄) ∈ Qreg and, if so, returns c̄. Else,

B2 queries c̄ ← Ĥreg(X,X, R̄), appends (X,X, R̄, c̄) to Qreg, and returns c̄.

When B1 queries H̃cm, H̃sig, B2 handles them the same way it handles A’s
Hcm,Hsig queries, described below. The first time B1 queries its Osch-pop ora-

cle, B2 returns (Ẋ, R̄τ , z̄τ). When B1 queries Ochal(Xj,0, R̄j , z̄j), B2 runs aj,0 ←
Ext(G, ω,Qsch-pop,Qreg) to obtain aj,0 such that Xj,0 = gaj,0 and aborts otherwise.

Then y =
∑n
i=1,i6=τ ai,0 such that X̃ = Ẋgy.

Simulating Hash Queries. B2 handles A’s hash queries throughout the signing
protocol as follows.
Hreg: When A queries Hreg on (X,X, R̄), B2 checks whether (X,X, R̄, c̄) ∈ Qreg

and, if so, returns c̄. Else, B2 queries c̄← Ĥreg(X,X, R̄), appends (X,X, R̄, c̄) to
Qreg, and returns c̄. Note that B1 and B2 share the state of Qreg.

51

Hcm: When A queries Hcm on R, B2 checks whether (R, cm) ∈ Qcm and, if so,
returns cm. Else, B2 samples cm←$ Zp, appends (R, cm) to Qcm, and returns cm.

Hsig: When A queries Hsig on (X,m,R), B2 checks whether (X,m,R, m̂, ĉ) ∈
Qsig and, if so, returns ĉ. Else, B2 samples a random message m̂, queries ĉ ←
Ĥsig(Ẋ, m̂, R), appends (X,m,R, m̂, ĉ) to Qsig, and returns ĉ.

Simulating SimpleTSig Signing. After B1 completes the simulation of PedPoP,
B2 then simulates honest parties in the SimpleTSig signing protocol.

Signing Round 1 (Sign). In the first round of signing, all parties who intend
to participate send commitments {cmi}i∈S . For A’s query to OSign on idk ∈ hon,
B2 samples a random message ṁ and queries Oschnorr on ṁ to get a signature
(Ṙk, żk). Then B2 sets Rk = Ṙαkk , checks whether (Rk, cmk) ∈ Qcm and, if so,
returns cmk. Else, B2 samples cmk←$ Zp, appends (Rk, cmk) to Qcm, and returns
cmk.

Signing Round 2 (Sign′). In the second round of signing, all parties take
as input the message m to be signed and reveal nonces {Ri}i∈S such that
cmi = Hcm(Ri). B2 looks up {cmi}i∈S\{k} for records (Ri, cmi) ∈ Qcm. If there
exists some i′ for which a record (Ri′ , cmi′) does not exist, then B2 aborts. If
all records exist, then B2 computes the Lagrange coefficients {λi}i∈S , where
λi = Li(0) and {Li(Z)}i∈S are the Lagrange polynomials relating to the set
{idi}i∈S . B2 then computes R̃ =

∏
i∈S R

λi
i and queries ċ← H̃sig(Ẋ, ṁ, Ṙk) (not

R̃) and appends (X̃,m, R̃, ṁ, ċ) to Qsig. (However, if A has already queried Hsig

on (X̃,m, R̃), then B2 aborts.) For A’s query to OSign′ , B2 returns Rk.
Signing Round 3 (Sign′′). The third round of signing only proceeds if the

second round terminated, i.e., all parties revealed their nonces in the second
round. B2 computes

z̃k = αkżk + ċβk (8)

For A’s query to OSign′′ , B2 returns z̃k.
Output. WhenA returns (X̃,m∗, σ∗) such that σ∗ = (R̃∗, z∗) and Verify(X̃,m∗,

σ∗) = 1, B2 computes its output as follows. B2 looks up m̂∗ such that (X̃,m∗, R̃∗, m̂∗,
ĉ∗) ∈ Qsig and outputs (m̂∗, R̃∗, z∗ − ĉ∗y).

To complete the proof, we must argue that: (1) B2 only aborts with negligible
probability; (2) A cannot distinguish between a real run of the protocol and its
interaction with B2; and (3) whenever A succeeds, B2 succeeds.

(1) B2 aborts if Ext fails to return aj,0 such that Xj,0 = gaj,0 for some idj ∈ cor.

This happens with maximum probability Advschnorr-koeB1,Ext (λ).
B2 aborts in Signing Round 2 if A reveals Ri′ such that cmi′ = Hcm(Ri′) but

A never queried Hcm on Ri′ . This requires A to have guessed cmi′ ahead of time,
which occurs with negligible probability 1/p.
B2 also aborts in Signing Round 2 if A had previously queried Hsig on

(X̃,m, R̃). In that case, B2 had returned ĉ ← Ĥsig(Ẋ, m̂, R̃) for some random
message m̂, so the reduction fails. However, this implies that A guessed Rk before
B2 revealed it, which occurs with negligible probability 1/p.

52

(2) As long as B2 does not abort, B2 is able to simulate the appropriate
responses to A’s oracle queries so that A cannot distinguish between a real run
of the protocol and its interaction with B2.

Indeed, B1’s simulation of PedPoP is perfect, as in the proof of FROST2 +
PedPoP (Theorem 7). (Performing validation of each player’s share (Step 4 in
Fig. 12) holds, and interpolation in the exponent correctly evaluates to the
challenge Ẋ.)

When A queries Hsig on (X,m,R), B2 queries ĉ← Ĥsig(Ẋ, m̂, R) on a random
message m̂. The random message prevents trivial collisions; for example, if A
were to query Hsig on (X,m,R) and (X ′,m,R), where X ′ 6= X, A would receive

the same value c ← Ĥsig(Ẋ,m,R) for both and would know it was operating
inside a reduction. Random messages ensure that the outputs are random, so
A’s view is correct.

After the signing rounds have been completed, A may verify the signature
share z̃k on m as follows. A checks if

RkX̃
Hsig(X̃,m,

∏
i∈S R

λi
i)

k = gz̃k (9)

When B2 queried Oschnorr on ṁ in Signing Round 2, the signature share żk was
computed such that

ṘkẊ
H̃sig(Ẋ,ṁ,Ṙk) = gżk

Recall that Rk = Ṙαkk = gαk ṙk and X̃k = Ẋαkgβk . B2 computed the signature

share z̃k (Equation 8) as z̃k = αkżk + ċβk, where ċ = H̃sig(Ẋ, ṁ, Ṙk). Thus,

gz̃k = gαk żk+ċβk = gαk(ṙk+ċẋ)+ċβk = gαk ṙk+(αkẋ+βk)ċ = RkX̃
ċ
k (10)

B2 has programmed the hash values in Equations 9 and 10 to be equal and
therefore simulates z̃k correctly.

(3) A’s forgery satisfies Verify(X̃,m∗, σ∗) = 1, which implies:

R̃∗(X̃)Hsig(X̃,m
∗,R̃∗) = gz

∗

R̃∗(Ẋgy)Hsig(X̃,m
∗,R̃∗) = gz

∗

R̃∗ẊHsig(X̃,m
∗,R̃∗) = gz

∗−Hsig(X̃,m
∗,R̃∗)y

At some point, A queried Hsig on (X̃,m∗, R̃∗) and received ĉ∗ ← H̃sig(Ẋ, m̂∗, R̃∗).
Thus, A’s forgery satisfies

R̃∗ẊH̃sig(Ẋ,m̂
∗,R̃∗) = gz

∗−H̃sig(Ẋ,m̂
∗,R̃∗)y

and B’s output (m̂∗, R̃∗, z∗ − ĉ∗y) under Ẋ is correct.

F Changelog

12-10-2021: First version of the paper.

53

3-08-2022: Incorporated the following improvements:

1. New contributions: We provide and prove secure SimpleTSig, a three-round
threshold signature scheme that depends only on the discrete logarithm
assumption and proofs of possession.

2. Corrected tightness bounds: The reductions for Theorems 2 and 4 now depend
explicitly on the local forking lemma [7].

3. More precise proof of possession analysis: The security proofs for Theorems 3,
5, and 7 now explicitly state which reduction runs the schnorr-koe extractor,
and the schnorr-koe assumption has been updated accordingly.

G Figures

Here we provide figures for the multisignature EUF-CMA security game as well
as the PedPoP distributed key generation protocol.

54

main GameEUF-CMA
A (λ)

par← Setup(1λ)

j ← 0 // signing session counter

S, S′ ← ∅ // open signing sessions

Q← ∅
st1, st

′
1, st

′′
1 ← 0

// state vectors for honest signer

((X1, π1), x1)←$ KeyGen()

// π1 is PoP of X1

pk1 ← (X1, π1); sk1 ← x1

LPK ← {X1}

(PK∗,m∗, σ∗)←$AO
Register,Sign,Sign′,Sign′′

(pk1)

if ∀X∗i ∈ PK∗, X∗i ∈ LPK ∧X∗1 = X1

∧m∗ /∈ Q ∧ Verify(PK∗,m∗, σ∗) = 1

return 1

else return 0

ORegister(pk)

parse (X,π)← pk

if KeyVerify(X,π) = 1

LPK ← LPK ∪ {X}
return 1

else return 0

OSign()

j ← j + 1

S ← S ∪ {j}
(ρ1, st1,j)← Sign()

return ρ1

OSign′(j,m, (X2, ρ2), . . . , (Xn, ρn))

if j /∈ S ∨Xi /∈ LPK for some 2 ≤ i ≤ n
return ⊥
else

(ρ′1, st
′
1,j)← Sign′(st1,j , sk1,m, {(Xi, ρi)}n2)

Q← Q ∪ {m}
S ← S \ {j}; S′ ← S′ ∪ {j}
return ρ′1

OSign′′(j,m, {(Xi, ρi, ρ
′
i)}2≤i≤n)

if j /∈ S′ return ⊥
else

(ρ′′1 , st
′′
1,j)← Sign′′(st′1,j , sk1,m, {(Xi, ρi, ρ′i)}n2)

S′ ← S′ \ {j}
return ρ′′1

Fig. 11. The EUF-CMA security game for a multisignature scheme with proofs of
possession. The public parameters par are implicitly given as input to all algorithms,
and ρ represents messages defined within the construction. Note that the winning
condition cannot be (PK∗,m∗) /∈ Q because A can find PK∗ 6= PK such that X̃∗ = X̃.

55

PedPoP.KeyGen(t, n)

1. Each party Pi chooses a random polynomial fi(Z) over Zp of degree t−1

fi(Z) = ai,0 + ai,1Z + · · ·+ ai,t−1Z
t−1

and computes Ai,k = gai,k for k = 0, . . . , t − 1. Denote xi = ai,0
and Xi,0 = Ai,0. Each Pi computes a proof of possession of Xi,0 as
a Schnorr signature on Xi,0 as follows. They sample r̄i←$ Zp and set
R̄i ← gr̄i . They compute c̄i ← Hreg(Xi,0, Xi,0, R̄i) and set z̄i ← r̄i + c̄ixi.
They then derive a commitment Ci = (Ai,0, . . . , Ai,t−1) and broadcast
((R̄i, z̄i),Ci).

2. After receiving commitments from all other parties, each participant
verifies the Schnorr signatures by computing c̄j ← Hreg(Aj,0, Aj,0, R̄j)
and checking that

R̄jAj,0
c̄j = gz̄j for j = 1, . . . , n

If any checks fail, they disqualify the corresponding participant; otherwise,
they continue to the next step.

3. Each Pi computes secret shares x̄i,j = fi(idj) for j = 1, . . . , n, where idj
is the participant identifier, and sends x̄i,j secretly to party Pj .

4. Each party Pj verifies the shares they received from the other parties by
checking that

gx̄i,j =

t−1∏
k=0

A
idkj
i,k

If the check fails for an index i, then Pj broadcasts a complaint against
Pi.

5. For each of the complaining parties Pj against Pi, Pi broadcasts the
share x̄i,j . If any of the revealed shares fails to satisfy the equation, or
should Pi not broadcast anything for a complaining player, then Pi is
disqualified. The share of a disqualified party Pi is set to 0.

6. The secret share for each Pj is x̄j =
∑n
i=1 x̄i,j .

7. If Xi,0 = Xj,0 for any i 6= j, then abort. Else, the output is the joint

public key X̃ =
∏n
i=1Xi,0.

Fig. 12. PedPoP: Pedersen’s distributed key generation protocol with proofs of posses-
sion.

56

	Introduction
	Our Contributions

	Related Work
	Preliminaries
	Proving the Security of Multisignatures
	Definition of Security for Multisignatures
	Three-Round Multisignature SimpleMuSig
	Proving the Security of SimpleMuSig
	Two-Round Multisignature SpeedyMuSig
	Proving the Security of SpeedyMuSig

	Proving the Security of Threshold Signatures
	Definition of Security for Threshold Signatures
	Three-Round Threshold Signature SimpleTSig
	Proving the Security of SimpleTSig
	Optimized Two-Round Threshold Signature FROST2
	Proving the Security of FROST2

	Conclusion
	Proof of the Schnorr Knowledge of Exponent Assumption
	Proof of the Schnorr Computational Assumption
	Background on the Two-Nonce Fix
	Proof of the Binonce Schnorr Computational Assumption
	Proof of Security for SimpleTSig
	Changelog
	Figures

