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Abstract

End-to-end encryption provides strong privacy protections to billions of people, but it also compli-
cates efforts to moderate content that can seriously harm people. To address this concern, Tyagi et
al. [CRYPTO 2019] introduced the concept of asymmetric message franking (AMF) so that people
can report abusive content to a moderator, while otherwise retaining end-to-end privacy by default and
compatibility with anonymous communication systems like Signal’s sealed sender.

In this work, we provide a new construction for asymmetric message franking called Hecate that
is faster, more secure, and introduces additional functionality compared to Tyagi et al. First, our
construction uses fewer invocations of standardized crypto primitives and operates in the plain model.
Second, on top of AMF’s accountability and deniability requirements, we also add forward and backward
secrecy. Third, we combine AMF with source tracing, another approach to content moderation that has
previously been considered only in the setting of non-anonymous networks. Source tracing allows for
messages to be forwarded, and a report only identifies the original source who created a message. To
provide anonymity for senders and forwarders, we introduce a model of AMF with preprocessing whereby
every client authenticates with the moderator out-of-band to receive a token that they later consume
when sending a message anonymously.

1 Introduction

End-to-end encrypted messaging systems like Facebook Messenger, Signal, Telegram, Viber, and WhatsApp
are used by billions of people [77] due to their powerful combination of cryptographic protections and ease
of use. The security guarantees provided by encrypted messengers are both varied and valuable [74]: confi-
dentiality and integrity from authenticated key exchange [16, 19, 51], deniability from the use of symmetric
authenticated encryption [15, 28, 38], and forward and backward security via key evolution (aka ratchet-
ing) [24, 39]. However, these very security guarantees complicate efforts by secure messaging platforms to
investigate reports of abuse or disinformation campaigns, which can have serious consequences for individuals
and collective society [10,30,69,71,76].

To address these concerns, the security research community has developed three methods to augment end-
to-end messengers with privacy-respecting technologies to assist with content moderation: message franking,
source tracing, and automated identification. First, message franking [28, 31, 38, 52, 72] allows recipients to
manually report abusive messages with assurance that unreported messages retain all guarantees of secure
messengers, and reported messages are both accountable (the moderator correctly identifies the message’s
sender) and deniable (the moderator cannot prove this fact to anybody else). Second, source tracing [57,73]
allows the moderator to pinpoint the original source of a viral message rather than the person who forwarded
the message to the eventual reporter. Finally, automated identification [11, 50, 53] proactively matches
messages against a moderator-provided list of messages using a private (approximate) set membership test,
with possible interventions like rate-limiting or warning labels in case of a match [70].

This work contributes a new construction called Hecate that simplifies, strengthens, and unifies the first
two content moderation techniques: asymmetric message franking and source tracing. We do not consider
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automated identification, focusing instead on abuse reporting schemes that empower the people who receive
messages to choose the action they wish to take [47, 58]. To provide context for our work, we describe the
nascent space of message franking and source tracing in more detail before explaining our improvements.

1.1 Prior work

There exists a long line of research into the security of end-to-end encrypted messaging systems (EEMS) at
both the protocol design and software implementation layers (e.g., [4,9,13,22,46]). Our work relies on these
analyses in order to treat the underlying messaging protocol in a black-box manner and abstract away its
details, so that we may focus on the additions provided by content moderation protocols.

Message franking constructions involve four parties: a sender and receiver of a message, plus the platform
providing the secure messaging service and a moderator who acts on abuse reports (see Figure 1). Symmetric
message franking protocols are limited to the setting in which the platform and moderator are the same entity
and have sufficient network-level visibility to pinpoint the sender of each message. At a high level, these
constructions operate as follows: when a sender submits a ciphertext corresponding to the message m, the
platform signs an attestation binding the sender’s identity to a compact commitment com(m) provided by
the sender in the clear. The receiver also sees this commitment (e.g., if it is part of a robust encryption
scheme [1,32,33]) and can check whether it is correct, dropping the packet if it is malformed. Subsequently,
the receiver can report the message as abusive by opening all [28, 31, 38] or part [52] of the commitment so
that the platform can determine whether the message is abusive and take appropriate action.

The work of Tyagi et al. [72], which is the starting point for this paper and which we will henceforth refer
to as TGLMR, introduces the notion of asymmetric message franking (AMF) that removes the limitations
from above. Specifically, AMF can operate even when using Signal’s sealed sender [65] or an anonymous
communication system (e.g., [3,25,27,75]) that hides the identity of the sender or receiver from the platform.

Inspired by designated-verifier signatures [44,62], the TGLMR construction requires the sender to make
a Diffie-Hellman tuple ⟨g, gsksrc , gskmod , gsksrc·skmod⟩ involving the moderator’s secret key and her own, as well as
a non-interactive zero knowledge proof that the tuple is well-formed. TGLMR achieves accountability and
deniability for the sender, but doesn’t provide forward and backward security due to the use of long-lived
secret keys. Moreover, it is complex and expensive to implement (see §6), and requires a non-falsifiable
knowledge of exponent assumption in the random oracle model. Finally, TGLMR does not easily generalize
to more complex conversation graphs that allow for forwarding.

Another line of research investigates the ability for the moderator to trace the original source of messages
that might have been forwarded several times within an EEMS. Tyagi, Miers, and Ristenpart [73] began this
line of study with their Traceback scheme. This protocol reveals to the moderator the entire path from the
original source to the reporter while formally guaranteeing notions of confidentiality and accountability to
members of that path. However, their scheme imposes computational and storage burdens on the moderator;
the required storage is proportional to the number of messages eligible to be traced. Moreover, it may not
be desirable to reveal the entire forwarding path.

Two recent works provide source tracing, identifying only the original source of a reported message. First,
Peale, Eskandarian, and Boneh [57] contribute a source tracing construction that inherits most security
properties from the underlying EEMS (see Table 1). Using more expensive crypto operations, the stronger
variant of their construction is the only one to date to achieve tree unlinkability — namely, that a receiver
who gets the same message twice cannot tell if they originate from the same or different sources. Second,
the FACTS scheme by Liu et al. [53] provides source tracing along with a threshold reporting scheme so that
the moderator only learns when sufficiently many complaints have been lodged against an abusive source
client. However, none of these traceback or source tracing schemes [53,57,73] considers backward security as
part of their security model. Also, none of them provides full anonymity of senders and receivers from the
EEMS platform or moderator; FACTS is compatible with a network that provides one-sided anonymity, but
it requires senders to identify themselves and request tokens from the moderator on the fly whenever they
wish to send a message.

This leaves the following open question:
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Figure 1: Diagram of Hecate’s data flow for a message m, from the source (top) to the forwarder (middle)
and then to a reporting receiver (bottom). The commands match our definition of AMF with preprocessing
(Def. 11), and the variables token, cfrank, cstamp, and report are defined in Fig. 2.

Can we design a protocol that simultaneously provides asymmetric message franking (AMF) and
source tracing, achieves forward and backward security, maintains anonymity of senders and
receivers to the extent provided by the underlying EEMS network, and only makes black-box use
of standardized cryptography in the plain model?

In this work, we answer the question in the affirmative.

1.2 Our contributions

In this work, we provide a new definition and construction for asymmetric message franking (AMF) that is
more general, more secure, and faster than previous work. To achieve this goal, we revisit the decision by
TGLMR [72] to “restrict[] attention to non-interactive schemes for which franking, verification, and judging
requires sending just a single message.” On its face, this restriction seems natural because end-to-end
encrypted messengers are designed to work asynchronously in situations with limited network connectivity,
so one-round (online) protocols are desirable. However, this restriction also appears to direct the solution
space toward expensive crypto tools like designated-verifier signatures and zero knowledge proofs.

Our core insight is to introduce an AMF with preprocessing model as shown in Fig. 1. As before, the online
work of message franking and transmission requires only one round of communication from the source to
platform to receiver. Beforehand, we allow the source and moderator to engage in a single data-independent
preprocessing interaction to produce tokens that can be consumed during the online phase. Preprocessing
can be batched to produce many tokens at once, it can be performed during off-peak hours when the source’s
device is connected to power and wifi, and it should should be performed in advance rather than on the fly
in order to avoid network-level traffic linking attacks [55]. As with MPC [7] or PIR [8], we show that adding
a preprocessing round to AMF allows for more efficient protocols, and in particular allows us to answer the
open question from above.

Concretely, we contribute an AMF scheme called Hecate. Our construction leverages the fact that, with
preprocessing, the communication path of reported messages begins and ends with the content moderator.
Ergo, we can use techniques from (faster) symmetric message franking whereby the moderator can prepare
a token (e.g., a symmetric encryption of the source’s identity) that is only intelligible to its future self. The
token is passed through the sender → platform → receiver communication flow of an EEMS; that said,
end-to-end encryption prevents the platform from viewing the token.

Hecate also supports source tracing, in which receivers can forward messages along with their corre-
sponding tokens. Any recipient can choose to report an abusive message; this only requires sending one
communication to the moderator.

A big challenge in our construction is to combine message forwarding with our AMF backward security
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Signal × × × ×
Tyagi et al. [72] × src ×
Traceback [73] path
FACTS [53] src
Peale et al. [57] src
Hecate (this work) src

: fully provided, : provided but not proven, : partially provided, : not provided, ×: not applicable

Table 1: A comparison of features and security properties provided by the Signal EEMS protocol as well as
several abuse reporting constructions. Security properties are described in §2.2 and §5. For the anonymity
column, refers to providing anonymity at the level of Signal’s sealed sender [65].

requirement, which states that an attacker who previously (but no longer) controlled a source’s device cannot
blame the source for new messages. To our knowledge, this work is the first one to consider and formalize
backward security within AMF. As we will discuss in more detail in §2, the challenge in combining AMF with
backward security stems from the fact that immediate receivers of the message from the original source can
rely on the backward security of the underlying encrypted messaging protocol to know that they’re speaking
with the source rather than the attacker, whereas indirect receivers cannot.

In summary, we make four contributions in this work.

• We rigorously define AMF with preprocessing (§3). We generalize the definition from TGLMR, for-
malize forward and backward security, and add source tracing.

• We provide a construction called Hecate (§4). It requires only a few black-box calls to standard crypto
primitives.

• We formalize and prove (§5) that Hecate achieves all of the security guarantees shown in Table 1.
• We implement Hecate (§6) and integrate it into a Signal client. We show that Hecate’s performance
compares favorably to prior work and is imperceptible in practice.

Before continuing, we wish to stress that any decision to use content moderation within end-to-end
encrypted messengers requires weighing all of its potential benefits and risks, including the limitations of
Hecate and prior works (see §7.2), and the risk of abuse by or coercion of the moderator. This is a complex
policy question whose discussion should involve computer scientists, but not only computer scientists. We
take no stance on the policy question in this work; instead, we observe that these policy discussions are
already ongoing [2, 17, 60] and that a sub-optimal understanding of the technological possibilities may push
a service provider or nation-state policymakers toward a worse policy decision. We undertake this research
in order to demonstrate the feasibility of alternatives to blunt privacy-inhibiting legislation.

2 Overview

In this section, we describe our objectives for an asymmetric message franking (AMF) system. We begin
by describing the setting and threat model for our work, and then we provide a high-level description of the
security requirements and a brief description of how our Hecate protocol will achieve them.
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2.1 Setting and Threat Model

In this work, we consider an EEMS that might contain network-level anonymity protections such as Signal’s
sealed sender [65] or Tor [27]. We focus on two party point-to-point communication; that said, our techniques
translate directly to Signal’s group messaging protocol as described in §7.1.

Within the context of any single message transmission, we refer to the participating clients using the
following terminology: the source who initially produced the message within the messaging platform, the
receivers who receive the message and can optionally decide to report it (in which case we call them a
reporter) and the forwarders who are receivers that decide to send the message along to others. All clients
only possess the computational power of a regular phone.

Due to forwarding, each message’s communication graph has the structure of a tree rooted at the source.
A client can have different roles in the communication trees of different messages.

In addition to the messenger clients, our model contains two (possibly separate, and more computationally
powerful) entities that everyone can communicate with: (1) the platform that provides the messaging service,
and (2) the content moderator. We consider the platform and moderator as possibly separate so that
our model can capture settings where a platform outsources moderation tasks to other, more qualified
organizations (e.g., Facebook’s oversight board [56]).

Generally, the parties in the system view all other parties as potentially malicious and colluding together.
Every party wants confidentiality and integrity to the strongest extent possible, even if some or all of their
counterparty, the platform, and the moderator are colluding against them. In particular, we wish to retain
all of the security goals that end-to-end encrypted messengers provide, as detailed in §2.2 and §5.

In this work, a malicious attacker has the power to compromise one or more parties, in which case it
can observe these parties’ local state (e.g., cryptographic keys) and run arbitrary software for the duration
of their control of a victim’s machine. A semi-honest party, by contrast, is assumed to perform all actions
honestly, and the only objective against such a party is data minimization. We presume that the software
implementing the encrypted messenger faithfully reproduces the intended specification so that the adversary
cannot control the behavior of honest parties. Put another way, supply chain attacks and formal verification
are out of scope of this work.

The parties’ relationship toward the moderator is more subtle. The moderator and platform view each
other as semi-honest; looking ahead to our Hecate construction, the moderator trusts the accuracy of any
timestamp applied by the platform but it need not trust the platform for any other purpose. Clients have
a choice: if they view the moderator as malicious then they must be assured of limits to the moderator’s
power, or if they view the moderator as semi-honest then they must be assured that the moderator can
perform its role.

The objective of holding senders accountable for reported messages creates some tension with the objective
of end-to-end security for the specific messages that are reported. First, an AMF scheme imposes a limit
on forward security, because messages sent in the past now can be reported and revealed to the moderator
in the present. Second, clients no longer receive message confidentiality or sender anonymity guarantees
against the moderator for reported messages. We stress that even for a reported message, the sender still
has deniability and confidentiality against all parties that are not the moderator or the receiver. In other
words, the knowledge gained by the moderator from a reported message is non-transferable to a third party.

Our objective is to provide end-to-end security up to these fundamental limits. Specifically, we emphasize
that even if the moderator is malicious and colluding with some clients, all of the security guarantees for
end-to-end encrypted messaging continue to hold for all unreported messages communicated between non-
adversarial clients. Moreover, even for reported messages, security holds against all other parties who are
not colluding with the moderator.

Another tension exists between content moderation and network anonymity. For example, sealed sender
is a feature introduced by the Signal protocol to hide the identity of the sender from the platform. It
offers sender confidentiality and minimizes the amount of metadata stored by the platform. But if the
sender can deny ever sending a message, then can we hold anyone responsible for sending an abusive mes-
sage? TGLMR [72] resolved this dilemma using zero-knowledge signatures; in this paper we contribute an
alternative construction based solely on black-box use of standard crypto primitives.
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2.2 Security goals

In an asymmetric message franking scheme, we aim to provide all of the security and privacy goals of
encrypted messengers [22, 74]. Some EEMS goals (cf. §3.2) are already consistent with content moderation,
in which case AMF constructions can use these properties and must ensure that they don’t weaken them. To
give a concrete example for our Hecate protocol: we use the EEMS as a black box, and we will take advantage
of the receiver’s ability to authenticate the sender’s identity. On the other hand, some security goals are not
fully compatible with content moderation, in which case we aim to make the smallest modification possible.

Below, we describe each security goal from Table 1 and highlight the extent to which it is impacted by
content moderation. These security goals apply to all clients who construct properly formatted messages
that adhere to the encrypted messaging protocol, whether or not their messages are subsequently reported.
That is: even though malicious parties in a crypto protocol receive no security guarantees, the mereact of
sending a reported message does not render a client malicious.

• Confidentiality. Anyone not involved in the creation, forwarding, or reporting of a message m must
not learn anything about m except an upper bound on its size.

• Anonymity. The AMF scheme should not allow the platform, receiver, or moderator to learn anything
about the source and forwarding path of a message beyond what they would learn from the underlying
EEMS or a report.

• Deniability. If the moderator is honest, then every user should be able to deny a claim about the
message contents made by any adversary (even other recipients of this message). If the moderator is
malicious or loses control of their secret key material, any user can deny the contents of a non-reported
message. Reported messages on the other hand are deniable to anyone other than the moderator.

• Forward security. Adversaries that compromise user’s state in the present should not be able to deduce
anything about messages exchanged in the past. This goal does not apply to messages that happen to
remain on the phone in the present, which can still be read and reported.

• Backward security. Once a client recovers from a compromise event, then the compromised state
becomes ‘useless’ after a short recovery period. In particular, the adversary cannot send a new message
that (if reported) would cause the moderator to blame the victim client.

• Unforgeability. The adversary cannot send a message that appears to be sent by another party. An
honest receiver will reject any malformed or tampered messages.

• Accountability. If a message passes a receiver’s verification check and is subsequently reported, the
moderator will trace it back to its original source. That is: nobody can falsely accuse someone who
wasn’t the source of a message, and the true source cannot evade detection and yet also have the
message verified by the receiver.

2.3 Protocol Overview

In this section, we give a high level overview of our Hecate protocol in two stages (with and without message
forwarding) and explain informally how it satisfies our security goals.

Hecate without forwarding. At a high level, our Hecate construction can be thought of as an interactive
variant of designated-verifier signatures. Given a message m, the source constructs a 2-out-of-2 secret sharing,
say H(m) = x1 ⊕ x2. In Hecate, the moderator binds x1 to the source’s identity (which on its own reveals
nothing about m), and then the source binds x1 to x2 without using any long-lived keys.

As shown in Fig. 2: since one of the two shares can be sampled even before m is known, during prepro-
cessing the moderator selects x1 as an encryption of the source’s identity (which appears random to everyone
else), samples an ephemeral digital signature keypair (ske, pke), and signs both x1 and pke. The tuple of x1,
pke, and their signature constitute the preprocessing token token. During the online phase, the source uses
the ephemeral key ske to sign x2; we refer to the pair of x2 and its signature as another token token.

The source provides both tokens to the receiver within the payload of an ordinary Signal packet, as
shown in Fig. 2; ignore the other elements of the franked ciphertext cfrank for now. Any receiver can check
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pke, ske, idsrc, t1 m, r t2inputs

x1 := Encskmod(idsrc) x2 := H(m)⊕ x1shares

σ1 := Signskmod,σ (x1∥pke∥t1) σ2 := Signske(x2)signatures

com := comr(x1∥x2) σ3 := Signskplat(com∥t2)stamp

[ x1, σ1, t1, pke ]payload [ x2, σ2, r ]payload, [ com ]envelope [ t2, σ3 ]envelopeske,

token
cfrank
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Figure 2: The construction of the different parts of a franked cipher. The outputs of the diagram correspond
to each party’s contribution to the eventual stamped cipher cstamp. The source constructs the franked cipher
cfrank using a token provided by the moderator during preprocessing. We denote by payload and envelope
two different parts of the ciphertext as defined in the Signal sealed sender protocol [65]; the platform and
receiver can read the envelope whereas only the receiver can read the payload.

on its own whether the signatures are valid and the underlying values x1 and x2 combine to form the real
message m that the receiver also gets from the underlying Signal communication; if verification fails, then
the message is malformed, so it is dropped without displaying on the receiver’s device. If a verified message
is later reported, the two tokens together will convince the moderator that the source was the originator of
message m.

Achieving our security goals. Many of our security guarantees follow directly from the correspond-
ing property of the underlying EEMS, so we focus on the most challenging goals here. Hecate provides
accountability for the same reason as symmetric messaging franking schemes: the moderator created an au-
thenticated encryption of the source’s identity for its future self. Forward security holds because ephemeral
signing keys ske from the past were deleted before a compromise event in the present. Deniability can be
shown in two parts: if the moderator’s keys are breached then anyone can produce signatures for any choices
of x1 and x2, and otherwise the source’s identity is hidden within the encrypted token so anyone could have
‘forged’ signatures of an (x1, x2) pair using her own tokens rather than those of the real source.

Backward (or post-compromise [24]) security is more challenging to address, and it is worth pausing for a
moment to discuss what this guarantee means in the context of content moderation. If an adversary corrupts
the source’s phone, it can produce messages whose reports blame the source; this is inevitable. Our goal is
to ensure that once the source recovers control of her phone, then (perhaps after a short delay δ) any new
message produced by the adversary cannot implicate the honest source. To provide this guarantee within
Hecate, the moderator includes a timestamp within its attestation to x1, and receivers drop any message
where this timestamp is too old. This ensures that an adversary cannot continue to use pre-processing tokens
after the compromise event.

Hecate with message forwarding. Next, we allow forwarding of messages and consider source tracing,
in which the moderator should identify only the original source of a reported message. For the most part,
our construction is already amenable to source tracing: a forwarder can simply include the original source’s
tokens within a forwarded message rather than generating new tokens that would implicate herself. However,
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our timestamp-based solution to backward security now fails because the age of x1 is insufficient to determine
whether the original source had control of her cryptographic keys at the moment that the original message
was sent (as opposed to the time of the forwarding).

As shown in Figure 1, we solve this problem by appending a timestamp time as the data traverses through
the platform, so that receivers can check whether the timestamps on the preprocessing and sending stages
are close in time to each other. This is sufficient because the original source’s message x2 inherits backward
security from the underlying encrypted messenger, so to verify backward security it suffices to verify whether
the pre-processed token (which contains the identity of the source to blame) was produced close in time to
the message transmission. As shown on the bottom of Figure 1, timestamps for forwarded messages are
disregarded; future recipients only care about the timestamp from original source.

It only remains to bind the source timestamp to the message, so that it cannot be tampered later.
Note that we cannot reveal x2 to the platform, or else the platform and moderator together could recover
the content of messages. Blind signatures are a possible solution to allow the platform to timestamp-and-
sign obliviously, but constructions that only require one message received and sent by the platform require
trusted setup [34], non-standard crypto assumptions [36,37], or a concretely slow runtime with non-black-box
reductions [35,48]. Instead, we take advantage of the fact that the platform’s actions need only be verified by
recipients who already know x1 and x2, so it suffices for the platform to produce a signature σ of the current
time time together with a commitment to the two shares. The corresponding decommitment randomness
can be sent to the receiver within the encrypted messenger payload, so that the recipient can verify that it
is well-formed.

3 Definitions

In this section, we present rigorous definitions for several cryptographic protocols, a nearly black-box model
of the Signal protocol that we use in this work, and a new definition for an asymmetric message franking
scheme that generalizes TGLMR [72].

3.1 Definitions of Cryptographic Building Blocks

This work uses four standard cryptographic building blocks that we use and adapt from Boneh-Shoup [14]
and Katz-Lindell [49]. In what follows, we define the message space as M := {0, 1}∗, the key space as
K := {0, 1}n, the ciphertext space as C := {0, 1}∗, the randomness space R := {0, 1}n and the signature
space as Σ := {0, 1}n, where n denotes the security parameter.

Definition 1 (Commitment scheme). A non-interactive commitment scheme is defined by two algorithms
Com and Vf.

• Com is an algorithm that takes a random string r←$R, and a plaintext message m ∈ M and outputs
a commitment com := Com(m, r).

• Vf is an algorithm that takes a commitment com, a string r and a plaintext message m and checks if

Vf(m, com, r) := (Com(m, r)
?
= com).

Definition 2 (Binding commitment). A commitment scheme π = {Com,Vf} is computationally binding if
for all probabilistic polynomial time (PPT) adversaries A, there is a negligible function negl(n) such that:

Advbindingcomπ (A) = Pr[Com(m, r, param) =

Com(m′, r′, param) | m ̸= m′] ≤ negl(n).

Definition 3 (Hiding commitment). Let π = {Com,Vf} be a commitment scheme. Let ComA
hiding be defined

by the following experiment:

• The adversary A outputs a pair of messages m0,m1 ∈M.
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• A uniform bit b ∈ {0, 1} and the randomness r← {0, 1}n are chosen.
• The adversary A is given access to the commitment oracle Ocom−hiding which on messages m0 and m1

computes and returns the commitment com← Com(mb, r), where Vf(Com(mb, r),mb, r) = 1.
• The output of the experiment is 1 if b′ = b and 0 otherwise.

A commitment scheme π is computationally hiding if for all PPT adversaries A there is a negligible function
negl(n) such that:

Advhidingcomπ (A) = Pr[ComA
hiding(n) = 1] ≤ 1

2
+ negl(n).

Definition 4 (Encryption scheme). A private key encryption scheme is defined by three algorithms EncKGen,
Enc and Dec over a finite message spaceM.

• EncKGen is a probabilistic key generation algorithm that output a key pair (pk, sk) sampled uniformly
at random from K, where pk is defined as the public key and sk is defined as the secret key.

• Enc is the encryption algorithm that takes as an input sk and plaintext message m ∈ M and outputs
c := Encsk(m) where c ∈ C.

• Dec is the decryption algorithm that takes as an input pk and a ciphertext c in the ciphertext space C
and outputs a plaintext message m := Decpk(c) such that c := Encsk(m).

Definition 5 (CCA security). Let π = {EncKGen,Enc,Dec} be an encryption scheme. Let ENCA
cca,π(n)

denote the following experiment:

• EncKGen is run to obtain (pk, sk) and a uniform bit b ∈ {0, 1} is chosen. The adversary A is given pk.
• The adversary A is given access to the encryption oracle Oenc

cca which, on messages m0,m1, outputs a
ciphertext c← Encpk(mb).

• The adversary A is given access to the decryption oracle Odecrypt
cca which outputs the decrypted plaintext

message m under sk when handed out a ciphertext c′.
• A continues to interact with the decryption and encryption oracles, but may not request a decryption
of any ciphertext c returned by Oenc

cca.
• Finally A output a bit b′. The output of the experiment is defined to be 1 if b = b′, and 0 otherwise.

We say that π is secure under a chosen-ciphertext attack (CCA) if for all PPT adversaries A, there exists
a negligble function negl(n) such that:

Advencccaπ = Pr[ENCA
cca,π(n) = 1] ≤ 1

2
+ negl(n).

Definition 6 (CPA security). Let π = {EncKGen,Enc,Dec} be an encryption scheme. Let ENCA
cpa,π(n) de-

note a similar experiment to ENCA
cca,π(n) where the adversary A only has access to the encryption oracle that

rename as Oenc
cpa. We say that π is secure under a chosen-plaintext attack (CPA) if for all PPT adversaries

A, there exists a negligble function negl(n) such that:

Advenccpa
π = Pr[ENCA

cpa,π(n) = 1] ≤ 1

2
+ negl(n).

Definition 7 (Digital signature scheme). A signature scheme is defined as the triple of algorithms SigKGen,
Sign, Vf over the message spaceM and the signature space Σ.

• SigKGen is a probabilistic key generation algorithm that output a key pair (pk, sk) sampled from K,
where pk is the public verification key and sk is the secret signing key.

• Sign is the probabilistic signing algorithm that takes the signing key sk and a plaintext message m and
outputs a signature σ ← Signsk(m), where σ ∈ Σ.

• Vf is the deterministic verification algorithm which checks the signature σ against the plaintext message
m and public key pk and outputs ⊥ or 1 such that:

Pr[Vf(pk,m,Signsk(m)) = 1] = 1.
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Definition 8 (EU-CMA security). Let π = {SigKGen,Sign,Vf} denote a digital signature scheme. Let
SigAeu−cma be the experiment defined as:

• SigKGen is run to obtain (pk, sk).

• The adversary A is given pk and access to the signing oracle Osign
eu−cma which on message m computes

and outputs the signature σ of that message under the secret signing key sk. Let Q denote the set of
all queries that A makes to Osign

eu−cma.
• The adversary A then outputs (m′, σ′).
• The experiment outputs 1 if and only if Vfpk(m

′, σ′) = 1 and m′ ̸∈ Q, and 0 otherwise.

We say that π is existentially unforgeable under an adaptive chosen-message attack (EU-CMA) if for all
PPT adveries A, there is a negligible function negl(n) such that:

Advsigeu-cma
π (A) = Pr[SigAeu-cma(n) = 1] ≤ negl(n).

Definition 9 (Hash function). A hash function with output length l is defined by two algorithms Gen and
H.

• Gen is a probabilistic algorithm which outputs a key k ∈ K.
• H is an algorithm which takes as input as key k and a string m ∈ M and outputs a string Hk(m) ∈
{0, 1}l(n).

Definition 10 (Collision resistance). Let π = {Gen,H} denote a hash function. Let HashAcoll be the experiment
defined as:

• Gen is run to obtain k.
• The adversary A is given access to the hashing oracle Ohash which on input m returns Hk(m)
• The adversary then outputs m0 and m1.
• The experiment outputs 1 if and only if m0 ̸= m1 and Hk(m0) = Hk(m1).

We say that π is collision resistant if for all PPT adversaries A there is a negligible function negl(n) such
that:

Advhashcoll
π (A) = Pr[HashAcoll(n) = 1] ≤ negl(n).

3.2 Modeling an EEMS

End-to-end encrypted messaging systems (EEMS) using the Signal protocol [67] are a complex, delicate
combination of standard cryptographic primitives. Starting with Cohn-Gordon et al. [22], there is a long
line of research that analyzes the security of EEMS constructions such as the two-party Signal protocol itself
(e.g., [4,9,46]), modified versions that provide provide stronger guarantees (e.g., [43,45,59]), and extensions
to support group messaging (e.g., [18, 21, 61]). For the purposes of this work, we wish to treat an EEMS as
a black box and consider only an API-level description of its operation and underlying security guarantees.

For this reason, we opt to use the ideal functionality modeling of an EEMS within the recent work of
Bienstock et al. [13] rather than the game-based definitions in the literature [4,9]). Their ideal functionality
FSignal models the creation, evolution, and destruction of communication ‘sessions’ between different pairs
of parties, and keeps track of the long-term and ephemeral state that parties must hold for each operation.
We follow this abstract model, with three changes. First, we allow a sender to attach public information
outside of a sealed sender envelope that is visible to the platform, as shown in Fig. 2. Second, in order to
support an anonymous network, we allow for inputs involving the parties’ identities to be optional. Third,
we add an explicit forgery method to highlight the fact that an EEMS achieves deniable authentication [29]
(which is implicitly true in universally composable security models [20]): that is, the sender and receiver can
forge a transcript showing that a message originated with the other party.

Hence, our abstract model of Signal involves three methods. All of these methods implicitly use the state
of the party (or parties) that participate in each method.
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• sendeems(m
∗; idsrc, idrec) → c: Run by the source client idsrc with message m∗, this method sends

a ciphertext c to the platform. This message m∗ might contain payload and envelope components,
similarly to how Signal’s sealed sender operates. We sometimes omit the latter two inputs when they
are clear from context.

• delivereems(c; idrec) → m∗: An interactive protocol in which the platform delivers a ciphertext c to
the receiver idrec. If this receiver was the intended target of a previous sendeems that produced c,
then they can decrypt using their local state to recover m∗. As above, we presume that delivereems

handles the payload and envelope of the message and splits c and m∗ accordingly. Here, it is unclear
whether to include idrec as an input: for an anonymous communication channel it is important that
the platform not know idrec, but for non-anonymous networks it may be required. We leave idrec as an
optional parameter, and throughout this work we focus on the stronger setting in which the network
is anonymous so this input is omitted.

• forgeeems(m
∗; idsrc, idrec) → c: A forgery algorithm executed by a party idrec and requiring its state

staterec. It forges a transcript that looks as though the message m∗ were sent by its counterparty idsrc
in an EEMS communication, with a destination of idrec. The parameters idsrc and idrec are optional
for the same reasons as sendeems, and they will be omitted from this work.

3.3 Defining AMF with Preprocessing

Next, we present a rigorous definition for an asymmetric message franking system with preprocessing. This
definition extends the one from TGLMR [72] in two ways. First, it includes an (optional) out-of-band
communication between the moderator and sender, which results in a one-time token that is consumed when
sending a message. Second, it is designed in a modular fashion so that it can be built on top of any EEMS
that adheres to the model in §3.2.

Definition 11. An asymmetric message franking scheme with preprocessing AMF = (KGen, TGen, Frank,
Forward, Stamp, Inspect, Verify, Forgemod, Forgerec) is a tuple of algorithms called by different parties in
the messaging ecosystem. We assume that each party has a unique identifier id provided by the underlying
EEMS, and we define a state variable state for each party containing all keys and tokens generated by the
AMF scheme and the underlying EEMS that have not yet been deleted. (Note that the user’s state does not
contain a transcript of prior messages exchanged.) The algorithms operate as follows.

• (pk, sk)←$KGen(): The key generation algorithm accessed by any party in the EEMS and used for
creating (potentially multiple) cryptographic keys. The algorithm is at least run once at the beginning
of time to setup the long-term key material for each party.

• TGen(idsrc, timemod, skmod) → token: An algorithm run by the moderator periodically that provides a
one-time token for use when sending a message. An honest moderator should only provide tokens to a
participant that correspond to their actual identity idsrc. It is assumed that the moderator can rely on
the EEMS to authenticate a user’s identity idsrc before running TGen.

• Frank(statesrc,m, idrec, token) → mfrank: The message franking algorithm that allows a user with state
statesrc to frank a plaintext message m that they wish to send to a receiver idrec, using the token received
during preprocessing. The statesrc contains all key material produced by KGen and the underlying
EEMS, although Frank need not use this state. The resulting franked message mfrank can be sent to the
platform using sendeems.

• Stamp(cfrank, skplat, time) → cstamp: The stamping procedure run by the platform to authenticate and
timestamp a franked cipher cfrank. The resulting stamped cipher cstamp can then be delivered to its
intended recipient using the delivereems method. Stamp does not have the sender or receiver’s identity,
even if delivereems does.

• Forward(mfrank, statefwd, idrec)→ mfrank
′: Forwarding algorithm that allows a user with franked message

mfrank to produce a new franked message mfrank
′ intended for a new recipient idrec. The output formats of

Frank and Forward are identical, so the ciphertexts of new and forwarded messages look indistinguishable
to the platform.
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• Verify(mfrank, staterec) → (m, report) or ⊥: The report construction algorithm that allows a receiver to
validate a franked message mfrank with respect to its state staterec. If valid, Verify returns the corre-
sponding plaintext message m along with a string report that the receiver can send to the moderator if
they choose to report an abusive message.

• Inspect(report, skmod) → (idsrc,m, time) or ⊥: The inspection algorithm that allows a moderator to
handle reported message report using their secret key skmod by validating and possibly source tracing
them. If the verification step succeeds, the moderator produces the id of the source idsrc, the message
contents m, and a timestamp of the message time.

• Forgemod(idsrc, idrec,m, skmod) → mfrank: For deniability, this forgery protocol allows a moderator with
secret key skmod to forge a franked message with plaintext m on behalf of a user with id idsrc and with
an intended recipient with id idrec.

• Forgerec(idrec,m, staterec; idsrc) → cfrank: For deniability, this forgery algorithm allows a receiver with
id idrec and state staterec to forge a franked ciphertext as though the message m was transmitted through
the EEMS by the sender idsrc to the receiver idrec. Note that idsrc is an optional parameter and may not
be needed by systems that support anonymous messaging. In this work, we omit it from the presentation
of this work since we are aiming for the highest level of anonymity.

We say that an AMF scheme with preprocessing is secure if all computationally bounded attackers have
negligible advantage in winning the deniability, anonymity, confidentiality, accountability, and backward
secrecy games. These games are nuanced to describe, so rather than doing so here, we defer our discussion
to the security analysis in §5.

4 Constructing Hecate

In this section, we describe the Hecate construction in detail. As per Def. 11, Hecate has eight algorithms.
We describe them within this section, and we provide the full protocol specification of Hecate in Figs. 3-4.
Because they are the most expensive of our standard crypto primitives, we also count the number of public
key operations in each step here and in Table 2. For context, the prior AMF scheme from TGLMR [72]
required at least 11 modular exponentiations per operation.

Key generation. KGen initializes a few long-term keys: the moderator samples an authenticated encryp-
tion key and both the moderator and platform sample a digital signature key pair. One strength of Hecate
is that individual parties do not need any key material besides their existing EEMS keys, which simplifies
our analysis of forward and backward security.

Token generation during preprocessing. In TGen, the moderator creates a batch of tokens for users at
specific time intervals. Each token provides users with:

• Ephemeral session keys (pke, ske) that they can use to sign their message. None of the keys tie to users’
long-term key material, thus giving the sender plausible deniability and confidentiality with respect to
other users.

• A dual purpose randomized encryption x1 := Encskmod(idsrc) of the user’s identity idsrc under the moder-
ator’s secret key skmod that enforces accountability with respect to the moderator, confidentiality with
respect to other user, and provides token integrity. The later property is ensured by having the sender
create a share x2 that along with x1 reconstructs to a hash of the sent message.

• A timestamp t1 that provides backward security.
• A signature σ1 of the entire token that guarantees integrity and unforgeability of the token. σ1 is
signed with the moderator secret signing keys (pkmod,σ, skmod,σ).

As shown in Table 2, the moderator requires two public key operations for token generation: 1 keygen
operation to produce the ephemeral key pair and 1 signature to sign the public ephemeral key with the
identity of the sender.

Message franking. The Frank method is executed every time the source wishes to send a message. The
constructfrank procedure requires an input plaintext message m from the source and consumes a single token

12



Command Actor KeyGen Sign Verify
TGen mod 1 1 0
Frank src 0 1 0
Stamp plat 0 1 0
Forward fwd 0 0 0
Verify rec 0 0 3
Inspect mod 0 0 3

Table 2: The number of public-key digital signature operations required for each of the interactive algorithms
within Hecate (except for the one-time KGen at setup). We only count the additional cryptographic operations
required for Hecate beyond those already required by the EEMS.

Source’s Payload Forwarder’s Payload Envelope
x1 x2 nonce pke r t1 σ1 σ2 envelope of source com σ3 t2
32B 32B 12B 32B 32B 8B 64B 64B 104B 32B 64B 8B

Table 3: The format of a franked message delivered to the receiver, along with sizes in bytes for the imple-
mentation in §6. A franked message sent by the source is similar, except the envelope does not yet contain
σ3 or t2.

at a time, and it produces a franked message mfrank. This can be combined with sendeems to relay a franked
ciphertext cfrank to the platform.

To produce the franked message mfrank, the sender begins by unpacking x1 from the token and computes
x2 such that these variables constitute a 2-out-of-2 sharing of H(m). Next, x2 is signed via the ephemeral
keys in the original token to produce σ2. Collectively, x2, σ2, and elements of the pre-processing token
(excluding the secret ephemeral key) will constitute the payload of the franked message. Then, the sender
creates a commitment com of x1∥x2 using the randomness r. The user then pushes com onto the envelope of
the franked message and appends r to its payload. In total, a sender only requires 1 public key operation to
sign the second share x2. The constructed franked message mfrank has several properties: x2 and com bind
the online and preprocessing stages together, the signature allows the receiver to check the well-formedness
of the message, and the use of an ephemeral signing key provides deniability with respect to anyone other
than the moderator.

Stamping. In Stamp, the platform timestamps and digitally signs the envelope of a franked cipher cfrank;
ergo, this procedure requires 1 public key operation. Then, the platform relays the resulting stamped cipher
cstamp to its intended recipient. Stamping prevents preprocessing token from being used indefinitely after a
compromise to blame a victim client for unsent messages.

Message delivery. Using the existing EEMS, the stamped cipher is eventually received and then decrypted
by the receiver; by abuse of notation, we call the result mfrank as well. We emphasize that there are actually
two styles of mfrank messages: one produced by the sender, and a longer one received by the recipient. The
difference is that a received mfrank has a timestamp and signature in their envelope, whereas an mfrank that
is produced by a sender or forwarder doesn’t. See Table 3 for the complete structure of a received franked
message; a sent franked message looks similar but with the final two columns removed.

Verification and reporting. On reception of mfrank, the receiver executes Verify to validate the signatures,
timestamp’s expiration date, packet integrity, and check the envelope commitments against the inner tokens.
If a message fails the integrity check, the receiver drops the packet and the application never displays the
plaintext message. Otherwise, Verify generates a plaintext message m that can be displayed on the receiver’s
phone, and a report that can be sent out to the moderator. In Hecate, the report solely consists of the
franked message mfrank. When a moderator receives report, they locally run the Inspect method which
performs the same verification procedure as the recipient, and if successful, decrypts the source’s identity
from the ciphertext x1 within the token. Both the receiver of a message and a moderator who receives a
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KGen [mod and plat, separately]

1 : (pkmod, skmod)←$EncKGen(1n)

2 : (pkmod,σ , skmod,σ)←$SigKGen(1n)

3 : (pkplat, skplat)←$SigKGen(1n)

TGen [mod→ src]

1 : token := constructtoken(skmod, idsrc)

2 : return token

Frank [src→ plat]

1 : mfrank := constructfrank(token,m)

2 : cfrank := sendeems(mfrank)

3 : return cfrank

Forward [fwd→ rec]

1 : mfrank
′ := constructfwd(mfrank)

2 : cfrank := sendeems(mfrank
′)

3 : return cfrank

Stamp [plat→ rec]

1 : cstamp := stamptime(cfrank)

2 : cstamp
′ := sendeems(cstamp)

3 : return cstamp
′

Verify [rec→ mod/rec]

1 : mfrank := delivereems(cstamp)

2 : mfrank := movestamp(mfrank)

3 : (m, report) := vfRec(mfrank)

4 : if (m, report)
?
= ⊥ :

5 : return ⊥
6 : return (m, report)

Inspect [mod]

1 : if vfMsg(report) :

2 : return (Dec(report.x1), report.t2)

3 : return ⊥

Figure 3: Hecate’s construction along with the transmissions using the encrypted messenger. The notation
[a → b] means that party a executes the method and sends the returned value to b. Note that the plat

relays messages between the src and the rec. The receiver of a message may elect to forward or report it;
we assume that Forward is preceded by a successful invocation of Verify. See Fig. 4 for more details on the
methods used here.

report require 3 signature verifications to check that the two shares are not tampered with and have the
right timestamps.

Message forwarding. Verified messages can alternatively be forwarded using the optional Forward method.
There are two differences between Forward and Frank: the forwarder creates a nonsensical commitment outside
the Signal envelope, and it moves the true commitment and signed timestamp into the payload of the franked
message. Because it reuses the prior signature, the forwarder doesn’t perform any public key operations of
its own. Additionally, Frank and Forward payloads are indistinguishable to the platform but distinguishable
by the receiver; see Table 3 for the format of mfrank. The receiver of a forwarded message executes Verify
using the commitment, signature, and timestamp inside the payload.

We defer discussion of Hecate’s forgery algorithms to §5, since these are proof artifacts of the deniability
property rather than actual elements of the construction.

5 Security Analysis

In this section, we formally define the security properties of asymmetric message franking (AMF) schemes
with preprocessing, and we prove that Hecate guarantees them. All of our definitions are written as indis-
tinguishability games GAMEA

b , and we want to show that the adversary’s advantage

Advgame
Hecate(A) =

∣∣∣Pr[GAMEA
1 = 1

]
− Pr

[
GAMEA

0 = 1
]∣∣∣

is negligible for each game, if the adversary A is computationally bounded to probabilistically polynomial
time (PPT).

5.1 Deniability

Deniability states that a sender should always be able to deny that they sent a particular message to anyone,
except to the moderator when a message is reported. Deniability could hold with respect to a colluding
moderator and receivers, as shown in the DENMA

b game in Fig. 6, or against malicious receivers who are not
colluding with an honest moderator, which corresponds to the DENRA

b game in Fig. 6.
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constructtoken(skmod, idsrc)
1 : (pke, ske)←$SigKGen(1n)

2 : t1 := time()

3 : x1 := Encskmod (idsrc)

4 : σ1 := Signskmod,σ (x1∥pke∥t1)

5 : token := (x1, t1, σ1, (pke, ske))

6 : return token

constructfrank(m, token)
1 : r←$ {0, 1}n

2 : (x1, t1, σ1, (pke, ske)) = token

3 : x2 := split(x1, H(m))

4 : σ2 := Signske (x2)

5 : com := comr(x1∥x2)
6 : envelope := com

7 : payload := (x1, x2, r, t1, σ1, σ2, pke)

8 : mfrank := (payload, envelope)

9 : return mfrank

constructfwd(mfrank)
1 : mfrank := movestamp(mfrank)

2 : mfrank.envelope←$ {0, 1}|com|

3 : return mfrank

vfRec(mfrank)
1 : if ¬vfMsg(mfrank) :

2 : return ⊥
3 : report := mfrank

4 : return (mfrank.m, report)

vfMsg(report)
1 : b1 := vfToken(report)

2 : b2 := vfCom(report)

3 : b3 := vfExp(report)

4 : return b1 ∧ b2 ∧ b3

vfToken(report)
1 : reveal := open(x1, x2)

2 : b1 := (reveal
?
= H(m))

3 : b2 := Vfpkmod (x1∥pke∥t1, σ1)

4 : b3 := Vfpke (x2, σ2)

5 : return b1 ∧ b2 ∧ b3

vfExp(mfrank)

1 : b := |t1 − t2|
?
< expiry

2 : return b

vfCom(mfrank)
1 : b1 := Vf(x1∥x2, com, r)

2 : b2 := Vfpkplat (com∥t2, σ3)

3 : return b1 ∧ b2

movestamp(mfrank)
1 : if ∄mfrank.stamp :

2 : mfrank := ⊥

3 : elseif stamp
?
̸∈ payload :

4 : payload := payload∥envelope
5 : return mfrank

stamptime(cfrank, skplat)
1 : t2 = time()

2 : σ3 := Signskplat (com∥t2)

3 : cstamp.envelope := (com∥t2∥σ3)

4 : cstamp.payload := cfrank.payload

5 : return cstamp

Figure 4: Hecate’s subroutines. See Appendix 3.1 for specifications and security guarantees of the crypto
primitives used. We omit writing out attribute access notation when it is obvious from the context (i.e. com
for instance is a shorthand for cfrank.com).

Each deniability game provides the adversary A with polynomially-many queries to an oracle ODENM
b or

ODENR
b , respectively. For each query, the adversary chooses a plaintext message m and the sender idsrc and

corrupted receiver idrecA of that message. Both oracles behave similarly: depending on the parameterized
choice bit b, the oracle will either forge a message as a corrupted moderator/receiver as if originating from
idsrc, or ask the honest source idsrc to produce it themselves. Deniability requires that no adversary can
distinguish between forged and real messages, even with access to the secret keys of malicious parties. In
other words, we want to show that a user can always repudiate having sent a message even when the
moderator/receiver provides access to their secret key material. The knowledge of the original source of a
message is non-transferable in that sense. Additionally, ODENR

b provides an interesting guarantee: since the
receiver forgery Forgerec does not depend on the original sender of a message in any way, then it can be
called by any user even if they were not participating in the forwarding path of that message. This is a
strong claim since the number of possible senders of any particular message in Hecate is now as large as the
number of users in the EEMS.

In Hecate, Forgerec allows users to forge messages by using their own pre-processing tokens and construct-
ing their own franked messages that they send back to themselves. The receiver does not have any more
capabilities than any other user, and in particular the sender, without the secret key of the moderator. In
other words, the only thing that a receiver can do is construct the franked message themselves. In Hecate,
tokens and franked messages are not bound to the sender’s long term key material and the origin of franked
messages as a result is indistinguishable without the secret key of the moderator.

In Forgemod on the other hand, the moderator can forge messages by using their secret key to produce
tokens for any user identity of their choosing, constructing franked messages on their behalf and sending the
resulting message to the receiver. This is again a result of how Hecate does not bind the user’s long term
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sendamf(m, idsrc, idrec)

1 : statesrc := retrievestate(idsrc)

2 : fetch token from statesrc

3 : mfrank :=

4 : Frank(statesrc,m, idrec, token)

5 : cfrank := sendeems(mfrank)

6 : return cfrank

receiveamf(cfrank, idrec, timeplat, skplat)

1 : cstamp := Stamp(cfrank, idrec, timeplat, skplat)

2 : mfrank := delivereems(cstamp)

3 : staterec := retrievestate(idrec)

4 : if Verify(mfrank, staterec)
?
= 0 :

5 : return ⊥
6 : return mfrank

fwdamf(mfrank, idfwd, idrec)

1 : statefwd := retrievestate(idfwd)

2 : mfrank
′ :=

3 : Forward(statefwd,mfrank, idrec)

4 : cfrank := sendeems(mfrank
′)

5 : return cfrank

Ocorrupt(id)

1 : // globalt is only relevant in BAC

2 : corrupted = corrupted ∪ (id, globalt)

3 : stateid := retrievestate(id)

4 : return stateid

Orequest(id)

1 : // globalt is only relevant in BAC

2 : if (id, globalt) ∈ corrupted :

3 : create a batch of d tokens

4 : using TGen() for id

5 : T := T ∪ token

6 : globalt := globalt + 1

7 : return d tokens

8 : return ⊥

Figure 5: Game subroutines and oracles used in several games. Here, d is a fixed parameter known to the
moderator.

key material to a franked message.

5.1.1 Formalizing moderator deniability

Theorem 5.1. Hecate is deniable against a moderator. Any adversary A has advantage AdvdenmHecate(A) = 0.

The essence of Thm. 5.1 is the claim that that Hecate’s real send routine is indistinguishable from the
moderator’s forgery. Intuitively, Hecate achieves moderator deniability because Hecate implements algo-
rithms TGen, Frank and Forward without ever using the user’s long term key materials and instead relying
on ephemeral keys generated by the moderator themselves. Additionally, the preprocessing token relies on
an encryption and signature by the moderator in a way that is not directly bound to the message. This
claim holds even against a distinguisher who also has the moderator’s secret key – that is, if the moderator
chooses to leak their own keys in an attempt to convince the rest of the world about the actions of a sender.

Proof of Thm 5.1. We show via a series of hybrids that DENMA
0

c≈ DENMA
1 as shown in Figure 6. This

effectively boils down to showing that ODENM
0

c≈ ODENM
1 , and hence that sendamf is computationally indistin-

guishable from Forgemod (in Fig. 6) and sendeems. Figure 7 shows the sequence of hybrid steps here, starting
with the existing sendamf subroutine as Game0.

Game1: In sendamf , we replace “fetch token from statesrc” with the moderator token construction method
constructtoken on the source’s id idsrc. We can do so because the moderator in Hecate does not require any
information from a user idsrc in order to construct a token on their behalf. The adversary cannot observe
the authentication that occurs between the sender and the moderator since the oracle is acting on behalf of
the moderator in this game.

Game2: In sendamf , we can disregard the state passed to Frank and replace it with its instantiation
constructfrank. Similarly to constructtoken (and hence TGen), constructfrank does not require the state of the
sender to construct the franked message.

Notice that the resulting game from the prior series of hybrid has transformed sendamf to look exactly
like Forgemod. The resulting game is identical to DENMA

0 , where only the branch corresponding to b = 0 is
executed.
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DENMA
b

1 : s1, s2 ←$A
2 : (pkmod, skmod)←$KGen(s1)

3 : (pkmod,σ , skmod,σ)←$KGen(s2)

4 : (pkplat, skplat)←$KGen(1n)

5 : b′ ←$AODENM
b (skmod, skmod,σ)

6 : return b′

DENRA
b

1 : (pkmod, skmod)←$KGen(1n)

2 : (pkplat, skplat)←$KGen(1n)

3 : b′ ←$AODENR
b

4 : return b′

Forgemod(idsrc, idrec,m, skmod)

1 : token := constructtoken(skmod, idsrc)

2 : mfrank := constructfrank(m, token)

3 : return mfrank

Forgerec(m, staterec)

1 : fetch token from staterec

2 : mfrank := constructfrank(m, token)

3 : cfrank := forgeeems(mfrank, staterec)

4 : return cfrank

ODENR
b (m, idsrc, idrec)

1 : if b = 0 :

2 : fetch staterec

3 : cfrank := Forgerec(m, staterec)

4 : mfrank
′ :=

5 : receiveamf(cfrank, idrec, time, skplat)

6 : else :

7 : cfrank := sendamf(m, idsrc, idrec)

8 : mfrank
′ :=

9 : receiveamf(cfrank, idrec, time, skplat)

10 : return mfrank
′

ODENM
b (m, idsrc, idrec)

1 : if b = 0 :

2 : mfrank :=

3 : Forgemod(idsrc, idrec,m, skmod)

4 : cfrank := sendeems(mfrank, idrec)

5 : mfrank
′ :=

6 : receiveamf(cfrank, idrec, time, skplat)

7 : else :

8 : cfrank := sendamf(m, idsrc, idrec)

9 : mfrank
′ :=

10 : receiveamf(cfrank, idrec, time, skplat)

11 : return mfrank
′

Figure 6: The security games for Deniability with respect to the Receiver (DENRA
b ) and Moderator (DENMA

b ).

send0(n)

1 : statesrc := retrievestate(idsrc)

2 : fetch token from statesrc

3 : mfrank := Frank(statesrc,m, idrec, token)

4 : cfrank := sendeems(mfrank)

5 : return cfrank

send1(n)

constructtoken(skmod, idsrc)

mfrank := Frank(statesrc,m, idrec, token)

cfrank := sendeems(mfrank)

return cfrank

send2(n)

constructtoken(skmod, idsrc)

mfrank := constructfrank(m, token)

cfrank := sendeems(mfrank)

return cfrank

Figure 7: The hybrid steps modifying sendamf in the Moderator Deniability game

5.1.2 Formalizing receiver deniability

Theorem 5.2. Hecate is deniable against a malicious receiver. Concretely, for any PPT adversary A, there
exist PPT adversaries A′ and A′′ such that:

AdvdenrHecate(A) ≤ Adv
eemsdeniability
E (A′) + Adv

enccpa
E (A′′).

That is: Hecate’s deniability reduces to the deniability and CPA security properties of the underlying EEMS
scheme E.

The main difference with moderator deniability is that the adversary has to perform a forgery without
the secret keys of the moderator. Intuitively, a forger can use her own tokens to create a franked message
of her choosing and claim that it came from another source. Users with no access to the moderator’s secret
key should not be able to verify her claim without breaking the underlying encryption schemes.

Proof of Thm. 5.2. We show via a series of hybrids that DENRA
0

c≈ DENRA
1 , and more precisely show that

ODENR
0

c≈ ODENR
1 , and hence that sendamf is computationally indistinguishable from Forgerec (Figure 6).

Game0: We start with ODENR
1 , we focus on the if-else branch corresponding to b = 1 since its the only

one executed. We can disregard the other branch.
Game1: In ODENR

1 , we replace statesrc in the sendamf subroutine with staterec (lines 1, 2, 4). This is
equivalent to replacing sendamf with its instantiation constructfrank. Since the adversary does not have access
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send0(n)

1 : statesrc := retrievestate(idsrc)

2 : fetch token from statesrc

3 : mfrank := Frank(statesrc,m, idrec, token)

4 : cfrank := sendeems(mfrank)

5 : return cfrank

send1(n)

staterec := retrievestate(idrec)

fetch token from staterec

mfrank := constructfrank(m, token)

cfrank := sendeems(mfrank)

return cfrank

send2(n)

staterec := retrievestate(idrec)

fetch token from staterec

mfrank := constructfrank(m, token)

cfrank := forgeeems(mfrank)

return cfrank

CPA
EEMS Deniability

Figure 8: The hybrid steps modifying sendamf in the Receiver Deniability game

to the moderator’s secret key, then A has negligible advantage in distinguishing between different x1 values in
the constructed pre-processing token and the franked message. Specifically, they cannot distinguish between
an encryption of idsrc and idrec without breaking the CPA security of the symmetric key encryption scheme
used by the moderator during preprocessing. We formally show this by constructing an adversary B that
can break the CPA security game ENCA

cpa. When adversary A queries oracle ODENR
1 , B queries Oenc

cpa with
idsrc and idrec, constructs the franked message with the resulting cipher-text. When A submits a choice bit
b, B returns the same bit to ENCA

cpa and succeeds if and only if A can distinguish between Games 0 and 1.
Game2: We replace sendeems with forgeeems since the underlying EEMS provides receiver deniability and

the receiver hence can forge a channel with themselves.
The resulting game is identical to DENRA

0 , where only the branch corresponding to b = 0 is executed.

5.2 Anonymity

Loosely speaking, the anonymity properties that we consider in this work restrict the moderator and any
client from learning the metadata about the senders, receivers, and forwarders of messages that are transmit-
ted between other people. We make no claims here about the level of anonymity provided by the underlying
network environment (e.g., using sealed sender or Tor). Instead, our goal is to capture that the cryptography
does not weaken any anonymity guarantees that happen to be provided by the underlying environment. Put
another way: if we assume that the underlying network provides perfect anonymity, we examine the amount
of metadata that each entity can learn through the abuse reporting system alone.

5.2.1 Anonymity with respect to the receiver

First, anonymity with respect to the receiver guarantees that receivers should not be able to learn any other
member of the forwarding path of a message beyond their direct neighbors. For this security property, we
assume that senders and forwarders of a message are honest and wish to hide themselves from non-neighboring
recipients in the presence of an honest moderator.

5.2.2 Anonymity with respect to the receiver

We model this property in the ANONRA
b game. The adversary can send and forward messages between

parties using Osend
anon,b, O

fwd
anon,b and Odeliver

anon and is provided with the resulting franked message mfrank.

In this game, we do not attempt to hide chat participants from on another. To that end, both Osend
anon,b

and Ofwd
anon,b call checktopology to ensure that the adversary provided the same pairs of senders and recipients

when either of the provided receivers is corrupted. Without this check, A would trivially win the game
by inspecting which of their provided correspondents sent the message or who received it. Additionally,
checktopology ensures that Osend

anon,b and Ofwd
anon,b handle messages relayed from honest senders and forwarders.

Odeliver
anon on the other hand allows A to send franked messages from corrupted nodes to an honest receiver.

In Ofwd
anon,b, we also check that the queried mfrank was initially received by either of the provided forwarders

using the checkreceived method in order to model the actual behavior of messages forwarders. Both Ofwd
anon,b
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ANONRA
b

1 : s←$A
2 : (pkmod, skmod)←$KGen(1n)

3 : (pkmod,σ , skmod,σ)←$KGen(1n)

4 : (pkplat, skplat)←$KGen(s)

5 : b′ := AOsend
b ,Ofwd

b ,Odeliver
(skplat)

6 : return b′

ANONMA
b

1 : s1, s2, s3 ←$A
2 : (pkmod, skmod)←$KGen(s1)

3 : (pkmod,σ , skmod,σ)←$KGen(s2)

4 : (pkplat, skplat)←$KGen(s3)

5 : b′ := AOfwd
b ,Odeliver

(skmod, skmod,σ , skplat)

6 : return b′

Odeliver(cfrank, idrec, timeplat, skplat)

1 : mfrank := receiveamf(cfrank, idrec, timeplat, skplat)

2 : R := R ∪ ⟨mfrank, idrec, idrec⟩
3 : return mfrank

checkreceived(mfrank, idrec0, idrec1)

1 : if ⟨mfrank, idrec0, idrec1⟩ ̸∈ R :

2 : return ⊥
3 : return 1

Osend
anon,b(m, ⟨idsrc0, idrec0⟩, ⟨idsrc1, idrec1⟩, timeplat, skplat)

1 : if checktopology(⟨idsrc0, idrec0⟩, ⟨idsrc1, idsrc1⟩) = ⊥ :

2 : return ⊥
3 : cfrank = sendamf(m, idsrc, idrec)

4 : mfrank := receiveamf(cfrank, idrec, time, skplat)

5 : R := R ∪ ⟨mfrank, idrec0, idrec1⟩
6 : return mfrank

Ofwd
anon,b(mfrank, ⟨idfwd0, idrec0⟩, ⟨idfwd1, idrec1⟩, timeplat, skplat)

1 : if checktopology(⟨idfwd0, idrec0⟩, ⟨idfwd1, idrec1⟩) = ⊥ :

2 : return ⊥
3 : if checkreceived(mfrank, idrec0, idrec1) = ⊥ :

4 : return ⊥
5 : cfrank = fwdamf(mfrank, idsrc, idrec)

6 : mfrank
′ := receiveamf(cfrank, idrec, time, skplat)

7 : R := R ∪ ⟨mfrank
′, idrec0, idrec1⟩

8 : return mfrank
′

checktopology(⟨idsrc0, idrec0⟩, ⟨idsrc1, idrec1⟩)
1 : if idsrc0 ∨ idsrc1 ∈ corrupted :

2 : return ⊥
3 : if idrec0 ∨ idrec1 ∈ corrupted :

4 : if idrec0 ̸= idrec1 ∨ idsrc0 ̸= idsrc1 :

5 : return ⊥
6 : return true

Figure 9: The security games for Anonymity with respect to the Receiver and Moderator.

and Odeliver
anon check that the provided franked message are consistent with the recipient’s state by calling Vf

in the receiveamf subroutine, thus eliminating any trivial wins that arise from malformed messages.
All three oracles, along with the corruption oracles Ocorrupt and Orequest, allow the adversary to adaptively

build any two message paths of their choice (modulo the topological restrictions) and receive the transcript
of the chosen path, effectively encompassing the full power of a malicious recipient that may intercept
messages along the path. The adversary is tasked with guessing which of the two message paths, with
honest sources/roots, was chosen by the game. If they fail to distinguish between them, then they would
have failed to determine the original sender of that message and the anonymity of that user and honest
forwarder along the path is preserved.

Theorem 5.3. Hecate is anonymous with respect to the receiver. For any PPT adversary A, there exists an
adversary A′ that can win the chosen plaintext attack game with advantage AdvanonrHecate(A) ≤ Adv

enccpa
Hecate (A′).

Informally, this theorem holds because the preprocessing tokens in Hecate only contain any information
about the original sender’s identity in encrypted form; without access to the moderator’s secret key, a
receiver can’t distinguish between tokens that originate from different senders. Additionally, Hecate stores
no information about forwarders of a message at all, thereby guaranteeing their anonymity as well. We
provide a rigorous proof of this theorem below.

Proof of Thm. 5.3. At a high level, Hecate guarantees sender anonymity for the same reason it achieves
receiver deniability: with no access to the moderator’s secret key, message recipients cannot tell who the
originator of a message is without breaking the underlying encryption scheme. Additionally, since the
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send0

1 : statesrc,0 := retrievestate(idsrc,0)

2 : fetch token from statesrc,0

3 : mfrank := Frank(statesrc,0,m, idrec,0, token)

4 : cfrank := sendeems(mfrank)

5 : return cfrank

send1

1 : statesrc,1 := retrievestate(idsrc,1)

2 : fetch token from statesrc,1

3 : mfrank := Frank(statesrc,0,m, idrec,0, token)

4 : cfrank := sendeems(mfrank)

5 : return cfrank

send2
1 : statesrc,1 := retrievestate(idsrc,1)

2 : fetch token from statesrc,1

3 : mfrank := Frank(statesrc,1,m, idrec,0, token)

4 : cfrank := sendeems(mfrank)

5 : return cfrank

send3

1 : statesrc,1 := retrievestate(idsrc,1)

2 : fetch token from statesrc,1

3 : mfrank := Frank(statesrc,1,m, idrec,1, token)

4 : cfrank := sendeems(mfrank)

5 : return cfrank

ENC-CPA

Figure 10: The hybrid steps of sendamf in the ANONRA
b game. We refer the reader to ANONMA

b hybrids for
fwdamf ’s hybrids (We omit the final hybrid from this figure for ease of presentation).

commitment scheme used for envelope commitments is hiding, then access to the platforms secret key does
not reveal anything about the sender of a message. On the other hand, forwarding franked messages in
Hecate does not utilize the forwarder’s state or identity. In other words, no attribute in any franked message
can be traced back to a forwarder guaranteeing forwarder anonymity.

We show via a series of hybrids that ANONRA
0

c≈ ANONRA
1 .

Game0: We start with ANONRA
b with b = 0.

Game1: We replace statesrc,0 with statesrc,1 in the sendamf subroutine that is called by Osend
anon,b. The

moderator in Hecate binds a sender to a token by encrypting their identity on line 3 in constructtoken (Figure
4) and generating the sub-token x1. Without the moderator’s key, the adversary cannot decrypt the identity
of the sender within x1 in the token constructed in sendamf (Figure 5) on line 2 , without breaking the CPA
security of the underlying encryption scheme. The formalism here is similar to Game 1 of DENA

rec.
Game2: We replace statesrc,0 with statesrc,1 in Frank in the sendamf subroutine that is called by Osend

anon,b.
The user’s state and long term keys are never used during the construction of the franked message via
constructfrank in Hecate. mfrank is only bound to a particular user by x1 which we have discussed and handled
in the previous hybrid.

Game3: We replace idrec0 with idrec1 in both Osend
anon,0 and Ofwd

anon,0. In Osend
anon, checktopology enforces that

idsrc0 = idsrc1 and idrec0 = idrec1 when either of the receivers is corrupted (and similarly for Ofwd
anon). If

both receivers are honest, then we can make this replacement because Hecate does not use any information
related to the receiver of a message when constructing or forwarding a franked message (see constructfrank
and constructfwd respectively) and the adversary cannot hence distinguish between both Games 2 and 3.

We have shown that Osend
anon,0

c≈ Osend
anon,1 in Hecate since both oracles are now identical. The next series of

hybrids are similar to the ones we have already seen.
Game4: We replace statefwd,0 with statefwd,1 in Forward in the fwdamf subroutine that is called by Ofwd

anon,b.
The reason we can do so is two folds: (1) Hecate does not use the forwarder states in constructing the franked
message, (2) when the receiver of a forwarded message is corrupted, checktopology enforces that idfwd,0 = idfwd,1
and idrec0 = idrec1. In either case, the source or forwarder of a message have to be honest.

The resulting game is identical to ANONRA
1 . We conclude that Hecate is sender and forwarder anonymous

and the advantage of the adversary is equal to that of the ENCA
cca.
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send0
1 : statefwd,0 := retrievestate(idfwd,0)

2 : mfrank
′ := Forward(statefwd,0,mfrank, idrec,0)

3 : cfrank := sendeems(mfrank
′)

4 : return cfrank

send1
1 : statefwd,1 := retrievestate(idfwd,1)

2 : mfrank
′ := Forward(statefwd,1,mfrank, idrec,0)

3 : cfrank := sendeems(mfrank
′)

4 : return cfrank

send2
1 : statefwd,1 := retrievestate(idfwd,1)

2 : mfrank
′ := Forward(statefwd,1,mfrank, idrec,1)

3 : cfrank := sendeems(mfrank
′)

4 : return cfrank

Figure 11: The hybrid steps of sendamf in the ANONMA
b game. We refer the reader to the moderator

anonymity game for fwdamf ’s hybrids.

Second, anonymity with respect to the moderator ensures that the moderator should not be able to learn
members of the forwarding path of a reported message beyond the neighbors of colluding receivers and the
reported source. Here, honest forwarders want to be assured that, when their direct contacts are honest, only
their neighboring recipients know that they forwarded a specific message. Since the moderator can directly
trace the source of a franked message after receiving it, we can additionally assume that for all intents and
purpose the sender of a message in this game is also colluding with them.

5.2.3 Anonymity with respect to the moderator

We show this property via the ANONMA
1 game, where the adversary now only has access to Ofwd

anon,b, O
deliver
anon,b,

Ocorrupt, Orequest oracles. Contrary to the prior property, the adversary now chooses the moderator’s secret
keys and controls the root of the message path. They must now, as a result, use Odeliver

anon,b to deliver messages
between the compromised sender and honest recipients. If, by the end of the game, the adversary cannot
guess the correct message path chosen by the game then they could not have distinguished between the
different honest forwarders provided in each message path. The adversary in this game is strictly stronger
than the one in ANONRA

b because of the gained source tracing capability from the moderators secret keys, and
hence implies the anonymity of forwarders in the presence of malicious receivers and an honest moderator.
However, ANONRA

b independently makes that guarantee because of the way Ofwd
anon,b handles interactions

between honest users. By the end of ANONRA
b , if the adversary could not guess the message path chosen by

the game, then they could not distinguish between honest forwarders with honest neighbors as well.

Theorem 5.4. Hecate is anonymous with respect to the moderator. Any adversary A has advantage
AdvanonmHecate(A) = 0.

Proof of Thm. 5.4. In this proof we need to show that a corrupted moderator cannot learn the forwarding
path of a message beyond senders/forwarders/receivers that she has already corrupted and their neighbors.
The reader is referred to the similar receiver anonymity proof for more details.

We can show via a series of hybrids that ANONMA
0

c≈ ANONMA
1 .

Game0: We start with ANONMA
0 with b = 0.

Game1: We replace statefwd,0 with statefwd,1 in Forward in the fwdamf subroutine that is called by Ofwd
fwd,b.

The reason we can do so is two folds: (1) Hecate does not use the forwarder states in constructing the franked
message, (2) when the receiver of a forwarded message is corrupted, checktopology enforces that idfwd,0 = idfwd,1
and (3) that both forwarders passed to Ofwd

anon,0 are honest.
Game3: We can replace idrec0 with idrec1 in the fwdamf and receiveamf subroutines that are called by

Ofwd
anon,b. checktopology enforces that idrec0 = idrec1 when either of the receivers is corrupted (and similarly for

Ofwd
anon,0). If both receivers are honest, then we can make this replacement because Hecate does not use any

information related to the receiver of a message when constructing or forwarding a franked message (see
constructfwd) and the adversary cannot hence distinguish between both Games 2 and 3.

We can conclude that ANONMA
0 becomes indistinguishable from ANONMA

1 .

Note that our construction and security games do not consider forwarding graphs (i.e. trees with cycles).
In those cases, users can identify that the same message was forwarded to them multiple times, a property
called tree linkability in prior work [57]. Additionally, we allow users (but not the platform or the moderator)

21



CONF-FSA
b

1 : s1, s2 ←$A
2 : (pkmod, skmod)←$KGen(s1)

3 : (pkmod,σ , skmod,σ)←$KGen(s2)

4 : F := ∅

5 : b′ := AO∗
(skmod, skmod,σ)

6 : return b′

Osend
conf-fs,b(m0,m1, idsrc, idrec)

1 : if ∀id ∈ {idsrc, idrec}, id ∈ corrupted :

2 : return ⊥
3 : cfrank := sendamf(mb, idsrc, idrec)

4 : C := C ∪ cfrank

5 : return cfrank

Ofwd
conf-fs,b(mfrank0,mfrank1, idfwd, idrec)

1 : if ∀id ∈ {idfwd, idrec}, id ∈ corrupted :

2 : return ⊥
3 : cfrank := fwdamf(mfrankb, idsrc, idrec)

4 : return cfrank

Odecrypt
conf-fs (cfrank, idrec)

1 : if cfrank ∈ C :

2 : return ⊥
3 : mfrank :=

4 : receiveamf(cfrank, idrec, time, skplat)

5 : return mfrank

Figure 12: The security games for Message Confidentiality. Here, we use O∗ to denote Osend
conf-fs,b, O

fwd
conf-fs,b,

Odecrypt, Ocorrupt and Orequest.

to distinguish between a sent and a forwarded message as is the case in several messaging system. We believe
that an exciting opportunity for future work is to combine the ideas in this paper with the tree unlinkability
scheme by Peale et al. [57].

5.3 Message Confidentiality and Forward Secrecy

Message confidentiality dictates that any party not involved in the creation, reception or reporting of a
message should not be able to learn anything about the message. Moreover, forward secrecy guarantees that
corrupted users should be guaranteed confidentiality of all their messages and interactions prior to the time
of compromise. In this work, we consider the state of users to consist entirely of their key material and their
tokens; ergo, Hecate can only guarantee confidentiality for messages that have been securely deleted from
the local device prior to the compromise event.

We provide a combined definition of message confidentiality and forward security in Figure 12. It guaran-
tees message confidentiality because the CONF-FSAb game requires that content moderation does not break
CCA security. Additionally, it guarantees forward security because the adversary in the CONF-FSAb game
is allowed to corrupt any user of their choice, and in particular they can corrupt users who had previously
honestly interacted using Osend

conf-fs,b and Ofwd
conf-fs,b. The game requires that the adversary cannot learn anything

about their previously exchanged honest messages, their prior keys, or states.
In this game, we note an important type difference between the franked messages mfrank returned by

Odecrypt
conf-fs on one hand, and the franked cipher cfrank returned by Osend

conf-fs,b and Ofwd
conf-fs,b on the other. Osend

conf-fs,b

and Ofwd
conf-fs,b produce a franked cipher that is handed out to the platform for stamping before it gets relayed

back to the receiver. In other words, the platform cannot read any part of cfrank that is not intended for it.
Odecrypt

conf-fs returns the franked message after it has been delivered and hence decrypted by the receiver. If a
content moderation scheme does not handle the distinction between the franked message and franked cipher
properly, by say appending the id of the sender to the envelope, then the adversary should be able to easily
win the game.

Theorem 5.5. Our scheme Hecate is message confidential and forward secure. Concretely, for any PPT
adversary A, there exist PPT adversaries A′ and A′′ such that:

Advconf-fsHecate(A) ≤ AdvhidingcomHecate (A′) + AdvencccaHecate(A
′′).

Informally, the theorem holds because Hecate constructs franked messages by appending tokens to the
payload of the message, and by adding a commitment and timestamp to its envelope (see constructfrank and
stamptime in Figure 4). The tokens are encrypted alongside the plaintext message. The identifying content
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send0
1 : statesrc := retrievestate(idsrc)

2 : fetch token from statesrc

3 : mfrank0 := Frank(statesrc,m0,

4 : idrec, token)

5 : cfrank := sendeems(mfrank0)

6 : return cfrank

send1
1 : statesrc := retrievestate(idsrc)

2 : fetch token from statesrc

3 : mfrank0 := Frank(statesrc,m1,

4 : idrec, token)

5 : cfrank0 := sendeems(mfrank0)

6 : return cfrank0

send2
statesrc := retrievestate(idsrc)

fetch token from statesrc

mfrank1 := Frank(statesrc,m1,

idrec, token)

cfrank1 := sendeems(mfrank1)

return cfrank1

fwd3
statefwd := retrievestate(idfwd)

mfrank
′
0 := Forward(statefwd,

mfrank0, idrec)

cfrank0 := sendeems(mfrank
′
0)

return cfrank0

fwd4
statefwd := retrievestate(idfwd)

mfrank
′
0 := Forward(statefwd,

mfrank1, idrec)

cfrank0 := sendeems(mfrank
′
0)

return cfrank0

fwd5
statefwd := retrievestate(idfwd)

mfrank
′
1 := Forward(statefwd,

mfrank1, idrec)

cfrank1 := sendeems(mfrank
′
1)

return cfrank1

Com. Hiding ENC-CCA

Com. Hiding ENC-CCA

Figure 13: The hybrid steps of the CONF-FSAb game

of the commitment is encrypted, and we rely on the hiding properties of the commitment scheme and the
security of the connection that exists between parties and the platform. No part of a Hecate franked message
can therefore break this security property. We prove this theorem in detail in what follows.

Proof of Thm. 5.5. In this proof, we show that Hecate does not break the CCA security of the underlying
cryptographic scheme.

Game0: We start with CONF-FSA0 .
Game1: In sendamf (called by Osend

conf-fs,b), we replace m0 with m1 in Frank on line 4. Since the adversary
does not have access to r, then they cannot only decommit com with negligible property equal to breaking
the secrecy of the commitment scheme. We construct B that can uses an A that can distinguish between
both games, to break the secrecy of the commitment scheme. When A calls Osend

b on messages m0 and m1, B
queries Ocom-hiding with both messages and uses the returned com to construct the franked cipher on behalf
of the moderator and the users cfrank. If A succeeds in picking a choice bit, then B will pick the same choice
bit in ComA

hiding and will win with at least the same advantage.

Game2: In sendamf (called by Osend
conf-fs,b), we replace mfrank0 with mfrank1 in Frank. Since the adversary

does not have access to the source idsrc’s encryption secret keys, then they can only notice this change with
advantage equal to breaking the CCA security ENCA

cca of sendeems and decrypting the contents of cfrank. When
A calls Osend

conf-fs,b on messages mfrank0 and mfrank1, B queries Oenc
cca with both messages and uses the returned

cipher text cfrank to construct the franked message on behalf of the moderator and the users. When A calls
Odecrypt on ciphertext c, B behaves similarly and requests the decryption of the cipher-text from Odecrypt

cca . If
A succeeds in picking a choice bit, then B will pick the same choice bit in ENCA

cca and will win with at least
the same advantage.

Game3: In fwdamf (called by Ofwd
conf-fs,b), we replace mfrank0 with mfrank1 in Forward on line 4. When a

message is forwarded in Hecate, the commitment com in the original franked message is replaced with a
random commitment and the adversary cannot distinguish this change.

Game4: In fwdamf (called by Ofwd
conf-fs,b), we replace mfrank

′
0 with mfrank

′
1 in Forward. Since the adversary

does not have access to the source idsrc’s encryption secret keys, then they can only notice this change with
advantage equal to breaking the CCA security of sendeems and decrypting the contents of cfrank. The proof
is similar to the on in Game1.
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ACCA

1 : s←$A
2 : (pkmod, skmod)←$KGen(1n)

3 : (pkplat, skplat)←$KGen(s)

4 : report←$AO∗
(skplat)

5 : (id, time,m) := Inspect(mfrank, skmod)

6 : if id ̸∈ {⊥, corrupted} ∧m ̸∈ M :

7 : return 1

8 : return 0

Odeliver
acc (cfrank, idrec, timeplat, skplat)

1 : mfrank :=

2 : receiveamf(cfrank, idrec, timeplat, skplat)

3 : return mfrank

Osend
acc (m, idsrc, idrec, timeplat, skplat)

1 : cfrank := sendamf(m, idsrc, idrec)

2 : mfrank :=

3 : receiveamf(cfrank, idrec, time, skplat)

4 : F := F ∪mfrank

5 : return mfrank

Ofwd
acc (mfrank, idsrc, idrec, timeplat, skplat)

1 : cfrank := fwdamf(mfrank, idfwd, idrec)

2 : mfrank
′ :=

3 : receiveamf(cfrank, idrec, time, skplat)

4 : return mfrank
′

Figure 14: The security games for Accountability. Here, we use O∗ to denote Osend,Ofwd, Odeliver,Orequest and
Ocorrupt.

The resulting CONF-FSA0 is identical to CONF-FSA1 and the adversary can only win the CONF-FSAb game
with advantage equal to twice the advantage of breaking the CCA security of the underlying encryption
scheme and the hiding property of the commitment scheme.

5.4 Unforgeability and Accountability

These properties describe a scheme’s ability to bind senders to well-formed messages while guaranteeing that
no user can be accused of sending a message that they did not send. They go hand-in-hand because well-
formed messages are necessarily bound to their original sender and cannot be attributed to anyone else. Note
that these properties should hold with respect to an honest moderator who handles source tracing reported
messages. Ergo, in the unforgeability and accountability game, the adversary attempts to create a message
and fool the moderator into believing that it came from a different user.

We model accountability via the ACCA security game in Figure 14. The adversary starts by making
polynomially many queries to Osend, Ofwd, Odeliver, Ocorrupt, and Orequest that collectively allow A to build
any message path of their choice and receive the resulting franked messages at each node within that path.
Afterward, the adversary is tasked with producing a franked message that: (1) can be reported back to an
existing user (line 5 in ACCA) (2) traces back to an uncorrupted party (line 6), and (3) was not previously
created during the challenge phase (line 6). In producing a message that can pass these predicates, the
adversary can effectively produce new messages that can be traced back to other users. Note that who the
message traces back to, beyond being an existing honest user, is inconsequential: if the adversary cannot find
anyone else to blame them for a message, regardless of who they are, then they cannot avoid accountability.

Theorem 5.6. Hecate holds users accountable. For any PPT adversary A that makes at most q queries to
its Osend oracle, there exist PPT adversaries A′ and A′′ such that:

AdvaccHecate(A) ≤ (q + 1) · Advsigeu-cma

S (A′) + Advhashcoll

H (A′′).

Proof of Thm. 5.6. We show how the ACCA game can only be won in Hecate with negligible probability. We
note that the game’s win condition requires a well-formed mfrank that traces back to an existing id (line 6) and
that contains a plain-text message that was not previously submitted and stored in statechal (line 6). ACCA

verifies the message integrity via Verify (on line 5), which returns an id in the case of a well formed message
and ⊥ otherwise. Verify is composed of vfMsg (as seen in Figure 3 of Hecate’s construction) which itself
makes three separate calls to vfExp, vfCom and vfToken (line 1-2) based on which it determines the validity
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of the message. For a franked message mfrank to be viable, all three functions must evaluate to true. vfExp
and vfCom are envelope commitment verification steps and are hence inconsequential for the accountability
property. It’s sufficient for the sake of this proof to show that vfToken can never return true in Hecate. We
handle the other two verification checks in backward security.

vfToken0(n)

1 : b1 := (reveal
?
= H(m))

2 : b2 := Vfpkmod (x1∥pke∥t1, σ1)

3 : b3 := Vfpke (x2, σ2)

4 : return b1 ∧ b2 ∧ b3

vfToken1(n)

b1 := (reveal
?
= H(m))

b := token
?
∈ T

b3 := Vfpke (x2, σ2)

return b1 ∧ b ∧ b3

vfToken2(n)

b1 := (reveal
?
= H(m))

b := ⟨t, token, ∗⟩
?
∈ F

return b1 ∧ b

vfToken3(n)

b := mfrank
?
∈ F

return b

EU-CMA
q.EU-CMA col. resist.

Figure 15: The hybrid steps modifying vfToken in the Accountability game

In order for vfToken to return true, all three clauses lines (2-4) must also evaluate to true.
Game0: This game is equivalent to vfToken, since this is the only method in vfMsg (Inspect’s instantiation

in Hecate) that is relevant for Hecate.

Game1: We replace line 3 of vfToken with a new boolean predicate b := token
?
∈ T that checks whether

a token was generated by Orequest, and hence by a legitimate call to TGen. Note that the only available way
for the adversary to retrieve pre-processing tokens is through a call to Orequest with the id of a corrupted
party and that every such token is stored in T on line 5. Since the adversary does not have access to the
moderator’s secret key, then A has a negligible advantage in distinguishing this change by breaking the
EU-CMA of the underlying signature scheme, forging the signature of the moderator and creating their own
token without using Orequest. We formally show this by assuming that there exists an adversary A that can
distinguish between Games 0 and 1, and showing how to construct an adversary B that breaks EU-CMA. We
primarily show how B constructs Orequest, all other oracles outputs can be trivially generated by B in Hecate
since they are ephemeral and only depend on the pre-processing token and additionally do not depend on
the moderator’s secret key. When A requests a pre-processing token, B locally construct x1, t1 and (pke, ske),
then signs their concatenation by making a query to SigAeu−cma. B then sends the resulting token to A and
waits until A submits an mfrank . B additionally checks franked messages delivered using Odeliver

acc that pass
the verification step and the predicates on line 6 in the accountability game. If A does not fail, B can strip
mfrank of everything except the moderator’s pre-processring signature σ1 and submit that to the EU-CMA
game. Since this A is required to submitted a new franked message originating from uncorrupted parties,
then the moderator signature in mfrank will not correspond to any of outputs of SigAeu−cma, and B will win the
EU-CMA games when A does.

Game2: Let t := (x2, σ2), i.e. the subset of the franked message constructed during the online stage. We

replace and combine lines 3 and 4 with the boolean predicate b := (⟨t, token, ∗⟩
?
∈ F) that checks that the

immutable tuple ⟨t, token⟩ is a subset of some franked message in F. Recall that Osend
acc is the adversary’s

only way to instruct honest parties to construct and send messages. All such messages are saved in F on
line 4. Since the adversary does not have access to honest parties’ ephemeral keys, then A has negligible
advantage in distinguishing between the original signature verification and the predicate we replaced it with
by breaking the EU-CMA of the underlying signature scheme, forging the signature of the an honest party
and creating their own franked message originating from that user without using Osend

acc . We formally show
this by assuming that there exists an adversary A that can distinguish between Games 1 and 2, and showing
how to construct an adversary B that breaks EU-CMA. Let q be an upper bound on the number of queries
A can make to Osend

acc . We construct an B that has access to q different EU-CMA games (with their own

Osign
eu−cma) for q ephemeral key pairs (where q ∈ poly(λ)) and that will try to win at least one of these games.
B starts by sampling and fixing the moderator’s secret key and uses it to sign pre-processing tokens. When
A queries Osend

acc , B picks one of the unused q ephemeral public keys, constructs the pre-processing token
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for that public key by randomly sampling its secret ephemeral key, and generates the rest of the franked
message by asking the Osign

eu−cma associated with that public key to sign x2. Note that B can trivially generate
all other fields in the franked message since they have access to the moderator’s secret key. Additionally, B
can entirely act on behalf of the moderator when A calls Orequest. B then waits until A submits an franked
messages or delivers a well formed mfrank using Odeliver

acc that pass predicates on line 6. B can win the EU-CMA
game SigAeu−cma by stripping that mfrank of everything except its online signature σ2 and its ephemeral public

key pke that it submits to the corresponding SigAeu−cma game. If A succeeds at distinguishing Games 1 and 2

using mfrank, then B will win SigAeu−cma since mfrank will need to be a new franked message originating from an

uncorrupted party and could not have have been generated by Osign
eu−cma. Since each SigAeu−cma game is defined

by a separate pair of ephemeral keys generated i.i.d., then these games are independent of one another and

by the union bound the advantage of the adversary is at most equal to q × Adv
sigeu−cma

A (n) .
Game3: Finally, we can replace and combine all three lines in vfToken with the boolean predicate b :=

⟨token, t,m⟩
?
∈ M, which is in essence equivalent to b := mfrank

?
∈ M. The adversary can distinguish the change

made with negligible advantage equal to the likelihood of finding a collision m′ ̸∈ M of the collision resistant
hash function H, such that ∃mfrank.m ∈ M,H(m) = H(m′). Let’s assume that there exists an adversary A
that can distinguish between Games 2 and 3. We construct an adversary B that will try to win the collision
resistance hash game. When A queries Osend

acc , B requests the hash of m from Ohash of the collision resistance
hash game, then constructs the rest of the franked message honestly. Note that all other oracles can be
run by B since they act on behalf of the moderator and honest users. B then waits until A submits an
franked messages or delivers a well formed mfrank using Odeliver

acc that pass predicates on line 6. If A succeeds
at distinguishing Games 2 and 3 using mfrank, then B will win the collision resistance hash game since the
only way A can distinguish between both games is if finds a collision m′ of H(m) that was not stored in M.

Now notice that there can be no franked message mfrank that can satisfy the hybrid predicate mfrank

?
∈ M

and the winning condition of the game id ̸∈ {⊥, corrupted} ∧ mfrank.m ̸∈ M, since we have shown that the
adversary has to necessarily submit a stored franked message in M. The adversary cannot therefore construct
a franked message mfrank that can win this game. We can reduce the attacker’s advantage in winning the
accountability game to the sum of its advantage in breaking the collision-resistance or (q + 1) the EU-CMA
games.

5.5 Backward Security

Backward Security requires that an adversary who controlled the state and keys of a device pre-compromise
should not be able to benefit from them after device recovery. In particular, the adversary should be unable
to craft new messages from a recovered user or claim that during-compromise messages were sent out (not
forwarded) after the compromise period.

5.5.1 Formalizing the game’s objectives

To codify backward security, we design the game BACA
δ in Figure 16. We provide the adversary with oracle

access to Ocorrupt, Orequest, Osend, Ofwd, Odeliver that allow them to perform any possible interaction between
users.

Similarly to prior games, the adversary can corrupt users using Ocorrupt and request their pre-processing
tokens via Orequest. However contrary to prior games, handling time in BACA

δ is necessary since backward
security is a property of the corruption recovery period. In BACA

δ , corruption is not indefinite and we
define it with respect to the global time variable globalt. When A calls Ocorrupt, the oracle stores the id of
the corrupted user along with the time of corruption at globalt in the set corrupted. When A calls Orequest

to request pre-processing tokens for corrupted users, the oracle first checks that the requested user is in
corrupted at the current global time and increments the global time if that check succeeds. In other words,
the global time is incremented each time a pre-processing token is returned to A, effectively requiring them
to re-corrupt users at the new global time. By defining time in this manner, we capture how an adversary
can no longer impersonate recovered users and request tokens on their behalf. The adversary can also stamp
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BACA
δ

1 : skmod ←$KGen(1n)

2 : (pkplat, skplat)←$KGen(1n)

3 : done← AO∗

4 : Tpre := T

5 : corrupted := ∅,F := ∅
6 : recoverystart,t := globalt

7 : mchal ←$M
8 : globalt := globalt + δ

9 : recoverydelay,t := globalt

10 : mfrank ← AO∗
(mchal)

11 : if checkreport(mfrank) :

12 : return 1

13 : return 0

checkreport(mfrank,mchal)
1 : (m, report) := Verify(mfrank)

2 : (idsrc, time,m) := Inspect(report)

3 : if idsrc
?
̸= ⊥ ∧ (idsrc, ∗)

?

/∈ corrupted ∧mfrank ̸∈ F :

4 : if m
?
= mchal ∨ time > recoverydelay,t :

5 : return 1

6 : return 0

Odeliver
bs (cfrank, idrec)

1 : mfrank :=

2 : receiveamf(cfrank, idrec, timeplat, skplat)

3 : return mfrank

Osend
bs (m, idsrc, idrec)

1 : cfrank := sendamf(m, idsrc, idrec)

2 : mfrank := receiveamf(cfrank, idrec, time, skplat)

3 : F := F ∪mfrank

4 : return mfrank

Ofwd
bs (mfrank, idfwd, idrec)

1 : cfrank := fwdamf(mfrank, idfwd, idrec)

2 : mfrank
′ := receiveamf(cfrank, idrec, time, skplat)

3 : return mfrank
′

Ostamp
bs (cfrank)

1 : cstamp := Stamp(cfrank)

2 : return cstamp

Figure 16: The security games for Backward Security, where O∗ denotes Osend, Ofwd, Odeliver, Ostamp, Ocorrupt

and Orequest.
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any franked cipher that they create using Ostamp. This effectively allows the adversary to transmit its own
messages.

The adversary can additionally send and forward messages between any two users regardless of their
corruption status via Osend, Ofwd and Odeliver. In particular, Osend grants the adversary the power to request
that an honest user creates a new franked message that the oracle stores in the set F. Otherwise, with
access to Orequest, the adversary can create franked messages on their own before sending/forwarding them
along. Ofwd allows them to forward a franked message between honest users, and Odeliver allows them to
send/forward messages from a corrupted user to an honest one. With access to all these oracles, we model
an all powerful adversary that can fully control and build a forwarding tree of their choice.

The BACA
δ games proceeds in three phases.

1. The first phase marks the pre-recovery or compromise phase where the adversary is given access to all
aforementioned oracles and can interact with users as they see fit (line 3).

2. When the adversary is done, the game master sets up the post-recovery period by: uncorrupting
everyone (line 5), sampling a challenge mchal uniformly at random from the message space (line 7),
saving the time at which the first phase ended in recoverystart,t (line 6), and advancing the current time
by a grace period delta to mark the delayed beginning of the recovery period recoverydelay,t (line 9).

3. The final phase marks the post-recovery period when the adversary is given mchal and asked to provide
a franked message mfrank that is well formed, traces back to an honest user, and either: (1) contains
the plain-text challenge or (2) is timestamped after the delayed recovery period.

These possibilities provided to the adversary to win the game encompass this work’s notion of backward
security: the adversary should neither (1) be able to produce a message that they did not think of during
compromise, nor should (2) they circulate a message that was timestamped after the time of compromise.

The first point codifies how backward secrecy is not concerned with messages created prior to the time of
recovery and the adversary should not be able to trivially win the game for any such messages. Instead, the
challenger forces the adversary to submit a franked message that they could not have thought of pre-recovery
by providing them with a plaintext message that they had not seen before.

The second point essentially captures how abuse reporting systems may deem messages that were sent
during known data breach periods as unaccountable and possibly invalid. This is especially important in
an era where the number of cyber-attack campaigns is on a rise, and where the adversary may attempt to
create many messages during the compromise period and delay reporting them or further circulating them
until an opportune time after the recovery period begins. This is especially critical in the case where a public
official’s device is hacked and when the time at which their leaked messages were sent can influence public
opinion.

Note that the game master resets both the corrupted and F sets on line 5 so that the pre-recovery actions
don’t influence the post-recovery state. Both sets will allow the game master to evaluate the response of
A with respect to the winning condition. Since backward security is a property of corruption recovery,
the winning condition is itself a function of that period. We emphasize that the adversary is allowed to
re-corrupt some parties after the recovery period—just not the party that is blamed in its final franked
message. Also, we define recovery after some fixed δ has passed on line 9, to model how recovery in practice
is not instantaneous and may require a grace period. And finally the game master saves any corrupted token
that the adversary has created during the pre-recovery stage (line 4). This allows the challenger to determine
the time difference between the token and the time of stamping later.

Theorem 5.7. Hecate is backward secure. For any PPT adversary A, there exist PPT A′, A′′, and A′′′

such that:

AdvbacHecate(A) ≤ AdvaccHecate(A′) + 2 · Advsigeu-cma(A′′) + Advbindingcom(A′′′) +
q

|M|
,

Proof of Thm. 5.7. The winning condition of the game requires the chosen mfrank to trace back to an honest
user. mfrank may then either contain the challenge mchal chosen by the game master, or be timestamped after
the recovery period delay recoverydelay,t on line 9. The game requires mfrank to be traceable by the moderator
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vfMsg0(n)

1 : b1 := vfToken(token,m)

2 : b2 := vfCom(token)

3 : b3 := vfExp(token)

4 : return b1 ∧ b2 ∧ b3

vfMsg1(n)

b := (token, ∗)
?
∈ F ∨ token

?
∈ T

b2 := vfCom(token)

b3 := vfExp(token)

return b ∧ b2 ∧ b3

vfMsg2(n)

EU-CMA EU-CMA

vfMsg2(n)

b := (token, ∗)
?
∈ F

∨(token
?
∈ Tpre

∧time ≤ recoverystart,t)

b2 := vfCom(token)

b3 := vfExp(token)

return b ∧ b2 ∧ b3

vfMsg3(n)

b := (token, ∗)
?
∈ F

b2 := vfCom(token)

return b ∧ b2

vfMsg4(n)

b := (mfrank.payload, ∗)
?
∈ F

b2 := vfCom(token)

return b ∧ b2

vfMsg5(n) vfMsg6(n)

b := mfrank
?
∈ F

return b

q
|M|

Accountability Commit. Bind.

vfCom3(n)

1 : b1 := Vf(x1∥x2, com, r)

2 : b2 := Vfpkplat
(com∥t2, σ3)

3 : return b1 ∧ b2

vfCom4(n)

1 : b := (mfrank.payload, com, ∗) ∈ F

2 : b2 := Vfpkplat
(com∥t2, σ3)

3 : return b ∧ b2

vfCom5(n)

1 : b := mfrank ∈ F

2 : return b

Figure 17: The hybrid steps modifying vfMsg and vfCom in the Backward Security game. We use the short-
hand token to refer to mfrank.payload.token and use the regular expression wildcard operator ”∗” throughout.

via Inspect in checkreport. In Hecate, Inspect is a conjunction of three separate verification steps: vfExp that
checks the expiry of the different time components of the franked message, vfCom that checks the envelope
commitment, and vfToken which checks all other parts of the franked message and which we discuss in depth
in the accountability game.

In this proof we distinguish between the payload of the franked message that we denote by mfrank.payload
and its envelope mfrank.envelope. In what follows, mfrank is equivalent to (mfrank.payload, mfrank.envelope),
mfrank.envelope is equivalent to (com, σ2, t2). We use the regular expression operator ∗ to denote that a field
can take any value and is not specified by a specific game reduction. Each game hybrid will allow us to
specify different pieces of the eventual franked message.

Game1: We replace vfToken with checking that mfrank’s preprocessing token is either (token, ∗)
?
∈ F or

token
?
∈ T (where token is a shorthand for mfrank.payload.token). The adversary can distinguish this change

with negligible probability equal to the: (1) probability of winning the EU-CMA game since the adversary
does not have access to the moderator’s secret key and has therefore a negligible chance in constructing well
formed tokens for a user of their choice locally. Recall that T is the set of corrupted users tokens constructed
by Orequest and that (token, ∗) ∈ F refers to the set of honest user tokens constructed by Osend

bs . We refer the
reader to Game 1 in the accountability game for more details.

Game2: We parameterize expiry := δ and replace vfExp with (token, ∗)
?
∈ F or token

?
∈ Tpre ∧ time ≤

recoverystart,t (i.e. that the token was generated prior to the time of recovery and that mfrank was time stamped
prior to the time of recovery). The adversary can distinguish this change with negligible probability equal to
the probability of winning the EU-CMA game since the adversary does not have access to the platform’s secret
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key. vfExp requires that |t2 − t1| < expiry, i.e. that mfrank’s moderator and platform time stamps are within
a set expiry time from one another (line 1). The winning condition of the game requires idsrc ̸∈ corrupted.
The only possible way for token to have been created by a call Ocorrupt and Orequest must happen prior to the
beginning of the recovery time, i.e. token.t1 < recoverystart,t. Recall that users can only be corrupt for one
epoch at the current globalt before being considered as honest and requiring the adversary to call Ocorrupt

and Orequest if they wish to corrupt them again. This definition of corruption is enforced by Orequest: if the
id passed is not corrupted at the current globalt, the oracle returns ⊥, otherwise it returns the appropriate
token and increments globalt. Additionally, since the game master increments the global time by δ after
recoverystart,t on line 9 in BACA

δ then unless the adversary can forge the platform’s signature and create
its own timestamps (we refer the reader to the reduction in Game 1 of the accountability game), then if
t1 > recoverystart,t, then envelope.t2 > recoverystart,t + δ (where envelope is a shorthand for mfrank.envelope).

Game3: We replace vfExp with (token, ∗)
?
∈ F, i.e. we drop the token

?
∈ Tpre ∧ time ≤ recoverystart,t

from the disjunction in Game2. The adversary can distinguish this game with negligble probability equal
to the probability of guessing mchal before the challenger picks it. If time ≤ recoverystart,t then according to
the winning condition of the game on line 4,A must have included mchal in their report. Since the mchal is
picked after recoverystart,t, then A must have guessed mchal prior to the time of recovery. They can do so with
probability q

|M| , since mchal is sampled uniformly at random from the message sample space.

Game4: We replace vfToken with checking that (mfrank.payload, ∗)
?
∈ F, where payload refers to all elements

of the franked message that are not on the envelope of the message. The adversary can distinguish this change
with negligible probability equal to the advantage of the accountability game since they do not have access
to the secret ephemeral keys of users for token constructed with Osend. We refer the reader to that proof
for more details and not that both Games 1 and 3 are jointly upper bounded by the advantage of the
accountability game.

Game5: In vfCom, we replace line 1 with b1 := (mfrank.payload, com, ∗) ∈ F. We show that the adversary
can distinguish between Games 1 and 2 with negligible advantage equal to the probability of breaking
the binding property of the commitment scheme. Let’s assume that there exists an adversary A that can
distinguish both games, we construct an adversary B that can break the commitment game. Whenever
A calls either Osend

bs , Ofwd
bs or Odeliver

bs , B constructs/modifies the franked message honestly on behalf of the
moderator, the platform and the users and returns the result back to A. Note that B stores every single such
message. When A returns a challenge mfrank back to B or successfully delivers an mfrank to an honest user that
was not previously logged in F using Odeliver

bs , B strips the resulting mfrank of everything except the commitment
and its corresponding decommitment, and submits these values along with the original decommitment stored
in F to the commitment game. If A succeeds then they will have necessarily submitted a decommitment
that is different than the original one stored in F and B will win its corresponding game.

Game6: In vfCom, we replace line 1 with b2 := (mfrank.payload, com, t2, σ2) ∈ F, which effectively implies
replacing vfCom with (mfrank.payload,mfrank.envelope) ∈ F (i.e. mfrank ∈ F). We can show similarly to Game
1 in the accountability game that, without the platform’s secret key, the adversary can distinguish between
Games 2 and 3 with negligible advantage equal to the probability of breaking EU-CMA security property of
the underlying signature scheme.

Game7: We replace vfMsg with ⊥ since we have shown that mfrank ∈ F and the game’s winning condition
requires otherwise.

We can therefore conclude that the adversary has negligible advantage in winning the BACA
δ game in

Hecate equal to:

AdvbacHecate(A) ≤ AdvaccountabilityHecate (A)
+ 2.Advsigeu-cma(A)
+ Advbindingcom(A)

+
q

|M|
.
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(a) Online runtime of Hecate’s components as a func-
tion of message size in bytes

(b) Runtime and dollar pricing of pre-processing to-
ken generation (TGen) as function of the token batch
size.

Figure 18: Runtime measurements.

where q is the number of queries made to Odeliver
bs ,Osend

bs .

6 Implementation and Evaluation

We implemented Hecate as a Rust library that can be used as a back-end by other systems. Our implemen-
tation uses Signal’s official platform agnostic API library libsignal-client [66] for our encryption, commitment
and hashing building blocks. To that effect, we use libsignal-client’s implementation of AES-256 GCM for
symmetric encryption and HMAC with SHA-256 for commitments. We use the ed25519-dalek [26] crate for
ed25519 signatures and their associated functions and SHA256 from the sha2 crate for our hash functions.
Our implementation is open source and available at [40].

In this section, we show experimental results when executing each component of Hecate in isolation.
Then, we measure the overhead of Hecate when integrated into a Signal client.

6.1 Performance Cost and Comparison

In this section, we measure the runtimes and transmission sizes for each component within Hecate, using
Criterion, a Rust benchmarking suite. We also evaluate prior open-source message franking systems on the
same machine and compare them to Hecate.

Experimental setup. We ran all experiments on Amazon Web Services in the US East-Ohio Region,
using a t3.small EC2 virtual machine running Ubuntu 20.04 LTS with 2GB of RAM on a 3.1 GHz Intel Xeon
Platinum Processor. Each data point shown is the average of 300 trials, with outliers removed. We chose
this machine and number of experiment trials to align with prior work [57,72].

Hecate communication costs. We list the size of Hecate’s franked ciphers in Table 3. The sizes in Table 3
stem from the fact that our libraries yield 32 byte commitments with 32 byte long commitment randomness,
32 byte ciphertexts, 64 byte signatures, 32 byte symmetric and public keys, 12 byte nonces for symmetric
encryption, and 8 byte Unix timestamps. We remark that there exist more compact instantiations of these
primitives; our choices were motivated by ease of implementation on top of libsignal-client.

31



Sent Received Report
Tyagi et al. [72] 489 B 489 B 489 B
Peale et al. [57] 256 B 320 B 160 B
Hecate 380 B 484 B 380 B

Table 4: Communication overhead of Hecate and other message franking schemes, in bytes.

TGen Frank Verify Inspect Forward Stamp
Tyagi et al. [72] – 6339 µs 5461 µs 5939 µs – –
Peale et al. [57] – 8.98 µs 69.56-138.19 µs 73.64 µs 8.46 µs 24.53 µs
Hecate 58.4 µs 38.24 µs 199.15 µs 203.87 µs 1.16 µs 29.17 µs

Table 5: Runtimes of message franking schemes, in microseconds, for a message size of 1 kB. The runtime
of Verify within Peale et al. [57] differs based on whether the message is authored (left) or forwarded (right).

Hecate’s online runtime. Fig. 18a shows the performance of each component of Hecate for message sizes
ranging from 10 bytes to 10 kB. Overall, the runtime costs remain low especially when compared to the
cryptography already required within an end-to-end messaging system (cf. §6.2).

Most components require executing a SHA-256 hash function (to calculate x2) whose runtime is linear
in the message size, along with 0-3 digital signature operations whose cost is independent of message size
(cf. Table 2). As a result, the signature(s) dominate the cost for small message sizes and the hash function
dominates the cost for large messages. The two costs are balanced at a message size of 7.5 kB, where each
of hashing and digital signing takes about 33µs. Verify and Inspect are slower because they require about
192µs to verify 3 signatures. On the other hand, Forward, Stamp and TGen all have fast runtimes that are
independent of message size. We remark that a forwarder is assumed already to have verified a message at
reception time, so its only work during Forward is to move the envelope contents into the payload.

Hecate’s preprocessing cost. We also measure TGen over various batch sizes from 1 to 10,000 tokens.
Fig. 18b shows the runtime and computational cost based on a rate of 2.09¢ per hour for a t3.small AWS
instance at the time of this writing. Our measurements show that the price of generating a batch of 104

tokens is 3.45× 10−6 USD. Extrapolating to the scale of 1011 tokens (the approximate number of messages
sent through WhatsApp daily [54]), we estimate the cost of token generation to be 35 cents per day. We
also highlight that the moderator does not need to remember these ephemeral signing keys in between
preprocessing and reporting; in fact the moderator doesn’t require any storage cost at all.

Comparison with prior work. In this section, we compare our Rust implementation with the open-source
software by TGLMR [72] and Peale et al. [57]. To ensure a level comparison: we re-ran the benchmarks from
prior work [57,72] on our t3.small AWS instance, we only considered the tree-linkable version of Peale et al.,
and we removed the double ratchet encryption within the benchmarks of Peale et al. in order to measure
only the overhead of their message franking scheme.

We show a comparison of communication overhead in Table 4, and we compare computation overhead in
Table 5 for a message size of 1 kB. The benchmarks of TGLMR [72] were orders of magnitude slower than
the other works because their construction of designated verifier signature performs more group operations;
their communication overhead was also the highest. The comparison between Hecate and Peale et al. [57] is
more nuanced. We stress that Hecate achieves additional security properties like anonymity and backward
security. As a consequence, senders perform more work in Hecate and transmit more data, whereas Peale
et al. leverage a non-anonymous network so that the platform can tag the originator of a message. On the
other hand, Peale et al. require a forwarder to generate a commitment, whereas Hecate only requires random
generation of a 32 byte string (which could even be computed beforehand).
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Hecate No Hecate Diff
Send 2.55 ms 2.38 ms 0.16 ms
Receive 3.19 ms 2.52 ms 0.67 ms
Total 5.74 ms 4.91 ms 0.83 ms

E2E Latency 37.28 ms 36.3 ms 0.98 ms

Table 6: Computation and communication costs for signal-cli with and without Hecate, for a message size of
1 kB. Send and Receive (104 trials) correspond to local computation prior to sending or after receiving the
message over the network. E2E Latency (600 trials) starts at the beginning of Send and stops at the end of
Receive, with network latency included.

6.2 End-to-End Prototype Deployment

In this section, we integrate Hecate into an existing Signal client and show that Hecate adds minimal overhead.

Implementation. To test the end-to-end overhead of sending and receiving messages, we integrated our
Rust Hecate library into the Java tools signal-cli [64] and libsignal-client [66]. The sender’s Frank procedure
adds the Hecate payload to a message before encrypting it using the EEMS, and then appends the Hecate
envelope. The receiver decrypts the franked message and runs Verify. Our modified libraries are available
as open source repositories [41,42]. The sender gets tokens by running the Rust library prior to the start of
the experiment.

We deployed the sender and receiver signal-cli instances on one machine with a 1.90GHz Intel i7-8650U
CPU and 16GB of RAM running Ubuntu 20.04 LTS. They were connected over a wide-area network to an
instance of signal-server [68].

Evaluation. We measured the client side overhead of running signal-cli with and without Hecate on mes-
sages of size 1 kB. In both cases, we measured the average of 10,000 trials of running local signal-cli operations
and 600 trials of end-to-end (E2E) latency, with outliers removed. Our timer for the end-to-end latency test
starts as soon as the source’s signal-cli begins franking a message, and it ends when the receiver’s signal-cli
completes processing the franked ciphertext and outputs the message. These sample sizes are larger than in
§6.1 to overcome the noise added by the network latency, the polling rate of the receiver, and the warm-up
time of the jvm instance of signal-cli for each of the parties.

Our results are shown in Table 6. They showcase how the findings from Table 5 translate to imperceptible
overheads in an actual deployment of Hecate on a Signal client. The inclusion of Hecate adds less than a
millisecond of runtime locally and over the network, on average. Moreover, this difference is dwarfed by the
sample variance of signal-cli due to the sources of measurement uncertainty.

7 Conclusion and Discussion

In this work, we constructed the first abuse reporting protocol that combines asymmetric message franking
and source tracing. We integrated this construction into a Signal client and showed that its performance
impact was imperceptible. Along the way, we generalized the AMF model to accommodate preprocessing,
and we formalized security properties that hadn’t previously been considered by message franking schemes.

In this final section, we discuss some extensions of Hecate, known limitations, and opportunities for future
work.

7.1 Extensions

We extend Hecate’s communication from the two-device setting to more realistic flows supported by Signal.
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Group Messaging. Hecate’s definitions and constructions can be ported in a straightforward manner to
Signal’s group messaging protocol, in which broadcasts to a group of size N are implemented via N individual
point-to-point messages, after a server-assisted consensus protocol to determine the group [21]. We note
that there exist recent works and an IETF standardization effort on sub-linear ends-to-ends encrypted group
chats [5,6,12,23,63]; it remains an open problem to design abuse reporting mechanisms for these protocols.
We do not yet know if there are any efficiency gains and added benefits to federating content moderation
among different members of a group.

Multiple Devices. Hecate can easily support multiple devices for the same user (e.g., a phone and laptop)
by giving each device its own independent set of tokens. The moderator can use the same idsrc for both sets
of tokens, so that reports only name an identity rather than a device.

7.2 Limitations

We discuss a few limits of our approach.

Reporting Benign Messages. Our construction allows receivers to report messages that may later be
deemed to be non-abusive. While it might be possible to require the receiver to prove to an honest moderator
that the message they are reporting is actually abusive, this question is incredibly delicate and is therefore
out of scope for this and all prior works on end-to-end abuse reporting. In the special case that the receiver
is colluding with the moderator, we remark that (a) there is little that can be done to prevent false reports,
and (b) the overall leakage is no worse than what EEMSs would already reveal to this colluding set.

Distinguishing Forwarded vs. Original Messages. In our construction, receivers can distinguish be-
tween sent and forwarded messages. While this may be a desirable feature in a messaging app, it is still a
leakage in our system.

Forwarding Cycle Linkability. If the forwarding path of a message contains a cycle, i.e. a receiver
receives the same forwarded message multiple times, then they can tell that these messages originate from
the same source. This is an inherent weakness of Hecate as a result of forwarding the same tokens per
message that we do not attempt to protect against. It may be possible to combine Hecate with Peale et al.’s
techniques to remove this leakage [57].

Forwarding Tree Up-Rooting. Receiver’s of a message may “up-root” its forwarding sub-tree by acting
as the original senders of that message instead of forwarding it themselves. In general, we do not believe
that this poses a concern as users do not have the incentive to incriminate themselves with bad messages.
Moreover, prior work [73] suggests that this problem warrants an application side solution, if any, and not
a cryptographic one that would restrict users from copying received messages and acting as their creators.

7.3 Future Work

Looking ahead, we believe there exist at least five possible avenues of future research in the space of privacy-
respecting content moderation.

Content Censorship. Content moderation systems can be misused for censorship purposes. Questions
surrounding what constitutes misinformation or a “bad” message fall outside the scope of this work and into
the realm of policy making and social media regulation. We believe however that it may be interesting to
federate the role of the moderator in: (1) defining bad messages, (2) verifying reports, (3) taking actions
with respect to flagged contents and users.
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Super Spreaders. A recent line of work [69, 78] on misinformation spread in social mediadistinguishes
between honest users who forward misinformation and malicious actors that act as super spreaders of mis-
information. Honest users can mistakenly forward or send misinformation content without ever realizing
it. Super spreaders on the other are adversarially creating or spreading bad content. Future work could
examine aggregate behavior in order to distinguish malicious vs. mistaken users.

Partial opening. Known AMF constructions like Hecate only allow the receiver to report all or none of
a message. It should be possible to achieve partial opening to the moderator by extending the message
franking techniques of Leontiadis and Vaudenay [52] to the asymmetric setting.

Stronger Notions of Backward Security. Backward security makes no guarantees with respect to
anything created during the time of compromise. In the context of content moderation, this implies that the
adversary can blame users for old compromised messages. We encourage future research into ways to limit
the damage of adversarial moderation reports or to allow honest parties to correct the record post-recovery.

Ensuring System Security. We emphasize that our study of abuse reporting has been primarily through a
cryptographic lens, and as a result does not capture all aspects of security. For example, many of our crypto
definitions assume that clients already have sufficient preprocessing tokens in hand. When implementing
Hecate, careful attention is required to ensure that adversaries cannot obtain a side channel by, for example,
influencing when preprocessing is run. We encourage cryptographers, systems security researchers, usability
experts, and domain specialists to investigate whether and how to integrate Hecate (or any abuse reporting
mechanism) into an end-to-end encrypted messaging system in a matter that promotes online trust, safety,
and security.
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