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Abstract. Non-interactive zero-knowledge proofs (NIZK) are essential building blocks in threshold
cryptosystems like multiparty signatures, distributed key generation, and verifiable secret sharing,
allowing parties to prove correct behavior without revealing secrets. Furthermore, universally composable
(UC) NIZKs enable seamless composition in the larger cryptosystems. A popular way to construct
NIZKs is to compile interactive protocols using the Fiat-Shamir transform. Unfortunately, Fiat-Shamir
transformed NIZK requires rewinding the adversary and is not straight-line extractable, making it
at odds with UC. Using Fischlin’s transform gives straight-line extractability, but at the expense of
many repetitions of the underlying protocol leading to poor concrete efficiency and difficulty in setting
parameters.
In this work, we propose a simple new transform that compiles a Sigma protocol for an algebraic relation
into a UC-NIZK protocol without any overheads of repetition.

- Given a Sigma protocol for proving m algebraic statements over n witnesses, we construct a compiler
to transform it into a straight-line extractable protocol using an additively homomorphic encryption
scheme (AHE). Our prover executes the Sigma protocol’s prover once and computes 2n encryptions.
The verification process involves running the Sigma protocol verifier once and then computing n
encryptions, which are homomorphically verified against the prover generated encryptions.

- We apply the Fiat-Shamir transform to the above straight-line extractable Sigma protocol to obtain
a UC-NIZK. We instantiate AHE using class group based encryption where the public key of the
encryption scheme is obliviously sampled using a suitable hash function. This yields a UC-NIZK
protocol in the random oracle model.
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1 Introduction

Non-interactive zero-knowledge proofs (NIZK) [BFM90, BSMP91, FLS99] are used to enforce honest behavior
and are an important building block in the design of cryptographic protocols like anonymous creden-
tials [RWGM23], threshold signatures [BLS01, KG20, Lin22], distributed key generation [GJKR99, CS04,
CD24, KMM+23], and multi-party computation in general. Typically, NIZKs are analyzed in the standalone
setting, where the security is proven by showing individual properties separately such as completeness,
zero-knowledge, and (knowledge) soundness under a setup assumption (like a common reference string (CRS)
or the Random Oracle Model (ROM)). This standalone security guarantee often does not suffice in applications
where composability guarantees are expected: NIZKs run concurrently in arbitrarily many sessions. The
Universal Composability (UC) framework [Can01] allows for the modular analysis of cryptographic protocols
guaranteeing security in the presence of arbitrarily many sessions running concurrently thereby facilitates
easy composability .

NIZKs in the ROM. A common design methodology for constructing NIZKs is to construct a public-coin
interactive argument, prove zero-knowledge and knowledge-soundness, and then compile this interactive
argument into a NIZK in the ROM. A large class of protocols that render themselves to such compilation
into NIZKs are Sigma protocols. A Sigma protocol is a three-round interactive proof between a prover and
a verifier, both possessing a statement x, and additionally, the prover has a secret witness w. A Sigma
protocol proceeds in three rounds, where the prover sends a first message (commitment) a to the verifier, the
verifier sends a random string c (the challenge), and finally the prover responds with a last message z (the
response). The verifier accepts or rejects the claim using the transcript (x, a, c, z). Sigma protocols satisfy
two main properties: (i) special soundness, a form of knowledge soundness that guarantees that an extractor
can output a valid witness for x given two accepting proofs with the same initial message a but distinct
challenges, that is, (x, a, c, z) and (x, a, c′, z′), c ̸= c′ and, (ii) honest-verifier zero knowledge (HVZK), a weak
form of the zero-knowledge property that guarantees simulatability of the transcript given randomly sampled
challenge c. Additionally, since the verifier’s message is a uniformly random string, this is public-coin, making
Sigma protocols amenable to compilation into NIZKs. A popular method is the Fiat-Shamir (FS) transform
[FS87]: the prover non-interactively computes the challenge c = H(x, a) by applying a hash function H
(modeled as a random oracle [CJS14]) on (x, a). The NIZK proof sent to the verifier is (x, a, c, z) who checks if

H(x, a) ?
= c, and then runs the Sigma protocol verifier. Knowledge-soundness of the transformed NIZK relies

on the special-soundness of the Sigma protocol and therefore requires an extractor to rewind the malicious
prover in order to obtain two transcripts with a shared prefix by programming the RO to H(x, a) = c′ after
rewinding. Zero-knowledge of the NIZK follows from HVZK of the Sigma protocol and programming the RO.
Applications of Sigma protocols are plenty [FS87, CDS94, DG03, Mau09, SV12, FKMV12, ORV14] as many
algebraic languages admit very efficient Sigma protocols, such as Schnorr [Sch91], Chaum-Pederson [CP93] etc.
Moreover, compilers are known for expressive languages [Mau09, CDS94]. FS-transformed Sigma protocols
are widely used in practice in signature generation [Sch91], signature aggregation [Ks22, CGKN21], proof of
correct decryption in threshold cryptosystems, and distributed key generation [GJKR99, CS04, KMM+23] –
many of these achieve UC security assuming that the underlying NIZK is UC secure. A natural and pertinent
question, then, is whether this large and useful class of Sigma protocols can be compiled into NIZKs that can
be shown to be UC-secure?

Proving Sigma-compiled NIZK UC-secure. We now discuss the technical challenges in compiling Sigma
protocols to UC-secure NIZKs.

Challenge 1: Straight-line Extraction. In the UC framework, the environment Z, representing all
that is external to the execution of the concerned protocol, interacts with the protocol, and outputs a decision
bit in the end, indicating its guess of whether it interacted with a “real” adversary A and parties in the
protocol, or with an “ideal” adversary (or simulator) Sim and parties accessing the ideal functionality F
that specifies the ideal outcome of the protocol. NIZKs that rely on rewinding or non-black-box access to
the adversary in the proof (either for ZK or for extraction) are at odds with UC. This is because in the UC
definition, the environment Z is an interactive distinguisher between the real protocol and the ideal process,
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and therefore a simulator Sim in the security proof cannot rewind Z, and does not have the concrete code of
Z. Thus, a crucial property that NIZKs must have in order to be compatible with a proof of UC is black-box
straight-line simulation and extraction. At a high level, a NIZK in the ROM is straight-line extractable if an
extractor succeeds given only the transcript that includes the RO queries made by the prover (and crucially
without interacting with any successful prover). This immediately precludes FS-compiled Sigma protocols
from being shown UC-secure. There exist alternatives to Fiat-Shamir that provide compilers [Pas03, Fis05] in
the ROM whose resulting NIZK is straight-line extractable. However, this comes at a cost in efficiency and
complexity in design:5 Pass’s compiler [Pas03] requires repeating the underlying Sigma protocol for security
parameter (κ) number of times where κ is the computational security parameter and is as high as κ = 128,
leading to a 128× overhead over the FS-compiled NIZK (that relies on rewinding). Fischlin’s compiler [Fis05]
partially addressed this issue. Here, a proof-of-work paradigm is used where the prover is forced to compute
several valid proofs which forces the prover to query many “good” values to the random oracle in order
to find a pre-image that hashes to a zero string. For knowledge-soundness, the extractor can succeed by
observing the RO queries, even though not all of the query/responses make it to the proof (this does away
with the overhead in proof size). Fischlin’s transform is known to improve over the Pass transform as shown
in [CL24, Ks22]. However, choosing the optimal proof-of-work parameters is challenging in practice since
it depends on the prover’s computation power. Additionally, Fischlin transform also requires repetition of
the underlying Sigma protocol and when applied to the Schnorr protocol incurs a 15× overhead as shown
by [CL24]. Thus, FS is the most efficient transform incurring essentially no overhead in computation or
communication, however, the extractor is rewinding. This motivates the question:

Can we construct a generic compiler that transforms a Sigma protocol into a NIZK with straight-line
extraction (without incurring communication overhead of repetition or prover overhead of proof-of-work)?

We answer the above question in the affirmative and show a transform that compiles Sigma protocols for
algebraic relations into straight-line-extractable NIZKs without incurring a repetition overhead or prover
overhead.

Challenge 2: Simulation Extractability. Another important property crucial to realize UC security is
non-malleability (NM) [DDN91]. In a malleability attack, an adversary can maul existing proofs observed during
the protocol execution, and forge a proof on some statement for which they do not know the corresponding
witness. Since Z may ask uncorrupted provers to produce proofs on arbitrary statement-witness pairs, the
ability to maul proofs make Sim fail in extracting a witness, leading to Z successfully distinguishing between
real execution and ideal process. Non-malleability is captured by simulation-extractability in the context of UC-
NIZK [Sah99, DDO+01, PR05, GMY06, JP14, FKMV12], and [Gro06] proved that simulation-extractability
is necessary for UC.

FS-transformation of Sigma protocols are proven to be simulation-extractable [FKMV12], but are not straight-
line and hence not UC-compatible. Among the transformations that yield straight-line extractable NIZKs, a
randomized version of Fischlin’s transform [Ks22] has been shown to be simulation-extractable, and thus
UC-secure [LR22b]. In sum, among existing transformations of Sigma protocols to NIZKs: FS transform
gives simulation-extractability but not straight-line extraction; Fischlin and Pass transforms give straight-line
simulation extraction, but incur the overhead of repetition penalizing proof sizes in practical applications.

Can we transform a Sigma protocol into a UC-NIZK that incurs no overhead compared to FS-transformed
NIZK?

We answer the above questions by showing that applying the FS transform on our straight-line compiled
protocol yields a NIZK that is simulation-extractable, which we then prove is UC-secure.

5 For example, since the soundness error is related to the number of repetition, one has to be careful in choosing the
parameters, such as the number of repetitions.
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1.1 Our Contributions

– Primarily we construct a compiler that compiles a Sigma protocol for an algebraic relation into a protocol
with straight-line extraction using an additively homomorphic encryption (AHE) scheme in the CRS
model. For proof of m algebraic statements with n witnesses, the overhead incurred by our compiler is
2n encryptions for the prover, and an overhead of 2n ciphertexts in the proof size. For proving instances
where m > n, as it is indeed the case in practical applications of Chaum-Pedersen [CP93], this overhead is
amortized away. We discuss such applications at the end of this section.
Our transformation to a straight-line extractable protocol is independently interesting since the extraction
avoids “forking” the adversary [PS96], which in practice leads to a slack in tightness of the security
reduction [JT20].

– Applying the Fiat-Shamir transform on this compiled Sigma protocol, we obtain a NIZK that is straight-line
extractable, showing the first property needed for UC. We show that the Fiat-Shamir compiled NIZK of the
transformed Sigma protocol satisfies simulation-extractability. Towards this, we show that our compiled
NIZK satisfies a property called weak-unique response, that says that no adversary can generate two
distinct accepting transcripts that share a common prefix. This notion has been used to prove simulation-
extractability of Sigma protocols [FKMV12] and other multi-round protocols [GOP+22], and is also
necessary for Fischlin’s transform. While this is a natural notion towards non-malleability, not all Sigma
protocols satisfy this.6 Nevertheless, we prove that our straight-line transformed Sigma protocol does
satisfy unique response, even when the underlying Sigma protocol does not enjoy this property. This is a
distinct feature of our transform.

– Finally, we show that the resulting NIZK is UC-secure. Our analysis is in the local ROM. As elaborated
next, this has a substantial application in several cryptographic protocols, that rely on random oracle
based NIZKs.

Instantiation. We provide a concrete instantiation of the compiler by instantiating the encryption scheme
using the additive homomorphic encryption scheme based on class groups [CL15, CLR24]. En route, we show
two new properties of the class-group based encryption scheme, namely (i) homomorphic well-formedness,
which ensures that if a random linear homomorphic computation of two strings in the ciphertext space is
well-formed (that is decryptable), then the strings themselves are well-formed; (ii) oblivious sampleability
of the public key, which allows sampling of the public key obliviously, without knowing the corresponding
secret-key. This enables us to remove the uniform CRS from our straightline-extractable protocol by obliviously
sampling the public key as part of the proof, yielding a NIZK only in the ROM (without CRS). The public
key consists of two class-group elements. We obliviously sample them by hashing into class groups of unknown
order using recently proposed hashing algorithms [CLR24, SBK24], compatible with random oracle.

Applications. All applications of Schnorr and Chaum-Pedersen [CP93] benefit from our compiler and
achieve UC security without repetition of the underlying Sigma protocol. We outline some applications of
Sigma protocols for algebraic relations where UC security is desired and our UC-NIZK can be used as a
drop-in replacement.

– Signature Protocols: The works of [Lin22, KG20] consider multiparty threshold signatures based on Schnorr.
These protocols are UC-secure to permit composition in larger systems. As building blocks they need proofs
of knowledge for discrete logarithms which are instantiated using the Fischlin transform. Our UC-NIZK
can replace the Fishclin-transformed Schnorr and result in a simpler and potentially more efficient protocol.

– Public Key Infrastructure (PKI): Many protocols, defined in the UC framework (e.g. DKG from class-
group [KMM+23]), rely on a public key setup (or PKI) for encryptions with keys of the form pk = gsk –
establishing this requires a NIZK proof of knowledge of sk in the exponent (a.k.a. Schnorr’s proof) of g,
a cyclic group element. Proving knowledge soundness of the standard Schnorr would require rewinding,

6 Examples are Okamoto’s protocol [Oka93], Sigma protocol for OR composition [CDS94] – our straight-line extractable
transform convert these to satisfy unique response. A closer look reveals that when m < n, this may not be satisfied,
as witnesses are hidden information theoretically by simple algebraic argument.
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thus leaving a gap between the security argument and the desired UC security of the protocol. Using a
UC-compatible NIZK, like ours, one instead get the UC security of the full protocol.

– Distributed Verifiable Random Functions: The work of [GLOW21] introduced distributed verifiable random
functions (DVRF) based on BLS signatures and it required the proof of knowledge variant of Chaum-
Pedersen’s proof of equal discrete log for proving that the partial evaluations of the DVRF is correct. The
recent work of [KMMM23] introduced output private DVRF, formalized in UC, and they also require
the proof of knowledge variant of Chaum-Pedersen’s proof for the same purpose. In addition, they need
Schnorr’s proof of discrete log as part of their input blinding. Currently, these protocols rely on rewinding
the adversary to extract the witness. Our compiler can be used to make those proofs UC-secure.

– Secure Content Moderation and Traceability: The work of [TGL+19] constructs a secure content moderation
protocol over encrypted messaging platforms like Signal. Under the hood, they require a Chaum-Pedersen
proof and security relies on knowledge-of-exponent assumption. This is not composable due to the non-
blackbox nature of the reduction. Using our UC-NIZK will result in a UC-secure content moderation
protocol. Our UC-NIZK is also a candidate to be used in the end-to-end secure messaging protocol
of [BGJP23] that only traces illegal content.

Our compiler is general enough to work with AND/OR compositions [CDS94, FHJ20] which yields better
signature schemes [FHJ20]. We discuss this in Appendix E.

1.2 Related work

In this section, we describe the existing approaches to obtain straight line extraction in Sigma protocols and
UC-NIZKs.

Fischlin Transform. The work of [Ks22] improved upon the original Fischlin transform by rerandomizing
the prover’s transcript in the transform. The recent works of [LR22b, LR22a] study necessary properties for
UC-NIZK in the global ROM and show that randomized Fischlin transforms Sigma protocols into UC-NIZKs.
The work of [GKO+23] constructs a compiler to lift any witness-succinct simulation-extractable NIZK into a
witness-succinct UC-secure one in the global random oracle model using a Fischlin-like transform. However,
all these protocols inherit the downside of Fischlin: they inherently require repetition of the underlying Sigma
protocol and the number of repetitions increases to achieve stronger soundness. In contrast, our UC-NIZK
protocol is statistically soundness by the correctness guarantee of the decryption procedure in the AHE
scheme.

NIZKs in the CRS model. The work of [FLS99] constructed a NIZK protocol in the CRS model assuming
trapdoor permutations. The initial work of [CGH98] proposed to instantiate the hash function in the Fiat-
Shamir transform using Correlation intractable (CI) hash functions. Subsequent works [CCH+19, PS19]
construct such CI hash functions for sparse relations from LWE in the CRS model. The work of [BKM20]
construct CI hash for approximable relations from LPN+DDH assumptions and then construct NIZKs from it,
which was improved to using only sub-exponential DDH in [JJ21]. The work of [CSW22] explored NIZKs that
satisfy adaptive zero-knowledge, adaptive soundness and security against adaptive corruptions. Our NIZK
protocol can also work in this paradigm by replacing the random oracle in the Fiat-Shamir transform with a
CI-hash function and embedding the secret key of the encryption inside the CI-hash. However, this would
heavily affect the performance and it would be of theoretical interest as computing the CI-hash function to
generate the challenge string is an expensive task.

Non-black-box extractable NIZKs. Another line of work [GOS12, AF07, KNYY19, KNYY20] uses pairing-based
techniques in bilinear groups to construct NIZKs, and NIZKs in [DDO+01, GOS06, Gro06] are UC-secure.
These constructions either use specific assumptions over bilinear groups, where DDH is easy and popular
protocols like Chaum-Pedersen cannot be instantiated; or are in idealized models (like AGM/GGM) [Sho97,
FKL18], or use knowledge-type assumptions [Dam92]. These are incompatible with UC security, since
knowledge assumptions are non-black-box and hence the extractor depends on the code of the adversary; or
are limited in the class of adversaries considered (generic/algebraic). The UC-AGM framework [ABK+21]
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models composability in the AGM for algebraic adversaries, but incompatible with standard UC; and [KKK21]
enable knowledge assumptions in larger protocols, but in a composition framework [Mau11] different from
UC.

NIZK in the CRS+ROM. [Lin15] proposed a transform using a dual-mode commitment and a non-
programmable random oracle to obtain zero-knowledge via using the secret trapdoor of the setup string, which
was subsequently improved upon in [CPSV16]. However, both protocols do not consider proof of knowledge
and hence fail to provide a UC-NIZK.

Other compilers for straightline-extractability. [GMY03] uses a technique similar to ours – of using PKE
and having the corresponding decryption key as a trapdoor – to achieve straightline-extractability. However,
the key difference is our usage of the homomorphic property (over both witness and randomness) of the
encryption scheme, which enables checking the linear relation of the Sigma protocol homomorphically. In
contrast, [GMY03] use a generic Sigma protocol proof to attest that the encrypted witness satisfies the
given relation. Therefore, our protocol would be concretely more efficient. Moreover, [GMY03] augments
the relation with a signature scheme (associated PoK of signature augmented in the proof) in order to get
simulation-soundness, whereas our Fiat-Shamir-compiled NIZK already achieves simulation extractability,
without any additional augmentation.

The work of [Kat21] constructs a straightline extractable NIZK for proving the possession of a short vector
e ∈ Rm

q such that Ae = u for a given random matrix A ∈ Rn×m
q and vector u ∈ Rn

q for appropriate
parameters n, m and q. Similar to our compiler, they also utilize an (extractable) lattice commitment scheme
that is linearly homomorphic over polynomial ring Rq to transform Lyubashevsky’s [Lyu12] Sigma protocol
for the above lattice relation to a straightline extractable one. Then they apply the Fiat Shamir transform in
the quantum random oracle model to make it a quantum-secure NIZK. They construct candidates for the
commitment scheme based on the hardness of lattice problems: one based on the module learning with errors
(MLWE) problem, and the other based on the MLWE and the decisional small matrix ratio (DSMR) problem.
However, their compiler is specific to proving lattice relations (of the form Ae = u), and their commitment
scheme only works over polynomial rings. It is unclear how to make it work for group-based NP statements
without reducing the statement to one that is compatible with lattice relations. Converting the group-based
NP statement to a corresponding lattice relation may not always be possible, or incur additional overheads.
Our NIZK works “directly” for group-based statements, that is, it is designed for group-based statements
and works with the native operations of the computation for the statement.

1.3 Paper Organization

We present the technical overview in Sec. 2. The necessary preliminaries are presented in Sec. 3. We present
our straight-line extractable Sigma protocol for algebraic statements/arbitrary linear relations in Sec. 4. In
Sec. 5, we apply the Fiat-Shamir transform to make it a NIZK, argue the UC-security of our NIZK, and
provide a concrete instantiation based on class groups. Finally, we discuss the efficiency and applications of
our UC-NIZK in Sec. 7.

2 Technical Overview

The goal of this work is to construct UC-NIZKs from Sigma protocols for arbitrary algebraic relations
(in the exponent), without repetitions. For well-known Sigma protocols (e.g. the Schnorr, Okamoto, and
Chaum-Pedersen protocols), compiling these protocols to be non-interactive is straightforward, via applying
the Fiat-Shamir transform. However, a remaining technical difficulty is proving that these protocols are also
straight-line extractable. Prior compilers include those of [Pas03, Fis05]. We take a totally new approach to
design a straight-line compiler.

We proceed in two main steps, which we detail in the coming sections.
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Step 1: Construct a non-interactive straight-line extractable NIZK protocol ΠGenLin for arbitrary linear
relations, in the ROM, using additively-homomorphic encryption (AHE). Notably, this construction does
not require access to a common reference/random string.
Step 2: Prove that ΠGenLin UC-realizes the non-interactive zero knowledge functionality FNIZK.

For simplicity of exposition, we focus the technical overview on Schnorr’s protocol, which is an example of an
algebraic Sigma protocol, i.e. 3-move interactive argument between a prover P and a verifier V , that checks a
single linear relation. We remark that all discussion presented here generalizes to protocols with n witnesses
and for checking m linear relations, but we refer the reader to Section 4 for full details.

2.1 Schnorr’s Proof of Discrete Log

Schnorr’s protocol. We begin by recalling Schnorr’s protocol for the discrete log relation RDLog. Specifically
the relation is defined as:

RDLog := { (gw, w) | g ∈ G ∧ w ∈ Zq } ,

where x = (g, gw), w = w, G is a group of prime order q and g is a (fixed, public) generator for G. Schnorr’s
protocol is the following:

– Move 1 (commit): P1(x,w)→ a:
1. Sample s← Zq and compute S := gs and send a := S to V.

– Move 2 (challenge): V1(x, a)→ c:
1. Sample a random challenge c ∈ Zq, and send c to V.

– Move 3 (response): P2(x,w, (a, c))→ z:
1. Compute z := s+ c · w ∈ Zq, and send z to V.

– Verification: V2(x, (a, c, z))→ b:
1. Parse x as a group element W ∈ G and w as w ∈ Zq.
2. If gz = S ·W c ∈ G, output 1. Otherwise, output 0.

In other words, the verifier accepts if z = s+ c · w in the exponent. (This check is linear in w.)

Proving knowledge soundness of Schnorr’s protocol. The standard proof of knowledge soundness for
Schnorr’s protocol relies on rewinding the prover and rerunning it on a different challenge c′, generating two
protocol transcripts that share the same first message: (a, c, z) and (a, c′, z′). Then, the (knowledge soundness)

extractor recovers the witness w, via computing w := z′−z
c′−c ∈ Zq. Furthermore, knowledge extraction fails

only when c = c′, which occurs with probability 1
q since c, c′ are sampled uniformly from Zq.

Unfortunately, this extractor does not satisfy straight-line knowledge soundness, i.e. the ability to extract
the witness w without rewinding the adversary. This is problematic for proving that Schnorr’s protocol is
UC-secure: the environment Z can distinguish that in the ideal world, the adversarial prover algorithm was
rewound whereas in the real-world execution, there was no rewinding. Without extracting the correct witness
in the ideal world, the simulator cannot complete the simulation.

Given this conundrum, other techniques like the Pass and Fischlin transforms [Pas03, Fis05] were proposed
in the random oracle model. However, these approaches require repetitions of the base Sigma protocol (for
soundness) and incur at least a 15× overhead [CL24]. Alternatively, one can consider using a knowledge
assumption, i.e. given an accepting transcript knowledge of the witness is assumed. However, this approach
also violates [KZM+15] UC-security as the simulator needs non-blackbox access to the adversary.

2.2 A New Straight-line Extractable Schnorr’s Proof of Discrete Log from additively
homomorphic encryptions (AHE)

We avoid the need for repetition and introduce a new simple compiler for making Schnorr’s protocol straight-
line extractable in the ROM. The key ingredient is using an additively-homomorphic encryption scheme,
denoted AHE = (Gen,Enc,Dec) to encrypt the witness. Note that it is not sufficient to use a commitment
scheme, unless it is an extractable commitment; this is equivalent to using encryption.
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Compiled protocol. We briefly describe the compiled scheme. The common reference string includes an
encryption key ek for AHE and a (secret) trapdoor, which is the decryption key dk associated with ek. Then,
the prover, given AHE, encrypts the NP witness w = w as ciphertext Cw and the randomness s as Cs. The
prover sends the first message S = gs of the Schnorr’s protocol and the two encryptions. The verifier runs
the usual Schnorr’s verification protocol and in addition, it runs the same check over the encryptions. The
additively homomorphic property of AHE allows the verifier to check the linear relation over the encryptions.
The protocol is as follows (with differences from baseline Schnorr notated in blue):

– Setup: A key pair (ek, dk) for AHE.
– Move 1 (commit): P(ek,x,w)→ a:

1. Sample s← Zq and compute S := gs.
2. Sample encryption randomnesses rs, rw.
3. Compute Cs := Enc(ek, s; rs) and Cw := Enc(ek, w; rw).
4. Send a := (S,Cs, Cw) to V.

– Move 2 (challenge): V(ek,x, a)→ c:
1. Sample a random challenge c ∈ Zq, and send c to P.

– Move 3 (response): P(x,w, (a, c))→ z:
1. Compute z := s+ c · w ∈ Zq, and send z to V.
2. Compute rz := rs + c · rw ∈ Zq, and send (z, rz) to V.

– Verification: V(ek,x, (a, c, (z, rz)))→ b:
1. Parse x as a group element W ∈ G and w as w ∈ Zq.
2. Check that:
• gz = S ·W c ∈ G; and
• Cs, Cw are valid AHE ciphertexts; and
• Enc(ek, z; rz) = Cs + c · Cw.

3. If all checks pass, output 1. Otherwise, output 0.

The above protocol satisfies straight-line extraction as follows: the extractor is given access to the secret
decryption key dk and simply decrypts Cw. And this holds even for a statistical prover. Furthermore, the honest
verifier zero-knowledge (HVZK) property follows from the honest verifier zero-knowledge property of Schnorr
and the semantic security of AHE. The ZK simulator samples a random challenge and simulates the Schnorr
proof (a, c, z) by running the HVZK simulator of the original Schnorr proof. To simulate the encryptions, the
HVZK simulator computes Cs = Enc(ek, 0; r′) for a random r′ and sets Cw = (Enc(ek, z; r)− Cs) · c−1 for a
random r. The simulated encryptions are indistinguishable from the encryptions in a real proof due to the
semantic security of AHE.

While the above protocol achieves straight-line knowledge soundness, it has two drawbacks: it (1) is interactive
and (2) requires a trusted structured setup with secret values. Fortunately, both of these can be mitigated in
the ROM.

2.3 NIZK in ROM using Fiat-Shamir

As mentioned in Section 2.2, we use the random oracle to achieve two goals, achieving non-interactivity and
removing the common reference string.

Non-interactivity. Achieving non-interactivity for Schnorr’s protocol is straightforward via the Fiat-Shamir
transform [FS87].7 As a result of applying Fiat-Shamir, the security proofs change as follows:

– Straight-line extraction: assuming Q is the number of random oracle queries made by the malicious prover,
applying Fiat-Shamir incurs a Q-factor security loss, since the malicious prover may sample at most Q
possible first message a values, which generates at most Q possible values of c.

– Zero knowledge: the zero-knowledge simulator must program the random oracle so that c := RO(x, a).
However, there is no change in distinguishing advantage between the real and simulated proofs.

7 P and V have query access to a random oracle RO : {0, 1}∗ → Zq. P samples the random challenge by itself as
c := RO(x, a) and sends c to V. V additionally checks that the received transcript (a, c, ·) satisfies c = RO(x, a).
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Minimizing setup assumptions. The above protocol relies on a trusted party to run the AHE key generation
algorithm and output the (public) encryption key ek and the (secret) decryption key dk. One way to side-step
having a common reference string is via instantiating AHE with a scheme in which public keys are obliviously
sampleable using a hash function, i.e. the following distributions are indistinguishable

{ ek : (ek, dk)← Gen(1κ) } and { ek← Hek(1
κ, ·) } .

Then, both P and V can derive an instance-specific encryption key: ek := Hek(1
κ,x). Then, in the analysis

of knowledge soundness, an additional hybrid is required, so that the knowledge extractor can recover the
decryption key dk. Moreover, zero-knowledge is preserved, assuming that it is inefficient to recover a valid
decryption key with respect to ek← Hek(1

κ, ·).
We note that the random oracles for the two tasks are distinct. First, they must be domain-separated, so
that soundness is preserved (we need the outputs of both invocations to be independently sampled). Second,
the output spaces of the hashes are different too. For non-interactivity, the random oracle simulates the
verifier’s random challenge, i.e. outputs a value in Zq. For non-removing the common reference string, the
random oracle samples an AHE encryption key, which simulates the distribution of ek output by the AHE key
generation algorithm. For the rest of the technical overview, we denote our straightline-extractable protocol
in the ROM as ΠGenLin.

2.4 Extending our straight-line extractable NIZK to the UC setting

In general, stand-alone NIZK constructions are not universally composable because standard security
definitions do not consider adversarial behavior in the presence of concurrent protocol executions. In particular,
an adversary, after observing polynomially-many proof strings, should not be able to forge a proof for an
instance x, for which it doesn’t know a corresponding witness w, i.e. if the adversary produces a valid proof,
the (UC) simulator should be able to extract a valid witness w for x. This notion is called non-malleability
or simulation-extractability (more common in the UC ZK literature) [FKMV12, Gro06, KZM+15].

Toward proving UC security, we show that ΠGenLin satisfies simulation-extractability. This is done by following
the paradigm [FKMV12] of reducing simulation-extractability to weak unique response (WUR) knowledge
soundness, and zero-knowledge. We first show that ΠGenLin satisfies WUR, i.e. the probability that an adversary
can find two accepting proofs (a, c, z), (a, c, z′) for instance x, such that z ̸= z′, is negligible. Simulation-
extractability follows via combining our proof of WUR and the knowledge extractor for ΠGenLin. While this
is standard, we note that, interestingly, our proof of WUR does not rely on WUR of the underlying Sigma
protocol. Thus, our compiled protocol is WUR even when the underlying protocol is not. Consider a Sigma
protocol resulting from OR composition that does not satisfy WUR. This is because the third message can be
computed from one of the many witnesses. In our straight-line compiled protocol, however, the first message
consists of a ciphertext encrypting the witness which forces the prover to use the same witness in the response,
thus recovering the WUR property. Finally, we conclude UC-security by arguing that the following is a (UC)
simulator for ΠGenLin: (1) the zero-knowledge simulator of ΠGenLin simulates proofs output by ΠGenLin; and (2)
the simulation extractor (constructed above) extracts witnesses from adversarialy generated proof strings.

Extensions While we focus on linear relations in the exponent, we note that our transform can also work for
arbitrary algebraic relation with proper representation8. Furthermore, it also works for the OR composition of
RDLog. At a high level, this works by (1) running our UC-NIZK for the NP statement, for which the witness
is known; then (2) using the HVZK simulator to generate proofs for all other statements. The straightforward
construction is provided in Appendix E.

8 Note that a polynomial p(x) of degree d is linear in powers of x, 1, x, x2, . . . , xd. So our protocols work for proving
relations p(x) = y over a field as well.
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3 Preliminaries

We denote by a← D a uniform sampling of an element a from a distribution D. The set of elements {1, . . . , n}
is represented by [n]. We denote the computational security parameter by κ and statistical security parameter
by λst, respectively.

Multiplicative cyclic groups. We consider multiplicative cyclic groups G of prime order q, i.e. |G| = q.
We write ⟨g⟩ := {gk : k ∈ N} to denote the cyclic group generated by g; the element g is called a generator.
(Since |G| = q, every element in G is a generator.) The corresponding field (for computations in the exponent)
is denoted as Zq.

Vectors and matrices. We use boldface to denote matrices and vectors. Sometimes we use notations Am×n

to a matrix of dimension m×n. The element in the i-th row and j-th column is denoted by Aij , and the j-th
column vector (of dimension m) of A is denoted Aj . Analogously, for a vector v, vi denotes the i-th element.

Random oracle. A random oracle is an oracle distribution U(m,n) given by RO← ({0, 1}m → {0, 1}n) for
some m,n ∈ N. In security analyses, we also require the random oracle to be programmable, i.e. a simulator
can set the oracle’s output value at a small number of query points.

Universal Composability. We follow the Universal Composability Framework [Can01], in that a real-world
multi-party protocol realizes an ideal functionality in the presence of an adversary. We refer to Appendix. B
for a more detailed description. We also assume the existence of a default authenticated channel in the real
world between any two parties.

3.1 Definition: Additively Homomorphic Encryption

An additively-homomorphic encryption scheme is a tuple of algorithms AHE = (Gen,Enc,Dec) that works as
follows.

– Gen(1κ)→ (ek, dk). On input a security parameter κ (in unary), outputs a (public) encryption key ek ∈ Kek

and a (secret) decryption key dk ∈ Kdk in the respective key spaces.

– Enc(ek,m, r)→ c. On input an encryption key ek ∈ Kek, a message m in message spaceM and encryption
randomness r in randomness space R, outputs a ciphertext c in ciphertext space C.

– Dec(dk, c) → m. On input a decryption key dk ∈ Kdk and a ciphertext c, deterministically outputs a
message m ∈M.

We require AHE to satisfy the following completeness and security properties:

– Perfect correctness. For any message m ∈M,

Pr

[
Dec(dk,Enc(ek,m, r)) = m

∣∣∣∣ (ek, dk)← Gen(1κ)
r ← R

]
= 1 .

– Semantic security. AHE is semantically-secure if any PPT (stateful) adversary A cannot distinguish
between the following distributions:

D0(κ) :=

(c1, . . . , cn)

∣∣∣∣∣∣∣∣
(ek, dk)← Gen(1κ)

{(m0,i,m1,i)}i∈[n] ← A(ek)
r1, . . . , rn ← R

ci ← Enc(ek,m0,i, ri)


and D1(κ) :=

(c1, . . . , cn)

∣∣∣∣∣∣∣∣
(ek, dk)← Gen(1κ)

{(m0,i,m1,i)}i∈[n] ← A(ek)
r1, . . . , rn ← R

ci ← Enc(ek,m1,i, ri)

 .

We also require the scheme to satisfy additive homomorphism and a related well-formedness property.
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– Additive homomorphism. Let κ ∈ N be a security parameter. Let (ek, dk)← Gen(1κ), then there are
polynomial time deterministic algorithms Add and ScMult such that:

• For any c1, c2 ∈ C define homomorphic addition c(+) := Add(c1, c2) such that if c1 := Enc(ek,m1; r1)
and c2 := Enc(ek,m2; r2), then c(+) = Enc(ek,m0 + m1; r0 + r1). Similarly, we define homomorphic
subtraction as c(−) := Add(c1,−c2) such that c(−) = Enc(ek,m0 −m1; r0 − r1). Here we assume the
addition/subtraction operations +/− are defined in bothM and R.
• For any c ∈ C, and any scalar s which is inM and R, define scalar multiplication c(·) := ScMult(s, c)
such that if c := Enc(ek,m; r), then c(·) = Enc(ek, sm; sr).

– Homomorphic well-formedness. Let c1, c2 ∈ C be two arbitrary strings in the ciphertext space. Suppose,
for any uniformly random scalar s ∈M, c∗ := Add(c1,ScMult(s, c2)). Also, let m

∗ ← Dec(dk, c∗), then we
have that m1 ← Dec(dk, c1) and m2 ← Dec(dk, c2) such that m∗ = m1 + s ·m2.

Finally we need a crucial oblivious sampleability property of the public-key.

– Oblivious sampleability of public key. There exists an efficiently computable hash function Hek :
{0, 1}∗ → Kek such that the public-key can be sampled obliviously as ek := Hek(x) on an uniform random
input x and the following distributions are statistically close:

{ ek : (ek, dk)← Gen(1κ) } and { ek← Hek(1
κ, ·) } .

Looking ahead, Hek is to be modeled as a programmable random oracle in security proof. Obliviousness
implies that, this can be done without explicit knowledge of the corresponding secret key, and therefore,
given x anyone can check whether ek is generated correctly.

Matrix Encryption. We can extend the above notation to compactly capture encrypting a matrix m ∈Mk×n

using MatEnc(ek,m) which returns a ciphertext matrix c ∈ Ck×n, in that each element cij = Enc(ek,mij) for
i ∈ [k], j ∈ [n]. Matrix decryption is similarly denoted byMatDec(dk, c). The addition and scalar multiplication
defined above naturally extends for matrices.

3.2 Definition: Sigma protocols

We define Sigma protocols for an NP relation R in the common reference string (CRS) model. It works
as follows: A 3-move public coin Sigma protocol [CPV20] for a relation R is a tuple of algorithms Σ =
(Setup,P = (P1,P2),V = (V1,V2)). The prover P receives an instance x and witness w as input. The verifier
V receives x as input. Σ proceeds in the following format:

– Setup(1κ)→ (crs, td) : The Setup algorithm runs on (unary) security parameter κ and generates a CRS crs
and a trapdoor td. All algorithms receive crs as inputs, and td is only used in extraction/simulation.

– P1(crs,x,w; ρ)→ a : P runs (randomized) algorithm P1 on the (public) instance x, (private) witness w
to obtain the first message a – this is also called a commitment. P sends a to V. Here ρ is the prover’s
randomness, which is stored to be used later in P2.

– V1(crs, a)→ c : V samples random challenge c
$← C and sends c to P.

– P2(crs,x,w, a, c, ρ)→ z : P runs algorithm P2 with x,w, a, c, ρ to output z. It sends response z to V.
– V2(crs,x, (a, c, z))→ 1/0 : V , on input the instance and the transcript (a, c, z), which together constitutes

the proof π, outputs 1 if it accepts and 0 if it rejects.

Let us now define the security properties of a Sigma protocol.

– Perfect completeness. If (x,w) ∈ R, then V accepts all honest 3-move transcripts as long as P1 and P2

uses the same ρ.
– Special soundness. There exists an efficient extractor Ext that, on input a CRS crs, an instance x ∈ L,

and two accepting transcripts (a, c, z) and (a, c′, z′) such that c ̸= c′ ∈ C, outputs a witness w such that
(x,w) ∈ R with probability 1− negl(κ). We call the loss the special soundness error.

– Straight-line knowledge soundness. There exists an efficient deterministic algorithm called straight-
line Knowledge Extractor E that, on input the public information crs, the trapdoor td, instance x ∈ L,
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and a single accepting transcript (a, c, z) outputs an accepting witness w for which (x,w) ∈ R with
probability 1− negl(κ).

– Honest-verifier zero knowledge (HVZK). There exists a PPT simulator algorithm Sim that, on input

the setup string crs, trapdoor td for crs, instance x ∈ L, and a uniform random challenge c
$← C, outputs

(a, z) such that V2(crs,x, (a, c, z)) = 1. Further, for every PPT adversary A, the following distributions are
indistinguishable: A(x, (a, c, z)) = 1

∣∣∣∣∣∣∣
(crs, td)← Setup(1κ)

ρ
$← R; a← P1(crs,x,w, ρ)

c
$← C; z ← P2(crs,x,w, c, ρ)


and

{
A(x, (a, c, z)) = 1

∣∣∣∣∣ (crs, td)← Setup(1κ)

c
$← C; (a, z)← Sim(crs, td,x, c)

}
.

3.3 Definition: Straight-line Extractable NIZKs

We define straight-line-extractable non-interactive zero-knowledge proofs in the random oracle model (ROM)
for an NP relation R. The proof system Π consists of a tuple of algorithms (Setup,PRO,VRO) defined as
follows:

– Setup(1κ)→ RO. On input a security parameter κ, Setup samples a function RO uniformly from the set of
all functions mapping {0, 1}∗ → C.

– PRO(x,w)→ π. On input an instance x, and a corresponding witness w, the prover P computes a proof π.

– VRO(x, π)→ 1/0. On input an instance x, and a corresponding proof π, the verifier V computes a decision
bit.

We require Π to satisfy the following completeness, (computational) zero-knowledge and (statistical) straight-
line knowledge soundness properties in the ROM:

– Perfect Completeness. For any adversary (possibly unbounded) A

Pr

 (x,w) /∈ R
∧

(VRO(x, π) = 1)

∣∣∣∣∣∣
RO← Setup(1κ)
(x,w)← ARO

π ← PRO(x,w)

 = 1

The above formulation of completeness allows (x,w) to depend on the oracle RO. Here A can make
unbounded many queries to RO.

– (Computational) Zero Knowledge. Before defining zero-knowledge we define NIZK simulator (in
the random oracle model) and associated wrapper oracles for an NP relation R. A NIZK simulator
S in the random oracle model is a stateful PPT algorithm that can operate in two modes. The first
mode (hi, st)← S(1, st, qi) handles RO queries whereas the second mode (x, π, st)← S(2, st,x) returns a
simulated proof for x. Let S1, S2 and S ′2 be wrapper oracles that share state. S1(qi) is a wrapper around
S(1, st, qi) returning only hi while internally updating st. Similarly, S2(x,w) and S ′2(x) be wrappers around
S(2, st,x) returning only (x, π) and internally updating st, except that S2(x,w) aborts if (x,w) /∈ R. We
say that Π has computational zero knowledge if there exists a simulator S such that for any PPT adversary
A, the following is negligible in κ.

Pr
[
ARO,P(·,·)(1κ) = 1

∣∣ RO← Setup(1κ)
]
− Pr

[
AS1,S2(1κ) = 1

∣∣ RO← Setup(1κ)
]

Above, P and S2 both return ⊥ when queried on (x,w) ̸∈ R.
– (Statistical) Straight-line Knowledge Soundness. We first define a straight-line extractor E as a

stateful PPT algorithm which works in two modes: (hi, st) ← E(1, qi, st) handles the RO queries using
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lazy sampling, whereas (w, st)← E(2,x, π, st) returns a witness. Let E1 and E2 be the wrappers around E
such that each outputs the first part of the respective outputs (without the state, which is kept secret).
Importantly, E is straight-line, that is it does not rewind or use forking [JT20]. Π has straight-line knowledge
soundness if there exists a PPT stateful extractor E such that for any unbounded adversary A, which
makes bounded-many queries to RO we have:

Pr

[
VRO(x, π) = 1 ∧

(x,w) ̸∈ R

∣∣∣∣ RO← Setup(1κ); (x, π)←− AE1

w← E2(x, π)

]
≤ negl(κ)

We need a few more definitions for showing a stronger simulation extractability property for Π.

– Weak Unique Response [GOP+23]. Π is said to satisfy weak unique response with respect to the
zero-knowledge simulator S with wrapper oracles (S1,S ′2) (as defined above), if given a simulated transcript
(x, c, z)← S ′2(x), for all PPT adversaries A the following probability is at most negl(κ).

Pr

VS1(x, a, c, z′) = 1
∧

z′ ̸= z

∣∣∣∣∣∣ (x, a, c, z)← S ′2(x)
(x, a, c, z′)← AS1(x, a, c, z)


– Simulation Extractability, [FKMV12] Π is said to satisfy simulation extractability with respect to a

stateful PPT simulator S with wrapper oracles (S1,S ′2) (as defined above) if there exists a (straight-line)
PPT extractor Ê such that for all PPT adversaries A the following holds:

Pr

[
VS1(x∗, π∗) = 1

∧ (x∗,w∗) /∈ R ∧ (x∗, π∗) /∈ T

∣∣∣∣ (x∗, π∗)← A(S1,S′
2)

w
∗ ← Ê(x∗, π∗)

]
≤ negl(κ) .

Here T is the list of transcripts received by A on querying S ′2.

4 Straight-line Extractable Proof Systems for Arbitrary Linear Relations

We present our interactive straight-line extractable Sigma protocol. First, we establish our notations for
arbitrary linear relations of group elements in Section 4.1 and recall the generic Sigma protocol (Figure 1) for
arbitrary relations in Section 4.2.9 Second, we present the interactive straight-line extractable Sigma protocol
(Figure 2) in Section 4.3.

4.1 Notations

We assume a cyclic group G of prime order q with g as a generator, and a corresponding finite field Zq. Now
we define:

– For each matrix a ∈ Zm×n
q , we denote the matrix exponentiation A := ga ∈ Gm×n where each element

Aij = gaij . Below we assume A = ga.
– The scalar power of A ∈ Gm×n with respect to a scalar s ∈ Zq is denoted by As ∈ Gm×n, each entry of

which is given by As
ij := (Aij)

s. Notice that, As = gsa, where sa is a standard scalar multiplication.
– Given a vector v ∈ Zm

q , the vector power of A is denoted by Av = gv·a, where v · a is a vector-
matrix multiplication resulting into a vector of dimension n. Alternatively, the j-th entry of Av is

given by a multi-exponentiation
∏m

i=1 A
bi
ij . For example, let A =

(
A11 A12 A1,3

A21 A22 A23

)
and v = (v1 v2) then

Av =
(
Av1

11 ·A
v2
21 | Av1

12 ·A
v2
22 | Av1

13 ·A
v2
23

)
. Also note that, if V = Av, then for a scalar s ∈ Zq

V s = Asv.
– Given a matrix a ∈ Zm×n

q , the element-wise inverse of a denoted as (a−1, each element of which is
the inverse (in Zq) of each element of the vector a in the same position. For a matrix A ∈ Gm×n, the
element-wise inverse A−1 is defined as the matrix, in that each element is equal to A−1

ij a multiplicative
inverse in G of an element Aij in A in the same position.

9 The Schnorr, Okamoto and Chaum-Pedersen protocols are all special cases of a generic Sigma protocol for arbitrary
linear relations of some group elements (see Chapter 19.5.3 of [BS23]).

14



– The Hadamard product of two arbitrary matrices of same dimensions Am×n and Bm×n, denoted by
A •B, defines a matrix Cm×n whose entries are element-wise product of the entries of A and B. That is,
Ci,j = Ai,j ·Bi,j for 1 ≤ i ≤ m and 1 ≤ j ≤ n. When A = ga and B = gb, A•B = ga+b, where ‘+′ denotes
the standard matrix addition over Zq. Furthermore, if V = Av and W = Aw, then V •W = Av+w.

4.2 Standard Sigma Protocol for Arbitrary Linear Relation

Now, for a vector w ∈ Zn
q , and a matrix y ∈ Zn×m

q consider the following linear relation: U = Y w ∈ Gm,
where Y = gy ∈ Gn×m. (Alternatively, we can write U = gw·y.) To summarize, define the following relation:

RGenLin :=
{(

(Y ∈ Gn×m,U ∈ Gm),w
)
: w ∈ Zn

q and U = Y w
}

. (1)

Note that RGenLin checks the following in the exponent, with respect to a fixed generator g ∈ G: for y ∈ Zn×m
q

and u ∈ Zm
q , there exists w ∈ Zn

q such that u = wy.

We describe a (standard) Sigma protocol Σ = (Setup,P = (P1,P2),V = (V1,V2)) for RGenLin, where the
prover P has the inputs the public instance x := (Y ∈ Gn×m,U ∈ Gm) and the witness w := w ∈ Zn

q and
the verifier V has input (Y ,U). Here integers m denotes the number of relations (or constraints) and n
denotes the number of witnesses.

Inputs: Both prover and verifier know the public instance x := (Y ∈ Gn×m,U ∈ Gm), and the prover exclusively
has witness w := w ∈ Zn

q .
Round-1 (Commit): The prover P runs algorithm P1(crs,x,w), which works as follows:

– Sample s
$← Zn

q and compute S := Y s ∈ Gm.
– Set a := S and ρ := s.

P sends a to the verifier.
Round-2 (Challenge): The verifier V runs algorithm V1(crs, a), which, on receiving a = S samples challenge

c
$← Zq and sends c to P.

Round-3 (Response): The prover P, on receiving the challenge c, runs algorithm P2(crs,x,w, a, c, ρ), which
works as:
– Parse ρ as s.
– Compute z := s+ cw ∈ Zn

q .
– Set z := z.
Send z to the verifier.
Check: The verifier V, on receiving z = z outputs whatever is returned by the algorithm V2(crs,x, a, c, z) which
return 1 if and only if Y z = S •U c.

Fig. 1: Standard Sigma Protocol for RGenLin.

Theorem 1. Suppose G is a group of prime order q. Then, the protocol in Figure 1 satisfies perfect com-
pleteness, special soundness with error 1

q , and perfect honest verifier zero-knowledge.

Proof. We prove Theorem 1 in Appendix A.1 for the sake of completeness.

4.3 Straight-line Extractable Protocol for RGenLin

We present our interactive three-move Sigma protocol for any linear relation RGenLin that is straight-line
extractable in the crs model. An additional ingredient we use here is an additively homomorphic public-key
encryption scheme AHE = (Gen,Enc,Dec), which has message space Zq and the property that the encryption
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key is obliviously sampleable. The crs consists of the encryption key ek. Further, recall the extended matrix
encryption/decryption notations MatEnc and MatDec (see Section 3.1).

In Figure 2, we present a Sigma protocol Σ = (Setup,P = (P1,P2),V = (V1,V2)) for RGenLin (Equation (1)) –
recall that this relation consists of instances Y ∈ Gn×m,U ∈ Gm and witnesses w ∈ Zn

q satisfying U = Y w.
Further, we notate how Figure 2 differs from Figure 1 in blue.

Inputs: Both prover and verifier know the public instance x := (Y ∈ Gn×m,U ∈ Gm), and the prover exclusively
has witness w := w ∈ Zn

q . The Setup(1λ) samples key pairs (ek, dk)← Gen(1λ); set public crs := ek and trapdoor
td := dk.
Round-1 (Commit): The prover P runs algorithm P1(crs,x,w), which works as follows:

– Sample s
$← Zn

q and compute S := Y s ∈ Gm.

– Sample encryption randomness rs, rw
$←Rn.

– Compute encryptions Cs := MatEnc(ek, s; rs) and Cw := MatEnc(ek,w; rw) where ek = crs.
– Set a := (S,Cs,Cw) and ρ := (s, rw, rs).
Send a to the verifier.
Round-2 (Challenge): The verifier V runs algorithm V1(crs, a), which, on receiving a = (S,Cs,Cw) samples

challenge c
$← Zq and send that to the prover.

Round-3 (Response): The prover P, on receiving the challenge c, runs algorithm P2(crs,x,w, a, c, ρ), which
works as:
– Parse ρ as (s, rw, rs).
– Compute z := s+ cw ∈ Zn

q .
– Compute rz := rs + crw.
– Define z := (z, rz).
Send z to the verifier.
Check: The verifier V, on receiving z = (z, rz) outputs whatever is returned by the algorithm V2(crs,x, a, c, z)
which returns 1 if and only if:
– Y z = S •U c.
– Cs,Cw ∈ C.
– MatEnc(ek,z; rz) = Add(Cs, ScMult(c,Cw)) where ek = crs.

Fig. 2: Our straight-line-extractable Sigma protocol for RGenLin. We highlight the changes from the standard
Sigma protocol of Figure 1 in blue.

Theorem 2. Suppose G is a group of prime order q. Suppose AHE = (Gen,Enc, Dec) is an additively
homomorphic encryption scheme satisfying the perfect correctness, semantic security with distinguishing
advantage at most δsem, and homomorphic well-formedness properties (defined in Section 3.1).

Then, the Sigma protocol described in Figure 2 satisfies the following properties in the crs model:

– Perfect Completeness, due to the additive homomorphism of AHE;
– (Statistical) Straight-line Knowledge Soundness with probability 1− 1/q, due to the correctness and

homomorphic well-formedness of AHE; and
– (Computational) Honest Verifier Zero-Knowledge with simulation error δsem, due to the additive

homomorphism and the semantic security of AHE.
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Proof. Perfect Completeness. From the verifier’s computation, we have that Y z = Y s+cw = Y s • Y cw =
S •U c and

MatEnc(ek, z = s+ cw, rz = rs + crw)

= Add(MatEnc(ek, s; rs),MatEnc(ek, cw; crw)

= Add(Cs,ScMult(c,Cw)) .

The second equation holds from the correctness of the homomorphism of the encryption scheme. Therefore,
the verifier outputs 1 and our protocol is complete.

(Statistical) Straight-line Knowledge Soundness. We construct a straight-line knowledge extractor EΣ
which works as follows:

EΣ(crs, td,x, π) :
– On input (crs, td,x, π) parse ek = crs, the trapdoor dk = td, instance (U ,Y ) = x, and a single accepting

transcript (a, c, z) = π where:
– a = (S,Cs); c ∈ Zq; z = (z, rz)
– Y z = S •U c

– Cs,Cw ∈ C.
– MatEnc(ek, z; rz) = Add(Cs,ScMult(c,Cw)).

– Use dk to decrypt w ← MatDec(dk,Cw) and s← MatDec(dk,Cs).
– Output w if z = s+ cw.

Now, we argue why the extractor works. First note that, since (a, c, z) is an accepting transcript, both the
verification equations satisfy:

– Y z = S •U c.
– MatEnc(ek, z; rz) = Add(Cs,ScMult(c,Cw)).

Then, combining the homomorphic well-formedness property with correctness of the encryption, we get
that since Add(Cs,ScMult(c,Cw)) equals MatEnc(ek, z; rz) which correctly decrypts to z, and c is uniformly
at random, each ciphertext Cw and Cs would always decrypt successfully. So the extractor E never fails
while decrypting these ciphertexts. In fact, we have z = s + cw, where s ← MatDec(dk,Cs) and w ←
MatDec(dk,Cw). Since G is a cyclic group, we can write S = Y s′

and U = Y w′
. The first verification

equation is z = s′ + cw′. If s ̸= s′ and w ̸= w′, then c is uniquely defined as c = (s′ − s)(w − w′)−1,
where the second term is an element-wise inverse of the vector (w −w′) – this fixes c in the commitment
phase, which happens with probability 1/q as c is randomly chosen by verifier later in the challenge phase
once s, s′,w,w′ are fixed in the commitment phase. So, with probability 1− 1/q, s = s′ and w = w′. This
completes the proof.

(Computational) Honest Verifier Zero Knowledge.

We describe zero-knowledge simulator SΣ as follows:

SΣ(crs,x, c) :

– On input (crs,x, c), where c is uniformly distributed over Zq, parse ek = crs and (Y ∈ Gn×m,U ∈ Gm) = x.

– Sample z
$← Zn

q .

– Compute the element wise inverse U−1.
– Compute S = Y z • (U−1)c.

– Sample rs, rw
$← Zn

q .
– Compute rz = rs + c · rw.
– Compute encryptions Cz := MatEnc(ek, z; rz) and Cw := MatEnc(ek, 0n; rw).
– Compute homomorphically Cs := Add(Cz,−ScMult(c,Cw)).
– Set a := (S,Cs,Cw) and z := (z, rz)).
– Output (a, c, z).
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We argue that the simulated transcript is computationally indistinguishable from the real transcript of
Figure 2, as long as the semantic security and the homomorphic property of the underlying encryption scheme
hold.

Observe that all values are distributed identically, except for the ciphertext Cw. In the real execution Cw :=
MatEnc(ek,w; rw), whereas Sim sets Cw := MatEnc(ek, 0n; rw). Hence, the transcripts are indistinguishable,
except when the adversary breaks the semantic security of AHE. We give the full reduction to the semantic
security of AHE in Appendix A.2.

5 Universally Composable NIZK Protocol

We present our UC-NIZK protocol for relation RGenLin. We perform this by applying the Fiat-Shamir transform
over our straight-line extractable Sigma protocol and proving that it is UC-secure. Before presenting our
protocol, we present the general UC-NIZK functionality [GOS12, CSW22] in Fig. 3.10

FNIZK is parameterized by an NP Relation R and runs with a prover P , a verifier V and an ideal simulator Sim
which stores proof transcripts in a list Q.

– Proof On input (prove, sid,x,w) from P , if R(x,w) = 1, send (prove, sid, P,x) to Sim. On receiving
(proof, sid, π) from Sim, store (sid,x, π) in Q and respond to P with (proof, sid, π).

– Verify On input (sid,x, π) from V, if (x, π) /∈ Q then send (verify, sid,x, π) to Sim. Upon receiving a witness
(witness,w) from Sim, if R(x,w) = 1, store (sid,x, π) in Q. Return (verification, sid,x, π,R(x,w)) to V.

Fig. 3: Ideal functionality FNIZK

Next, we present our NIZK protocol ΠGenLin and show that it UC-securely implements FNIZK for relation
RGenLin.

In Fig. 4, we present our UC-NIZK protocol ΠGenLin for RGenLin (Eq.1). It is obtained by applying the standard
Fiat-Shamir transformation [FS87] to our interactive straight-line-extractable Sigma protocol (from Fig.2)
using the hash function HV . We note that our Sigma protocol was in the URS model where the encryption
key ek was part of the URS. But in our NIZK we use the public sampleability property of the underlying AHE
scheme and generate the ek using a separate hash function Hek. As a result, we do not require additional URS
and prove security of our protocol in the random oracle model by modeling Hek and HV as random oracles.
Before presenting our UC proof we show that our NIZK satisfies the standard property based definitions. We
summarize it in Thm.3.

We formalize the security analysis of ΠGenLin via the following thoerem.

Theorem 3. Suppose that:

– the underlying Sigma protocol satisfies perfect completeness, computational honest verifier zero-knowledge
and statistical straight-line knowledge soundness;

– the underlying AHE scheme is obliviously sampleable; and
– RO = (Hek,HV) are programmable random oracles.

10 We do not require sub-session IDs, denoted ssid’s, in FNIZK; in the UC framework, ssid’s are used for modelling
multi-instance functionalities that have a local/internal shared resource such as a common reference string. The
simulation-extractability and non-malleability properties are required for UC, independently of whether the NIZK
functionality has access to a shared local resource.
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ΠGenLin

Ingredients and Settings:

– Input: Both prover and verifier know the public instance x := (Y ∈ Gn×m,U ∈ Gm), and the prover
exclusively has witness w := w ∈ Zn

q .

– Primitives: The interactive Sigma protocol from Fig. 2 (Setup,P = (P1,P2),V = (V1,V2)) based
on an AHE scheme (Gen,Enc,Dec) with oblivious sampleability enabled by a hash function Hek :
{0, 1}∗ → Kek. Another hash function, HV : {0, 1}∗ → Zq. Both together are modeled as random
oracle RO = (Hek,HV)

Protocol Description:

– PRO(prove, sid,x,w)→ π.
• Parse RO as (Hek,HV).

• Compute ek := Hek(sid,x) and set crs := ek.

• Run (S,Cs,Cw) := P1(crs,x,w; ρ) where ρ := (s, rw, rs).

• Define a := (S,Cs,Cw).

• Compute c := HV(sid,x, a).

• Run (z, rz) := P2(crs,x,w, a, c, ρ).

• Define z := (z, rz).

• Output π := (a, c, z).

– VRO(sid,x, π)→ 1/0.
• Parse (a, c, z) := π.

• Parse RO as (Hek,HV).

• Compute ek := Hek(sid,x).

• Output (c = HV(sid,x, a) ∧ V2(crs,x, a, c, z)).

Fig. 4: Our UC-NIZK protocol for RGenLin.

Then ΠGenLin of Figure 4 satisfies the following :

– Perfect completeness based on the perfect completeness of the Sigma protocol;
– Computational zero-knowledge based on the honest verifier zero-knowledge of the underlying Sigma

protocol, assuming HV to be a programmable random oracle and AHE satisfies oblivious sampling;
– (Statistical) straight-line knowledge soundness based on the oblivious sampleability of the underlying
encryption scheme, programmability of the random oracle Hek and the statistical straight-line knowledge
soundness of the underlying Sigma protocol.

Proof Sketch. The perfect completeness is immediate from the perfect completeness of the underlying Sigma
protocol.

Computational zero-knowledge follows in a standard Fiat-Shamir argument by sampling a random challenge
c, invoking the HVZK simulator SΣ of Sigma protocol on (x, c) and then programming HV on (sid,x, a) s.t.
it returns c. We formally demonstrate this by explicitly defining the S1 and S2 algorithms below.

S1(· · · ) :
– Answering Hek(sid,x) queries: Return Hek(sid,x).
– Answering HV(sid,x, a) queries made by A: Return HV(sid,x, a) .
– Answering HV(sid,x, a) queries made by S2: Read (sid,x, a, c, z) from st. ProgramHV s.t. it returnHV(sid,x, a) =

c. If the query is repeated in the future then return c.

S2(sid,x) :
– On input (sid,x) compute ek← Hek(sid,x).
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– Sample c← Zq and obtain simulated transcript (a, c, z)← SΣ(ek,x, c) by the invoking the HVZK simulator
S of the Sigma protocol.

– Update st as st := st ∪ (sid,x, a, c, z). Store simulated transcript as T = T ∪ (sid,x, a, c, z)
– Query HV(sid,x, a) to obtain c.
– Return π = (a, c, z).

The only way an adversarial verifier can prevent zero-knowledge is if it queries the random oracle on (sid,x, a)
before the simulator programs it to output c. However, this is not possible since the first message a is
determined by s ∈ Zn

q in the Sigma protocol. Concretely, the probability that an adversarial verifier prevents

the ZK simulator from programming HV on a particular a is
QHV

min(qn,|G|m) , where QHV is the number of queries

made by the adversarial verifier to the hash function HV , a is computed by sampling s← Zn
q and computing

a := S := Y s ∈ Gm.

Next, we focus on straight-line knowledge soundness. According to the definition (Section 3.3) the stateful
extractor E has two modes E(1, · · · ) which programs and simulates the random oracle and E(2, · · · ) which
extracts the witness. We define them as follows for ΠGenLin.

E(1, · · · ) :
– Answering Hek(sid,x) queries: Sample (ek, dk) ← AHE.Gen(1κ) and program Hek to return ek and store
(ek, dk) in st. If the query is repeated in the future then return ek.

– Answering HV(sid,x, a) queries: Sample c← Zq and program HV to return c. If the query is repeated in
the future then return c.

E(2, sid,x, π) :
– On input (sid,x, π) parse (a, c, z) := π and compute ek = HV(sid,x).
– Abort if Hek(sid,x, a) ̸= c. Otherwise, retrieve dk corresponding to (sid, ek) from st and set crs = ek and

td = dk.
– Output EΣ(crs, td,x, π).
Now we argue why the extraction works. First, due to oblivious sampleability of the underlying encryption
scheme, the public key ek is distributed identically with the ek in the actual protocol ΠGenLin except with
negligible probability. Then, we note that with probability 1/QHek

, E(2, . . .) does not abort in the first step,
where QHek

denotes the total number of random oracle queries asked by A to Hek. Next, if A can predict the
output of HV(sid,x, a) without querying, then only the second abort condition is triggered, but this happens

only with
QHV

q probability where a can have q possibilities. Assuming, no abort is triggered, EΣ returns a

correct witness except with negligible probability negl(λ). So, if we bound both QHek
and QHV to be at most

sub-exponential in λ the extractor E outputs a correct witness except with negligible probability in λ as
well.

Next, we show that ΠGenLin UC-securely realizes FNIZK for relation RGenLin. This requires constructing a
simulator against a corrupt verifier and a simulator against a corrupt prover. For the former, we simply
use the NIZK simulator against a corrupt verifier from the previous subsection. For the latter, we need
straight-line blackbox simulation-extractability [KZM+15] where the environment Z corrupts (via dummy
adversary A) the prover in session sid and sees simulated proofs from sessions where the verifier is corrupt.
We need to argue that the environment Z still cannot distinguish the ideal world execution of sid from a
real-world execution of the same session. To argue simulation-extractability, we need to show that the protocol
satisfies weak-unique response property [FKMV12]. We refer to Definition 3.3 for the formal definitions of
simulation-extractability and weak unique response. The formal UC-proof is more involved and we refer to
Appendix. C for the full proof.
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6 Concrete Instantiation of AHE using Class Groups

We instantiate our additive homomorphic encryption scheme with the class-group based PKE scheme of [CL15].
However, we need to additionally show that it satisfies our newly introduced oblivious sampleability and
homomorphic well-formedness properties. All other required properties were already shown to hold in prior
works, and hence we omit the details for them.

Background and Notation. We provide a brief background (which is mostly borrrowed from [KMM+23,
CCL+19, BDO23]) on class-groups before recalling the encryption scheme. The class-group setting considers

a finite abelian group ĜCL of unknown order q · ŝ where ŝ is unknown and hard to compute and q is known.
Consider a cyclic subgroup FCL = ⟨f⟩ of ĜCL of order q, where q is prime. The set Ĝq

CL = {gq : g ∈ ĜCL} is a
subgroup of ĜCL. Which is of order ŝ. Therefore, ĜCL is factored as ĜCL ≃ FCL × Ĝq

CL. Suppose U ∈ Z be an

upper bound of ŝ which is known. Although, ĜCL is the base group, we are focusing on a cyclic subgroup
GCL of ĜCL, such that GCL has order q · s and s divides ŝ. So, FCL is also a cyclic subgroup of GCL. Consider
Gq

CL = {gq : g ∈ G} which is a cyclic subgroup of GCL of order s. Now, q and s are also co-prime. Therefore,
GCL can be factored as GCL ≃ FCL × Gq

CL. Both s, ŝ are odd and all s, ŝ, q are exponential in λ. For our
purpose, we consider two distributions D and Dq over Z such that {gx | x← D} and {gxq | x← Dq} produce
two distributions over GCL and Gq

CL respectively, which are statistically close (within distance 2−λst , for a
statistical security parameter λst, typically set to 40 in practice) to uniform distributions over GCL and Gq

CL

respectively. While discrete log is hard in groups ĜCL,GCL, Ĝq
CL,G

q
CL, it is easy in FCL. Precisely, there are

two efficient algorithms:

– (U, ĜCL,FCL, f, gq,D,Dq, ρ) ←Gen(1λ, 1λst , q). This algorithm, on input the computational security pa-
rameter λ, the statistical security parameter λst, and a prime q, outputs the group parameters and the
randomness ρ used to generate them. For convenience, we include the descriptions of the distributions D
and Dq as well.

– x←Solve(X = fx, U, q, ĜCL,FCL, gq, f). This algorithm solve discrete log problem deterministically and
efficiently in the group FCL.

Construction. Now we are ready to describe the encryption scheme CG-AHE := (CG.Gen,CG.Enc,CG.Dec) for

message spaceM = Zq, and encryption key-spaceKek = Gq
CL. Let ppCG := (U, q, ĜCL,FCL,Gq

CL, gq, f,D,Dq, ρ)←Gen(1λ, 1λst , q)
for some computational security parameter λ and for some statistical security parameter λst and a prime q.
The the scheme CG-AHE is described as:

CG.Gen(ppCG)
→ (dk, ek):

• dk
$← Dq

• ek← gdkq

CG.Enc(ppCG, ek,m)→ c:

• r
$← Dq

• R← grq
• E ← fm · ekr
• Set c := (R,E)

CG.Dec(ppCG, dk, c)→ m:
• Parse c = (R,E)
• M ← E

Rdk

• m← Solve(ppCG,M)

We show that CG-AHE encryption satisfies all properties required, as described in Section 3.1. First, we note
that the perfect correctness, semantic security and additive homomorphism are already shown in [CL15,
BDO23, KMM+23, CLT18, CCL+19, CCL+20] based on computational assumptions, such as hard subgroup
membership and/or strong root assumption. So, here we only show homomorphic well-formedness and oblivious
sampleability of the encryption key, both of which holds unconditionally except with negligible probability in
λst.

Homomorphic Well-formedness of CG-AHE. We first recall the homomorphic property of CG-AHE,
where Add and ScMult are specified as:

– Add(c1, c2) : Parse c1 = (R1, E1) and c2 = (R2, E2). Then compute R(+) := R1 ·R2 and E(+) := E1 · E2.
Output c(+) = (R(+), E(+)).

– ScMult(s, c) : Parse c = (R,E), s ∈ Zq and compute R(·) := Rs and E(·) := Es. Output c(·) = (R(·), E(·)).
Note that, s can just be parsed as an integer for Rs operation, since this is in a cyclic group.
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First note that, unlike ElGamal encryption, CG-AHE does not have dense ciphertexts, which is the property
that for any element c ∈ C, we can get m ← CG.Dec(ppCG, dk, c). We call such successfully decryptable
ciphertexts, valid ciphertexts. However, for CG-AHE, not all ciphertexts are valid. For example, choose a

random ciphertext (R,E)
$← C. Then, R = grq and E = ge. The operation E/Rdk yields gδ which, with

overwhelming probability, is not in the easy group FCL. Hence Solve will fail in CG.Dec.

Now, we argue CG-AHE has the homomorphic well-formedness property. Fix two arbitrary ciphertexts

c1, c2 ∈ C. Then sample a uniform random s
$← Zq, and compute c∗ := Add(c1,ScMult(s, c2)). Now, if

c∗ = (R∗, E∗) is valid, that implies E∗/R∗dk is in FCL. This implies that E∗ must be of the form gr
∗dk

q fm∗
for

some m∗ ∈ Zq and r∗ ∈ Zs. We have:

gr
∗dk

q fm∗
= E1 · Es

2 and gr
∗

q = R∗ = R1 ·Rs
2.

We can write R1 = gr1q and R2 = gr2q such that r∗ = r1 + sr2 and E1 = g
r′1
q fm1 and E2 = g

r′2
q fm2 , such that

r′1 + sr′2 = r∗ = r1 + sr2. Now, since s is chosen uniformly at random once c1, c2 are fixed, this equation
must be identically zero expect with probability 1/q = O(negl(λst)). Which implies that, with overwhelming
probability we have r1 = r′1 and r2 = r′2. This, in turn, implies that for each i Ei/R

dk
i is in FCL, and hence

both c1, c2 are valid ciphertexts. This concludes the argument that CG-AHE has homomorphic well-formedness
unconditionally with overwhelming probability over the choices of randomnesses.

Oblivious Sampleability of encryption key. Recall that oblivious sampleability property requires
existence of a hash function HppCG

ek : {0, 1}∗ → Gq
CL such that the public key sampled using ek← HppCG

V (· · · ) is
statistically close to the public key sampled as ek← CG.Gen(ppCG). This follows from two facts:

– The public key space Kek = Gq
CL is, with overwhelming probability over λst, a dense public key space – this

implies that a uniform random element ek sampled from Gq
CL is a valid public key, for which there is a

secret decryption key (maybe unknown) dk, such that ek = gdkq . This follows from the description of the
distribution of Dq. Note that, the non-oblivious CG.Gen samples dk ← Dq, and it guarantees that this
results into a ek = gdkq which, has a statistically close distribution to the uniform distribution over Gq

CL.
– There exists an efficient hash function, which maps to Gq

CL such that, on uniform random input, the output
distribution is statistically close to uniformly random. Such an instantiation has been recently proposed
in a couple of recent works [Wes19, SBK24, CLR24]. We refer to [SBK24], where it is briefly mentioned
how such an hash can be used to sample class-group public keys obliviously, also required in a prior
work [TCLM21].

Combining these two facts we can use the hash function mentioned above to enable oblivious sampling. In
fact, the hash function can be used as a programmable random oracle in the proof as required – this is shown
by Chalkias et al. [CLR24] (see Theorem 1 in the paper [CLR24]).

Discussion on our choice. We elaborate on our choice of class-group based AHE. First we note that,
among existing AHE candidates, exponentiated ElGamal does not support large message space Zq efficiently.
The Paillier encryption scheme falls short as it does not have a dense public-key space, and therefore does not
satisfy the crucial oblivious sampleability property. Other prominent AHE candidates come form lattice-based
cryptography, such as Regev’s [Reg04] encryption, GPV [GPV08] etc. While their basic versions only support
bit-encryption, there are optimization techniques to pack large plaintext. However, a major issue with these
schemes are the existence of noise. This is because, in our protocols (Figs. 2 and 4), we need to use the
linear relation between the encryption randomness. For lattice based encryption, the encryption randomness
additionally contains noise terms, that come from Gaussian distributions. So it is not at all clear, how the
linear relation check via re-encrypting would work, and how the security would hold up. We leave exploring
lattice-based (and other AHE) schemes in our framework as future works. In contrast, the class-group based
encryption satisfies all our requirements in fairly straightforward manner.
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7 Application of our UC-NIZK

We demonstrate concrete applications of our compiler by applying to the well-known Chaum-Pedersen
Protocol [CP93]. We make it UC-secure at the cost of two additional encryptions without performing any
repetition of the original Chaum-Pedersen protocol. It can be used in the works of [TGL+19, BGJP23]. Our
UC-NIZK for Chaum-Pedersen is as follows:

– Input: Prover and verifier have input statement x = (g, h,W1,W2). Prover has secret witness w = w s.t.
W1 = gw and W2 = hw.

– Primitives: HV and Hek are random oracles. AHE is the additively homomorphic encryption scheme.
– Setup: A key pair (ek, dk) for AHE.
– Prover Algorithm: P(ek,x,w)→ a:

1. Compute ek := Hek(sid,x).
2. Sample s← Zq. Compute S1 := gs and S2 := hs.
3. Sample encryption randomnesses rs, rw.
4. Compute Cs := Enc(ek, s, rs) and Cw := Enc(ek, w, rw).
5. Set a := (S,Cs, Cw) to V.
6. Compute c := HV(sid,x, a).
7. Compute z := s+ c · w ∈ Zq, and send z to V.
8. Compute rz := rs + c · rw ∈ Zq, and send (a, c, z, rz) to V.

– Verifier Algorithm: V(ek,x, (a, c, (z, rz)))→ b:
1. Compute ek := Hek(sid,x).
2. Check that:
• gz = S1 ·W c

1 ∈ G; and
• hz = S2 ·W c

2 ∈ G; and
• Cs, Cw are valid AHE ciphertexts; and
• Enc(ek, z, rz) = Cs + c · Cz.

3. If all checks pass, output 1. Otherwise, output 0.

It can be observed that the above protocol is a specific instantiation of ΠGenLin for n = 1 and m = 2 and we
incurred the cost of two additional encryptions. A generalized version of Chaum-Pedersen where the same
witness is used to prove m statements can be similarly considered as x = (gi, g

w
i ) for secret witness w = w. In

that case, our compiler still incurs two encryptions as overhead for UC security for those m statements. That
would amortize the cost of those two encryptions over m statements since the entire Chaum-Pedersen Proof
would be dominated by the cost of 2m exponentiations over group G. This also captures AND composition
using our compiler. The Schnorr’s protocol can be found in Sec. 2 where n = 1 and m = 1. We refer to the
Applications paragraph in Sec. 1.1 for the concrete applications of Schnorr’s and Chaum-Pedersen’s proof of
knowledge. We provide the OR composition using our compiler in Appendix. E. This will improve existing
works like [TGL+19] where both OR composition and Chaum-Pedersen is used.
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Appendix
A Additional Proofs

A.1 Proof of Theorem 1

We show that the protocol in Figure 1 satisfies completeness, special soundness, and honest-verifier zero
knowledge.

Completeness. From the notations and definitions presented in Section 3, we obtain correctness of the
verification check:

Y z = Y s+cw = Y s • Y cw = S •U c .

The correctness of the verification equation implies that our protocol is complete.

Special Soundness. The deterministic efficient witness extractor E takes as input the statement x := (Y ∈
Gn×m,U ∈ Gm) and two accepting transcripts (S, c,z) and (S, c′, z′) where c ̸= c′. (The extractor obtain
two such transcripts with the same first message since it has rewinding access to the prover.) As both the
transcripts are accepting, the witness extractor E has two equations:

Y z = S •U c and Y z′
= S •U c′ .

Now the E computes the vector inverse Y −z′
of Y z′

and computes Y z−z′
:= Y z • (Y −z′

). Then, E gets

Y z−z′
= S •U c • (S •U c′)−1 = U c • S • S−1 •U−c′ = U c−c′ ,

in which the second equality follows since G is cyclic and therefore commutative. As c ̸= c′, E computes
1

c−c′ ∈ Zq, then gets

U = (Y z−z′
)

1
c−c′ = Y

z−z′
c−c′ .

The witness extractor E gets the witness w := z−z′

c−c′ as long as c ̸= c′; this bad event occurs with 1
|G| =

1
q

probability. E outputs w satsifying RGenLin with probabilty 1− 1
q . Hence for sufficiently large q, the protocol

satisfies special soundness.

Honest Verifier Zero Knowledge. There exists an efficient PPT algorithm called the simulator which

takes as input the statement U ∈ Gm and a random challenge c
$← Zq. Now it computes z

$← Zn
q and

S = Y z • (U−1)c, where U−1 = (u−1
1 , · · · , u−1

m ) and u−1
i is inverse of ui in group G. Then the simulator

outputs the triplet (S, c,z). The protocol is HVZK as (S, c,z) is distributed identically to a real transcript
of the conversation between the prover and the verifier.

A.2 Reduction for computational ZK for Theorem 2

Suppose that there exists a PPT distinguisher D between the transcripts. Then, we can construct a reduction
to the semantic security of AHE, via sending challenge messages replacing the ciphertext Cw in the transcript.
Specifially, construct an adversary AAHE breaking the semantic security of AHE as follows:

AAHE(ek) :

– Generate a Σ-protocol transcript as follows:
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• Simulate a RGenLin instance-witness pair (x = (Y ,U),w = w) by computing Y
$← Gn×m and w

$← Zn

and U := Y w ∈ Gm.
• Compute S := Y z • (U−1)c.
• Define messages m0 = 0n, m1 = w and send them to the AHE semantic security challenger.
• Receive the ciphertext Cw ∈ Cn (for either m0 or m1) from the AHE semantic security challenger.

• Sample c
$← Zq and z

$← Zn
q .

• Compute rz := rs + c · rw ∈ Rn, in which rs, rw
$← Rn.

• Compute Cz := MatEnc(ek, z; rz).
• Compute homomorphically Cs := Add(Cz,−ScMult(c,Cw)).

– Send the transcript (a := (S,Cs,Cw), c, z := (z, rz)) to D.
– If D outputs 0, output “simulated”. Else, output “real”.

Clearly, AAHE(ek) generates the simulated transcript when Cw encrypts 0n or the transcript of the real
protocol when Cw encrypts w. Hence, AAHE(ek) distinguishes the encryptions of m0 and m1 with the same
probability as D.

B Universally Composable Security

We recall the standard Universal Composability framework of Canetti [Can01], with static corruptions, for the
two-party setting. And we conclude this section with the definition of F -hybrid model, which is instrumental
for security proofs in the UC model.

B.1 Static Security in the UC Model

In this model, the real world execution of protocol π is carried out between the honest parties P1 and P2

and an adversary A, in the presence of an external entity called the environment Z. All the parties are
PPT Turing machines and Z has an auxiliary information z. At the outset of the protocol the environment
initiates the parties with inputs and provides some initial information to A. Z is allowed to interact with A
throughout the protocol. At the outset of the protocol, A may or may not corrupt a party. Upon corruption
of a party, A gets access to the internal state and input of that party. From now on the party will behave
according to A’s instructions (since we are in the malicious model). At the end of the protocol, the honest
parties send their output to Z while A outputs ⊥ on behalf of the corrupted parties and its internal state to
Z. We denote the view of Z as realπ,A,Z(1

κ, z).

In the ideal world, we consider the honest parties P1 and P2, a PPT adversary Sim, Z and the functionality
F . Sim has a random tape r and security parameter κ. He simulates the role of A in the ideal world and
whenever A corrupts a party in the real world Sim corrupts that party in the ideal world and gets access to its
internal state. Sim invokes the algorithm of A, in his head, in another internal protocol execution where Sim
simulates the view of the honest parties to A. We will denote this internal copy of A as AdvInt. Based on the
reply of AdvInt in the internal execution, Sim behaves accordingly in the ideal world execution. He extracts the
inputs of the corrupted parties in the internal execution and invokes F in the ideal world with those inputs
to obtain the output. In the internal execution he simulates the protocol in such a way that AdvInt obtains
that output. At the end of the protocol, AdvInt forwards his view to Sim who forwards it to Z. We denote the
view of Z as idealF,Sim,Z(1

κ, z). We say that a protocol π UC-securely implements a functionality F in the
presence of static adversaries if the real world and ideal world views are indistinguishable.

Definition 1. Let π be a protocol for computing a functionality F . We say that π UC-securely computes the
two party protocol functionality F in the presence of static adversaries if for every PPT adaptive real-world
adversary A and every environment Z, there exists a PPT ideal-world adversary Sim, such that:

realπ,A,Z(1
κ, z)

c
≈ idealF,Sim,Z(1

κ, z)
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B.2 The F-hybrid model.

In order to construct our protocols, we utilize other secure two-party protocols as subprotocols. The standard
way of doing this is to work in a “hybrid model” where both the parties interact with each other (as in the
real model) in the outer protocol and use ideal functionality calls (as in the ideal world) for the subprotocols.
The UC composition theorem states that if a protocol ρ UC-securely implements a functionality F , then
any execution of ρ in a bigger protocol can be replaced with ideal calls to the functionality F . Specifically,
while constructing a protocol π that uses ρ as subprotocol, for securely computing some functionality F ,
the parties can run π and invoke F . The execution of π that invokes F , for each execution of ρ, is called
the F-hybrid execution of π and is denoted as πF . The hybrid ensemble HybπF ,A,Z(1

κ, z) describes Z’s
output after interacting with A and the parties running protocol πF . Whereas, the execution of π that
considers execution of ρ is denoted as πρ. The hybrid ensemble Hybπρ,A,Z(1

κ, z) describes Z’s output after
interacting with A and the parties running protocol πρ. By UC security, the two hybrids HybπF ,A,Z(1

κ, z)
and Hybπρ,A,Z(1

κ, z) are indistinguishable. This permits replacing executions of ρ, in π, with ideal calls to F
functionality; thereby allowing π to execute in the F -hybrid model. It simplifies the security proof of πF as it
can be performed in the F-hybrid model, instead of proving security of ρ within the proof of πρ.

C UC Security Proof of ΠGenLin

We show that ΠGenLin UC-securely realizes FNIZK for relation RGenLin. We need to show that there is a simulator
against a corrupt verifier and a simulator against a corrupt prover. For the former, we simply use the NIZK
simulator against a corrupt verifier from the previous subsection. For the latter, we need straight-line blackbox
simulation-extractability [KZM+15] where the environment Z corrupts (via dummy adversary A) the prover
in session sid and sees simulated proofs from sessions where the verifier is corrupt. We need to argue that the
environment Z still cannot distinguish the ideal world execution of sid from a real-world execution of the
same session. To argue simulation-extractability, we need to show that the protocol satisfies weak-unique
response property [FKMV12]. We refer to Definition 3.3 for the formal definitions of simulation-extractability
and weak unique response.

Theorem 4. Assuming AHE is an additively homomorphic encryption scheme with perfect correctness, then
ΠGenLin, described in Figure 4, satisfies weak unique response property (Definition 3.3).

Proof. Let (S1,S2) be the NIZK simulator for ΠGenLin as defined in proof of Theorem 3. Let us assume to the
contrary that there is a PPT adversary AS1 which given a simulated transcript (x, π = (S,Cs,Cw, c,z, rz))←
S2(x) outputs another transcript (x, π′ = (S,Cs,Cw, c,z′, rz′)) such that (z, rz) ̸= (z′, rz′), VRO(x, π) =
VRO(x, π′) = 1.

It follows from the correctness of the encryption scheme that the underlying plaintexts of Cs and Cw across
the two transcripts (S,Cs,Cw, c,z, rz) and (S,Cs,Cw, c,z′, rz′) must be equal. This implies that given c,
the value of both z and z′ is equal to s+c ·w and thus is the same. Moreover, the corresponding randomnesses
rs and rw across the transcripts must also be equal as the ciphertexts in the first message are the same.That
gives rz = rs+crw = rz′ . This contradicts our assumption that (z, rz) ̸= (z′, rz′). Therefore, our straight-line
extractable Sigma protocol instantiated with perfectly correct encryption satisfies weak unique response
property the following holds:

Pr

VRO(x,S,Cs,Cw, c,z′, rz′) = 1
∧

(z, rz) ̸= (z′, rz′)

∣∣∣∣∣∣
(x, c,S,Cs,Cw, z, rz)← S2(x)
(x,S,Cs,Cw, z′, rz′)← AS1

(x, c,S,Cs,Cw, z, rz)

 = 0.

Next, we show that if ΠGenLin satisfies the weak unique response, knowledge soundness and achieves ZK, then
it satisfies simulation-extractability. The proof closely follows the techniques in [FKMV12, GOP+23].

30



Theorem 5. Assuming protocol ΠGenLin satisfies straight-line knowledge soundness, zero-knowledge and weak
unique response, ΠGenLin is simulation-extractable (Definition 3.3) in the random oracle model.

Proof. Let (S1,S2) (Theorem 3) be the ZK simulator for ΠGenLin. Let AS1,S2 be a PPT adversary that outputs
(x∗,S∗,C∗

s ,C
∗
w, c∗, z∗, r∗z) as a valid proof for simulation-extractability having access to the ZK simulators

(S1,S2)
Let T denote the list of transcripts that the adversary obtains on querying S2.

– Then (x∗,S∗,C∗
s ,C

∗
w, c∗, z∗, r∗z) /∈ T and by weak unique response property, (x∗,S∗,C∗

s ,C
∗
w, c∗, z∗, r∗z) /∈

T for any (z, rz) ̸= (z∗, r∗z), T being the list of queried transcripts received from S2.
– This implies c∗ must have been computed by making a fresh query to S1 on (x∗,S∗,C∗

s ,C
∗
w) and not from

a query to S2 on x∗.

Therefore, the proof submitted by A(S1,S2) is also a valid proof with respect to an adversary who has access
to only S1. In order to see that an algorithm with access to S1 can perfectly simulate the view of A(S1,S2),
we define two games G0 and G1 in the following manner:

Game G0 :

– Run the adversary and receive a instance-proof pair
(x∗, π := (S∗,C∗

s ,C
∗
w, c∗, z∗, r∗z))← AS1,S2

– If (x∗,S∗,C∗
s ,C

∗
w, c∗, z∗, r∗z) /∈ T and VS1(x∗,S∗,C∗

s ,C
∗
w, c∗, z∗, r∗z) = 1, return 1.

– Otherwise, return ⊥.
Game G1 :

– G1 is same as G0 except that it has an additional check.
– Run the adversary and receive a instance-proof pair
(x∗, π := (S∗,C∗

s ,C
∗
w, c∗, z∗, r∗z))← AS1,S2

– If (x∗,S∗,C∗
s ,C

∗
w, c∗, z∗, r∗z) /∈ T and VS1(x∗,S∗,C∗

s ,C
∗
w, c∗, z∗, r∗z) = 1,

• If ∃ (x∗,S∗,C∗
s ,C

∗
w, c∗, z, rz) ∈ T such that (z, rz) ̸= (z∗, r∗z), return ⊥.

• Else, return 1.

– Otherwise, return ⊥.
The two games G0 and G1 behave identically until there is an adversary AS1,S2 that makes only G1 return
⊥. But then we can use that AS1,S2 to build an adversary that breaks weak unique response property in the
following manner:

Adversary for Breaking Weak Unique Response:

– Run AS1,S2 and simulate its view.
– Maintain a list of simulated proofs based on queries made by AS1,S2 in T .
– Randomly pick a query, say the kth query, of AS1,S2 to S2 and use it to get a simulated transcript
(xk,Sk,Ck

s ,C
k
w, ck, zk, rkz) from S2 on input xk. Use this simulated transcript to answer the kth query.

– After the query phase, upon receiving a transcript as output, check if it verifies and differs from the kth

transcript in T only in the response. That is, if the outputs makes only G1 abort. If yes, submit this output
along with the kth transcript as forgeries against weak unique-response.

Therefore, assuming weak unique response (Theorem 4), G0 and G1 are identical and we can hop from G0 to
G1. G1 being of interest to us since the ΠGenLin extractor (E1, E2) can be invoked in G1. Given an adversary
A(S1,S2) for simulation extractability, we can now construct an adversary BS1 for the knowledge soundness of
ΠGenLin.

Construction of BS1 . The knowledge soundness adversary BS1 of the non-interactive protocol uses A(S1,S2)

as a subroutine and perfectly simulates its view, as described in G1.
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Construction of the extractor for simulation extractability. We construct a straight-line extractor
Ê for the simulation extractable case. Let (E1, E2) be the straight-line extractor for protocol ΠGenLin. Ê on
running its adversary A(S1,S2) gets a instance-proof pair (x∗, π∗ := (S∗,C∗

s ,C
∗
w, c∗, z∗, r∗z)). As noted above,

this proof is also valid w.r.t a prover which only has access to S1. So Ê invokes (E1, E2) on (x∗, π∗) to get a
witness w∗.

Reduction. Given that A(S1,S2) breaks simulation-extractability, we can use BS1 to break knowledge-
soundness of the underlying NIZK protocol.

Adversary for Breaking Knowledge Soundness:

– A(S1,S2) returns a proof (x∗, π∗) such that Ê fails.
– BS1 which runs A(S1,S2) as a subroutine, can simply forward this proof to (E1, E2).
– Given how Ê is constructed, the underlying extractor (E1, E2) also fails.

Therefore, from the weak unique-response and knowledge soundness of ΠGenLin, we can argue that it also
satisfies simulation extractability.

Now, we are ready to present the UC proof of ΠGenLin. We refer to Appendix. B for an overview of the UC
security model. We prove UC-security of ΠGenLin by proving Theorem. 6.

Theorem 6. Assuming ΠGenLin satisfies zero-knowledge and straightline-simulation extarctability then it
UC-realizes FNIZK (Figure 3) for relation RGenLin in the random oracle model.

Proof. First, we consider the case where the verifier is corrupt and then we consider the case where the prover
is corrupt in a session sid. For both cases, we provide a simulator Sim.

Corrupt Verifier. The simulator Sim replaces the honest prover P in session sid and has to simulate the
proof given the statement x without knowing the witness. This can be achieved by invoking the simulator S
of the protocol. The detailed simulation algorithm is as follows:

Simulator against a Corrupt Verifier:

– Input: Statement x and NIZK simulators S = (S1,S2) from Proof Sketch of Theorem 3.
– Output S2(sid,x) to the corrupt verifier.

The real and ideal world executions are computationally indistinguishable by the zero-knowledge property of
ΠGenLin.

Corrupt Prover. The simulator Sim simulates the honest verifier V in session sid. The prover is corrupt
in session sid. Note that the adversarial prover has access to other simulated proofs from different sessions
sid′ ̸= sid where the prover is honest. Given such simulated proofs, the malicious prover generates a proof π∗

in session sid for statement x∗. The goal here is to be able to extract a witness from the proof π∗. This is
done by invoking the simulation extractability extractor Ê . However, this extractor fails when (x∗, π∗) is a
simulated proof in a different session sid′ as (x∗, π∗) ∈ T where T is list of simulated proofs obtained from
different sessions. We show that the probability of this bad event occurring is negligible due to the random
oracle assumption. The detailed simulation algorithm is as follows:

Simulator against a Corrupt Prover:

– Input: Adversarial Prover’s response (sid,x∗, π∗), Simulation Extractability Extractor Ê , List of simulated
proofs T in different sessions.

– If there exists (x∗, π∗) ∈ T for session sid′ then abort.
– Otherwise, extract w∗ = Ê(x∗, π∗) and invoke FNIZK with (prove, sid,x∗,w∗) to complete simulation.

We provide the indistinguishability argument as follows:
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– Hyb0 : Real world execution of the protocol ΠGenLin.
– Hyb1 : Same as Hyb0, except the simulator aborts if there exists (x∗, π∗) ∈ T for session sid′.

An adversary distinguishes the two hybrids if HV(sid,x
∗, a∗) = HV(sid

′,x∗, a∗) where π∗ = (a∗, c∗, z∗).
However, this occurs with negligible probability as sid ̸= sid′ and random oracle HV is collision-resistant.

– Hyb2 : This is the simulation algorithm provided above, where the verification algorithm is replaced by the
simulation extractability extractor.
An adversary distinguishes between Hyb1 and Hyb2 if it breaks simulation-extractability, prevents the
extractor from extracting a correct witness, and hampers simulating FNIZK. However, such an adversary
can be used to break simulation-extractability by forwarding (x∗, π∗) as the adversarial response to the
simulation-extractability challenger. Moreover, it is ensured in hybrids Hyb1 and Hyb2 that (x∗, π∗) /∈ T ,
resulting in (x∗, π∗) qualifying as a valid response.

This completes our UC proof of ΠGenLin.

D Basics of Class Groups

We borrowed the definitions and properties of class groups mostly from [CL15] and [Coh93]. An algebraic
number field K is a quadratic number field if it is a degree two field extension of the field of rational number
Q. If K is a quadratic number field, then there exists a unique square free integer d such that K = Q(

√
d). If

d < 0, K = Q(
√
d) is called imaginary quadratic field. Otherwise, it’s called real quadratic field. Throughout

the following, we assume that K is imaginary quadratic field.

The fundamental discriminant ∆K of K is defined as ∆K = 4d if d ≡ 2, 3 mod 4 and ∆K = d if d ≡ 1
mod 4. Suppose O is a subring of K such that O contains 1 and O is a free Z- module of rank 2. Then O is
called an order of K.

α ∈ C is called an algebraic integer if it is a root of a monic polynomial with integer coefficients. The algebraic
integers in K form a ring called ring of integers, denoted as OK . This is the maximal order of K. The
discriminant of OK is ∆K . Every order O of K has finite index [OK : O] in OK . we write f := [OK : O].
Then the discriminant of order O is defined as ∆f = f2∆K .

Let O∆ be an order of discriminant ∆. A fractional ideal in K is a set of the form 1
da = {ad : a ∈ a} where

d ∈ N and a is an integral ideal in O∆. A fractional ideal a ⊂ K is called invertible fractional ideal, if
there exists a unique fractional ideal b ⊂ K of O∆ such that ab = (1) = O∆. The invertible fractional ideals
of O∆ form a multiplicative group I∆ with identity element O∆ = (1). The fractional ideals of the form
(α) = αO∆ = {αa : a ∈ O∆} for some α ∈ K are called principal fractional ideals. They form a subgroup
P∆ of I∆. The ideal class group of the order O∆ is the quotient C∆ = I∆/P∆. The ideal class group is
finite. The cardinality of the class group is called class number, which is denoted as h∆.

A non zero ideal a of O∆ is prime to f if a+ fO∆ = O∆. The ideals prime to f form a subgroup in I∆. We
denote this subgroup as I∆,f .

D.1 Representation of classes using quadratic forms

Every integral ideal a of O∆ can be represented as a = aZ+ −b+
√
∆

2 Z with a ∈ N and b ∈ Z with b2 ≡ ∆
mod 4a and denoted by (a, b).

A binary quadratic form is a quadratic homogeneous polynomial in two variables f(x, y) = ax2+ bxy+ cy2.
The ideal a corresponds to a binary quadratic form f(x, y) = ax2 + bxy + cy2 such that b2 − 4ac = ∆. ∆ is
called the discriminant of f(x, y). A binary quadratic form f(x, y) = ax2 + bxy + cy2 with discriminant ∆
can be transformed into another binary quadratic form g(x, y) = a′x2 + b′xy + c′y2 with same discriminant

by a linear transformation U =

(
s t
u v

)
∈ SL2(Z). These two binary quadratic forms f and g are congruent

modulo SL2(Z). We say that they are equivalent quadratic forms and write f ∼ g. This defines an equivalence
relation on the set of all quadratic forms of discriminant ∆, which partitions this set into equivalence classes.
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It turns out that these equivalence classes are in one-to-one correspondence to the ideal classes of O∆(Section
5.2 of [Coh93]).

The above representation of ideal a is not unique. If a = (a, b), a can also be represented as a = (aZ+ (ma+
−b+

√
∆

2 )Z) = (aZ + −(b−2ma)+
√
∆

2 ) = (a, b − 2ma) for m ∈ Z. We note that, there is a unique integer m
such that, −a < b− 2ma ≤ a holds. We say that (a, b) is in normal form if −a < b ≤ a. An ideal (a, b) is
in reduced form if it is in normal form and a ≤ c and b ≥ 0 for a = c. In each class [a] of ideals in O∆,
there exists a unique reduced ideal denoted as Red(a). Due to an algorithm by Gauss, which is described in
(Algorithm 5.4.7, [Coh93]), we can efficiently compute Red(a) from a.

Lemma 1. (Lemma 5.3.4, [Coh93]) If a <

√
|∆|
2 and −a < b ≤ a then (a, b) is reduced.

In general, instead of a class, we will work with the reduced ideal (a, b) in that class. This amounts to the same
as working with the binary quadratic form f(x, y) = ax2 + bxy + cy2 which corresponds to that particular
reduced class. We will denote this quadratic form as (a, b, c).

D.2 Hashing into Class Groups

The security of many cryptographic primitives, like verifiable delay functions [BBF19, Wes19], polynomial
commitment schemes for zkSnarks [BFS20] rely on groups of unknown order. Moreover, many applications
require a trustless setup where the order must remain unknown even to the generation algorithm. A good
candidate for such applications is an ideal class group. The class group generation algorithm only requires
carefully choosing a public parameter called the discriminant and remains oblivious of the order of the class
group. The order of the class group, also known as the class number, is hard to compute for a large enough
discriminant. Our straightline-extractable Sigma protocol uses an additively homomorphic encryption scheme
based on class groups [CL15]. The usual Sigma protocol doesn’t have any trust assumptions. To be able
to carry this desirable trait on to its straightline version, the public key of the AHE has to be sampled
obliviously. That is, the potentially malicious setup algorithm should remain oblivious of the corresponding
secret key which is DLog(pk). One way to achieve that is to construct a hash function that maps a random
string to a class group element. Wesolowski proposed one such hash construction in [Wes19] and invited
improvements to it. Recents works by Seres et al [SBK24] and Chalkias et al [CLR24] propose improved
constructions of Wesolowski’s hash. The construction by Chalkias, Lindstrom and Roy is 500 times faster
than the original for a 3072 bit discriminant.

Overview of Wesolowski [Wes19] and Chalkias et al. [CLR24] construction Wesolowski’s original
construction of hashing into a reduced binary quadratic form(each reduced binary quadratic form represents
an element in the class group) in [Wes19], first samples an odd prime a uniformly at random from the range

{0, 1, . . . ,
√

|∆|
2 } such that ∆ is quadratic residue mod a. Therefore, we can find an integer b such that b2 ≡ ∆

mod a. If b is odd, b2 ≡ 1 mod 4, which gives b2 ≡ ∆ mod 4a, therefore, (b2 −∆)/4a is an integer. We denote
it as c and return the quadratic form (a, b, c) with discriminant ∆. If b is even, consider the other square
root a− b in place of b and note that a− b is odd. Next we again compute c = (b2 −∆)/4a and return the
quadratic form (a,−b, c) with same discriminant ∆. Due to lemma 1, the specific range of a gurantees that
the returned binary quadratic forms are reduced.

If ∆ is large, Wesolowski’s contruction is not efficient for expensive primality checking in the range

{0, 1, . . . ,
√

|∆|
2 } and computation of modular square-root function modulo the large prime which is sampled.

Chalkias et al. [CLR24] improved upon that construction by proposing a hash function H∆,k, which first

samples k many individual primes a1, a2, . . . , ak for some integer k from the range {0, 1, . . . , (
√

|∆|
2 )1/k} such

that ∆ is a quadratic residue modulo a′is. Then construct a as the product of those k many a′is. As, ∆ is a
quadratic residue modulo a′is, there are integers b′is such that b2i ≡ ∆ mod ai. We can construct b such that b

34



is in the range {0, 1, . . . , a− 1} with b ≡ bi mod ai for all i using the Chinese Remainder Theorem. If b is odd,

compute c = b2−∆
4a , else consider a− b as b and compute c as above. Finally, H∆,k returns binary quadratic

forms (a, b, c) or (a,−b, c). As a is product of k many primes in the range {0, 1, . . . , (
√

|∆|
2 )1/k}, the returned

binary quadratic forms are reduced due to lemma 1. Each reduced binary quadratic forms represent a class in
the group C∆.

Theorem 7. [CLR24]. The hash function H∆,k : {0, 1}∗ → {(a, b, c) ∈ C∆ : a =
∏k

i=1 ai, 2 < ai <

(
√
|∆|/2)1/k,−a < b ≤ a} is a random oracle. i.e, it samples a uniform random output from it’s range and

return it for any input.

In trustless setup, The AHE scheme with a class group based PKE scheme requires sampling the public key
from a cyclic group of unknown order. We give an concrete mathematical instantiation of the class groups
mentioned in section 6 by following [CCL+19]:

– For a prime q, pick another random prime q̃ such that q · q̃ ≡ −1 mod 4 and q is a quadratic non residue
modulo q̃.

– Compute a fundamental disciminant ∆K := −q · q̃. Then, compute the discriminant ∆q = q2∆K of the
order O∆q

.

– Set the class group ĜCL := C∆q
.

– Set f := [(q2, q)] which is a class in C∆q
of order q. Consider, FCL = ⟨f⟩ is a cyclic subgroup of ĜCL.

– Set Ĝq
CL := C∆K

. where, Ĝq
CL = {gq : g ∈ ĜCL}. The cardinality of the class group C∆K

is h∆K
which is

unknown. We know that h∆K
has an upper bound 1

π log |∆K |
√
|∆K |( [Coh93]). We set h∆K

as ŝ.

– Set the upper bound U := ⌈ 1π log|∆K |
√
|∆K |⌉.

– The cardinality of C∆q
is h∆q

= q · h∆K
.

– [CLR24] describes a hash function H∆,k which samples a reduced ideal a = (a, b) ∈ OK by sampling a
in the range {0, 1, · · · ,

√
∆K/2} and computing b accordingly using Chinese Remainder Theorem. The

reduced ideal a represents a class [a] ∈ C∆K
.

– The order of class [a] divides the unknown cardinality of C∆K
which is h∆K

. This order of [a] is also

unknown and we set it as s. Now we set gq := [a] and set the cyclic subgroup Gq
CL = {gxq : x

$← Dq}.
– Set g = gq · f and GCL = ⟨g⟩ is a cyclic subgroup of ĜCL.
– Set D and Dq are the distributions over the set of integers such that they are statistically close to the

uniform distribution over the interval {0, 1, · · · , qU − 1} and {0, 1, · · · , U − 1} respectively.
– The public key used in the AHE scheme is sampled randomly from the group Gq

CL.

E OR Composition using our Compiler

In this section, we show that our compiler can be used to obtain a UC-NIZK for OR composition in Fig. 5.
ZK and soundness follows from the standard OR composition and the security of the compiler. To extract
a witness, the extractor decrypts the encryptions from both a and a′. Only one of them will yield a valid
witness in the random oracle model.
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Ingredients and Settings:

– Input: Both prover and verifier know the public instance x and x′, and the prover exclusively has
witness w for x.

– Primitives: The interactive Sigma protocol from Fig. 2 (Setup,P = (P1,P2),V = (V1,V2)) based
on an AHE scheme (Gen,Enc,Dec) with oblivious sampleability enabled by a hash function Hek :
{0, 1}∗ → Kek. Another hash function, HV : {0, 1}∗ → Zq. Both together are modeled as random
oracle RO = (Hek,HV). The prover has access to the HVZK simulator SΣ .

Protocol Description:

– PRO(prove, sid,x,x′,w)→ π.
• Parse RO as (Hek,HV).

• Compute ek := Hek(sid,x,x
′) and set crs := ek.

• Sample c′ ← Zq and obtain (a′, c′, z′) = SΣ(ek,x′, c′).

• Run a := P1(crs,x,w; ρ).

• Compute c̃ := HV(sid,x,x
′, a, a′).

• Run z := P2(crs,x,w, a, c̃− c′, ρ).

• Set c = c̃− c′.

• Output π := (a, c, z, a′, c′, z′).

– VRO(sid,x,x′, π)→ 1/0.
• Parse (a, c, z, a′, c′, z′) := π.

• Parse RO as (Hek,HV).

• Compute ek := Hek(sid,x,x
′).

• Compute c̃ := HV(sid,x,x
′, a, a′).

• Output V2(crs,x, a, c, z) ∧ V2(crs,x′, a′, c′, z′) ∧ (c̃ = c+ c′).

Fig. 5: Our UC-NIZK protocol for OR composition over RGenLin.
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