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Abstract. Equivalence class signatures (EQS; Asiacrypt ’14), sign vec-
tors of elements from a bilinear group. Anyone can transform a signature
on a vector to a signature on any multiple of that vector; signatures thus
authenticate equivalence classes. A transformed signature/message pair
is indistinguishable from a random signature on a random message. EQS
have been used to efficiently instantiate (delegatable) anonymous cre-
dentials, (round-optimal) blind signatures, ring and group signatures,
anonymous tokens and contact-tracing schemes, to name a few.
The original EQS construction (J. Crypto ’19) is proven secure in the
generic group model, and the first scheme from standard assumptions
(PKC ’18) satisfies a weaker model insufficient for most applications. Two
works (Asiacrypt ’19, PKC ’22) propose applicable schemes that assume
trusted parameters. Their unforgeability is argued via a security proof
from standard (or non-interactive) assumptions.
We show that their security proofs are flawed and explain the subtle
issue. While the schemes might be provable in the algebraic group model
(AGM), we instead show that the original construction, which is more
efficient and has found applications in many works, is secure in the AGM
under a parametrized non-interactive hardness assumption.

Keywords: Equivalence class signatures · flaw in existing analysis · se-
curity proof · algebraic group model.

1 Introduction

Structure-preserving signatures (SPS) [AFG+10] are defined over a bilinear group,
which consists of three groups (Gt,+), for t ∈ {1, 2, T}, of prime order p and a
(non-degenerate) bilinear map e : G1 × G2 → GT . In SPS, messages, as well as
public verification keys and signatures, consist of elements from G1 and G2.

The concept of SPS on equivalence classes, or equivalence class signatures
(EQS) for short, was introduced by Hanser and Slamanig [HS14] and later se-
curely instantiated [Fuc14, FHS19]. EQS have message space M = (G∗t )

`, for
some t ∈ {1, 2}, ` > 1, where G∗t := Gt \ {0t}, on which one defines the following
equivalence relation:

M ∼M ′ :⇔ ∃µ ∈ Z∗p : M ′ = µ ·M . (1)



EQS provide an additional functionality ChgRep: given a public key pk, a signa-
ture σ on M ∈ M under pk, and a value µ ∈ Z∗p, ChgRep returns a signature
on the message µ ·M , without requiring the secret key. A signature on M thus
authenticates the entire equivalence class [M ]∼ of M w.r.t. the relation in (1),
and ChgRep lets one change the representative of that class.

Accordingly, unforgeability is defined w.r.t. classes, that is, for all efficient
adversaries, given pk and an oracle for signatures on messages M1,M2, . . .
of their choice, it is infeasible to compute a signature on any M∗ for which
M∗ /∈ [M1]∼ ∪ [M2]∼ ∪ . . . In addition, EQS must be class-hiding: it is hard
to distinguish random message pairs (M ,M ′) with M ∼ M ′ from random
pairs (M ,M ′)←$M×M, which is equivalent to the decisional Diffie-Hellman
(DDH) problem being hard in Gt.

The last security notion is signature adaptation, requiring that for any (pos-
sibly maliciously generated) public key pk, any M ∈ M, any σ that veri-
fies on M under pk, and any µ ∈ Z∗p, running ChgRep(pk,M , σ, µ) returns
a uniform element in the set of all valid signatures on µ ·M . This notion,
together with class-hiding, implies that a malicious signer that is given some
M and generates a signature σ on M cannot distinguish the following: either
σ′ ← ChgRep(pk,M , σ, µ) and µ ·M for µ←$ Z∗p; or a uniformly random signa-
ture on a message M ′ ←M under pk.

Applications of EQS. Equivalence class signatures have found numerous ap-
plications in concepts related to anonymous authentication. The resulting in-
stantiations are particularly efficient, since both messages and signatures can
be re-randomized, after which they can be given (and verified) “in the clear”,
where in other constructions they need to be hidden and shown valid using
zero-knowledge proofs.

Anonymous credentials. The first application of EQS was the construction of
attribute-based credentials [CL03], which let users obtain credentials for a set of
attributes, of which they can later selectively disclose any subset. Such show-
ings of attributes should be unlinkable and reveal only the disclosed attributes.
The EQS-based credential construction [FHS19] is the first for which the com-
munication complexity of showing a credential is independent of the number
of disclosed attributes. Moreover, it achieves strong anonymity guarantees even
against malicious credential issuers. Slamanig and others added revocation of
users [DHS15] and give a scheme that enables outsourcing of sensitive computa-
tion to a restricted device [HS21].

“Signatures with flexible public key” [BHKS18] adapt the concept of adap-
tation within equivalence classes from messages to public keys, and “mercurial
signatures” [CL19, CL21, CLP22] let one adapt signatures to equivalent keys
and equivalent messages. The initial motivation of mercurial signatures was the
construction of (non-interactively) delegatable anonymous credentials [BCC+09,
Fuc11], which were later improved [MSBM23]. Multi-authority anonymous cre-
dentials have also been constructed from mercurial signatures [MBG+23].
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Blind signatures. Building on earlier work [FV10] that uses randomizable zero-
knowledge proofs [FP09], another line of research [FHS15, FHKS16] constructs
blind signatures from EQS. These allow a user to obtain a signature from a signer,
who learns nothing about the message nor the signature. These EQS-based
schemes do not assume a common reference string, achieve blindness against
malicious signers and are round-optimal and thus concurrently secure.

Group signatures. Derler and Slamanig [DS16] and Clarisse and Sanders [CS20]
use EQS to construct very efficient group signatures schemes. The former also
added dynamic adding of members [DS18].

Further applications of EQS include verifiably encrypted signatures [HRS15],
access-control encryption [FGKO17], sanitizable signatures [BLL+19], privacy-
preserving incentive systems [BEK+20], policy-compliant signatures [BSW23],
e-voting [Poi23], and many more.

The FHS scheme. The first EQS scheme [FHS19], to which we will refer
as FHS, has signatures in G2

1 × G2. This is optimal, since any EQS scheme
can be transformed into a structure-preserving signature (SPS) scheme without
changing the signature format [FHS15], and SPS signatures must have at least
3 group elements [AGHO11]. Concretely, e.g., when instantiating FHS over the
BLS curve [BLS04] BLS12-381 [Bow17, SKSW22], which is conjectured to have
128-bit security, an FHS signature is 192 bytes long.

In addition to yielding optimal instantiations of the aforementioned EQS
applications, FHS has seen further applications, such as building highly scal-
able mix nets [HPP20]. Benhamouda, Raykova and Seth [BRS23] use FHS for
the currently most efficient instantiation of anonymous counting tokens; Hanz-
lik [Han23] has recently used FHS to construct the first non-interactive blind
signatures on random messages; and Mir et al. [MSBM23] extended the scheme
for their practical delegatable credentials. FHS has been also been proposed
for authentication of commercial drones [WTSD23], in the context of e-health
[ZYY+23], for whistleblowing reporting systems [SYF+23] and e-voting [Poi24].

Furthermore, FHS underlies the mercurial signature construction by Crites
and Lysyanskaya [CL19], which have themselves found many applications, some
of which are: Protego [CDLP22], a credential scheme for permissioned blockchains
(like Hyperledger Fabric) and PACIFIC [GL23], a privacy-preserving contact
tracing scheme. Putman and Martin [PM23] use a modification to construct a
delegatable credential scheme that lets users selectively delegate attributes.

The major downside of FHS is that the only proof of its unforgeability to
date is directly in the (bilinear) generic group model (GGM) [Nec94, Sho97,
Mau05, BBG05], which only captures generic attacks (i.e., ones that work in
any group). In security games in the GGM, the adversary does not see any
actual group elements but is given (random) labels for them; to compute the
group operation, the adversary has access to an oracle which, when given two
labels of two elements, returns the label of the sum of these elements.
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Constructions from falsifiable assumptions. A computational hardness
assumption is falsifiable [Nao03] if the challenger that runs the security game
with an adversary can efficiently decide whether the adversary has broken the
assumption. The FHS scheme [FHS19] can be considered based on an (interactive
and) non-falsifiable assumption: namely its unforgeability, justified via a proof in
the generic group model (GGM). Recall that to determine whether the adversary
broke unforgeability, one needs to check whether the message M∗ returned by
the adversary is in the same equivalence class as one of the queried messages
(in which case the adversary could efficiently compute a signature on M∗ via
ChgRep). Now, by the class-hiding property, this is hard to decide.

The first EQS scheme from standard assumptions, namely Matrix-Diffie-
Hellman assumptions [EHK+13], was proposed by Fuchsbauer and Gay [FG18],
but the scheme has some drawbacks: its signatures can only be adapted once
and it only satisfies a weaker notion called existential unforgeability under cho-
sen open message attack (EUF-CoMA): when the adversary makes a signing
query, it must provide the discrete logarithms of the components of the queried
message. Note that EUF-CoMA is efficiently decidable: For simplicity, consider
` = 2 and for all i, let (mi,1,mi,2) ∈ (Z∗p)

2 be the adversary’s queries (i.e., the
logarithms of the components of the queried message M i). Then the message
M∗ = (M∗1 ,M

∗
2 ) returned by the adversary is not in any of the queried classes

if and only if mi,2 ·M∗1 6= mi,1 ·M∗2 for all i.
Khalili, Slamanig and Dakhilalian [KSD19] show that the notion of signature

adaption achieved by the scheme [FG18] must assume honest keys and signa-
tures, which makes it inadequate for most applications. To construct a scheme
appropriate for applications with standard-model security, they first propose
more syntax modifications: in addition to a signature, the signing algorithm also
creates a tag, which is required by ChgRep (but not needed for signature veri-
fication). As with the previous scheme [FG18], signatures can only be adapted
once (which does not affect the considered applications).

Moreover, they consider a trusted setup, which generates a common reference
string (CRS) in addition to setting up the bilinear group. Signature adaptation
is then defined w.r.t. honestly generated parameters. This change weakens the
anonymity guarantees in applications such as anonymous credentials, which did
not require trust assumptions in the original model [FHS19].

Building on an SPS scheme by Gay et al. [GHKP18], Khalili et al. [KSD19]
propose an EQS construction in their new model with signatures in G8

1×G9
2. Their

construction is (claimed to be) secure under the SXDH assumption, which states
that DDH is hard in both G1 and G2. Building on this work, Connolly, Lafourcade
and Perez-Kempner [CLP22] propose a more efficient scheme (with signatures
in G9

1 × G4
2), which requires as additional assumption extKerMDH [CH20].

A flaw in the security proof of the CRS-based schemes. We report a
flaw in the security proofs of the two CRS-based schemes [KSD19, CLP22]. In
particular, a game hop in the unforgeability proof changes the distribution of
the signatures given to the adversary. The change in the adversary’s winning
probability is then bounded by the advantage of a reduction in solving a compu-
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tational problem. However, since EQS-unforgeability is not efficiently decidable,
the resulting reduction would not be efficient, and the security bound of the
underlying problem can thus not be applied. In fact, the authors do specify
an efficient reduction, but its winning probability is not the difference of the
adversary’s winning probabilities.

In more detail, the hop from Game 0 to Game 1 [KSD19, Theorem 2] modifies
the way the purported forgery, i.e, the signature on M∗ output by the adversary
A is verified. The authors then argue that from a forgery that verifies in Game 0
but not Game 1 (which is a property that can be checked efficiently), a reduc-
tion B can extract a solution to a computational problem (KerMDH [MRV16]).
From this, the authors deduce that Adv0 −Adv1 ≤ AdvKerMDH

B . This reason-
ing is correct, because (though not stated by the authors) A’s view is equally
distributed in both games and thus the probability that M∗ does not fall in a
class of a queried message (which is not efficiently verifiable) is the same.

In contrast, an analogous argument cannot be made for the hop from Game 2
to Game 3. Here the distribution of the signatures output by the signing oracle
changes. (Note that we do not claim that the two games are efficiently dis-
tinguishable.) Since the games are different, the probability that M∗ falls in
a queried class can change in arbitrary ways, but, by class-hiding, this is not
efficiently detectable. A change can therefore not be leveraged by an efficient
reduction. In fact, the constructed reduction B1 (to their “core lemma”, which
relies on the computational hardness of MDDH [EHK+17]) only checks an (ef-
ficiently testable) property of A’s forgery (but not whether A was successful).
Since whetherM∗ falls in a queried class determines whether the adversary wins,
one can therefore not deduce that Adv2 −Adv3 ≤ Advcore

B1
, as the authors do.

We detail our argument in Sect. 3.
The proof of the second CRS-based scheme [CLP22, eprint, Appendix D] is

virtually identical, so the same issue arises. The security of both schemes is thus
currently unclear. We believe the schemes cannot be proved from non-interactive
assumptions in the standard model. They were derived from a signature scheme
[GHKP18] built with proof techniques in mind that crucially rely on the winning
condition being efficiently checkable, which is the case for signatures but not for
EQS.

Unforgeability of FHS in the algebraic group model. A recent result
[BFR24] shows it is unlikely that EQS can be constructed from non-interactive
(falsifiable) assumptions in the standard model (that is, without assuming a
trusted CRS). Concretely, for any EQS scheme Σ, if there is a reduction that
breaks a non-interactive computational assumption after running an adversary
that breaks unforgeability of Σ, then there exist efficient meta-reductions that
either break the assumption or break class-hiding of Σ. For FHS [FHS19], it was
already known that it cannot be proved from non-interactive assumptions via an
algebraic reduction, since this is the case for all 3-element SPS, and thus EQS,
schemes [AGO11].

In light of this result, what we can still hope for is an EQS scheme with a
security proof in the algebraic group model [FKL18], which is a “weaker” idealized
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model than the generic group model. In contrast to the latter, in the AGM
the adversary has access to the group elements, but the adversary is assumed
to be algebraic in the following sense: whenever it outputs an element Y of a
group Gt, for t ∈ {1, 2}, it also provides a representation (α1, α2, . . . ) so that
Y = α1Y1 + α2Y2 + · · · , where Y1, Y2, . . . are the Gt-elements the adversary has
previously received.

Our positive result is a security proof of FHS [FHS19] in the algebraic group
model. We focus on FHS due to its optimal efficiency and its many applications
discussed above. While the CRS-based schemes [KSD19, CLP22] might be sal-
vageable in the AGM, trying to would be moot, as the signatures of the more
efficient scheme [CLP22] are more than 4 times longer than for FHS. Moreover,
FHS requires no CRS, an assumption that bars some of the applications of EQS.

We reduce unforgeability of FHS to a parametrized assumption related to
the q-strong Diffie-Hellman assumption in bilinear groups [BB08]. The latter
states that given G1, xG1, x

2G1, . . . , x
qG1, G2, xG2, where Gi is a generator of

Gi and x is uniform in Zp, it is hard to find any c ∈ Zp together with 1
x+cG1.

Boneh and Boyen [BB08] show that if G1 and G2 are random generators, this
implies security of their weakly secure signature scheme, which corresponds to
being given a public key xG2 and signatures 1

x+ci
G1 on messages c1, . . . , cq and

having to find 1
x+cG1 for c /∈ {c1, . . . , cq}.

Our assumption combines the above two but is weaker in the sense that
it would correspond to security only against key-recovery attacks, where the
adversary must find x. In particular, we assume that given xiG1 for i = 1, . . . , 2q
and xG2 as well as 1

x+ci
Gt for random ci for i = 1, . . . , q and t = 1, 2, it must

be hard to find x. Following Boneh and Boyen, we show that, assuming random
generators, for q1 := 3q and q2 := q+1 our assumption is implied by the (q1, q2)-
“power”-DL assumption [Lip12], which requires finding x when given xiGt for
t = 1, 2 and i = 1, . . . , qt. (We note that separation results [BFL20] show it is
implausible that power-DL can be shown from DL.)

When setting up the group for an FHS instantiation, one can simply sample
random generators; in this case, our results imply AGM-security under power-
DL, which now underlies the majority of AGM proofs in the literature, in par-
ticular for zk-SNARK schemes [FKL18, MBKM19, GWC19, CHM+20, RZ21,
CFF+21, LSZ22]. (On the other hand, if generators are fixed, we still get secu-
rity under our new assumption.)

Discussion. One might wonder about the value of a proof in the AGM when we
already have a GGM proof. First, the AGM is closer to reality, as the adversary
attacks the actual scheme and not an ideal simulation of it like in the GGM;
the AGM just restricts how the adversary manipulates group elements, which is
enforced in the GGM as well. Given the EQS impossibility result [BFR24], an
AGM proof from a non-interactive assumption is arguably the best one can hope
for. (The situation is similar for zk-SNARKs, for which there are impossibility
results [GW11], and the AGM has become a common model for security analysis;
see citations above.) While our proof may be more complex than the GGM proof
[FHS19], we improve the result, since a proof in the AGM from an assumption
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that holds in the GGM implies security in the GGM. (Conversely, there are
hardness assumptions, such as one-more DL [BNPS03, BFP21], that hold in the
GGM but cannot be shown in the AGM from power-DL [BFL20].)

We thus establish a new state of the art for EQS: There are currently no
EQS schemes assuming a trusted CRS with a security proof in the standard
model. Moreover, our negative result indicates that new proof techniques would
be required, instead of starting from existing standard-model SPS schemes like
[GHKP18]. Many applications (blind signatures, credentials, etc.) without semi-
honesty assumptions require fully secure EQS (without a CRS), for which FHS
is the most efficient scheme and has seen many applications. We improve the
security guarantees of FHS.

2 Preliminaries

Notation. Assigning a value x to a variable var is denoted by var := x. All
algorithms are randomized unless otherwise indicated. By y ← A(x1, . . . , xn) we
denote the operation of running algorithm A on inputs x1, . . . , xn and letting
y denote the output; by [A(x1, . . . , xn)] we denote the set of values that have
positive probability of being output. If S is a finite set then x←$ S denotes
picking an element uniformly from S and assigning it to x. For n ∈ N, we let
[n] denote the set {1, . . . , n}. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Znp , we
denote x� y = (x1y1, . . . , xnyn) the Hadamard product of x and y.

Polynomials. In our proof the FHS scheme in Section 4 we will make exten-
sive use of multivariate polynomials in Zp[X1, . . . ,Xn], for prime p, and use the
following two lemmas.

Lemma 1 (Schwartz-Zippel). Let p be prime and let P ∈ Zp[X1, . . . ,Xn] be
a non-zero polynomial of total degree d. Then

Pr
r1,...,rn←$ Z∗p

[P(r1, . . . , rn) = 0] ≤ d

p− 1
.

The next lemma [BFL20, Lemma 2.1] has become a standard tool in AGM
proofs. It implies that when embedding an indeterminate Y (which will represent
the solution of a computational problem) into many indeterminates X1, . . . ,Xn

of an adversarially chosen non-zero polynomial P by “randomizing” Y as Xi :=
ziY+vi for random zi, vi then the polynomial P′(Y) := P(z1Y+v1, . . . , znY+vn)
will be non-zero with overwhelming probability. (This relies on the fact that the
values zi are perfectly hidden from the adversary’s view.)

Lemma 2. Let P be a non-zero multivariate polynomial in Zp[X1, . . . ,Xn] of
total degree d. If we define Q(Y) ∈

(
Zp[Z1, . . . ,Zm,V1, . . . ,Vn]

)
[Y] as

Q(Y) := P
(
Z1Y + V1, . . . ,ZnY + Vn

)
,

then the coefficient of maximal degree of Q is a polynomial in Zp[Z1, . . . ,Zn] of
degree d.
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Bilinear groups. EQS schemes are defined over an (asymmetric) bilinear group
grp = (G1,G2,GT , p,G1, G2, e), where G1, G2 and GT are (additively denoted)
groups of prime order p, G1 and G2 are generators of G1 and G2, resp., and
e : G1 × G2 → GT is a bilinear map so that GT := e(G1, G2) generates GT . For
t ∈ {1, 2, T}, we let G∗t := Gt \ {0t}. We assume that there exists a probabilistic
polynomial-time (p.p.t.) algorithm BGGen, which on input 1λ, the security pa-
rameter in unary, returns the description of a bilinear group grp so that the bit
length of p is λ.

Following the examined work [KSD19], we use “implicit” representation of
group elements: for A = (ai,j)i,j ∈ Zm×np and t ∈ {1, 2, T}, we let [A]t denote

the matrix (ai,jGt)i,j ∈ Gm×nt and define e([A]1, [B]2) as [AB]T , which can
be computed efficiently. We use upper-case slanted font G,G to denote group
elements and vectors of group elements and use a,a,A to denote scalars, vectors
and matrices of elements from Zp.

EQS. An equivalence class signature (EQS) scheme Σ specifies an algorithm
ParGen(1λ), which on input the security parameter returns general parameters
par, which specify a bilinear group (G1,G2,GT , p,G1, G2, e). KeyGen(par, 1`),
on input the parameters and the message length ` > 1, returns a key pair
(sk,pk), which defines the message space M := (G∗t )

` for a fixed t ∈ {1, 2}. The
message space is partitioned into equivalence classes by the following relation
for M ,M ′ ∈M:

M ∼M ′ :⇔ ∃µ ∈ Z∗p : M ′ = µ ·M . (1)

A tag-based EQS scheme [KSD19] moreover consists of the following algorithms:

– Sign(sk,M), on input a secret key and a message M ∈M, returns a signa-
ture σ and (possibly) a tag τ .

– ChgRep(pk,M , (σ, τ), µ), on input a public key, a message M ∈ M, a sig-
nature σ (and possibly a tag τ) on M , as well as a scalar µ ∈ Z∗p, returns a
signature σ′ on the message µ ·M .

– Verify(pk,M , (σ, τ)) is deterministic and, on input a public key, a message
M ∈ M, a signature σ (and possibly a tag τ), returns a bit indicated
acceptance.

Sign and ChgRep must generate valid signatures, as defined next.

Definition 1. An EQS scheme is correct if for all λ ∈ N, ` > 1, any par ∈
[ParGen(1λ)], (sk,pk) ∈ [KeyGen(par, 1`)], M ∈M and µ ∈ Z∗p:

Pr
[
Verify

(
pk,M ,Sign(sk,M)

)
= 1
]

= 1 and

Pr
[
Verify

(
pk, µ ·M ,ChgRep(pk,M ,Sign(sk,M), µ)

)
= 1
]

= 1.

Unforgeability requires that after receiving the public key and signatures (and
tags) on messages of its choice, the adversary cannot produce a valid signature
on a message that is not contained in any of the classes of the queried signatures.
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Definition 2. An EQS scheme Σ with message length ` > 1 is existentially
unforgeable under chosen-message attack if

AdvUNF
Σ,A (λ) := Pr[UNFΣ,A(λ) = 1]

is negligible for all p.p.t. adversaries A, where game UNF is defined as follows:

UNFΣ,A(λ)

1 par← ParGen(1λ)

2 (sk, pk)← KeyGen(par, 1`)

3 Q := ∅

4 (M∗, σ∗)← AO(·)(pk)

5 return
(
M∗ /∈ Q ∧ Verify(pk,M∗, σ∗)

)

O(M)

1 Q := Q ∪ [M ]∼

2 return Sign(sk,M)

where [M ]∼ := {M ′ ∈ M | M ∼ M ′} is the equivalence class of M for ∼
defined in (1).

A further security requirement is that signatures generated by ChgRep should
either be indistinguishable from signatures output by Sign or uniformly random
in the space of all valid signatures. As these notions are not relevant for our
results, we refrain from stating them and refer to the original work [FHS19].

3 A Flaw in the Security Proofs of KSD19 and CLP22

The proof of unforgeability [KSD19] defines Game 0 as the game UNF from
Definition 2 instantiated with their construction as Σ, and, in a series of “hops”,
the games are gradually modified until Game 6 can only be won with proba-
bility 1/p, even by an unbounded adversary. The difference between the adver-
sary’s advantage Advi in winning Game i and its advantage Advi+1 in winning
Game (i+ 1) is then bounded. Of these bounds, two depend on the hardness of
a computational problem.

Define event Ni as M∗ /∈ Q when running Game i (where M∗ is from A’s
output and Q is the union of all classes of queried messages). Moreover, let Vi be
the event that when running Game i, we have Verifyi(pk,M

∗, σ∗), where Verifyi
is how verification of A’s signature is defined in Game i. (The details of Verifyi
are not relevant here.) We thus have Advi = Pr[Ni ∧Vi].

The first hop. In Game 0 and Game 1 the adversary’s view remains the same,
and we therefore have N0 = N1. The only thing that changes is that when veri-
fying A’s forgery, which contains group-element vectors [u∗1]1 and [t∗]1, against
pk = ([A]2, [K0A]2, [KA]2), instead of checking

e([u∗1]>1 , [A]2)− e([t∗]>1 , [K0A]2)− e([m∗]>1 , [KA]2) = 0,

one checks if S := [u∗1]1 −K>0 [t∗]1 −K>[m∗]1 = 0, which implies the above.

9



We thus have V1 ⊆ V0 and if V0 occurs but V1 does not, then A has found
a non-zero vector S in the kernel of A. The authors construct a reduction B
which uses this to break KerMDH [MRV16] in G2. We have

Adv0 −Adv1 = Pr[N0 ∧V0]− Pr[N1 ∧V1]

= Pr[N0 ∧V0 ∧V1] + Pr[N0 ∧V0 ∧ ¬V1]

− Pr[N1 ∧V1 ∧V0]− Pr[N1 ∧V1 ∧ ¬V0]

= Pr[N0 ∧V0 ∧ ¬V1] (since N0 = N1 and V1 ⊆ V0)

≤ Pr[V0 ∧ ¬V1] ≤ AdvKerMDH
B .

Note that for this argument it was essential that N0, N1, V0 and V1 are all
events in the same probability space (which will not be the case in the hop from
Game 2 to Game 3).

The bad hop. In the hop from Game 2 to Game 3, the distribution of the game
changes and thus we do not have N2 = N3 (which is also syntactically meaning-
less). The authors construct a reduction B1 which bounds Pr[V2] − Pr[V3] ≤
Advcore

B1
, where the latter is B1’s probability in winning the game from their “core

lemma” [KSD19, Sect. 4.1], which is bounded by breaking another computational
problem (Matrix-DDH [EHK+17]). However, it is not clear how to use this to
bound the change in advantage from Game 2 to Game 3. We have

Adv2 −Adv3 = Pr[N2 ∧V2]− Pr[N3 ∧V3]

= Pr[N2 |V2] ·
(

Pr[V2]− Pr[V3]︸ ︷︷ ︸
(1)

)
+
(

Pr[N2 |V2]− Pr[N3 |V3]︸ ︷︷ ︸
(2)

)
· Pr[V3].

So while we can bound (1) by B1’s advantage of breaking the “core lemma”, it is
unclear how to bound (2). In particular, Ni is an event that cannot be efficiently
checked, and moreover, in contrast to N0 and N1, the events N2 and N3 are not
equivalent, since the adversary’s view is different on Game 2 and Game 3.

To show this, we spell out Game i for i ∈ {2, 3} in Figure 1, where Verifyi de-
notes how verification is defined in Game i (both Verify2 and Verify3 are efficient,
but their details not relevant here). Moreover, D1 is a distribution of matrices
from Z2×1

p for which the MDDH assumption must hold; PGen and PPro belong
to a proof system for statements ([t]1, [w]1) which are true if [t]1 = [Ab]1r1 and
[w]1 = [Ab]1r2 for some b ∈ {0, 1} and r1, r2 ∈ Zp (again, the details are not
relevant here); and F : Zp → Z2

p is a random function.
To argue that A’s view changes from Game 2 to Game 3, an easy way is

to have A query the signing oracle O twice on the same (arbitrary) message.

For the i-th query, let r
(i)
1 and r

(i)
2 be the randomness sampled by O and let

u
(i)
1 , t(i),u

(i)
2 ,w(i) ∈ Z2

p be the logarithms of the respective components returned
by O.

Since A0 ∈ Z2×1
p is from a “matrix distribution” [KSD19, Definition 1],

it has full rank and is thus non-zero. The value t(i) = A0r
(i)
1 thus uniquely

10



Game (2 + β)

1 grp← BGGen(1λ) ; ctr := 0

2 A0←$D1 ; A1←$D1

3 crs← PGen(grp, [A0]1, [A1]1)

4 par := (grp, [A0]1, [A1]1, crs)

5 A←$D1

6 K0←$ Z2×2
p ; K←$ Z`×2

p

7 a⊥←$ {a⊥ ∈ Z2
p | (a⊥)>A = 0}

8 k0←$ Z2
p ; k1←$ Z2

p

9 K0 := K0 + k0(a⊥)>

10 pk := ([A]2, [K0A]2, [KA]2)

11 Q := ∅

12 ([m∗]1, σ
∗)← AO(·)(par,pk)

13 return
(
[m∗]1 /∈ Q

14 ∧ Verifyi(pk, [m
∗]1, σ

∗)
)

O([m]1)

1 Q := Q ∪ [[m]1]∼

2 r1, r2←$ Zp

3 [t]1 := [A0]1r1 ; [w]1 := [A0]1r2

4 Ω ← PPro(crs, [t]1, r1, [w]1, r2)

5 (Ω1, Ω2, [z0]2, [z1]2, π) := Ω

6 ctr := ctr + 1

7
[u1]1 := K>0 [t]1 + K>[m]1

+ a⊥
(
k0 +β · F(ctr)

)>
[t]1

8
[u2]1 := K>0 [w]1

+ a⊥
(
k0 +β · k1

)>
[w]1

9 σ := ([u1]1, Ω1, [z0]2, [z1]2, π, [t]1)

10 τ := ([u2]1, Ω2, [w]1)

11 return (σ, τ)

Fig. 1. Games 2 and 3 in the unforgeability proof of [KSD19]. Changes w.r.t. game
UNF are denoted in gray, the differences between Games 2 and 3 are highlighted in
blue. The line in red is our interpretation, since the distribution of a⊥ is not specified.

determines r
(i)
1 and w(i) = A0r

(i)
2 uniquely determines r

(i)
2 . Let r′1 := r

(1)
1 − r

(2)
1

and r′2 := r
(1)
2 − r

(2)
2 , and thus t(1) − t(2) = A0r

′
1 and w(1) −w(2) = A0r

′
2, and

consider these further differences:

u′1 := u
(1)
1 − u

(2)
1 = K>0 A0r

′
1 + a⊥k>0 A0r

′
1 + β · a⊥

(
F(1)>A0r

(1)
1 − F(2)>A0r

(2)
1

)
u′2 := u

(1)
2 − u

(2)
2 = K>0 A0r

′
2 + a⊥k>0 A0r

′
2 + β · a⊥k>1 A0r

′
2

In Game 2, where β = 0, we thus have

u′1r
′
2 = u′2r

′
1. (2)

On the other hand, for (2) to hold in Game 3, we would have to have

a⊥
(
F(1)>A0r

(1)
1 − F(2)>A0r

(2)
1

)
r′2 = a⊥k>1 A0r

′
2(r

(1)
1 − r

(2)
1 ),

or equivalently

a⊥
(
F(1)>r

(1)
1 − F(2)>r

(2)
1 − k>1 (r

(1)
1 − r

(2)
1 )︸ ︷︷ ︸

=:U>

)
A0r

′
2 = 0. (3)

Since F(1) is independent and uniformly distributed in Z2
p, the term U is uniform

in Z2
p, except with negligible probability (when r

(1)
1 = 0). As argued above, A0 is

11



non-zero and thus U>A0 is uniform in Zp (except with negligible probability).
The authors [GHKP18, KSD19] do not specify how a⊥ is distributed, but for
their last argument in the proof to work, namely that Game 6 can only be won
with probability 1/p (or with negligible probability), we must have a⊥ 6= 0 (with
overwhelming probability). Thus for (3) (and thus (2)) to hold, we must either
have a⊥ = 0 or U>A0 = 0 or r′2 = 0, which happens with negligible probability
only.

Thus, the view of the adversary changes between Games 2 and 3, and there-
fore so can its probability of returning a messages that is in the class of a queried
message, i.e., we can have that Pr[N2] and Pr[N3] differ by a non-negligible
amount. The argument which worked for bounding Adv0 −Adv1 (a reduction
that only considers the events V0 and V1), and which the authors also apply to
bound Adv2 −Adv3, can thus not be made again.

4 The Security of FHS in the AGM

With the FHS EQS scheme remaining the only scheme with some security proof
[FHS19], we will strengthen its security guarantees by giving a proof in the
algebraic group model (AGM) under a parametrized hardness assumption. We
start with defining the scheme.

Definition 3 ([FHS19]). Let grp = (G1,G2,GT , p,G, Ĝ, e) be a bilinear group
output by BGGen = ParGen. Let ` > 1 and M := (G∗1)`. The EQS scheme FHS
is defined as follows:

– KeyGen(grp, 1`): sample x←$ (Z∗p)
`, set sk := x, pk := X̂ =

(
x1Ĝ, . . . , x`Ĝ

)
.

– Sign(x,M): sample r←$ Z∗p and return σ :=
(
r
∑`
i=1 xiMi,

1
rG,

1
r Ĝ
)

.

– ChgRep(X̂,M , (Z,R, R̂), µ) sample r←$ Z∗p and return σ′ :=
(
µrZ, 1rR,

1
r R̂
)

– Verify(X̂,M , (Z,R, R̂)): return 1 if and only if∑`

i=1
e
(
Mi, X̂i

)
= e
(
Z, R̂

)
and (4)

e
(
R, Ĝ

)
= e
(
G, R̂

)
. (5)

Correctness is immediate (cf. [FHS19]). While, so far, the scheme has only
been proven secure in the generic group model, we will give a proof in the AGM.

Definition 4 (EQS-unforgeability in the AGM). The algebraic unforge-
ability game UNFAGM is obtained from the UNF game from Definition 2 with
the following changes: whenever the adversary A outputs an element Y of a
group Gt, for t ∈ {1, 2}, it also provides a representation α s.t. Y =

∑
αiYi,

where {Yi} is the set of previously received elements from Gt.

The (q1, q2)-DL assumption [Lip12] in a bilinear group grp = (G1,G2,GT ,
p,G, Ĝ, e) states that for a randomly sampled y←$ Zp, no efficient adversary,

that is given grp as well as yiG for i ∈ [q1] and yiĜ for i ∈ [q2], can find y.

12



We introduce a variant of this assumption, where in addition to powers of

the challenge value yi (in the form yiGt), the adversary receives denominators
1/(y + ci) for random known values ci. This is reminiscent of the assumption
corresponding to the weakly secure Boneh-Boyen signatures [BB04], which is
implied by their strong Diffie-Hellman assumption. Analogously, we show that,
under similar conditions, our assumption is implied by the standard (q1, q2)-DL
assumption for appropriate q1 and q2.

Definition 5. The q-PowDenDL assumption holds with respect to BGGen if
Advq-PowDenDL

BGGen,A (λ) := Pr[q-PowDenDLBGGen,A(λ) = 1] is negligible for all p.p.t.
adversaries A, where game q-PowDenDL is defined as follows:

q-PowDenDLBGGen,A(λ)

1 grp = (G1,G2,GT , p,G, Ĝ, e)← BGGen(1λ)

2 y←$ Zp ; (c1, . . . , cq) ←$ Zqp
3 if (−y mod p) ∈ {c1, . . . , cq} then return 1

4 y′ ← A
(
grp,

(
yiG

)2q
i=1

, yĜ,
(

1
y+ci

G, 1
y+ci

Ĝ, ci
)q
i=1

)
5 return y = y′

We show that, assuming that BGGen returns random generators, q-PowDenDL
is implied by (q1, q2)-DL for q1 := 3q and q2 := q+1; we follow Boneh and Boyen’s
proof [BB04] (who for their scheme also assume that generators are randomly
sampled).

Lemma 3. Let q be arbitrary and BGGen be such that G and Ĝ are uniformly
random. If (3q, q + 1)-DL holds then q-PowDenDL holds; concretely, for every
A there exists B with essentially the same running time such that

Adv
(3q,q+1)-DL
BGGen,B (λ) ≥ Advq-PowDenDL

BGGen,A (λ) .

Proof. Let A be an adversary against q-PowDenDL. We construct an adversary
B against (3q, q + 1)-DL. Let(

G1,G2,GT , p,G, Ĝ, e,X
(1), . . . , X(3q), X̂(1), . . . , X̂(q+1)

)
be an instance of (3q, q + 1)-DL, that is, for some x, we have X(i) = xiG and
X̂(i) = xiĜ. Reduction B chooses c1, . . . , cq←$ Zp; if for any i ∈ [q] : −ciG =
X(1) then B stops and returns −ci.

Otherwise, B defines the polynomial

q∏
j=1

(X + cj) =

q∑
j=0

γjX
j =: P(X)

for some γ0, . . . , γq ∈ Zp. It defines new generators H :=
∑q
j=0 γjX

(j) =(∏q
j=1(x + cj)

)
G and Ĥ :=

∑q
j=0 γjX̂

(j). If H = 01 then B factors P(X) and
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returns the root x that satisfies xG = X(1). Since G and Ĝ were uniform, so are
H and Ĥ. The reduction then completes a q-PowDenDL challenge(

G1,G2,GT , p,H, Ĥ, e, Y
(1), . . . , Y (2q), Ŷ (1), Y1, . . . , Yq, Ŷ1, . . . , Ŷq, c1, . . . c1

)
for secret x as follows:

– for i ∈ [2q]: Y (i) :=
∑q
j=0 γjX

(j+i) =
(
xi
∏q
j=1(x + cj)

)
G = xiH; and

analogously Ŷ (1) =
(
x
∏q
j=1(x+ cj)

)
Ĝ = xĤ;

– for i ∈ [q]: let δi,j be such that
∑q−1
j=0 δi,jX

j =
∏q
j=1,j 6=i(X + cj);

set Yi :=
∑q−1
j=0 δi,jX

(j) =
(∏q

j=1,j 6=i(x + cj)
)
G = 1

x+ci
H and, likewise,

Ŷi :=
∑q−1
j=0 δi,jX̂

(j).

Reduction B runs A on the (correctly distributed) q-PowDenDL instance and
forwards the solution x if A finds it. Whenever A finds it, B also solves its
(3q, q + 1)-DL challenge.

Theorem 1. Let q ∈ N and let A be an algebraic adversary attacking UNFAGM

of FHS that makes q signing queries. Then there exists a reduction B against
q-PowDenDL for BGGen such that

Advq-PowDenDL
BGGen,B ≥ AdvUNFAGM

FHS,A − 4q + 1

p− 1
.

Proof Idea. We will construct a reduction that essentially views the discrete
logarithm z of any group element Z as a polynomial Z(Y) in indeterminate Y,
such that when evaluated on the solution y of the given q-PowDenDL challenge,
we have Z(y) = z. In particular, the reduction embeds y into the public key X̂
given to the adversary, as well as into the randomness ri that is sampled for the
i-th signing query.

In order to guarantee independence of the adversary’s behavior from y, we
hide y by both multiplying with and adding a uniform element from Zp. In par-
ticular, components of the secret key will have the form xjy + x′j for random
xj , x

′
j . This ensures that even an unbounded adversary that can compute dis-

crete logarithms is unable to reason about y, since it is information-theoretically
hidden (the values xj and x′j are not used anywhere else). Using the element

Ŷ (1) = yĜ from its q-PowDenDL instance, the reduction can compute the pub-
lic key elements X̂j = xj Ŷ

(1) + x′jĜ.
Analogously, y will be embedded into the randomness ri of each signing query.

We now show how the reduction answers its i-th signing query. Let (Zk, Rk, R̂k),
k < i, be the signatures given to the adversary A so far, for which the reduction
knows the polynomials representing their discrete logarithms. When A queries
the signing oracle on a message M , since A is algebraic, it accompanies each

Mj with a representation (µ(j), µ
(j)
z,1, . . . , µ

(j)
z,i−1,, µ

(j)
r,1, . . . , µ

(j)
r,i−1) such that

Mj := µ(j)G+

i−1∑
k=1

µ
(j)
z,kZk +

i−1∑
k=1

µ
(j)
r,kRk , (6)
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since G,Z1, . . . , Zi−1, R1, . . . , Ri−1 are all the G1 elements that A has seen so
far. As the reduction knows the polynomials associated to these group elements,
from (6) it can compute the polynomial associated to Mj , and, from this, the
polynomial associated to the signature element Z = r

∑
(xiy + x′i)Mi. Even

though the reduction does not know y, it can evaluate these polynomials on y
“in the exponent” by performing group operations in G1 on the elements given
in the q-PowDenDL challenge and thereby compute Z (and analogously R and
R̂).

Once the adversary submits its forgery (Z,R, R̂),M , the reduction considers
the two EQS verification equations (4) and (5) “in the exponent”, and repre-
sents them in the “homogenious” form e(R, Ĝ) − e(G, R̂) = 0 (for (5)). The
algebraic adversary A accompanies its forgery with representations, from which
the reduction can compute the polynomials associated to each element. Plugging
these into the verification equations, B computes two “verification polynomials”
Q1 and Q2, which evaluate to 0 at y if and only if A’s forgery satisfies the
corresponding equation.

If the adversary succeeds, there are two cases: (1) At least one of the verifi-
cation polynomials is not the zero polynomial: Qi 6≡ 0. Then the q-PowDenDL
solution y is a root of Qi. By factoring Qi, we therefore obtain the solution y.
(2) Both polynomials are identically zero: we show that in this case the message
on which the adversary provided a forgery was in fact a multiple of a previously
asked query. This contradicts that the adversary wins the game. This will be
accomplished by reasoning about the coefficients that the algebraic adversary
provides by equating coefficients of the verification polynomial.

Proof. Consider the UNFAGM game instantiated with FHS as shown in Figure 2.
(We omit the group elements from A’s outputs, since they are determined by
their representations.) We follow the convention that for an uppercase Latin
letter A the coefficients will be represented by its greek lowercase analog α,
where subscripts like αz,k are to be read as “the coefficient that gets multiplied

with Zk”. The elements Zi, Ri and R̂i are the answers to the i-th signing query.
For example, the element Z is represented by the coefficients ζ, ζz,k and ζr,k for
k ∈ [q], as can be seen in Figure 2 on Line 7.

We will construct a reduction B in Figure 3 that breaks q-PowDenDL using
an algebraic adversary A against UNFAGM that makes up to q queries to the
signing oracle. The reduction works as follows: it gets the q-PowDenDL challenge(

Y (i)
)2q
i=1

, Ŷ (1),
(
Yi, Ŷi, ci

)q
i=1

with the aim of computing the discrete logarithm y of Y (1). For the sake of con-
venience define Y (0) := G. Sampling uniform vectors x,x′ the reduction embeds
y into the secret key by setting the public key elements X̂j := xj Ŷ

(1) + x′jĜ.

If for any j we have X̂j = 02 then B stops and returns y = −x−1j x′j mod p.
Note that the public key elements are distributed correctly, since the reduction
B essentially implements rejection sampling. The secret key elements, which cor-
respond to the discrete logarithm of the public key, are thus of the form xjy+x′j .
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UNFAGM
FHS,A(λ)

1 grp← ParGen(1λ)

2 (sk, pk := X̂)← KeyGen(grp, 1`)

3 Q := ∅

4

((
µ(j),

(
µ
(j)
z,k

)q
k=1

,
(
µ
(j)
r,k

)q
k=1

)`
j=1

,(
ζ,
(
ζz,k

)q
k=1

,
(
ζr,k
)q
k=1

)
,
(
ρ,
(
ρz,k

)q
k=1

,
(
ρr,k

)q
k=1

)
,(

ρ̂,
(
ρ̂x,k

)`
k=1

,
(
ρ̂r,k

)q
k=1

))
← AO(grp, pk)

5 For j ∈ [`] : M∗j := µ(j)G+

q∑
k=1

µ
(j)
z,kZk +

q∑
k=1

µ
(j)
r,kRk

6 if M∗ ∈ Q : return 0

7 Z := ζG+

q∑
k=1

ζz,kZk +

q∑
k=1

ζr,kRk

8 R := ρG+

q∑
k=1

ρz,kZk +

q∑
k=1

ρr,kRk

9 R̂ := ρ̂Ĝ+
∑̀
k=1

ρ̂x,kX̂k +

q∑
k=1

ρ̂r,kR̂k

10 return
∑
j

e(Mj , X̂j) = e(Z, R̂) ∧ e(R, Ĝ) = e(G, R̂)

O
((
µ(i,j),

(
µ
(i,j)
z,k

)i−1

k=1
,
(
µ
(i,j)
r,k

)i−1

k=1

)`
j=1

)
// the i-th query

1 For j ∈ [`] : Mj := µ(i,j)G+

i−1∑
k=1

µ
(i,j)
z,k Zk +

i−1∑
k=1

µ
(i,j)
r,k Rk

2 Q := Q ∪ [(Mj)j ]∼

3 r←$ Z∗p

4 return
(
Zi := r

∑
j

xjMj , Ri := 1
r
G, R̂i := 1

r
Ĝ
)

Fig. 2. The game UNFAGM for the EQS scheme FHS.
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The reduction can therefore, without knowing y, evaluate a polynomial at y “in
the exponent” by using the elements of the q-PowDenDL challenge. These poly-
nomials will be represented in sans-serif font, e.g. Mj , and their indeterminates
in Roman font, e.g. Y.

The vectors x and x′ are required so the adversary’s behavior is independent
of y. Even if it is unbounded and is able to obtain discrete logarithms of elements,
since y is hidden information-theoretically, it cannot reason about y. Similarly,
y is embedded in the randomness r that gets introduced during a signing query.
The signing randomness will be of the form as ri(y + ci) where ri gets drawn
uniformly and ci is part of the q-PowDenDL challenge. Due to the randomness
r appearing both as r and its reciprocal 1

r , the reduction will in fact consider

Laurent polynomials. The elements Yi and Ŷi from its challenge enable the re-
duction to also evaluate (very specific) Laurent polynomials “in the exponent” at
y and compute corresponding group elements. Since y is embedded in both the
secret key and the signature randomness, the reduction considers multivariate
Laurent polynomials in indeterminates X and R, which models the adversary’s
view more closely and simplifies our reasoning. Only at a later stage these mul-
tivariate Laurent polynomials will be transformed into univariate polynomials
in Y.

When A makes the i-th signing query, for j ∈ [`] the reduction will receive
coefficients

µ(i,j),
(
µ
(i,j)
z,k

)i−1
k=1

,
(
µ
(i,j)
r,k

)i−1
k=1

that represent the j-th component of the queried message

Mj := µ(i,j)G+

i−1∑
k=1

µ
(i,j)
z,k Zk +

i−1∑
k=1

µ
(i,j)
r,k Rk.

Since Zk and Rk were the answers to previous signing queries, the reduction has
Laurent polynomials that represent their respective logarithms. This fact will be
used to find a Laurent polynomial that represents the logarithm of the answer to
the i-th query Zi. The following lemma will give a detailed description on how
the reduction answers the adversaries signing queries.

Lemma 4. There exist coefficients a
(i)
k , k ∈ {0, . . . , 2i}, and b

(i)
k , k ∈ [i − 1],

such that the polynomial Zi representing the signature element Zi from the i-th
signing query is of the form

Zi(Y) =

2i∑
k=0

a
(i)
k Yk +

i−1∑
k=1

b
(i)
k

1

rk(Y + ck)
.

Moreover B can compute these coefficients efficiently.

Proof. We will prove this by induction on the signing queries. Consider i = 1,
the first signing query. As the previously seen G1 element is G, for the message

we have M
(1)
j = µ(1,j)G for some µ(1,j), which we represent as a polynomial

17



BA
(
grp,

(
Y (i)

)2q
i=1

, Ŷ (1),
(
Yi, Ŷi, ci

)q
i=1

)
1 r1, . . . , rq, x1, . . . , x`←$ Z∗p;x

′
1, . . . , x

′
`←$ Zp

2 pk :=
(
x1Ŷ

(1) + x′1Ĝ, . . . , x`Ŷ
(1) + x′`Ĝ

)
3 if ∃j s.t. xj Ŷ (1) + x′jĜ = 0 : return y := −x−1

j x′j mod p

4

((
µ(j),

(
µ
(j)
z,k

)q
k=1

,
(
µ
(j)
r,k

)q
k=1

)`
j=1

,
( (
ζ, (ζz,k)qk=1 , (ζr,k)qk=1

)
,(

ρ, (ρz,k)qk=1 , (ρr,k)qk=1

)
,
(
ρ̂,
(
ρ̂x,k

)`
k=1

, (ρ̂r,k)qk=1

)))
← AOSign (grp,pk)

For j ∈ [`] : Mj(X,R) := µ(j) +

q∑
k=1

µ
(j)
z,kZk(X,R) +

q∑
k=1

µ
(j)
r,kR−1

k

5 R(X,R) := ρ+

q∑
k=1

ρz,kZk(X,R) +

q∑
k=1

ρr,kR−1
k

6 R̂(X,R) := ρ̂+
∑̀
k=1

ρ̂x,kXk +

q∑
k=1

ρ̂r,kR−1
k

7 V1 :=
( q∏
i=1

Ri

)(
R(X,R)− R̂(X,R)

)
8 V2 :=

( q∏
i=1

R2
i

)((∑̀
j=1

XjMj

)
− R̂(X,R)

(
ζ +

q∑
k=1

ζz,kZk(X,R) +

q∑
k=1

ζr,kR−1
k

))
9 For t ∈ [2] : Qt := Vt

((
xiY + x′i

)`
i=1

, (ri (Y + ci))
q
i=1

)
10 S := ∅; if Q1 6≡ 0 : S := S ∪ Roots(Q1); if Q2 6≡ 0 : S := S ∪ Roots(Q2)

11 if ∃y ∈ S s.t. yG = Y (1) : return y

OSign
((
µ(i,j),

(
µ
(i,j)
z,k

)i−1

k=1
,
(
µ
(i,j)
r,k

)i−1

k=1

)`
j=1

)
// describing the i-th signing query

1 For j ∈ [`] : M
(i)
j (X,R) := µ(i,j) +

i−1∑
k=1

µ
(i,j)
z,k Zk(X,R) +

i−1∑
k=1

µ
(i,j)
r,k R−1

k

2 Zi(X,R) := Ri

∑̀
j=1

XjM
(i)
j (X,R)

3 Parse Zi
((
xjY + x′j

)`
j=1

, (rj (Y + cj))
i−1
j=1

)
as Zi =

2i∑
j=0

a
(i)
j Yi +

i−1∑
j=1

b
(i)
j

1

rj(Y + cj)

4 Zi :=

2i∑
j=0

a
(i)
j Y (i) +

i−1∑
j=1

b
(i)
j Yj

5 return
(
Zi, Ri := 1

ri
Yi, R̂i := 1

ri
Ŷi
)

Fig. 3. Reduction from FHS unforgeability in the AGM to q-PowDenDL
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M
(1)
j = µ(1,j) for j ∈ [`]. Therefore the reduction will consider the Laurent

polynomial

Z1(X,R) = R1

∑̀
j=1

µ(1,j)Xj

evaluated on Xj = xjY+x′j for j ∈ [`] and R1 = r1(Y+c1), which can be parsed
as (recall that � denotes componentwise multiplication)

Z1(xY + x′, rY + r � c) = r1(Y + c1)
∑
j

µ(1,j)(xjY + x′j)

= Y2
∑
j

µ(1,j)r1xj + Y
∑
j

µ(1,j)r1
(
xjc1 + x′j

)
+
∑
j

µ(1,j)r1c1x
′
j

=

2∑
k=0

a
(1)
k Yk,

for appropriate coefficients a
(1)
k . Observe that degY Z1 ≤ 2. The reduction then

sends the group elements Z1 :=
∑2
k=0 a

(1)
k Y (k) and R1 := 1

r1
Y1 = 1

r1(y+c1)
G and

R̂1 := 1
r1
Ŷ1 answering the query. Note that the fractional part of Z1 being zero is

in accordance with the statement of this lemma, since
∑0
k=1 b

(1)
k (rk(Y+ck))−1 =

0 holds for the empty sum.
Now consider the i-th query, after the reduction has answered all queries k < i

represented by polynomials Zk for which degY Zk ≤ 2k holds. The previously
seen G1 elements additionally contain Zk and Rk for k < i, therefore the message
is provided with coefficients such that for j ∈ [`] its polynomial representation
is

M
(i)
j = µ(i,j) +

i−1∑
k

µ
(i,j)
z,k Zk(X,R) +

i−1∑
k

µ
(i,j)
r,k R−1k .

The reduction then considers the Laurent polynomial

Zi(X,R) = Ri

∑
j

Xj

(
µ(i,j) +

i−1∑
k

µ
(i,j)
z,k Zk(X,R) +

i−1∑
k

µ
(i,j)
r,k R−1k

)
and evaluates it on Xj = xjY + x′j for j ∈ [`] and Ri = ri(Y + ci) for i ∈ [q]. By

the induction hypothesis we know that for k < i there exist coefficients a
(k)
j and

b
(k)
j such that

Zk(xY + x′, rY + r � c) =

2k∑
j=0

a
(k)
j Yj +

k−1∑
j=1

b
(k)
j

1

rj(Y + cj)
.

The reduction now considers Zi(xY + x′, rY + r � c) = P(Y) + F(Y) where
P denotes the polynomial part, while F denotes the fractional part of Zi. The
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polynomial part can be parsed as

P(Y) = ri(Y + ci)
∑
j

(xjY + x′j)

(
µ(i,j) +

i−1∑
k

µ
(i,j)
z,k

2k∑
j=0

a
(k)
j Yj

)
=

2i∑
j=0

pjY
j ,

for appropriate coefficients pj . For the fractional part

F(Y) = ri(Y + ci)
∑
j

(xjY + x′j)

(
i−1∑
k

µ
(i,j)
z,k

k−1∑
m

b(k)m

1

rm(Y + cm)

+

i−1∑
k

µ
(i,j)
r,k

1

rk(Y + ck)

)
,

the reduction can find coefficients fj for j ∈ {1, 0, . . . ,−i+1} via partial fraction
decomposition such that

F(Y) = f1Y + f0 +

i−1∑
j=1

f−j
1

rj(Y + cj)
.

Therefore

Zi(xY + x′, rY + r � c) = P(Y) + F(Y)

=

2i∑
j=0

pjY
j + f1Y + f0 +

i−1∑
j=1

f−j
1

rj(Y + cj)

=

2i∑
j=0

a
(i)
j Yj +

i−1∑
j=1

b
(i)
j

1

rj(Y + cj)
,

for appropriate a
(i)
j , b

(i)
j . The reduction answers the signing query with Zi :=∑2i

j=0 a
(i)
j Y (j) +

∑i−1
j=1 b

(i)
j Yj and Ri := 1

ri
Yi and R̂i := 1

ri
Ŷi. Note that since

Zi =

2i∑
j=0

a
(i)
j Y (j) +

i−1∑
j=1

b
(i)
j Yj

= Zi(xy + x′, ry + r � c)G

= (riy + rici)
∑
j

M
(i)
j (xjy + x′j)

= r̃
∑
j

x̃jM
(i)
j ,

with r̃ being uniform in Z∗p, x̃j being consistent with X̂, and Ri = 1
r̃G, the

signatures are distributed identically to signatures from FHS.

Since the q-PowDenDL challenge contains “powers” up to 2q and q different
“denominators” we obtain the following corollary.
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Corollary 1. Using the q-PowDenDL challenge, the reduction can answer q
queries to the signing oracle.

The following observation directly follows from the definition of Zi, and not-
ing that there do not exist reciprocal terms in X in any of the Laurent polyno-
mials that we consider.

Remark 1. Let i ∈ [q]. Then for every monomial m of Zi there exists a j ∈ [q]
such that Xj divides m.

At some point the adversary A will output coefficients that represent a
forgery consisting of a message M and the signature (Z,R, R̂). Figure 2 de-
scribes how these coefficients relate to the elements. B then defines polynomials
V1 and V2 that correspond to the two verification equations in the UNFAGM

game. If the verification equation (5) e(G, R̂) = e(R, Ĝ) holds, then the loga-
rithms of R and R̂ are equivalent. Therefore the polynomial V1 has y as a zero
if R and R̂ satisfy that verification equation of the game.

Recall the definitions of the Laurent polynomials (Figure 3, lines 5 and 6):

R(X,R) := ρ+

q∑
k=1

ρz,kZk(X,R) +

q∑
k=1

ρr,kR−1k

R̂(X,R) := ρ̂+
∑̀
k=1

ρ̂x,kXk +

q∑
k=1

ρ̂r,kR−1k ,

clearly, R̂ has denominators of maximum degree 1. Recall also that every Laurent
polynomial we consider only has reciprocal terms in R. Consider how Zi is
formed inductively, then Z1 does not have any reciprocal terms (and insofar
denominators with a maximum degree of 1), while when Zi is formed from the
previous Zk for k < i, there might be reciprocal terms of degree 1 that are
added. Therefore Zi only has denominators with a maximum degree of 1, and
so R only has denominators with a maximum degree of 1. Therefore, the factor∏
i Ri ensures that V1 is a polynomial.

Analogously, V2 has y as a root if and only if the verification equation (4)∑
j e(Mj , X̂j) = e(Z, R̂) holds. Since multiplying R̂ by R−1k potentially contained

in the polynomial associated with Z creates denominators of degree 2, the factor∏
i R2

i ensures that V2 is a polynomial. Observing that Zk has a total degree
upper-bounded by 2k, the following corollary summarizes this argument.

Corollary 2. Both V1 and V2 are polynomials of total degree upper-bounded by
4q + 1.

The following convention will simplify the remainder of the proof.

Remark 2. Since for fixed k the coefficient ζz,k only occurs as a factor of Zk,
whenever Zk ≡ 0 the adversary A can choose ζz,k arbitrarily. Since this choice
does not change the system of equations, the reduction will set ζz,k := 0 whenever
Zk ≡ 0.
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Note that this remark is not limited to ζz,k but also applies to other coeffi-
cients for example ρz,k among others.

We will briefly discuss the technique used in the following proofs. Recall
that if R is a ring, then an ideal I is an additive subgroup of R such that for
P ∈ R and Q ∈ I it holds that PQ ∈ I 3 QP. For a subset S of R, the ideal
generated by S is defined as the smallest ideal I such that S ⊆ I. If I is an ideal
then R/I is a ring, the so-called quotient ring or factor ring. Conceptually, the
ideal “defines” which elements we identify with 0 in the quotient ring. Since we
consider V1 ≡ 0, that is, for all inputs it vanishes, viewing this equation in the
quotient ring corresponds to fixing specific terms (the ones in the ideal) to zero.
This greatly simplifies notation when we equate coefficients of polynomials.

The following lemma states that given polynomials Pj in X such that (7)
holds, then all Pj must vanish. Since we will apply this lemma to polynomials
Pj of degree less than two, this means that they must be the zero polynomial.
Equations of the form (7) emerge in the proof by considering Vt ≡ 0, for t ∈ [2],
in an appropriate quotient ring. Remark 2 motivates that we merely need to
consider the non-zero polynomials Zj .

Lemma 5. Let J := {j | Zj 6≡ 0} ⊆ [q] be the set of indices such that Zj
is a non-zero Laurent polynomial, and for j ∈ J let Pj ∈ Zp[X] be arbitrary
polynomials. Then whenever(∏

k

Rk

)∑
j∈J

PjZj ≡ 0, (7)

as a polynomial in X and R, we have Pj ≡ 0 for all j ∈ J .

Proof. For j ∈ J let Kj be the ideal generated by {R2
i | j < i ≤ q}. We will

consider equations in the factor rings Zp[X,R]/Kj , where we will denote equality
by ≡Kj

.
We will prove the claim inductively on the size of J . Assume J 6= ∅ and let

j := minJ . Consider (7) modulo Kj . Since Ri divides Zi, and thus R2
i divides(∏

k Rk

)
Zi, all the summands PiZi for i > j vanish:(∏

k

Rk

)
PjZj ≡Kj

0. (8)

Now since Zj 6≡ 0, and Zj does not contain any Ri for i > j, we get

degRi

(∏
k

Rk

)
Zj = 1.

Since Pj does not depend on R, the only way that the left-hand side of (8)
always vanishes is for Pj ≡ 0. Considering J ′ := J \{j} we can inductively apply
this reasoning eventually yielding the statement.

We will now consider what it means if either verification polynomial Vt is the
zero polynomial. This essentially models an adversary that tries to “outsmart”
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the reduction, by choosing coefficients in a way such that the polynomials V1 and
V2 leak no information about y. In particular, if V1 ≡ 0 then A was (partly) suc-
cessful in forging a signature but our reduction cannot obtain the q-PowDenDL
solution y from the corresponding equation. The following lemma captures that
the only way for A to enforce V1 ≡ 0 is to respresent both R and R̂ by the same
coefficients.

Lemma 6. If V1 ≡ 0, then the following holds for the coefficients of R and R̂:

ρ = ρ̂,

ρz,j = ρ̂x,j = 0 ∀j ∈ [q],

ρr,j = ρ̂r,j ∀j ∈ [q].

Proof. Let j ∈ [q] and let J denote the ideal generated by {X1, . . . ,X`,Rj}. We
will look at V1 in the quotient ring Zp[X,R]/J. By ≡J we denote equivalence
in the quotient ring. Recall that

V1(X,R) =
(∏

i

Ri

)(
R(X,R)− R̂(X,R)

)
=
(∏

i

Ri

)(
ρ+

∑
k

ρz,kZk(X,R) +
∑
k

ρr,kR−1k

− ρ̂−
∑
k

ρ̂x,kXk −
∑
k

ρ̂r,kR−1k

)
.

Now since ρ
∏
i Ri ≡J 0 and ρ̂

∏
i Ri ≡J 0, and all monomials of Zk contain some

Xj (as noted in Remark 1), which implies Zk = Rk

∑
j XjM

(k)
j ≡J 0, we get

0 ≡ V1(X,R) ≡J

(∏
i

Ri

)(∑
k

(ρr,k − ρ̂r,k)R−1k

)
≡J

(∏
i6=j

Ri

)
(ρr,j − ρ̂r,j),

where the second equivalence follows from Rj ≡J 0. Equating coefficients yields
ρr,j = ρ̂r,j . As j was arbitrary, this result holds for every j ∈ [q].

Since V1 ≡ 0 implies that V1/
∏
i Ri ≡ 0 where it is defined, viewing this

equation in the factor ring obtained by factoring the ideal X generated by
{X1, . . . ,X`} and using what we deduced about ρr,j and ρ̂r,j we get

V1(X,R)∏
i Ri

≡ ρ− ρ̂+
∑
k

ρz,kZk(X,R)−
∑
k

ρ̂x,kXk

≡X ρ− ρ̂,

where by Remark 1 we have Zk = Rk

∑
j XjM

(k)
j ≡X 0. We thus obtain ρ = ρ̂.

Now consider the ideal R generated by {R1, . . . ,Rq}. Together with what we
deduced so far we have

0 ≡ V1(X,R)∏
i Ri

≡
∑
k

ρz,kZk(X,R)−
∑
k

ρ̂x,kXk
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≡
∑
k

ρz,kRk

∑
j

XjM
(k)
j (X,R)−

∑
k

ρ̂x,kXk

≡R −
∑
k

ρ̂x,kXk,

where we used that M
(k)
j only depends on Ri for i < k, and thus does not contain

any inverses of Rk. By equating coefficients for Xk we obtain ρ̂x,k = 0 for all
k ∈ [`]. We therefore showed that

V1(X,R) =
(∏

i

Ri

)∑
k

ρz,kZk(X,R).

Analogously to Remark 2, the reduction can set ρz,k = 0 whenever Zk ≡ 0
without loss of generality. Thus, applying Lemma 5 yields ρz,j = 0 for j ∈ [q].
This concludes the proof.

The next lemma captures that if both polynomials representing the verifi-
cation equations are zero, then A must have provided a forgery on a message
that is a multiple of a previously queried message. The idea here is to consider
V2 ≡ 0 and iteratively compare coefficients in various quotient rings to simplify
the equation such that we can reason about the coefficients provided by A.

Lemma 7. If V1 ≡ 0 and V2 ≡ 0, then the message returned by A is a multiple
of a message queried to the signing oracle, in particular

∃i∗ ∈ [q] ∀j ∈ [`] : Mj = ρr,i∗ζz,i∗M
(i∗)
j .

Proof. By Lemma 6 we have

R̂(X,R) = ρ+
∑
k

ρr,kR−1k ,

and therefore V2 has the form

V2(X,R) =
(∏

i

R2
i

)(∑
k

XkMk(X,R)−
(
ρ+

∑
k

ρr,kR−1k
)
· Z(X,R)

)
.

Let j ∈ [q] and denote by I the ideal generated by {X1, . . . ,X`,Rj}. Recall

Z(X,R) = ζ +
∑
i

ζz,iZi(X,R) +
∑
i

ζr,iR
−1
i .

Viewing V2 modulo I, all the terms containing Xk vanish (cf. Remark 1), and
the only terms that remain are the ones where R2

j cancels. We obtain

0 ≡ V2 ≡I −ρr,jζr,j , (9)

where j was arbitrary. We will start by showing that ζr,k = 0 for all k ∈ [q].
Assume towards a contradiction that there exists k ∈ [q] such that ζr,k 6= 0.
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Using this consider j 6= k ∈ [q] and let J denote the ideal generated by {X1, . . . ,
X`,Rk,Rj}. Then, analogously to the previous step where we considered the
ideal I, all the terms containing Xk vanish, and the only terms that remain are
ones that don’t contain Rk or Rj either:

0 ≡ −V2∏
i Ri
≡J

(∏
i

Ri

)(∑
m

∑
m′ 6=m

ρr,mζr,m′R
−1
m R−1m′

)
≡J

( ∏
i6=k,i 6=j

Ri

)(
ρr,kζr,j + ρr,jζr,k

)
,

and thus
ρr,kζr,j + ρr,jζr,k = 0 for all j ∈ [q]. (9a)

Now since we assumed ζr,k 6= 0 from (9) we get ρr,k = 0, which with (9a) yields
ρr,jζr,k = 0 and thus ρr,j = 0 for all j ∈ [q]. Again let k ∈ [q] and denote by J
the ideal generated by {X1, . . . ,X`,Rk}. We have that

0 ≡ V2(X,R)∏
i Ri

≡J

(∏
i

Ri

)(
− ρ
(
ζ +

∑
j

ζr,jR
−1
j

))
≡J −ρζr,k

∏
i 6=k

Ri,

and therefore ρ = 0. With ρr,j = 0 for all j ∈ [q], Lemma 6 now implies R ≡ 0,
which contradicts A providing a valid forgery. Therefore ζr,k = 0 for k ∈ [q], and
thus

Z(X,R) = ζ +
∑
k

ζz,kZk(X,R). (10)

Denote by L the ideal generated by {X1, . . . ,X`}. Then, by Remark 1, we
have Z(X,R) ≡L ζ and therefore

0 ≡ −V2(X,R)∏
i Ri

≡L

(∏
i

Ri

)(
ζρ+

∑
j

ζρr,iR
−1
j

)
≡L

(∏
i

Ri

)
ζR̂(X,R).

Since both R̂ 6≡ 0 and
∏
k Rk 6≡ 0 modulo L, we get ζ = 0. We therefore showed

that (10) has the form

Z(X,R) =
∑
k

ζz,kZk(X,R).

We will now show that merely one summand is non-zero. Define i∗ := max{i |
ζz,i 6= 0}, and note that by Remark 2 we have Zi∗ 6≡ 0. Recall that we deduced

V2(X,R) =
(∏

i

R2
i

)(∑
k

Mk(X,R)Xk −
(
ρ+

∑
k

ρr,kR−1k

) i∗∑
k

ζz,kZk(X,R)

)
and that Mk is defined as

Mk(X,R) := µ(k) +
∑
j

µ
(k)
z,jZj(X,R) +

∑
j

µ
(k)
r,jR−1j . (11)
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We will show that µ
(k)
z,j = 0 for j > i∗. Let k∗ := sup{k | ∃j : µ

(j)
z,k 6= 0}. Again,

similarly to Remark 2, we have Zk∗ 6≡ 0. Suppose k∗ > i∗ and consider all the
monomials of V2 that are divisible by R3

k∗ , that is, all the terms in which Zk∗
appears (∏

i

R2
i

)(∑
j

µ
(j)
z,k∗Zk∗(X,R)Xj

)
≡ 0.

Since Zk∗ 6≡ 0, equating coefficients we obtain µ
(j)
z,k∗ = 0 for all j, therefore

k∗ ≤ i∗.
Now consider all the monomials of V2 that are divisible by R3

i∗ , that is, all the
terms in which Zi∗ appears, and equate coefficients with the zero polynomial:

Zi∗(X,R)
(∏

i

R2
i

)(∑
j

µ
(j)
z,i∗Xj −

(
ρ+

∑
k 6=i∗

ρr,kR−1k

)
ζz,i∗

)
≡ 0.

Since Zi∗ 6≡ 0, we can equate coefficients of Xj to obtain µ
(j)
z,i∗ = 0 for j ∈ [`].

This leaves us with the subtrahend, where due to ζz,i∗ 6= 0 equating coefficients
yields ρ = 0 and ρr,k = 0 for k ∈ [q] \ {i∗}. Now since R 6≡ 0, we have ρr,i∗ 6= 0.
This leaves us with

V2(X,R) =
(∏

i

R2
i

)(∑
k

Mk(X,R)Xk − ρr,i∗R−1i∗
i∗∑
k

ζz,kZk(X,R)

)
, (12)

and (11) becomes

Mk(X,R) = µ(k) +

i∗−1∑
j

µ
(k)
z,jZk(X,R) +

∑
j

µ
(k)
r,jR−1j .

Now consider the ideal I generated by {R2
1, . . . ,R

2
i∗−1,Ri∗}. Recall that Zk :=

Rk

∑
jM

(k)
j Xj , and that for j ∈ [`] the Laurent polynomial M

(k)
j only has recip-

rocal terms in Rk′ for k > k′. Then in this ideal the subtrahend of (12) vanishes,
and the only remaining terms are those where Ri∗ cancels:

0 ≡ V2(X,R)∏
k Rk

≡I

( ∏
k 6=i∗

Rk

)∑
j

µ
(j)
r,i∗Xj .

Equating coefficients for Xj , we obtain µ
(j)
r,i∗ = 0 for j ∈ [`].

Consider the ideal J generated by Ri∗ . Then in the corresponding factor ring
the non-zero terms will be those where Ri∗ cancels. Since we just showed that
Mk does not contain any inverses of Ri∗ , this can only happen in the subtrahend
of (12) and thus

0 ≡ −V2(X,R)∏
i Ri

≡J

( ∏
i6=i∗

Ri

)
ρr,i∗

i∗−1∑
k

ζz,kZk(X,R).
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Since ρr,i∗ 6= 0 and the right-hand side is constant in Ri∗ , multiplying by Ri∗

yields

(∏
k

Rk

) i∗−1∑
j

ζz,jZj(X,R) ≡ 0.

Now by Remark 2, Lemma 5 applies, and therefore ζz,j = 0 for j < i∗. We
therefore showed that there is exactly one index i∗ such that ζz,i∗ 6= 0.

Now by expanding the representation of Mk, (12) simplifies to

V2(X,R) =
(∏

i

R2
i

)(∑
k

(
µ(k) +

i∗−1∑
j

µ
(k)
z,jZk(X,R) +

∑
j 6=i∗

µ
(k)
r,jR−1j

)
Xk

− ρr,i∗R−1i∗ ζz,i∗Zi∗(X,R)

)
. (13)

For j > i∗ consider this equation in the factor ring obtained by factoring the
ideal J generated by R2

j . Then since for k < j we have that degRj
Zk = 0, in this

factor ring the only terms remaining are those of (13) that contain R−1j . We get

0 ≡ V2(X,R) ≡J Rj

(∏
i 6=j

R2
i

)∑
k

µ
(k)
r,jXk,

and equating coefficients yields µ
(k)
r,j = 0 for j > i∗.

Denote by I the ideal generated by {XiXj | 1 ≤ i ≤ j ≤ `}. Recall the
definition

Zi∗(X,R) := Ri∗

∑
j

(
µ(i∗,j) +

i∗−1∑
k

µ
(i∗,j)
z,k Zk(X,R) +

i∗−1∑
k

µ
(i∗,j)
r,k R−1k

)
Xj .

Consider (13) ≡ 0 in the corresponding factor ring, where by Remark 1 the terms
containing ZkXj vanish:

0 ≡ V2(X,R) ≡I

(∏
i

R2
i

)(∑
j

(
µ(j) +

i∗−1∑
k

µ
(j)
r,kR−1k

)
Xj

− ρr,i∗R−1i∗ ζz,i∗
∑
j

(
µ(i∗,j) +

i∗−1∑
k

µ
(i∗,j)
r,k R−1k

)
Xj

)

≡I

(∏
i

R2
i

)∑
j

Xj

(
µ(j) − ρr,i∗ζz,i∗µ(i∗,j)

+

i∗−1∑
k

(
µ
(j)
r,k − ρr,i∗ζz,i∗µ

(i∗,j)
r,k

)
R−1k

)
.
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Equating coefficients yields µ
(j)
r,k = ρr,i∗ζz,i∗µ

(i∗,j)
r,k for j ∈ [`] and k < i∗, and

µ(j) = ρr,i∗ζz,i∗µ
(i∗,j) for j ∈ [`]. Therefore (13) simplifies to

V2(X,R) =
(∏

i

R2
i

)( i∗−1∑
k

(∑
j

(
µ
(j)
z,k − ρr,i∗ζz,i∗µ

(i∗,j)
z,k

)
Xj

)
Zk

)
.

For k < i∗ define the polynomial

Pk(X) :=
∑
j

(
µ
(j)
z,k − ρr,i∗ζz,i∗µ

(i∗,j)
z,k

)
Xj .

Whenever Zk = 0, similarly to Remark 2, we can suppose that µ
(j)
z,k = 0 and

µ
(i∗,j)
z,k = 0 for all j ∈ [`], which implies Pk = 0. Lemma 5 is therefore applicable,

yielding Pk ≡ 0 for k < i∗. Equating coefficients yields µ
(j)
z,k = ρr,i∗ζz,i∗µ

(i∗,j)
z,k for

j ∈ [`] and k < i∗. Thus, for all j ∈ [`] we derived

Mj = µ(j)G+

i∗−1∑
k

µ
(j)
z,kZj +

i∗−1∑
k

µ
(j)
r,kRk

= ρr,i∗ζz,i∗µ
(i∗,j)G+

i∗−1∑
k

ρr,i∗ζz,i∗µ
(i∗,j)
z,k Zj +

i∗−1∑
k

ρr,i∗ζz,i∗µ
(i∗,j)
r,k Rk

= ρr,i∗ζz,i∗

(
µ(i∗,j)G+

i∗−1∑
k

µ
(i∗,j)
z,k Zj +

i∗−1∑
k

µ
(i∗,j)
r,k Rk

)
= ρr,i∗ζz,i∗M

i∗

j .

So far, we reasoned about the multivariate verification polynomials V1 and V2

where each indeterminate corresponds to one secret value that gets embedded.
B transforms these multivariate verification polynomials into univariate polyno-
mials in Y by evaluating the indeterminates by specifying how y was embedded.
This yields the univariate polynomials Q1 and Q2 with indeterminate Y.

This transformation from multivariate to univariate polynomials might turn
a non-zero polynomial into the zero polynomial. The following lemma will show
that in our specific setting this is unlikely to occur.

Lemma 8. Conditioned on A winning UNFAGM we have that the probability
that one of the univariate polynomials Q1 and Q2 is non-zero is overwhelming:

Pr
[
Q1 6≡ 0 ∨ Q2 6≡ 0

∣∣UNFAGM
A = 1

]
≥ 1− 4q + 1

p− 1
.

Proof. Assuming that A wins UNFAGM, Lemma 7 yields V1 6≡ 0 ∨ V2 6≡ 0.
Assume the case V2 6≡ 0. From Corollary 2 we have that V2 is a polynomial of
total degree upper-bounded by 4q+ 1. We can therefore apply the BFL Lemma
(Lemma 2) to conclude that given V2 6≡ 0, the leading coefficient in Y of

V′2
(
U,V,U′,V′,Y

)
:= V2

(
UY + U′,VY + V′

)
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is a polynomial in indeterminates U,V of degree upper-bounded by 4q+ 1. Call
this polynomial V′2,max ∈ Zp[U,V]. Recall that for i ∈ [q], ri and ci are drawn
uniformly from Z∗p and Zp, respectively. Let r′ := r� c and note that

Q2(Y) = V′2 (x, r,x′, r′,Y) . (14)

Then by (14), it suffices to show V′2,max 6≡ 0 with overwhelming probability.
Since (Zp,+) and (Z∗p, ·) are both cyclic, r′i is uniformly distributed over Zp.
Moreover, (ri, r

′
i) is uniformly distributed over Z∗p × Zp since the function

f : Z∗p × Zp → Z∗p × Zp

(x, y) 7→ (x, x · y)

is a bijection. This implies that the vector r′ = (r� c) is independent from the
vector r, and therefore (x′, r′) is independent of (x, r).

Furthermore, since (x, r) is completely hidden from the adversary’s view (due
to the additive mask (x′, r′) added after the multiplication), it is independent
from the coefficients of V′2 (determined by A), and thus independent of the
coefficients of V2,max (still fully determined by A). Thus the Schwartz-Zippel
Lemma (Lemma 1) applied to V2,max on uniform inputs x, r yields

Pr
[
V2,max 6≡ 0

∣∣UNFAGM
A = 1

]
≥ 1− 4q + 1

p− 1
.

Overall, we get

Pr
[
Q1 6≡ 0 ∨ Q2 6≡ 0

∣∣UNFAGM
A = 1

]
≥ Pr

[
Q2 6≡ 0

∣∣UNFAGM
A = 1

]
= Pr

[
V2,max 6≡ 0

∣∣UNFAGM
A = 1

]
≥ 1− 4q + 1

p− 1
.

Noticing that the case V1 6≡ 0 follows analogously concludes the proof.

We will proceed with the proof of Theorem 1. We will show that reduction
B’s advantage is close to A’s advantage.

We know that B wins if A wins and (Q1 6≡ 0 or Q2 6≡ 0), since A win-
ning implies Verify (pk,M , σ) = 1, which means e

(
R∗, G2

)
= e

(
G, R̂∗

)
and∑q

i=1 e
(
M∗i ,pki

)
= e

(
Z, R̂∗

)
. Therefore the logarithm y of Y (1) is a root of

both Q1 and Q2. Since at least one of them is not identically zero, with its de-
gree upper-bounded by 4q + 1, reduction B can efficiently factor the non-zero
one to obtain y among its roots, and therefore solve q-PowDenDL. This yields

Advq-PowDenDL
BGGen,B ≥ Pr

[
UNFAGM

A = 1 ∧ (Q1 6≡ 0 ∨ Q2 6≡ 0)
]

= Pr
[
UNFAGM

A = 1
]

Pr
[
Q1 6≡ 0 ∨ Q2 6≡ 0

∣∣UNFAGM
A = 1

]
,

and applying Lemma 8 yields

≥ AdvUNFAGM

A

(
1− 4q + 1

p− 1

)
≥ AdvUNFAGM

A − 4q + 1

p− 1
.

This concludes the proof of Theorem 1.
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