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Abstract

We explore Zero-Knowledge Proofs (ZKPs) of statements expressed as programs written in
high-level languages, e.g., C or assembly. At the core of executing such programs in ZK is the
repeated evaluation of a CPU step, achieved by branching over the CPU’s instruction set. This
approach is general and covers traversal-execution of a program’s control flow graph (CFG):
here CPU instructions are straight-line program fragments (of various sizes) associated with the
CFG nodes. This highlights the usefulness of ZK CPUs with a large number of instructions of
varying sizes.

We formalize and design an efficient tight ZK CPU, where the cost (both computation
and communication, for each party) of each step depends only on the instruction taken. This
qualitatively improves over state of the art, where cost scales with the size of the largest CPU
instruction (largest CFG node).

Our technique is formalized in the standard commit-and-prove paradigm, so our results are
compatible with a variety of (interactive and non-interactive) general-purpose ZK.

We implemented an interactive tight arithmetic (over F261−1) ZK CPU based on Vector
Oblivious Linear Evaluation (VOLE) and compared it to the state-of-the-art non-tight VOLE-
based ZK CPU Batchman (Yang et al. CCS’23). In our experiments, under the same hardware
configuration, we achieve comparable performance when instructions are of the same size and a
5-18× improvement when instructions are of varied size. Our VOLE-based tight ZK CPU (over
F261−1) can execute 100K (resp. 450K) multiplication gates per second in a WAN-like (resp.
LAN-like) setting. It requires ≤ 102 Bytes per multiplication gate. Our basic building block,
ZK Unbalanced Read-Only Memory, may be of independent interest.
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1 Introduction

Zero-Knowledge (ZK) Proofs (ZKPs) [GMR85] allow a prover P to convince a verifier V that a given
statement is true without revealing anything beyond this fact. With recent advances in efficiency,
ZKP has become one of the most active areas in cryptographic research. Example applications
include private blockchain [BCG+14], private programming analysis [FDNZ21, LAH+22], private
bug-bounty [HYDK21, YHKD22], privacy-preserving machine learning [LXZ21, WYX+21], and
many more.

Most generic ZK schemes prove statements represented as circuits or constraint systems. While
these formats support arbitrary statements, they do not align with how computational tasks are
often described or developed in practice – using a high-level language, such as C/C++/assembly/etc.

A promising path towards efficient ZKP for general programs is to mimic what plaintext com-
puters do. An assembly (or C/C++ or other high-level) program can be broken into straight-line
blocks; the resulting program control-flow graph (CFG) describes how program control can transfer
between the blocks.

Casting this to ZKP (and for efficiency, omitting the plaintext-world step of compiling to a
hardware CPU fixed instruction set), instead of agreeing on a single public circuit, P and V agree
on B circuits, each corresponding to (i.e., implementing a straight-line program of) a CFG block.
Viewed this way, the objective of ZKP is to execute the program from a public initial state to
a public final state via a circuit constructed by privately “soldering” these (potentially repeated)
basic CFG blocks (see Figure 1). This approach can be viewed as executing steps of a Zero-
Knowledge Central Processing Unit (ZK CPU) whose instruction set is defined in terms of the
target program’s complex CFG blocks. An MPC version of this approach is explored by recent
VISA MPC [YPHK23].

Of course, a ZK CPU must be able to access a random-access memory (RAM); this technical
task is external to our focus. We show that the state-of-the-art ZK RAM [YH24] can be efficiently
integrated with our ZK CPU (see Section 6.2).

ZK disjunctions. The sequence of executed CFG blocks (instructions) must remain hidden from
V. This can be trivially achieved by P and V executing each instruction in each step – the circuit
for computing such a step would be a disjunction of all instructions (in the instruction set), and
the top-level proof statement would simply be a sufficient number of repetitions of the disjunction.

This approach incurs a glaring overhead: parties execute – and pay for – a large number of
inactive (i.e., not taken in plaintext execution) clauses in each disjunction. To make matters worse,
many programs have large CFGs, so each disjunction is over a large number of clauses, causing
corresponding overhead.

A recent line of work ([BMRS21, GGHAK22, GHAK23, GHAKS23, HK20, Kol18, YHH+23])
aims to avoid paying for inactive clauses in a disjunction. [HK20] described the possibility of
reusing the cryptographic material of the active branch to evaluate (to garbage and privately
discard) inactive branches. This limits communication to the cost of a single (longest) branch but
still requires processing all branches. Very recent work [GHAK23, YHH+23] shows how to limit
both communication and computation to that of the single longest branch for our setting, where
the same disjunction (of all instructions in the instruction set) is executed repeatedly.

To summarize, the state of the art pays for the longest branch.

1
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Figure 1: Example ZK CPU execution. P and V agree on B public (sub)circuits I = {C1, . . . , CB}.
P demonstrates to V that an initial state evaluates to a final state via a private circuit C ≜
C(4) ◦ · · · ◦ C(1), where each C(i∈[4]) ∈ I. V learns the size of C but does not learn the number
or identity of specific subcircuits used. Each subcircuit’s output is fed as input to the subsequent
subcircuit. We refer to the wires that pass from subcircuit to subcircuit as registers. Each subcircuit
can read private input from P, and each subcircuit outputs a “checking output”, which evaluates
to 0 when P is honest. The checking output can be used to, e.g., force P to use C1 when the first
register is 1. See Section 3 for formal details.

1.1 Our Focus: Pay for the Active Branch

We are motivated by scenarios where instructions (or branches) differ significantly in size, possibly
by orders of magnitude. In such cases, it is unacceptable to incur the cost of the longest branch.
While instructions in hardware CPUs are roughly the same size by design, this is not the case in
CFGs, where blocks correspond to straight-line program segments.

Tight ZK CPU emulation. We mostly adhere to the ZK CPU notation and vocabulary. We
choose this over other equivalent vocabularies, such as CFG and blocks, discussed above. This is for
simplicity, clarity, and consistency, since prior ZK work already uses the CPU and CPU-emulation
terminology and definitions (e.g., [BCG+13, FKL+21, HYDK21, YHH+23]).

Extending the existing ZK CPU vocabulary, in this work, we introduce and focus on tight
ZK CPU emulation (or just tight ZK CPU) – one whose cost of executing each instruction is
proportional to the size of that instruction. This is in contrast to all prior work on efficient ZK
CPU emulation, where the cost of executing a CPU step is proportional to the total cost of all
instructions in the CPU or, more recently, to the largest instruction in the CPU.

It is challenging to achieve tight ZK CPU concretely efficiently because instruction boundaries
must be hidden from V, and corresponding expensive instruction set-up and conclusions (which,
e.g., handle registers, instruction loads, proof checks, etc.) must be executed at each possible basic
step of the ZK proof.

Spliting large instructions. It is, of course, possible to equalize instruction sizes by splitting a
large instruction C into a sequence of small instructions. This incurs the expense of passing more
registers between instructions more frequently: the current internal state of the larger instruction
C now must be passed between its consecutive sub-instructions Ci and Ci+1. This internal state
corresponds to the width of the circuit implementing C and may be large. Crucially, now all
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instructions must accept this many registers as input to preserve ZK, incurring corresponding
overhead.

Our work allows cheaply handling arbitrarily large (and arbitrarily wide!) instructions without
incurring the overhead of handling additional registers.

Privacy guarantees. The privacy guarantees provided by prior CPU-emulation definitions and
constructions are somewhat different from that of our tight ZK CPU. In prior work, V learns the
number of executed CPU steps; in our work, V learns the total number of multiplication gates on
the program execution path. Both metrics correspond to (slightly different) notions of program
runtime. We stress that revealing the runtime is inevitable when demanding tight prover efficiency,
and standard padding techniques can provide finer privacy guarantees.

Depending on instruction sizes, the total number of evaluated gates in executing our tight CPU
can indicate to V with high confidence which instructions were executed. A similar concern applies
to prior ZK CPU work, where a precise runtime (number of instructions) might tell V the execution
path. Such issues are arguably more relevant in our model since runtime is more granular. As in
prior work, this can be addressed by runtime padding.

1.2 Our Contribution

We motivate and formalize the notion of a tight ZK CPU, where the cost (both computation and
communication for each party) of each step depends only on the instruction taken, even when
the instructions are of varying sizes. We define an ideal functionality FZKCPU (see Figure 6 and
discussion in Section 3) to capture this notion by only sending the length of the entire execution
to V.

Our protocol realizes FZKCPU in the commit-and-prove hybrid (defined as FCPZK in Figure 3)
model with information-theoretic security. Our protocol is public-coin and constant-round in
FCPZK-hybrid model, so it natively supports the Fiat-Shamir transformation [FS87, PS00]. Cru-
cially, our abstraction allows realizing the FZKCPU via a variety of commit-and-proof ZK proto-
cols, including interactive and non-interactive ones (e.g., [AHIV17, BMRS21, BBB+18, CHM+20,
DOT21, DIO21, IKOS07, MBKM19, YSWW21]).

We implement1 a tight ZK CPU protocol by instantiating the commit-and-proof ZK with VOLE-
based ZK [DIO21, YSWW21] and report the performance in Section 7. The cost of our VOLE-
based tight ZK CPU scales only linearly with the number of multiplication gates along the program
execution path. Concretely, this protocol outperforms the state of the art Batchman [YHH+23] (a
VOLE-based non-tight ZK CPU) in both computation and communication commensurately with
branch size variation (see Section 7). Our VOLE-based ZK CPU achieves a cost of only a constant
factor (6–7×) higher than the non-private protocol, where the execution path is revealed to V.

1.3 Intuition of Our Construction

We present high-level intuition here; Section 4 presents a detailed technical overview of our ap-
proach.

Consider a ZK proof expressed as a high-level program composed of basic “control-flow” blocks,
which we call instructions. P’s witness is an input to the program that evaluates to an accepting

1Our implementation is available at https://github.com/gconeice/tight-vole-zk-cpu.
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state. The proof convinces V the existence of a sequence of instructions – an execution path –
leading to an accepting state. While the execution path, known to P, can depend on P’s secret
witness, a ZK proof must hide the path from V.

The recent Batchman protocol [YHH+23] demonstrates that it is possible to efficiently encode
each program instruction as a randomized vector of field elements. At a high level, each such vector
is the product of V’s random challenge vector and a matrix that encodes the linear constraints
imposed by the instruction; see Section 2.5. Thus, an execution path can be encoded as a vector
constructed by concatenating subvectors corresponding to each instruction. Batchman uses this
encoding to hide the identity of each instruction from V. In particular, this vector encoding the
execution path is included in the proof as part of P’s (extended) witness.

If P is honest, this vector encodes a valid execution path. P proves her witness satisfies linear
constraints imposed by the vector.

Of course, V must check in ZK that P’s execution path vector is valid – that each subvector
(or, rather, each subvector’s hash) is in the set of valid instructions (hashes) of the source program.
Batchman’s ZK hash check is efficient: each subvector hash is a random linear combination of the
subvector’s elements based on a fresh challenge from V– a single uniform field element sent by
V, expanded by taking its powers. A crucial detail here is that V knows the boundaries of the
subvectors, as Batchman’s instructions are each padded to the same publicly agreed-upon number
of gates.

In our approach, we allow instructions of different sizes. Thus, while our prover also inputs an
execution path vector, the subvector (i.e., instruction) boundaries and the lengths of each subvector
must be kept private. With this change, the subvector validity check and passing of program state
between instructions become a challenge, the resolution of which is core to our contribution. Here,
we give high-level intuition underlying our validity check.

To validate the execution path vector, P inputs an additional 0-1 vector of the same length,
which defines the boundaries of the instruction subvectors. Namely, P sets this boundary string to
0 and places 1 only at positions corresponding to the ends of subvectors. Similar to Batchman, our
hash check is performed via a random linear combination with a V-chosen challenge, but we carefully
arrange how parties use the boundary string to construct and verify hash checksums of unknown
length to V. We capture this with a novel primitive of independent interest – an unbalanced ZK
read-only memory (ROM) – a ZK ROM capable of storing vectors of different lengths, but where
we do not pay the price of the largest vector for each memory element (by exploiting the boundary
string). Based on the above intuition, our unbalanced ZK ROM manages (loads, concatenates and
checks) vectors of different lengths.

1.4 Related Work

Efficient handling of disjunctive statements is central to the handling of ZK proofs expressed as
high-level programs. High-level-program-based ZK is an intuitive direction that was first concretely
explored by [BCG+13] and subsequently studied by [BCTV14a, BCTV14b, FKL+21, GHAK23,
HYDK21, YHKD22].

Early ZK work [CDS94] gave special-purpose techniques allowing proofs of disjunctions. With
relatively recent and dramatic improvement to proofs of general-purpose statements, special-purpose
disjunction handling was (temporarily) subsumed by general-purpose techniques. Indeed, disjunc-
tions are easily encoded and proved as part of a circuit that processes each branch and then multi-
plexes the results. While this works, it is expensive. [HK20] – building on the MPC result of [Kol18]
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– demonstrated feasibility of paying (in ZK proof size) for only one branch. The [HK20] technique
“reuses cryptographic material” of the active branch to evaluate (to garbage and privately discard)
inactive branches. This sparked a rich line of work [BMRS21, GGHAK22, GHAK23, GHAKS23,
HK20, Kol18, YHH+23] that continues to reduce the costs of ZK disjunctions.

Very recent work [GHAK23, YHH+23] further improved the handling of disjunctions by showing
how to improve not just communication but also computation. This task is more challenging and
cannot be achieved by prior techniques relying on garbage evaluation of inactive clauses. Leveraging
the batched setting where a single disjunction is executed repeatedly, these works show how P
and V compute (and hence communicate) proportionally only to the single largest clause of the
disjunction. Our work extends and crucially builds on the approach of [YHH+23], and our extension
enables paying only for the active branch. Sections 1.3 and 2.5 summarize [YHH+23] and the novel
techniques needed for our result. Neither [YHH+23] nor [GHAK23] address disjunctions of clauses
of varying sizes.

Efficient ZK ROM and RAM are essential to CPU-emulation ZK. We integrate recent ZK
ROM [YH24]. We also build on it to design a novel basic primitive unbalanced ZK ROM, capable
of retrieving variable-size entries in a batch query. We achieve this by extending randomized
hashes of [YHH+23] to vectors of differing lengths and ultimately use them to execute variable-size
instructions.

We note that emulating CPU in SNARK has also been intensively studied recently in, e.g., [KS22,
CGG+23, DXNT23, ZGK+18, HLZ+24, KST22, KS24]. Some of these elegant works (e.g., [KS22,
KS24, ZGK+18, HLZ+24]) can indeed achieve tight efficiency while offering attractive features such
as non-interactivity and succinctness. However, adding ZK to these works may either require large
overheads or break tightness (see, e.g., discussions in [GHAK23] and [LXZ+24]). Furthermore, they
(at least) reveal the number of instructions to the verifier, while our work reveals only the total
number of multiplication gates. See Section 3 for more formal discussions. We suspect that some
padding techniques might address the additional leakage in, e.g., [KS22, KS24], and we leave it as
valuable future work. Finally, we remark that our protocols can also be instantiated with a succinct
and non-interactive commit-and-prove zkSNARK.

2 Preliminaries

2.1 Notation

• λ is the statistical security parameter (e.g., 40 or 60).
• The prover is P. We refer to P by she, her, hers...
• The verifier is V. We refer to V by he, him, his...
• x ≜ y denotes that x is defined as y.
• We denote sets by upper-case letters. We denote that x is uniformly drawn from a set S by
x ∈$ S.

• We denote {1, . . . , n} by [n].
• We denote a finite field of size p by Fp where p ≥ 2 is a prime or a power of a prime. We use F to
represent a sufficiently large field, i.e., |F| = λω(1). Inverse(x) denotes the multiplicative inverse
of x( ̸= 0) in F, i.e., Inverse(x) · x = 1.

• For a vector a ∈ Fn and an element x ∈ F, xa ≜ (xa1, . . . , xan).
• last(a) denotes the last element of a, i.e., an if a ∈ Fn. For some a ∈ F∗, if last(a) ̸= 0, we refer
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to a as a non-zero-end vector.
• We denote row vectors by bold lower-case letters (e.g., a), where ai (or a[i]) denotes the i-th
component of a (starting from 1) and a[: i] the subvector (a1, . . . , ai).

• We denote matrices by bold upper-case letters (e.g., A), where A(i) denotes the i-th row vector
of A (starting from 1) and A[i] denotes the i-th column vector of A (starting from 1). A(i)[j]
denotes j-th value in i-th row.

• Let a and b be vectors of equal length. ⟨a, b⟩ denotes the inner product; a ⊙ b denotes the
element-wise product.

• We denote a multiplication (gate) by MULT.

2.2 Security Model

We formalize our protocol via the universally composable (UC) framework [Can01] and prove its
security in the presence of a malicious, static adversary. For simplicity, we omit standard UC
session (and sub-session) IDs.

2.3 Commit-and-Prove Zero-Knowledge

Our protocol is defined in the commit-and-prove hybrid model [CLOS02]. This functionality, de-
noted by FCPZK and formally defined in Figure 3, allows P to commit to field elements (over F)
and then prove that evaluating a particular circuit on the committed values yields a vector of 0’s.
We denote by com(α) a cryptographic commitment to α ∈ F, and naturally extend this notation
to vectors (e.g., com(α)).

There are several ways to instantiate FCPZK (e.g., [AHIV17, BMRS21, BBB+18, CHM+20,
DOT21, DIO21, IKOS07, MBKM19, YSWW21]). To concretely evaluate our abstraction, we
choose to instantiate our protocol via the VOLE-based ZK (e.g., [BMRS21, DIO21, YSWW21],
cf. Lemma 1), a proof paradigm known for its fast end-to-end running times and small (constant)
computation/communication rates compared to |C|. This paradigm employs information-theoretic
MACs (IT-MACs) [BDOZ11, NNOB12] as linearly homomorphic commitment schemes over F. We
describe the computation/communication of VOLE-based ZK in Lemma 1.

Lemma 1 (VOLE-based ZK). There exists a protocol ΠCPZK that UC-realizes FCPZK in the FVOLE-
hybrid model (Figure 2) with the following efficiency:

• Commit requires 1 field element of communication and O(1) field operations.

• Linear requires no communication and O(k) field operations.

• Open requires 2 field elements of communication and O(1) field operations, with soundness
error O( 1

|F|).

• For circuit C with m outputs and n× multiplication gates, Check requires n× + m + 3 field

elements of communication and O(|C|) field operations, with soundness error O( |C||F|).

• Communication of Check for certain circuits can be improved at the cost of computation and
soundness. In particular, for a circuit C that outputs m polynomials f1, . . . , fm where fi∈[m]

is of degree-di, Check can be performed with:

– maxi∈[m] di + 1 field elements of communication;

6



Functionality FVOLE

FVOLE, parameterized by a field F, proceeds as follows, running with a prover P, a verifier V and an
adversary S:
Initialize. Upon receiving (init) from P and V, if V is honest, sample ∆ ∈$ F, else receive ∆ from S.
Store ∆ and send it to V. Ignore subsequent (init).

Extend. Upon receiving (extend, n) from P and V:

• If V is honest, sample v ∈$ Fn, else receive v ∈ Fn from S.

• If P is honest, sample u ∈$ Fn and compute w ≜ v−u ·∆ ∈ Fn, else receive u ∈ Fn and w ∈ Fn from
S and compute v ≜ w + u ·∆ ∈ Fn.

• Send (u,w) to P and v to V.

Figure 2: The VOLE correlation functionality.

– O
(
(maxi∈[m] di)

2 · |C|
)
field operations; and

– O
(
m+maxi∈[m] di

|F|

)
soundness error.

This is useful, e.g., when we want to prove that a⊙ b = 0.

Testing vector equality. We apply the Swchartz-Zippel lemma as a central tool to prove the
equality of two (committed) vectors.

Lemma 2 (Vector Equality). Consider vectors a, b ∈ Fn. If a ̸= b, then for χ ∈$ F:

Pr
[
⟨(1, χ, . . . , χn−1),a⟩ = ⟨(1, χ, . . . , χn−1), b⟩

]
≤ n

|F|

Specifically, suppose the parties hold committed vectors com(a) and com(b), and P wishes to
convince V that a is equal to b. Lemma 2 states that it suffices for P to prove that ⟨(1, χ, . . . χn−1),a⟩
= ⟨(1, χ, . . . , χn−1), b⟩, where χ is some uniform challenge sampled by V. Note that zero-end vectors
of different lengths (e.g., a = (1, 1) and b = (1, 1, 0)) are not captured by Lemma 2. On the other
hand, it does extend to non-zero-end vectors of potentially different lengths (Corollary 1). Looking
ahead, we need Corollary 1 because V does not know the boundaries of instructions/subvectors
whose equality is proven by P in the tight ZK CPU.

Corollary 1. Consider vectors a ∈ Fna , b ∈ Fnb where a[na], b[nb] ̸= 0. If a ̸= b, for χ ∈$ F:

Pr
[
⟨(1, χ, . . . , χna−1),a⟩ = ⟨(1, χ, . . . , χnb−1), b⟩

]
≤ n

|F|

where n ≜ max{na, nb} − 1.
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Functionality FCPZK

FCPZK, parameterized by a field F, proceeds as follows, running with a prover P, a verifier V, and an
adversary S:
Commitments. On receiving (Commit, cid , x) from P where (a) there is no recorded tuple (cid , ·), and
(b) x ∈ F: Record tuple (cid , x) and send (commit, cid) to V and S.
Linear Combination. On receiving (Linear, cid , cid1, . . . , cidk, c0, c1, . . . , ck) from P where (a) there
is no recorded tuple (cid , ·), (b) each cid i∈[k] has a recorded tuple, and (c) c0, . . . , ck ∈ F:

1. Fetch recorded (cid1, x1), . . . , (cidk, xk).
2. Compute x := c0 + c1x1 + · · ·+ ckxk. Record (cid , x).
3. Send (linear, cid , cid1, . . . , cidk, c0, . . . , ck) to V, S.

Open. On receiving (Open, cid) from P where cid has a recorded tuple, fetch (cid , x), send (open, cid , x)
to V and S.
Check. On receiving (Check, C, cid1, . . . , cidn) from P where (a) C : F(n) → F(∗) is an arithmetic
circuit, and (b) each cid i∈[n] has a recorded tuple: Fetch tuples (cid1, x1), . . . , (cidn, xn) and compute

y := C(x1, . . . , xn). If y = 0(∗), send (check, C, cid , true) to V and S; else send (check, C, cid , false) to
V and S.

Figure 3: Ideal functionality for commit-and-prove ZK. Each committed element is associated with
a unique identifier cid . Linear operation allows P to generate a new commitment (associated with
cid) via a public affine function over committed elements.

2.4 Zero-Knowledge Read-Only Memory

Our protocol uses an extended version of FCPZK where parties can access a Zero-Knowledge Read-
Only Memory or ZK ROM (e.g., [DdSGOTV22, FKL+21, YH24]). Namely, ZK ROM allows P
to specify n commitments to initialize a key-value store data structure (K-V store) indexed by
the key k ∈ [n]. Subsequently, given com(i), where i ∈ [n], P and V generate a new commitment
com(x) where x is the i -th committed value in the K-V store. Our protocol uses a restricted (batch-
read) version of ZK ROM formalized in Figure 4. I.e., P is allowed a single ReadROM call, where
P specifies an arbitrarily long vector of ROM indices, possibly with repetitions. This will allow
P to load a sequence of hashes corresponding to the execution path (note, we later introduce a
stronger novel primitive, unbalanced ROM, to load the concatenation of variable-length instruction
vectors, realized in the FCPZK-ROM-hybrid model). [YH24] shows the state-of-the-art realization of
FCPZK-ROM in the FCPZK-hybrid model (see Lemma 3).

Lemma 3 (ZK ROM). Let n = poly(λ),m = Ω(n). There exists a protocol ΠCPZK-ROM that UC-
emulates FCPZK-ROM (Figure 4) in the FCPZK-hybrid model (Figure 3) with the following efficiency
metrics:

• InitROM requires P to only send cid to V, and n + 1 Linear hybrid calls to generate
com(0), . . . , com(n).

• ReadROM requires 2m Commit hybrid calls.

• CheckSet requires 2n Commit hybrid calls, followed by V’s sending 4 uniform elements in F
and a Check hybrid call, where C is dominated by two products each has n+m− 1 MULTs.
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Functionality FCPZK-ROM

FCPZK-ROM, parameterized by a field F, proceeds as follows, running with a prover P, a verifier V and an
adversary S:

CPZK

The functionality supports all instructions of FCPZK.

Read-Only Memory

Initialize ROM. On receiving (InitROM, cid1, . . . , cidn) from P where each cid i∈[n] was recorded: Fetch
(cid1, x1), . . . , (cidn, xn), create a key-value store X where

X[1] := x1, · · · , X[n] := xn

and set from := honest. Send (initrom, cid) to V and S. Ignore subsequent calls to InitROM.

Read ROM. On receiving (ReadROM, cid1, . . . , cidm, y1, . . . , ym, cid
(id)
1 , . . . , cid (id)

m ) from P where
1. InitROM has been executed; and
2. there is no recorded tuple for each (cid i∈[m], ·); and
3. each yi∈[m] ∈ F; and
4. each cid

(id)
i∈[m] was recorded.

Fetch (cid
(id)
1 , id1), . . . , (cid

(id)
m , idm). Record (cid1, y1), . . . , (cidm, ym). If P is honest, ∀i ∈ [m], X[id i] =

yi where id i ∈ [n]. If P is corrupted, set from := cheating when
1. there exists an id i∈[m] /∈ [n], where n is the size of X; or
2. there exists an i ∈ [m] such that X[id i] ̸= yi.

Send (readrom, cid , cid (id)) to V, S. Ignore subsequent ReadROM calls.

Check ROM. On receiving (CheckROM) from P where InitROM and ReadROM were executed: If P is
corrupted and S sends Cheat, set from := cheating. Send (checkrom, from) to V and S.

Figure 4: Ideal functionality for commit-and-prove zero-knowledge allowing proofs that support a
read-only memory. P specifies the result of the ReadROM operation. However, if P∗ provides an
incorrect result, the flag from will be set to cheating.
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(a) Circuit


0 1 0 −1 0 0 0 0 0
3 0 1 0 −1 0 0 0 0
0 0 1 0 0 −1 0 0 0
3 0 1 0 0 0 −1 0 0
0 0 0 0 0 0 0 1 1

×



1
in1

in2

ℓ1
ℓ2
r1
r2
o1
o2


=
(
in1 − ℓ1, 3 + in2 − ℓ2, in2 − r1, 3 + in2 − r2, o1 + o2

)T
= 0

(b) Original topology matrix


1 0 0 0 0
0 1 0 0 0
0 1 3 0 0
0 1 3 0 0
0 0 0 1 1

×


in1

in2

1
o1
o2



=
(
in1, in2, 3 + in2, 3 + in2, o1 + o2

)T
=
(
ℓ1, r1, ℓ2, r2, 0

)T
(c) Refined topology matrix

Figure 5: (a) An arithmetic circuit computing (in1 · in2) + (in2 + 3)2 and its (b) original and (c)
refined topology matrix.

2.5 ZKP via Topology Matrices

Consider a circuit C with nin inputs and n× multiplication gates. Note that a ZKP for C can be sep-
arated into two parts: (1) multiplication gates and (2) linear constraints. Suppose that P commits
to its input com(in1), . . . , com(innin ), and also commits to the values on the 3n× wires associated
with C’s n× multiplication gates. I.e., P commits to com(ℓ1), . . . , com(ℓn×), corresponding to the
multiplication left input wires, to com(r1), . . . , com(rn×), corresponding to the right input wires,
and to com(o1), . . . , com(on×), corresponding to the output wires. The full vector of P’s input and
the multiplication wires (with a constant 1) is called P’s extended witness.

Now, P first proves to V that ℓ ⊙ r = o, demonstrating that its extended witness satisfies
multiplicative constraints. Then, it proves that in , ℓ, r,o indeed respect the linear constraints
imposed by circuit C. Note that since all multiplication gates were handled in the first step, P
simply needs to show its extended witness respects a particular linear relation – i.e. a matrix M .
This public matrix M is induced by the structure of the circuit C, and [YHH+23] refers to M as
a topology matrix. Namely, P proves the following:

M × (1, in, ℓ, r,o)T = 0 (1)

Since in, ℓ, r,o are committed, this equality check can be handled by V’s sending of a uniform
challenge χ ∈$ F where P uses FCPZK to construct a commitment to

(1, χ, . . . , χ2n×)×M︸ ︷︷ ︸
topology vector

× (1, in, ℓ, r,o)T︸ ︷︷ ︸
extended witness

(2)

and then proves to V that this is a commitment to 0. Recall that M is public, so once χ is fixed,
both P and V know (1, . . . , χ2n×)×M (called a topology vector). Thus, it suffices to check whether
the inner product between the topology vector and the extended witness yields 0. Figure 5b shows
an example topology matrix.

Proving batched disjunctions: Batchman [YHH+23]. The above paradigm is an overkill if
we only perform a ZKP for a single public circuit. This is because it is worse than the state-of-
the-art VOLE-based CPZK (e.g. QuickSilver [YSWW21]), which only requires committing in and
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Functionality FZKCPU

FZKCPU runs with a prover P, a verifier V and an adversary S, and is parameterized by a field F, an non-
negative integer m, a positive integer B and B m-instructions (Definition 1) C1, . . . , CB , an initial state

st (0) ∈ Fm and a final state st (final) ∈ Fm. For each i ∈ [B], let m-instruction Ci have n(i)
in inputs and n

(i)
×

multiplication gates. Note that n
(i∈[B])
in ≥ m. W.l.o.g., for each i ∈ [B], assume n

(i)
in −m = n

(i)
× +m + 2

and denote this value as n(i). FZKCPU proceeds as follows:

On receiving (Prove, τ, i1, . . . , iτ , in1, . . . , inτ ) from P where (1) τ is a positive integer (i.e., the private

steps), (2) ij∈[τ ] ∈ [B], and (3) each inj∈[τ ] ∈ Fn
(ij)

in −m (i.e., the inputs except registers), proceed as
follows:

1. Set st := st (0) and f := true. For each j ∈ [τ ] in order:
(a) Let st ′∥f ′ := Cij (st∥inj) where st ′ ∈ Fm, f ′ ∈ F. I.e., st ′ is the updated registers and f ′ is

the checking output.
(b) Set st := st ′. If f ′ ̸= 0 (i.e., invalid checking), set f := false.

2. If st ̸= st (final) (i.e., incorrect final state), set f := false.
3. Let n ≜ n(i1)+ · · ·+n(iτ ). If P is corrupted, S can send (Cheat, n′) where n′ ∈ Z+: Set f := false,

n := n′.
4. Send (prove, f, n) to V and S.

Figure 6: Ideal functionality for a tight ZK CPU.

o. However, this paradigm becomes useful when considering a batch of disjunctions, as observed
by Batchman [YHH+23].

In detail, Batchman [YHH+23] considers B different circuits C1, . . . , CB of the same size. P
wants to repeat the disjunctive proof R times – for each i ∈ [R], she proves that she knows some
witness wi and some index id i ∈ [B] such that Cidi

(wi) = 0. To achieve this, for the i-th repetition,
P commits to her extended witness of only Cidi

. V then issues a uniform challenge χ to compress
B topology matrices to B topology vectors. The crucial step is that, for the i-th repetition, P can
commit to the id i-th topology vector. An extra mechanism is needed to prevent P from committing
to an arbitrary vector that is not a topology vector, which can be built based on a ZK ROM (storing
and then loading vectors’ hashes). Finally, it suffices to show that the inner product between the
extended witness and the topology vector is 0 for each repetition. Batchman can be viewed as a
non-tight ZK CPU (with extra constraints to support registers).

Note, topology matrices (combined with multiplication constraints) support efficient branching,
and thus is a more convenient program representation than, e.g., R1CS [BCG+13], for our setting.

3 Our Target Functionality: FZKCPU

We define the functionality of a tight ZK CPU realized by our protocol. To define a ZK CPU
over F, we need to specify: (1) B ∈ Z+ denotes the number of instructions; (2) m ∈ Z+ denotes
the number of registers; and (3) each instruction (see Definition 1) is defined as a circuit (over F)
mapping ≥ m values to m+ 1 values.

Definition 1 (Instruction). An instruction is a circuit C : Fnin → Fm+1 where nin ≥ m. In
particular, we consider standard fan-in 2 circuits over F with addition and multiplication gates.

11



We call an instruction C : Fnin → Fm+1 a m-instruction, where the first m output wires of C’s
capture the updated CPU registers, and the last wire is a checking output (0 in a valid execution).

In a tight ZK CPU execution, P and V agree on the initial/final state of the m registers (called
the initial/final state), where P demonstrates her ability to execute the initial state to the final state
by a sequence of (potentially repeatedly) instructions. We formalize this functionality in Figure 6
with the following remarks:

1. For each instruction C(i) with n
(i)
× multiplications, n

(i)
in inputs, and m registers, the size of

this instruction is defined as n(i) = n
(i)
in − m = n

(i)
× + m + 2. Essentially, n(i) reflects the

number of the multiplication gates in C(i). We note that our protocol introduces m+2 extra
multiplication gates, which are used to constrain m input registers, the constant 1 input,
and the checking output. The equality can be enforced by simply padding the instruction
with dummy inputs or multiplications. Looking ahead, this equality ensures that the total
execution path length hides the executed instructions.

2. FZKCPU reveals n – the total runtime – to V. Prior non-tight ZK CPUs achieve a similar
functionality where V learns the number of executed instructions τ . We remark that this
implies that V cannot learn τ directly in the tight ZK CPU.

3. In Figure 6, P arbitrarily selects which instructions to execute. In some use cases (e.g., when
emulating real-world CPUs), P’s chosen instructions should be constrained by the current
register state. For example, a program counter register might dictate which instruction runs
next. Such constraints can be captured by each instruction’s checking output wire, which
must be 0 in a valid proof (see Sub-step 1b).

4. FZKCPU only supports limited state (i.e., up to m registers) to be passed between instructions.
Perhaps surprisingly, we show that by introducing 5 special registers and 2 extra rounds, our
protocol can natively support a large (poly-size in λ) read-write random access memory
(see Section 6.2).

4 Technical Overview

In this section, we provide a technical overview of our tight ZK CPU protocol. Full formalization
and detailed cost analysis are postponed to subsequent sections. We refer the reader to Section 1.3
for a high-level intuition. The main steps to achieve our target ideal functionality FZKCPU (Figure 6)
are outlined as follows.

FCPZK-ROM
Sections 4.4 and 5

=⇒ FCPZK-UROM
Sections 4.3 and 5

=⇒ FZKCPU

4.1 Boundary Strings and Helper Notation

Recall our discussion from Section 1.3 regarding a 0-1 vector of field elements used by our protocol,
denoted as a boundary string. This section formally defines the boundary strings and introduces
useful notations for demonstrating how these strings will be used.

For a vector p ∈ Fn where n ∈ Z+, we say that p is a boundary string if and only if p ∈
{0, 1}n−1∥1. We note that it is efficient to check whether com(p) commits to a valid boundary
string. Namely, given com(p), P opens pn to prove it is 1, and P proves p⊙ (1− p) = 0 (i.e., each
pi∈[n] is either 0 or 1).
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We use HW(p) to denote the Hamming weight of a boundary string. I.e., the number of ones in
p. We now introduce two functions Partition and Filter that we use as analysis tools. We emphasize
that we never run these functions inside ZK.

Partition. Consider a length-n boundary string p. p specifies a partition of a length-n vector v
into HW(p) subvectors. We define a function Partition:

p = (

n1︷ ︸︸ ︷
0, . . . , 0, 1,

n2︷ ︸︸ ︷
0, . . . , 0, 1,

n3︷ ︸︸ ︷
0, . . . , 0, 1, . . .),v ∈ Fn

⇒Partition(p,v) =
(
v(1), . . . ,v(HW(p))

)
such that

v(1) = (v1, . . . , vn1),v
(2) = (vn1+1, . . . , vn1+n2), · · ·

Filter. A length-n boundary string p also specifies a way to filter a length-n vector v into a
length-HW(p) vector. We define a function Filter:

p = (

n1︷ ︸︸ ︷
0, . . . , 0, 1,

n2︷ ︸︸ ︷
0, . . . , 0, 1,

n3︷ ︸︸ ︷
0, . . . , 0, 1, . . .),v ∈ Fn

⇒Filter(p,v) = (vn1 , vn1+n2 , vn1+n2+n3 , . . . , vn)

Expanding random challenges. In our protocol, V will issue random challenges, which will be
composed with P’s chosen boundary string. We consider two ways to compose these:

1. For some public challenge χ ∈ F, let s1 ≜ 1, and for each i ∈ [n − 1] in order, let si+1 :=
si(1− pi) + χipi. That is,

p = (

n1︷ ︸︸ ︷
0, . . . , 0, 1,

n2︷ ︸︸ ︷
0, . . . , 0, 1,

n3︷ ︸︸ ︷
0, . . . , 0, 1, . . .)

⇒s = (1, . . . , 1︸ ︷︷ ︸
n1

, χn1 , . . . , χn1︸ ︷︷ ︸
n2

, χn1+n2 , . . . , χn1+n2︸ ︷︷ ︸
n3

, . . .)

We denote this procedure by s ≜ Expand1(p, χ).

2. For some public challenge γ ∈ F, let s1 ≜ 1, for each i ∈ [n−1] in order, let si+1 := γsi(1−pi)+pi.
That is,

p = (

n1︷ ︸︸ ︷
0, . . . , 0, 1,

n2︷ ︸︸ ︷
0, . . . , 0, 1,

n3︷ ︸︸ ︷
0, . . . , 0, 1, . . .)

⇒s = (1, γ, . . . , γn1−1, 1, γ, . . . , γn2−1, 1, γ, . . . , γn3−1, . . .)

We denote this procedure by s ≜ Expand2(p, γ).

Starting from com(p), we can compute commitments to the above compositions (i.e., com(s)) each
via a circuit with n− 1 MULTs.
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4.2 More Powerful Topology Matrices

This section includes how we adjust and optimize the definitions of the topology matrices (discussed
in Section 2.5) for our setting.

We first introduce a ≈ 2× optimization to the topology matrix/vector of [YHH+23] (see Fig-
ure 5c). Note that the order of the multiplication inputs in the [YHH+23] topology matrix is
fixed (e.g., in Figure 5b, this order is ℓ1, ℓ2, r1, r2, 0). Based on this observation, there is no need to
include the constraints of these fixed order wires internally in the topology matrix (see Figure 5c,
refined topology), reducing its size in roughly two and achieving corresponding improvement.

However, neither the topology matrix format of [YHH+23] nor the above improvement are suited
to our setting because their verifier knows the instruction boundaries, and hence, explicit routing of
registers and other wires into instruction entry points is allowed. We must hide this topology from
V. To facilitate this, we further rearrange the topology matrices of instructions of our ZK CPU
(Figure 6). In particular, constants 0 and 1 and instruction (register or non-register) inputs are
not processed in a distinguished manner but rather treated like outputs of regular multiplication
gates. (We unify constant wires, input, and multiplication gates into a universal gate.) Formally,
we use the following topology matrix equation:

M × (in1, o1, . . . , inn, on)
T = (ℓ1, r1, . . . , ℓn, rn)

T (3)

Here, n reflects the size of a m-instruction as a circuit C and we define n = nin −m = n× +m+ 2
(see Section 3 especially remark 1). Looking ahead, P will privately order committed ℓ ⊙ r = o,
starting from 1 · 1 = 1 (to capture 1 in the extended witness), followed by m registers, then n×
multiplication tuples in C, and ending with 1 · 0 = 0 (to capture the checking output).

Notice that in Equation (3), P’s extended witness (or, rather, its topology meta information)
is now compositional in the sense that if we were to simply concatenate (committed) vectors from
two different instructions, we would obtain new vectors of the same form. As we will see next
(Section 4.3), a similar form of composition applies to topology matrices (and hence topology
vectors), and this enables us to hide from V the boundaries between instructions.

4.3 Reducing a Tight ZK CPU to a ZK UROM

This section overviews how a tight ZK CPU can be reduced to a so-called ZK UROM functionality.
We consider a tight ZK CPU with B instructions C1, . . . , CB, each of (potentially) different size,
where P wishes to execute C1 followed by C2 (i.e., C2 ◦ C1), as an example.

4.3.1 Special Case: No Registers

For simplicity, let us start by considering a special case where our CPU has no registers for passing
data between instructions (i.e., m = 0). Recall that, w.l.o.g, for each Ci∈[B], we assume n(i) =

n
(i)
in = n

(i)
× + 2 where Ci has n(i)

in inputs, n
(i)
× multiplications.

Suppose P wishes to first execute C1, then execute C2. V should only learn n = n(1)+n(2), and V
learns neither how many instructions, nor which instructions are executed (unless such information
is implied by n). Now, imagine a larger circuit C that expresses the composition C2 ◦ C1. In
particular, C can be described by simply concatenating the gate-by-gate description of C1 and C2
and appropriately shifting the names (indexes) of C2’s gates and wires by n(1). A key observation
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is that the topology matrix for C can be constructed by combining the topology matrices for C1
and C2:

M =

(
M (1) 0

0 M (2)

)
∈ F2n×2n, n ≜ n(1) + n(2) (4)

where M (1) (resp. M (2)) is the topology matrix induced by C1 (resp. C2). Our approach hides C
(and M) from V, even though each M (i∈[B]) and n is public. For this simple case, our proof would
proceed as follows:

1. P commits to n inputs in and n MULT tuples ℓ, r,o in the order described by Equation (3)
(and proves ℓ⊙ r = o).

2. P proves that the first MULT output of both subcircuits is 1 and that both circuits check to
0:

o1 = on(1)+1 = 1 and on(1) = on(2) = 0

3. P proves in ZK that the committed values and M satisfy Equation (3). To achieve this, V
issues a uniform challenge χ and P proves in ZK that:

topology vector c︷ ︸︸ ︷
(1, χ, . . . , χ2n−1)×M ×

committed︷ ︸︸ ︷
(in1, o1, . . . , inn, on)

T

=(1, χ, . . . , χ2n−1)︸ ︷︷ ︸
public

× (ℓ1, r1, . . . , ℓn, rn)
T︸ ︷︷ ︸

committed

To achieve the above steps while hiding C (and M), P commits to two additional vectors. The
first is an appropriate boundary string (see Section 4.1) p:

p ≜

n(1)−1︷ ︸︸ ︷
0, . . . , 0, 1,

n(2)−1︷ ︸︸ ︷
0, . . . , 0, 1

The second vector id places the index of each branch at that branch’s boundary, and elsewhere P
fills the vector with any values in [B]:

id ≜

n(1)−1︷ ︸︸ ︷
any values in [B], 1,

n(2)−1︷ ︸︸ ︷
any values in [B], 2

Looking ahead, these branch IDs will be used as indices to load instruction hashes from a ZK
ROM (entries not on boundaries are dummy indices). The definition of id implies that Filter(p, id)
outputs a vector of branch IDs (see Section 4.1 for Filter’s definition). Informally, p and id jointly
form a commitment to a particular execution path.

At a high level, our protocol leverages p and id to cheaply express Steps 2 and 3 as ZK
constraints. In detail:

1. Step 1 only depends on n and is independent of M . P commits to her inputs and to well-
formed MULT tuples.

2. Step 2 can be performed by checking the constraints:
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(a) p ∈ {0, 1}n−1∥1. I.e., p is a boundary string.

(b) If pi∈[n] = 1, oi must be 0.

(c) o1 = 1, and if pi∈[n−1] = 1, oi+1 must be 1.

The above constraints can be checked very efficiently.

3. To perform Step 3, V cannot construct the topology vector c, as M is private. Instead, our
protocol requires that P commits to c. Of course, P might attempt to cheat, so we need
extra checks that ensure com(c) is properly constructed and is consistent with p and id . We
will soon show how this can be achieved via a so-called ZK unbalanced ROM (Section 4.4).
For now, simply assume that P commits to the vector:

c =(1, χ, . . . , χ2n−1)×M

Crucially, private M has a special structure – it has square matrices on the diagonal and 0s
elsewhere. In particular, these square matrices are determined and ordered by the private
execution path. I.e., it (in order) includes M (j) for each j ∈ Filter(p, id) in order. Note that
each M (i∈[B]) is public. Finally, once we have com(c), it suffices to show that:

⟨c, (in1, o1, . . . , inn, on)⟩ = ⟨(1, . . . , χ2n−1), (ℓ1, r1, . . . , ℓn, rn)⟩

4.3.2 Handling Constant 1

Recall that the first MULT gate in each instruction should output 1 defined as 1 · 1 = 1, enabling
that instruction to manipulate the constant 1. As a remark, it is surprisingly difficult to incorporate
constants in our approach, because our constraint systems are merely linear (and not affine) over
F. Sub-step 2c forces that the output of the first MULT gate is 1. Here, we show an optimized way
to ensure that the output of this MULT is 1 for free by directly constraining its inputs. Our idea
is to pass the constant 1 from one instruction to the next and, looking forward, this same handling
will be used to enable the passing of m registers.

A näıve (failing) attempt to pass a 1 into an instruction would be to have a fixed wire of C
carrying 1, to which each instruction can refer. However, we are working with a fixed instruction
set (and we check hashes of executed instructions against the corresponding set of hashes). Infor-
mally, we could make an instruction reference a fixed wire in C, outside of itself. However, due
to our use of topology matrices, under the hood (i.e., in the supporting matrix algebra) such an
instruction will access this wire via an offset to its own position on the execution path, resulting
in a unique instruction (topology matrix) hash. Such an instruction cannot be checked against the
fixed instruction set (IS).

Thus, our instructions cannot refer to wires by their absolute position, but they can refer to wires
via a fixed offset relative to their own position on the execution path. Indeed, our solution, at the
high level, is for each instruction to “push forward” a 1 wire to the next instruction. This is possible
because each instruction knows its own length, and can set up the corresponding constraint for the
next instruction. Each instruction Ci∈[B] has a fixed offset to access (enforce) input constraints (via
left/right wires of MULTs) of the next instruction. Thus, Ci∈[B]’s topology matrix (and hence hash)
will be the same anywhere on the execution path. The very first instruction can pick up the 1 from
a designated wire of C.
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This cleanly translates into our matrix representation. Let us go through our concrete example
of P proving a circuit C consisting of C1 followed by C2. Formally, the entire proof will be based on
a (slightly) updated equation:

M × (1, in1, o1, . . . , inn, on)
T

= (ℓ1, r1, . . . , ℓn, rn, 1, 1)
T

∣∣∣∣∣∣∣∣∣ M ≜


1 0 0
1 0 0

0 M
(1)
∗ 0

0 0 M
(2)
∗



where each M
(i∈[B])
∗ =


M (i)(3)

· · ·
M (i)(2n(i))
0 1 0 · · ·
0 1 0 · · ·

 is public. (Here M
(i∈[B])
∗ omits the first two constraints of

M (i∈[B]), which define left/right wires of a MULT generating 1. As a complement, the last two

rows of M
(i∈[B])
∗ constrain the next instruction’s left/right wires of the MULT generating 1.2) The

IS will consist of B instructions M
(i∈[B])
∗ .

Crucially, while M is private, the first two rows of M are fixed and public. We need to
construct the vector commitment of (1, χ, . . . , χ2n+1)×M = (1+χ)∥(χ2(1, . . . , χ2n−1)×M∗), where

M∗ =

(
M

(1)
∗ 0

0 M
(2)
∗

)
. Hence, it suffices to construct the commitments of (1, . . . , χ2n−1) × M∗,

the problem discussed in Step 3 of Section 4.3.1 and postponed to Section 4.3.4.
Similarly to our importing a 1 = 1·1 into an instruction, we will import registers via reg = 1·reg:

4.3.3 Supporting Registers

Extending our idea of passing 1, we support register passing between two adjacently executed
instructions. We view each register as a MULT, where the previous instruction defines MULT’s
left/right wires. The translation of this into the matrix representation is similar to our handling
of 1 · 1 = 1. Consider the case with a single register as a simple example (the order of gates
follows Section 4.3.1). We can (re)define the public matrix

M (i) ≜



define ℓ3
define r3

· · ·
define ℓ

n
(i)
× +2

define r
n
(i)
× +2

0 1 0 · · · (define 1)
define checking output
0 1 0 · · · (define 1)
0 1 0 · · · (define 1)
0 1 0 · · · (define 1)
define first register



∈ F2n(i)×2n(i)
(5)

2The first MULT ℓ1 · r1 = o1 must be 1 · 1 = 1 as ℓ1 = r1 = ⟨(1, in1, . . .), (1, 0, . . .)⟩ = 1.
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for each i ∈ [B]. Here, the last two rows of M (i) set the first register (as inputs to a MULT of the
next instruction). The prior two rows similarly set a 1 for the next instruction.

Now, suppose P wants to prove the execution of C1 followed by C2, where the register is initialized
to x as C’s input and stores y as C’s output (x, y are public). P can commit n = n(1) + n(2) inputs
and MULT tuples and show:

M × (1, x, in1, o1, . . . , inn, on)
T

= (ℓ1, r1, . . . , ℓn, rn, 1, 1, 1, y)
T

∣∣∣∣∣∣∣∣∣∣∣
M ≜


1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 M (1) 0
0 0 0 M (2)


M is private but P and V can obtain the commitment of (1, χ, χ2, . . .) ×M by constructing the

commitment of (1, . . . , χ2n−1)×
(
M (1) 0

0 M (2)

)
(discussed next).

4.3.4 Committing to the Topology Vector

We now show how P and V can construct com(c), a crucial task postponed from Section 4.3.1.
The methodology applies to Sections 4.3.2 and 4.3.3. We explain it on the special case of two
instructions C2 ◦ C1; our discussion applies generally. We exploit the following equality:

c =(1, χ, . . . , χ2n−1)×M

=(1, . . . , χ2n(1)−1)×M (1)∥(χ2n(1)
, . . . , χ2n(1)+2n(2)−1)×M (2)

=(1, . . . , χ2n(1)−1)×M (1)∥χ2n(1) · (1, . . . , χ2n(2)−1)×M (2)

=

a ≜ (1, . . . , 1︸ ︷︷ ︸
2n(1)

,

2n(2)︷ ︸︸ ︷
χ2n(1)

, . . . , χ2n(1)
)

⊙

b ≜ (1, χ, . . . , χ2n(1)−1︸ ︷︷ ︸
2n(1)

)×M (1)∥(1, χ, . . . , χ2n(2)−1︸ ︷︷ ︸
2n(2)

)×M (2)


Hence, to construct com(c), it suffices to construct com(a) and com(b). Note, a is a structured
vector based on χ and p (see Section 4.1, Expand1). We only need to construct com(b), and the
crucial observation is the following vectors are public:

∀i ∈ [B],v(i) ≜ (1, χ, . . . , χ2n(i)−1)×M (i)

The functionality we need is to “load” from unbalanced ROM then “concatenate” v(1) and v(2).
This can be viewed as

1. P and V agree on an unbalanced read-only memory (ROM) storing (public) entries:

(1,v(1)), . . . , (B,v(B))

2. P and V load-concatenate v(i∈[B])s where the ordered indexes are decided by Filter(p, id).
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Note that these vectors saved in ROM are randomized by V’s uniform challenge sent after p and
id have been committed. As are instructions, these vectors are of different lengths. We capture
this as a (more generic and novel) hybrid functionality ZK Unbalanced ROM (ZK UROM) and
include the overview in Section 4.4. Crucially, the access cost of our ZK UROM is proportional to
the length of the data retrieved – this is needed to meet our tight efficiency budget.

4.4 ZK Non-Zero-End Unbalanced ROM

This section overviews how to reduce a ZK UROM to a ZK ROM.
We observe that it suffices to design a ZK UROM supporting only non-zero-end vectors. This

simplifies our task, enabling concise soundness checks based on Corollary 1, and can always be
achieved, e.g., by padding. (We later show that padding is not needed for us.)

In ZK non-zero-end UROM, P and V agree on a set of key-value tuples (1,v(1)), . . . , (B,v(B)),
where v(i∈[B]) are non-zero-end vectors in F that can have different lengths. The objective is
allowing P to commit to a vector v, a concatenation of several v(i∈[B])s, e.g., v ≜ v(1)∥v(2)∥v(1).
Crucially, V should only learn n ≜ |v| and be convinced that v is a concatenation of vectors from
UROM. Prior work (e.g., [YH24], on which we build) only considers ZK ROM over vectors of equal
length (see Section 2.4).

Our ZK UROM protocol works in the commit-and-prove paradigm. I.e., we require P to directly
commit to v and prove in ZK that v is a valid concatenation. To support this proof, P additionally
commits how she wants to partition v. That is, P commits a length-n boundary string p and a
length-n vector id ∈ [B]n such that for each x ∈ Filter(p, id) and y ∈ Partition(p,v) pair (total
HW(p) pairs, unknown to V) in sequence, y = v(x).

To begin with, consider a simplified single-read task: P commits a vector w and a single index t
and wants to prove thatw = v(t). This can be checked by V issuing a uniform challenge γ ∈ F where
parties agree on another balanced ROM storing K-V tuples: (1,mac(1)), . . . , (B,mac(B)) where
mac(i) ≜ (1, γ, γ2, . . .)×v(i) ∈ F for each i ∈ [B]. Now, by accessing the ZK ROM (see Section 2.4),
parties convert com(t) into com(mac(t)). Then, it suffices to show:

1. last(w) ̸= 0. This can be proved by requiring P to commit a value inv and show that
last(w) · inv = 1.

2. ⟨(1, γ, γ2, . . .),w⟩ = mac(t). This can be proved by opening com(⟨(1, γ, γ2, . . .),w⟩ −mac(t))
(which should be 0). Note that γ is public and parties hold com(w), com(mac(t)).

Soundness is reduced to Corollary 1 as P is prevented by Step 1 from appending the returned
vector with zeros.

Our ZK UROM protocol generalizes the above idea to v with the help of committed p and id.
In particular, since p already marks where each subvector ends, and the corresponding committed
id includes the index of each subvector, we can perform the above checks only at the position where
pi = 1. That is, P and V perform a check for each position, but checks in positions where pi = 0
are dummy. Formalizing the above, we outline our protocol:

1. V issues a uniform challenge γ ∈ F where P and V agree on another balanced ROM storing
K-V tuples {(i,mac(i))}i∈[B] where (public) mac(i) ≜ (1, γ, γ2, . . .)× v(i) for each i ∈ [B].

2. P and V generate committed “selected macs” com(smac) by “reading” single-element ZK
ROM (see Section 2.4) initialized bymac(1), . . . ,mac(B) at positions id, where each smaci∈[n] =

mac(idi). We remark that id is fixed before γ.
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3. P and V generate commitment of the structured vector s based on γ and p via Expand2
(see Section 4.1):

p = (

n1︷ ︸︸ ︷
0, . . . , 0, 1,

n2︷ ︸︸ ︷
0, . . . , 0, 1,

n3︷ ︸︸ ︷
0, . . . , 0, 1, . . .)

⇒s = (1, γ, . . . , γn1−1, 1, γ, . . . , γn2−1, 1, γ, . . . , γn3−1, . . .)

4. P proves that for each pi∈[n] = 1, it holds vi ̸= 0. (I.e., each segment ends non-zero.) This
corresponds to the check in Step 1 of the single-read task. This can be performed by requiring
P to commit to another length-n vector inv where

inv i = (vi)
−1 if pi = 1; inv i = 0 otherwise

P then shows that inv ⊙ v − p = 0.

5. P proves that for each a ∈ Partition(p, s), b ∈ Partition(p,v), c ∈ Partition(p, smac) (in
order, total HW(p) tuples), ⟨a, b⟩ = last(c). This corresponds to the check in Step 2 of the
single-read task. This can be performed by proving:

∀i ∈ [n], pi · (⟨s[: i],v[: i]⟩ − ⟨p[: i], smac[: i]⟩) = 0

Note, the above equality trivially holds for all pi = 0. Moreover, when pi is equal to 1,
both ⟨s[: i],v[: i]⟩ and ⟨p[: i], smac[: i]⟩ are accumulating the sum of macs used so far.
Importantly, P and V do not compute these sums for each position separately, which incurs
quadratic overhead. Rather, they accumulate a running total, which is being checked at each
step. Thus, the total complexity of this check is linear.

4.4.1 Using ZK UROM with Topology Vectors

Recall, our protocol for ZK CPU is reduced to a ZK UROM, where the data are the instructions’
topology vectors. In the course of this reduction, P and V generate commitments to p and id
(see Section 4.3). We need these commitments for the operation of UROM as well. The low-
level format of these vectors is different from what UROM needs: while the vectors, as described
in Section 4.3 manage gates, UROM needs to account for two wires for each of these gates. This
discrepancy is easily reconciled (by inserting 0 to p and replicating id), and we can work with a
single copy of p and id .

A more subtle issue is that each topology vector ends with 0. This is because the last column
of a topology matrix denotes the contribution of the last output of the instruction to each wire.
Note that the last output represents the checking output of the instruction, which is not an input
of any wire, resulting in the all-0 last column of the topology matrix (ultimately producing the
0-end topology vector). This does not fit the non-zero-end requirement!

While this can be resolved by appending 1, we resolve it more efficiently as follows. Since the
checking output in a valid instruction is 0, we simply add it into the instruction’s first (left) wire.
This does not change the function of the instruction, and guarantees that the last column now has
a single leading 1. This modification will make each topology vector end with 1. Further, in our
proof we need to invert the last position of each topology vector; having set it to 1 optimizes this
task. Namely, the vector inv committed by P in Step 4 is precisely the boundary string p.

20



5 Formalization

This section formalizes our approach. See Section 4 for a detailed overview of our approach.

5.1 Ideal ZK Non-Zero-End UROM: FCPZK-UROM

We define the ideal functionality for CPZK with a single read-only memory for unbalanced, non-
zero-end vectors, denoted FCPZK-UROM and presented in Figure 7. FCPZK-UROM is defined similarly
to FCPZK-ROM. The main difference is that FCPZK-UROM allows P to initialize the UROM with
different-length vectors (via InitUROM). Furthermore, FCPZK-UROM allows P to read a length-n
vector d from the UROM (via ReadUROM). Vector d must partition into subvectors where each
subvector is a UROM entry. Before calling ReadUROM, P can choose the content it wishes to read
via SetProg. This choice is encoded by length-n vectors p and id , where p is the boundary string
encoding how P wishes to partition d and Filter(p, id) is the (ordered) set of indices P wishes to
read.

5.2 Our Protocols: ΠCPZK-UROM and ΠZKCPU

Recall that our tight ZK CPU protocol is designed in the FCPZK-UROM-hybrid model, and our
ZK UROM protocol is designed in the FCPZK-ROM-hybrid mode; see Section 4. We formalize our
protocols as ΠCPZK-UROM (Figures 8 and 9) and ΠZKCPU (Figures 10 and 11).

We state the security theorems regarding these two protocols. In this section, we provide only
a proof sketch for each theorem for readability. The complete proofs are deferred to Appendix A.

Theorem 1. Let the UROM be initialized with B non-zero-end vectors where each i-th vector is of
length-n(i). Let the read-out vector be of length-n. Then, protocol ΠCPZK-UROM (Figures 8 and 9)
UC-realizes FCPZK-UROM (Figure 7) in the FCPZK-ROM-hybrid model (Figure 4) with soundness error
max{n,n(1),...,n(B)}−1

|F| and perfect zero-knowledge, in the presence of a static unbounded adversary.

Proof Sketch. The proof is performed by constructing the simulator S. Note that the instructions
related to the CPZK part in FCPZK-UROM are the same as FCPZK-ROM (see the “CPZK” box in
FCPZK-UROM and FCPZK-ROM; note this is not the ZK property). Thus, the simulation for these in-
structions is straightforward. Here, we only focus on constructing the simulator for the instructions
in the unbalanced non-zero-end read-only memory part.

For these instructions, we need to show completeness (trivial, omitted); soundness (constructing
S for P∗); and Zero-Knowledge (constructing S for V∗).

Zero-Knowledge, S for V∗: Note that the simulator for a malicious V∗ is trivial. This is
because (1) P has no output, and (2) V∗ in the real-world execution only receives some commitment
IDs (i.e., cids). In particular, these cids are revealed by the FCPZK-UROM to S. (Indeed, V∗ also
receives some output from the Check call, but the result is always true.) I.e., the simulation is
perfect.

Soundness, S for P∗: For a malicious P∗, the simulator S interacts with FCPZK-UROM, runs
P∗ as a subroutine, and emulates the hybrid FCPZK-ROM for her. In particular, the simulator will
emulate a real-world honest V interacting with P∗. As V has no input, S can trivially emulate him.
Crucially, S can trivially extract P∗ inputs (i.e., the witness) to each instruction of FCPZK-ROM. If
the emulated V outputs cheating, S sets the flag in FCPZK-UROM to output cheating to the ideal
V; otherwise, S simply sends the extracted inputs to FCPZK-UROM.
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Functionality FCPZK-UROM

FCPZK-UROM, parameterized by a field F, proceeds as follows, running with a prover P, a verifier V and an
adversary S:

CPZK

The functionality supports all instructions of FCPZK.

Unbalanced Non-Zero-End Read-Only Memory

Initialize UROM. On receiving (InitUROM,u (1), . . . ,u (B)) from P, where for each u (i∈[B]) =

(u
(i)
1 , . . . , u

(i)

n(i)), each u
(i∈[B])

j∈[n(i)]
is recorded as a cid (i.e., the unbalanced vectors were committed):

1. For each i ∈ [B], fetch (u
(i)
1 , x

(i)
1 ), . . . , (u

(i)

n(i) , x
(i)

n(i)) and let x(i) := (x
(i)
1 , . . . , x

(i)

n(i)). Halt if last(x(i)) =

0. (last(x(i)) must be a non-zero element if P is honest.)

2. Create a key-value store X where

X[1] := x(1), · · · , X[B] := x(B)

and set furom := honest.

3. Send (initurom,u (1), . . . ,u (B)) to V and S.

Ignore the subsequent calls to InitUROM.

Set Program. On receiving (SetProg, cid (p), cid (id)) from P where |cid (p)| = |cid (p)| = n ∈ Z+ and

each cid
(p)
i∈[n], cid

(id)
i∈[n] was recorded: Fetch (cid

(p)
i , pi), (cid

(id)
i , id i) for each i ∈ [n]. Record p and id .

If p ∈ {0, 1}n−1∥1, send (setprog, cid (p), cid (id)) to V and S; otherwise, halt the functionality. (If P
is honest, p must be a length-n boundary string, i.e., p ∈ {0, 1}n−1∥1.) Ignore the subsequent calls to
SetProg.

Read UROM. On receiving (ReadUROM, cid (d),d) from P where (1) InitUROM and SetProg were exe-

cuted; (2) |cid (d)| = |d| = |p| = |id | = n; (3) there is no recorded tuple for each cid
(d)
i∈[n]; and (4) each

di∈[n] ∈ F: Record tuples (cid
(d)
1 , d1), . . . , (cid

(d)
n , dn).

1. If P is honest, id ∈ [B]n.

2. If P is corrupted, set furom := cheating when there exists some i ∈ [n] such that id i /∈ [B].

For each x ∈ Partition(p,d), y ∈ Partition(p, id) pair in order (there are HW(p) pairs in total):

3. If P is honest, last(x) ̸= 0 and X[last(y)] = x.

4. If P is corrupted, set furom := cheating when:

last(x) = 0 or X[last(y)] ̸= x

Send (readurom, cid (d)) to V, S. Ignore subsequent ReadUROM calls.

Check UROM. On receiving (CheckUROM) from P where ReadUROM was executed: If P is corrupted and
S sends Cheat, set furom := cheating. Send (checkurom, furom) to V and S.

Figure 7: Ideal functionality for commit-and-prove zero-knowledge allowing proofs that support a
read-only memory for unbalanced non-zero-end vectors.
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Protocol ΠCPZK-UROM

The protocol is parameterized by finite field F. All instructions of the CPZK part are handled by FCPZK-ROM in

the natural way.

Intialize UROM. P selects vectors (commitments) to initialize UROM. In particular, P proves that each initial

vector is non-zero-end.

1. P generates B fresha cids as cid (li). P sends (a) (Commit, cid
(li)
i , li i) for each i ∈ [B] to FCPZK-ROM, where

αi is the element committed by last(u(i)) and li i := Inverse(αi); (b) (Check, Ccheck
0 , last(u(i∈[B])), cid (li)) to

FCPZK-ROM, where Ccheck
0 is a circuit with two length-B inputs α, li that outputs αi · li i − 1 for each i ∈ [B];

and (c) (InitUROM,u(1), . . . ,u(B)) to V.

2. V on receiving (InitUROM,u(1), . . . ,u(B)) from P: For each u(i∈[B]) = (u
(i)
1 , . . . , u

(i)

n(i)), V checks

if each u
(i)

j∈[n(i)]
exists as a cid (from previous FCPZK-ROM’s (commit, ·) or (linear, ·) messages). If

so, then V checks if he receives (a) (commit, cid
(li)
i ) for each i ∈ [B] from FCPZK-ROM; and (b)

(check, Ccheck
0 , last(u(i∈[B])), cid (li), true) from FCPZK-ROM

b. If not, V halts; otherwise, V outputs

(initurom,u(1), . . . ,u(B)), marks initurom as being executed, and ignores the subsequent InitUROM mes-

sages.

Set Program. P commits the boundary string p, and the vector id encoding the execution path at each position

where p[i] = 1.

3. P sends (a) (Open, cid
(p)
n ) to FCPZK-ROM; (b) (Check, Ccheck

1 , cid
(p)
1 , . . . , cid

(p)
n−1) to FCPZK-ROM, where Ccheck

1 is

a circuit with n− 1 inputs p1, . . . , pn−1 that outputs p⊙ (1− p); and (c) (SetProg, cid (id)) to V.

4. V on receiving (SetProg, cid (id)) from P, where |cid (id)| = n ∈ Z+ and each cid
(id)

i∈[n] exists as a cid : If

V does not receive (a) (open, cid
(p)
n , 1) from FCPZK-ROM or (b) (check, Ccheck

1 , cid
(p)
1 , . . . , cid

(p)
n−1, true) from

FCPZK-ROM
b, V halts; otherwise, V outputs and records (setprog, cid (p), cid (id)), marks setprog as being

executed, and ignores the subsequent SetProg messages.

Read UROM. P directly commits the reading results as d (and later proves that she does not cheat).

5. For each i ∈ [n], P sends (Commit, cid
(d)
i , di) to FCPZK-ROM; and (b) (ReadUROM) to V.

6. V on receiving (ReadUROM) from P, V ignores the messages if initurom or setprog has not been executed.

Otherwise, let |cid (p)| = |cid (id)| = n ∈ Z+. For each i ∈ [n], V obtains (commit, cid
(d)
i ) from FCPZK-ROM.

V outputs and records (readurom, cid (d)), marks readurom as being executed, and ignores the subsequent

ReadUROM messages.

aWe assume these cids will not be used in the future as the inputs from the environment E to avoid trivial
distinguisher.

bNote that V also checks that the circuit is constructed correctly with expected commitments as inputs. In
particular, V can notice P’s abort.

Figure 8: The protocol of CPZK with a single ROM for unbalanced non-zero-end vectors in the
FCPZK-ROM-hybrid model.
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Protocol ΠCPZK-UROM (Cont.)

Check UROM. P sends (CheckUROM) to V. V ignores the message if readurom has not been executed. Otherwise,

P and V retrieve u(i∈[B]) and cid (p,id,d), where |u(i∈[B])| = n(i) and |cid (p)| = |cid (id)| = |cid (d)| = n. P also

retrieves p, id ,d ∈ Fn. Proceed:

7. P convinces V that for each x ∈ Partition(p,d), the last(x) ̸= 0:

(a) P generates n fresha cids as cid
(inv)
1 , . . . , cid

(inv)
n . For each i ∈ [n], P sends

(Commit, cid
(inv)
i , Inverse(di)) to FCPZK-ROM if pi = 1; P sends (Commit, cid

(inv)
i , 0) to FCPZK-ROM if

pi = 0. P further sends (Check, Ccheck
2 , cid (inv), cid (d), cid (p)) to FCPZK-ROM where Ccheck

2 is a circuit

with three length-n inputs inv ,d,p that outputs inv i · di − pi for each i ∈ [n].

(b) If V does not receive (i) n (commit, ·) messages for each cid
(inv)

i∈[n]; or (ii)

(check, Ccheck
2 , cid (inv), cid (d), cid (p), true) from FCPZK-ROM

b, V outputs (checkurom, cheating)

and aborts.

8. P convinces V that (a) id ∈ [B]n and (b) for each x ∈ Partition(p,d), y ∈ Partition(p, id) pair in

order, x is exactly the vector committed by u(last(y)): V samples a uniform challenge γ ∈$ F and

sends it to P. Then proceed as follows:

(a) Generate committed single-element MAC of each vector committed by u(i∈[B]) by poly-

nomial evaluation at γ: For each i ∈ [B], P generates fresha cid as cid
(mac)
i , then P sends

(Linear, cid
(mac)
i ,u(i), 0, 1, γ, . . . , γn(i)−1) to FCPZK-ROM. For each i ∈ [B], if V does not receive

(linear, cid
(mac)
i ,u(i), 0, 1, γ, . . . , γn(i)−1) from FCPZK-ROM (Note that V already knows u(i)), V out-

puts (checkurom, cheating) and aborts. Otherwise, V records cid (mac).

(b) P uses (hybrid) single-element ZK ROM to construct a length-n vector of selected MACs

by committed id :

i. P sends (InitROM, cid (mac)) to FCPZK-ROM. If V does not receive (initrom, cid (mac)) from

FCPZK-ROM (Note that V already knows cid (mac)), V outputs (checkurom, cheating) and aborts.

ii. P generates n fresha cids as cid
(smac)
1 , . . . , cid

(smac)
n . For each i ∈ [n], P sets smaci :=

mac[id i]. P then sends (ReadROM, cid (smac), smac, cid (id)) to FCPZK-ROM. If V does not receive

(readrom, cid (smac), cid (id)) from FCPZK-ROM (Note that V already knows cid (id)), V outputs

(checkurom, cheating) and aborts. V records cid (smac).

iii. P sends (CheckROM) to FCPZK-ROM. If V does not receive (checkrom, honest) from FCPZK-ROM, V
aborts with (checkurom, cheating).

(c) P convinces V that the committed smac at pi∈[n] = 1 are indeed equal to (1, γ, γ2 · · · )×xT

for each x ∈ Partition(p,d):

i. P sends (Check, Ccheck
3 , cid (d), cid (p), cid (smac)) to FCPZK-ROM, where Ccheck

3 is a circuit with inputs

d,p, smac that outputs: pi · (
∑i

j=1 dj · sj −
∑i

j=1 pj · smacj) for each i ∈ [n] where s ≜
Expand2(p, γ) (defined in Step 2 of Section 4.1).

ii. If V does not receive the message (check, Ccheck
3 , cid (d), cid (p), cid (smac), true) from FCPZK-ROM

b, V outputs (checkurom, cheating) and aborts; otherwise, V outputs (checkurom, honest).

Figure 9: The (Cont.) protocol of CPZK with a single ROM for unbalanced non-zero-end vectors
in the FCPZK-ROM-hybrid model.
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Protocol ΠZKCPU

ΠZKCPU runs with a prover P, a verifier V, and is parameterized by a field F, an non-negative integer m, a

positive integer B and B m-instructions (see Definition 1) C1, . . . , CB , an initial state st (0) ∈ Fm and a final state

st (final) ∈ Fm. For each i ∈ [B], let m-instruction Ci have n
(i)
in inputs and n

(i)
× multiplication gates. Note that

n
(i∈[B])
in ≥ m. W.l.o.g., for each i ∈ [B], assume n

(i)
in −m = n

(i)
× +m+ 2 and denote this value as n(i). Recall that

each m-instruction induces a topology matrix M (i∈[B]) ∈ F2n(i)×2n(i)

as defined in Equation (5), where we change

the right-top corner of each M (i∈[B]) from 0 to 1 (see discussion in Section 4.4.1). ΠZKCPU proceeds:

1. P claims the size of the execution. P on receiving (Prove, τ, i1, . . . , iτ , in1, . . . , inτ ), P calculates and

sends n ≜
∑

j∈[τ ] n
(ij).

2. P commits in , ℓ, r,o of the execution. P constructs the following 4 length-n vectors: in ≜ in1∥ · · · ∥inτ .

(Each |inj∈[τ ]| = n
(ij)

in − m.) Set ℓ, r,o be empty. Let the m registers be stj after executing the first j

instructions. For each j ∈ [τ ] in sequence:

(a) Let ℓ := ℓ∥1, r := r∥1, o := o∥1. I.e., this captures the 1 in the extended witness as a 1 · 1 = 1

multiplication.

(b) For each k ∈ [m], let ℓ := ℓ∥1, r := r∥stj−1[k], o := o∥stj−1[k]. I.e., this captures register inputs as

multiplications.

(c) For each multiplication in Cij (in the same order related to M (ij)), let the left/right/output wire

value of this multiplication be val (ℓ,r,o) (i.e., they can be driven from evaluating Cij (stj−1∥inj)): Let

ℓ := ℓ∥val (ℓ), r := r∥val (r), o := o∥val (o).

(d) Let ℓ := ℓ∥1, r := r∥0, o := o∥0. I.e., this captures the 0 checking output as a multiplication.

P generates 4n fresh cids as cid (in/ℓ/r/o). For each j ∈ [n], P sends (Commit, cid
(in/ℓ/r/o)
j , inj/ℓj/rj/oj) to

FCPZK-UROM.

3. P commits p, id where (a) p is a length-n boundary string marking 1 at positions
∑k

j=1 n
(ij)

for each k ∈ [τ ]; and (b) id ∈ [B]n such that Filter(p, id) = {i1, . . . , iτ}. P constructs the following 2

length-n vectors:

p = (

n(i1)︷ ︸︸ ︷
0, . . . , 0, 1,

n(i2)︷ ︸︸ ︷
0, . . . , 0, 1, . . . ,

n(iτ )︷ ︸︸ ︷
0, . . . , 0, 1) id = (

n(i1)︷ ︸︸ ︷
i1, . . . , i1,

n(i2)︷ ︸︸ ︷
i2, . . . , i2, . . . ,

n(iτ )︷ ︸︸ ︷
iτ , . . . , iτ )

P generates 2n fresh cids as cid (p/id). For each j ∈ [n], P sends (Commit, cid
(p/id)
j , pj/id j) to FCPZK-UROM.

4. V issues uniform challenge χ ∈$ F to compress each topology matrix to topology vector. V
on receiving n from P, V waits for 6n cids as (commit, cid

(in/ℓ/r/o/p/id)

j∈[n] ) from FCPZK-UROM. V samples and

sends χ ∈$ F to P.

5. P and V initialize ZK UROM using B topology vectors. P and V compute v(i) :=

(1, χ, . . . , χ2n(i)−1) × M (i) for each i ∈ [B]. Recall that each last(v(i∈[B])) = 1. For each i ∈ [B],

each j ∈ 2n(i), P generates a fresh cid as u
(i)
j , P sends (Linear, u

(i)
j , v

(i)
j ) to FCPZK-UROM; V obtains

(linear, u
(i)
j , ṽ

(i)
j ) from FCPZK-UROM; if ṽ

(i)
j ̸= v

(i)
j , V outputs (prove, false, n) and aborts. P finally sends

(InitUROM,u(1), . . . ,u(B)) to FCPZK-UROM. Note, this is free since u(i∈[B]) committing values known by V.

Figure 10: The protocol of a tight ZK CPU in the FCPZK-UROM-hybrid model.
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Protocol ΠZKCPU (Cont.)

6. P uses committed p, id to read ZK UROM. P and V use Linear in FCPZK-UROM hybrid to generate a

0 committed by cid (zero).

(a) P sends (SetProg, cid (zero), cid
(p)
1 , . . . , cid (zero), cid

(p)
n , cid

(id)
1 , cid

(id)
1 , . . . , cid

(id)
n , cid

(id)
n ) to

FCPZK-UROM. If V does not receive the setprog message from FCPZK-UROM, V outputs

(prove, false, n) and aborts. Otherwise, let V receive (setprog , ˜cid (zero), c̃id
(p)
1 , . . . , ˜cid (zero), c̃id

(p)
n ,

c̃id
(id)
1 , c̃id

(id)
1 , . . . , c̃id

(id)
n , c̃id

(id)
n ). If c̃id (p) ̸= cid (p) or c̃id (id) ̸= cid (id) (V received in Step 3) or

˜cid (zero) ̸= cid (zero), V outputs (prove, false, n) and aborts.

(b) P constructs a length-2n vector d ≜ v(i1)∥ . . . ∥v(iτ ). P generates 2n fresh cids as cid (d). P
sends (ReadUROM, cid (d),d) to FCPZK-UROM. V obtains (ReadUROM, cid (d)) from FCPZK-UROM. P sends

(CheckUROM) to FCPZK-UROM. If V does not receive (checkurom, honest) from FCPZK-UROM, V outputs

(prove, false, n) and aborts.

7. V checks that the multiplications are formed correctly as well as all linear constraints.

(a) P sends (Check, Ccheck
4 , cid (ℓ), cid (r), cid (o)) to FCPZK-UROM, where Ccheck

4 is a circuit with in-

puts ℓ, r,o ∈ Fn that outputs: ℓj · rj − oj for each j ∈ [n]. If V does not receive

(check, Ccheck
4 , cid (ℓ), cid (r), cid (o), true) from FCPZK-UROM, V outputs (prove, false, n) and aborts.

Note that V already has cid (ℓ), cid (r), cid (o) and can construct Ccheck
4 since V knows n.

(b) P sends (Check, Ccheck
5 , cid (o), cid (p)) to FCPZK-UROM, where Ccheck

5 is a circuit with inputs o,p ∈ Fn

that outputs: oj · pj for each j ∈ [n]. If V does not receive (check, Ccheck
5 , cid (o), cid (p), true) from

FCPZK-UROM, V outputs (prove, false, n) and aborts. Note that V already has cid (o), cid (p) and can

construct Ccheck
5 since V knows n.

(c) P sends (Check, Ccheck
6 , cid (in), cid (ℓ), cid (r), cid (o), cid (p), cid (d)) to FCPZK-UROM, where Ccheck

6 is a

circuit with inputs in , ℓ, r,o,p ∈ Fn, d ∈ F2n that outputs: sumL − sumR defined as, let

s = Expand1(0, p1, . . . , 0, pn, χ) (see Section 4.1),

sumL =

n∑
j=1

(χ2m+2 · inj · d2j−1 · s2j−1) +

n∑
j=1

(χ2m+2 · oj · d2j · s2j)

+ (1 + χ) +

m∑
j=1

χ2j +

m∑
j=1

(χ2j+1 · st (0)[j])

sumR =

n∑
j=1

χ2j−2 · ℓj +
n∑

j=1

χ2j−1 · rj +
m∑

j=1

(χ2n+j−1 · st (final)[j])

If V does not receive (check, Ccheck
6 , cid (in), cid (ℓ), cid (r), cid (o), cid (p), cid (d), true)

from FCPZK-UROM, V outputs (prove, false, n) and aborts. Note that V already has

cid (in), cid (ℓ), cid (r), cid (o), cid (p), cid (d) and can construct Ccheck
6 since V knows n, χ, st (0), st (final).

If V has not abort yet, V outputs (prove, true, n).

Figure 11: The (Cont.) protocol of a tight ZK CPU in the FCPZK-UROM-hybrid model.
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Now, it suffices to show that if the emulated V outputs honset, the ideal V will output cheating
with only negligible probability. Note that if the emulated V outputs honest, P∗ must pass all
the checks in ΠCPZK-UROM. Therefore, the ideal V will only output cheating when P∗ wants to
construct a wrong vector d but has not been caught by the checks. I.e., there is a subvector x̃
in d, marked by the boundary string p, that is not equal to the vector x(k) (some k ∈ [B]) saved
in the UROM index committed by P∗ in id . Furthermore, P∗ passing all checks implies that
⟨(1, γ, γ2, · · · ), x̃⟩ = ⟨(1, γ, γ2, · · · ),x(k)⟩, where x̃ ̸= x(k) and γ ∈$ F. This happens negligibly
(as Corollary 1). Note, the upper-bound of the soundness error happens when P∗ let x̃ be the
entire d and x(k∈[B]) be the longest stored vector.

Theorem 2. Protocol ΠZKCPU (Figures 10 and 11) UC-realizes FZKCPU (Figure 6) in the FCPZK-UROM-
hybrid model (Figure 7) with soundness error 2n+2m+1

|F| and perfect zero-knowledge, in the presence
of a static unbounded adversary.

Proof Sketch. We need to show completeness (trivial, omitted); soundness (constructing S for P∗);
and Zero-Knowledge (constructing S for V∗).

Zero-Knowledge, S for V∗: Similar to our proof sketch for Theorem 1, S for malicious V∗ is
trivial since all the messages V∗ received in the execution are just some commitment IDs (revealed
by FCPZK-UROM) and true for several Check calls. Thus, the simulation is perfect.

Soundness, S for P∗: For a malicious P∗, the simulator S interacts with FZKCPU, runs P∗ as a
subroutine, and emulates the hybrid FCPZK-UROM for her. In particular, the simulator will emulate
a real-world V interacting with P∗. As V has no input, S can trivially emulate him. Crucially, S
can trivially extract P∗ inputs (i.e., the witness) to each instruction of FCPZK-UROM. If the emulated
V outputs false, S sets the flag in FZKCPU to output false to the ideal V; otherwise, S sends the
extracted inputs to FZKCPU.

Now, it suffices to show that if the emulated V outputs true, the ideal V will output false

with only negligible probability. Note that, this will happen only when the extracted witness is
invalid but P∗ is not caught in ΠZKCPU. Since this is not a valid witness, from the definition of
our topology matrices, the equality in Section 4.3.3 should not hold. I.e., the left-hand-side vector
is not equal to the right-hand-side vector, where both vectors are (2n+ 2m+ 2)-length. However,
the emulated V outputting true implies that the inner products between these two vectors and
the vector (1, χ, · · · , χ2n+2m+1) are two equal elements. This only happens negligibly (as Swchartz-
Zippel lemma).

5.3 Optimization and Cost Analysis

The optimization of ΠCPZK-UROM includes:

1. Public initialization: If B vectors used to initialize UROM are public, InitUROM is free.
This is because u(i∈[B]) is only used to generate commitments of mac (see Sub-step 8a),
which are further used to initialize the underlying (balanced) ROM. Thus, mac is also public
(determined after γ is selected by V), so P and V can compute mac locally and use calls to
Linear construct the commitment of (constant).

2. 1-ended vectors: If each vector in the UROM ends with 1 (whose inverse is 1), then vector
inv is redundant (see Sub-step 7a) since inv is equal to p.
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3. Rounding optimization: If each UROM-stored vector has length some multiple of εurom, for
any εurom ∈ Z+, then we can optimize some operations. E.g., consider εurom = 2, i.e., each
n(i∈[B]) is even. This implies that every odd position of p must be 0, which further implies
that the checks in Ccheck

1/2/3 only need to be performed at each even position. Thus, P only needs

to commit length-n2 vectors (instead of length-n) p, id , inv , smac, s with half-size Ccheck
1/2 . In

particular, it suffices to define s as Expand2(p, γ
2). More generally, these commitments reduce

in size by factor εurom.

The protocol ΠZKCPU can deploy all optimizations above and will make one call to each instruc-
tion (i.e., InitUROM, SetProg, ReadUROM, and CheckUROM). In particular, ΠZKCPU, with instructions
of size n(1), . . . , n(B) and the total execution size n, instantiates a hybrid UROM with vectors of
size 2n(1), . . . , 2n(B), and reads a length 2n vector from the UROM. Our ΠZKCPU instantiates the
UROM with public vectors ending with 1, and since all vectors are of even length, we can deploy
the above rounding optimization. Moreover, a similar rounding optimization can be deployed to
ΠZKCPU – if the size of each instruction is an integer factor of ε ∈ Z+, we can save cost by con-
structing shorter vectors, e.g., p. In other words, cost can be reduced if we pad each instruction
circuit to size kε, where k ∈ Z+.

Consider a ZK CPU with instructions of size n(1), . . . , n(B) and the total execution size n, let
ε ≜ gcd(n(1), . . . , n(B)), we tally the optimized cost of ΠZKCPU directly in FCPZK-hybrid (i.e.,
plugging ΠCPZK-UROM, ΠCPZK-ROM):

• P sends n and V sends χ, γ.

• P and V each compute O
(∑

i∈[B] n
(i)
)
field operations to obtain v(i∈[B]) and mac. Note,

this relies on the technique “evaluate circuits backward”; see [YHH+23].

• Parties call Commit 6n+ 6n
ε + 2B times.

• Parties call Linear 2B + 1 times to commit constants.

• Parties call Open once.

• Parties call Check with each of the following 9 circuits:

– Ccheck
1/2/5 and Expand1/2 (nε multiplications each).

– Ccheck
3 (2n+ 2n

ε multiplications).

– Ccheck
4 (n multiplications).

– Ccheck
6 (4n multiplications).

– The check circuit in ΠCPZK-ROM (see Lemma 3), which has two products of n
ε + B − 1

multiplication.

To conclude, assuming n = Ω(B) and assuming each instruction is of size O(n), the protocol
requires O(n) calls to Commit; O(B) calls to Linear; O(1) call to Open; O(1) call to Check.

When we instantiate FCPZK with the VOLE-based ΠCPZK (see Lemma 1), our ZK CPU has the
following cost:

• Computation: O
(
n+

∑
i∈[B] n

(i)
)
field operations.
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• Communication: 6n+ 6n
ϵ +B + o(n) field elements.

• Soundness: O
(

m+max{n,n(1),...,n(B)}
|F|

)
.

The above costs leverage VOLE-based ZK’s support for polynomial evaluation (see Lemma 1).
Namely, circuits used in Check are polynomials of degree3 2 or 3. Note, both computation and
communication are proportional to n.

Appendix B includes more fine-grained cost analysis – we analyze the cost of ΠCPZK-UROM in
FCPZK-ROM-hybrid (to realize FCPZK-UROM) and ΠZKCPU in FCPZK-UROM-hybrid (to realize FZKCPU).

6 Support for Advanced Operations

We have shown how to construct instructions that contain arbitrary addition and multiplication
gates. Each instruction also supports a checking output, which P must prove is equal to zero, and
in this section, we discuss examples of how this checking output can be leveraged to support more
advanced ZK operations. Most importantly, we discuss support for ZK RAM, which enables our
CPU to support poly-size memory, rather than just a fixed number of registers. Our formalization
must be adjusted slightly to capture such operations; the following discusses how.

6.1 Equality Gates

As our first advanced operation, we show how to implement an equality gate, which forces P to
prove that two particular instruction wires are equal; if they are not equal, the proof fails. This
gate is generally useful, and it can enable efficient implementation of other operations, such as a
division gate, where we can require P to commit the quotient and then prove that the product of
the quotient and the divisor is equal to the dividend.

In standard CPZK, it is well known that a batch of equality gates can be implemented by
subtracting each pair of supposedly-equal commitments, then having V send a uniform challenge
vector to P. P demonstrates that the inner product of this vector and the vector of committed
differences is 0. With some care, we can incorporate this trick into our ZK CPU.

Namely, we modify our protocol such that (1) P first commits to her extended witness, (2) V
sends its uniform challenge vector (this vector is sent in the same round where V sends χ), and (3)
V’s challenge vector is incorporated as a row of the instruction’s topology matrix, where this row
is used to constrain the instruction’s checking output. In particular, this row of the matrix forces
P to prove that the random linear combination of equality gate difference wires are each equal to
zero. With this change, each instruction can use an arbitrary number of equality gates.

The crucial observation is: the above trick can be viewed as a row in the topology matrix that
needs to be specified by V. In particular, this row does not affect P to commit the extended witness
since the extended witness is independent of V’s uniform vector. We remark that this row must be
specified after P commits the extended witness to maintain soundness. Nevertheless, V can specify
it with the step where he sends χ to compress topology matrices to topology vectors. We note that
this row can be embedded into the checking output. I.e., the checking output is the uniform linear
combination of all wires that must be 0s.

3The circuit in ΠCPZK-ROM is a O(n)-degree polynomial, but cost can be reduced since it computes products.
See Lemma 3 and [YH24].
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6.2 Support for LOAD and STORE Gates

So far, our machine’s persistent state is stored in only m registers. Of course, it would be desirable
to allow instructions to access a large main memory (supporting any poly(λ) number of memory
cells). We show how to implement LOAD and STORE gates that achieve memory access while keeping
the number of registers m constant.

In short, to support ZK RAM, it suffices that P provide outputs from LOAD and STORE gates as
part of her extended witness, then prove that these gate outputs are consistent with the semantics
of a read-write array. Our insight is that these consistency checks only require that our machine
maintain a constant number (five) of registers.

Setting aside our ZK CPU for a moment, recent work [YH24] shows that ZK RAM can be
implemented by (1) maintaining a vector of all values written to RAM (tagged with appropriate
timing metadata), (2) maintaining a vector of all values read from RAM (tagged with appropriate
timing metadata), (3) requiring that P prove the above two vectors are permutations of one another,
and (4) for each read, proving the accessed timing metadata value is in the past. Step (4) is achieved
by a ZK ROM, which similarly can be implemented by proving two vectors are permutations of
one another. Thus, the full RAM reduces to two permutation checks. To prove two vectors a, b
are related by a permutation, it is standard for V to issue a uniform challenge β, and then P shows
that

∏
i∈[n](ai − β) =

∏
i∈[n](bi − β).

Returning to our ZK CPU, we observe that for each permutation proof we can use two registers
to accumulate the above two products; once all instructions are complete, P proves these two
registers are equal. [YH24]’s RAM also requires a global clock variable, and we can support this
with another register that is initialized to 0 and incremented on each RAM access. Therefore, we
can compile each LOAD/STORE gate into a constant number of INPUT/ADD/MULT gates by maintaining
five registers that jointly store the clock and partial products of the permutation checks.

One small caveat is that the ZK RAM’s soundness relies on the fact that P cannot guess β.
However, in our presented ZK CPU protocol, P must commit all inputs i and multiplication tuples
ℓ, r,o at the same time. But per the above discussion, some multiplication gates will depend on β,
so P does not even know ℓ, r,o until after β is chosen. This problem is straightforwardly fixed by
introducing two extra protocol rounds.

Namely, (1) P commits to its input i, (2) V sends β, and then (3) P computes and commits to
ℓ, r,o. This change is sound because the input i determines the entire instruction’s computation,
and i must be independent of β. It is possible to omit the extra two rounds by applying Fiat-
Shamir [FS87]. Note that the combination of our tight ZK CPU with ZK RAM interestingly hides
from V the number of RAM accesses.

7 Evaluation

Our implementation. Using VOLE-based ZK, we implemented ΠCPZK-UROM (see Figure 8)
and ΠZKCPU (see Figure 10). In particular, we instantiated FCPZK (see Figure 3) and FCPZK-ROM

(see Figure 4) via VOLE-based ZK. VOLE-based FCPZK (QuickSilver [YSWW21]) is implemented
as part of the EMP Toolkit [WMK16], and VOLE-based FCPZK-ROM [YH24] is open-sourced4. We
used their implementations in an (almost) black-box manner. Following these implementations, we
use the prime field F261−1.

4Available at https://github.com/gconeice/improved-zk-ram.
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Baseline implementation. We compare our implementation to the prior state-of-the-art non-
tight ZK CPU, Batchman [YHH+23]. Their implementation is open-sourced5. It is also a VOLE-
based ZK protocol over F261−1.

Code availability. https://github.com/gconeice/tight-vole-zk-cpu includes our imple-
mentation repository.

Experiment setup. Unless otherwise specified, following our baseline [YHH+23], our experi-
ments were executed over two AWS EC2 m5.2xlarge machines6 that respectively implemented
P and V. Each party ran single-threaded. We configured different network bandwidth settings,
varying from a WAN-like 100Mbps connection to a LAN-like 1Gbps connection.

Benchmarks. Our experiments used randomly generated circuits as instructions. Given a num-
ber of MULT gates, we generated gates uniformly until we reached the specified number of MULT.
Our random circuits use the last input as the first register output. For each i-th instruction, the
checking output is set as the first input minus i. I.e., our benchmark allows P to select each in-
struction. Our P chooses each next instruction uniformly at random. We acknowledge that this
benchmark is contrived. It is used to evaluate performance only. Our implementation includes
sufficient expressivity to handle a non-contrived IS.

We consider the following distributions of sizes of B instructions of a ZK CPU:

• Balanced : Each of the B instructions are of same size. This distribution is more suitable for
prior non-tight ZK CPUs. Additionally, the rounding optimization of our tight ZK CPU is
effective for this distribution.

• Unbalanced : One instruction is much bigger than the others (which are each of the same size).

• Varied : All sizes are distributed evenly. E.g., consider an instruction set having sizes
{10, 20, 30, · · · }.

Metrics. We report the following metrics:

• Time: We measured end-to-end proof execution time.

• Communication: We tested the overall communication.

• Hertz Rate: We calculated the hertz rate of a ZK CPU defined by #step
time . This is mainly used

to compare with prior non-tight ZK CPUs.

• Multiplication Gates Per Second (MGPS): We calculated the MGPS defined by #multiplication
time .

This metric is only meaningful for a tight ZK CPU since all executed multiplications are useful.
In a non-tight ZK CPU, some multiplications are used as padding.

• Communication Per Multiplication (CPM): We calculated the CPM defined by communication
#multiplication .

5Available at https://github.com/gconeice/stacking-vole-zk.
6Intel Xeon Platinum 8175 CPU @ 3.10GHz, 8 vCPUs, 32GiB Memory, 10Gbps Network
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B m Distribution
MGPS (#Multi./s) CPM

100 Mbps 500 Mbps 1 Gbps Byte/#Multi.

10 5 Balanced 111 K 330 K 442 K 102

50
1

Balanced
109 K 334 K 438 K 102

10 107 K 323 K 432 K 102
20 108 K 342 K 459 K 102

100 20
Balanced 109 K 346 K 458 K 102

Unbalanced 110 K 337 K 467 K 102
Varied 109 K 340 K 460 K 102

Figure 12: The multiplication gates per second (MGPS) and communication per multiplication
(CPM) of our ZK CPU. Recall that B denotes the number of instructions and m denotes the
number of registers.

Protocol
Network Bandwidth

Comm./Step
100 Mbps 500 Mbps 1 Gbps

Batchman [YHH+23] 1.5 KHz 5.4 KHz 8.0 KHz 7.3 KB

Ours (Balanced) 0.6 KHz 2.7 KHz 3.7 KHz 12.7 KB
0.56× 0.51× 0.46×

Ours (Balanced) 1.7 KHz 5.9 KHz 8.5 KHz 6.3 KB
Rounding Opt. 1.13× 1.11× 1.05×

Ours (Unbalanced) 10.6 KHz 32.5 KHz 43.8 KHz 1.0 KB
6.90× 6.07× 5.45×

Figure 13: Comparison with Batchman [YHH+23]. We loaded each ZK CPU with 50 instructions
and tested a 500K step execution. For the non-tight ZK CPU based on Batchman, each instruction
has 125 multiplications. For our tight ZK CPU, we tested (1) balanced instructions where each has
125 multiplications and (2) unbalanced instructions where only one has 125 multiplications and
others each has 5 multiplications. We report the hertz rate.

MGPS and CPM of our ZK CPU. We loaded our ZK CPU with different B and m and
considered different distributions of the sizes of B instructions. In particular, we considered (1)
each instruction with 100 multiplications for the balanced distribution, (2) one instruction with
100 multiplications and others each with 5 multiplications for the unbalanced distribution, and (3)
i-th instruction with 10 · i multiplications for the varied distribution. We tested our ZK CPU with
each configuration by executing it over a large enough number of steps to amortize the cost of
generating VOLE correlations. Figure 12 tabulates the results. It shows that our ZK CPU’s speed
depends mainly on network bandwidth, which aligns with our asymptotic analysis. In particular,
it is (almost) independent of B,m, and on how instructions are distributed.

Comparison with Batchman [YHH+23]. We compare our tight ZK CPU with prior state-of-
the-art non-tight ZK CPU (i.e., Batchman). More precisely, Batchman implements batched ZK
disjunctions, which can be viewed as a special ZK CPU with no registers.

The two ZK CPUs were each loaded with 50 instructions. We considered the balanced (with/without
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Protocol
Network Bandwidth

Comm./Step
100 Mbps 500 Mbps 1 Gbps

Batchman [YHH+23] 0.2 KHz 0.8 KHz 1.1 KHz 52.1 KB

Ours 4.0 KHz 12.6 KHz 17.1 KHz 2.8 KB
18.58× 16.33× 14.96×

Figure 14: Comparison with Batchman [YHH+23] with more biased unbalanced instructions. We
loaded each ZK CPU with 50 instructions and tested an execution with 500K steps. For the
regular ZK CPU based on Batchman, each instruction has 1000 multiplications. We tested our
ZK CPU with an unbalanced instruction set, where one instruction has 1000 multiplications and
the others each have 5 multiplications. We report the hertz rate. We note that these experiments
were performed with two AWS EC2 m5.8xlarge machines because of Batchman’s larger memory
requirement.

Protocol
Network Bandwidth, Total Size

Total Comm.100 Mbps 500 Mbps 1 Gbps
15.4 M 15.4 M 15.3 M

QuickSilver [YSWW21] 21.2 s 6.6 s 5.1 s 226 MB

Ours 139.1 s 44.4 s 31.5 s 1484 MB
6.56× 6.72× 6.22× 6.56×

Figure 15: Comparison with the setting where the execution path is public. We loaded our ZK
CPU with 50 instructions and ran it for 50K steps. Each i-th instruction had 10 · i multiplications.

our rounding optimization) and unbalanced distributions. We tested the ZK CPUs by executing
500K steps.

Figure 13 tabulates the results. It shows that our tight ZK CPU is slower than Batchman if
we consider a balanced instruction set. This is due to overhead we introduce in our tight ZK CPU
to ensure privacy, which is redundant when instructions are of the same size. Nevertheless, our
tight ZK CPU is only slower by ≈ 2×, mainly coming from the ≈ 2× overhead in communication.
By turning on our rounding optimization, our ZK CPU performs comparably to (or even faster
than) Batchman. This is because of our refined topology matrices. Note that refined topology
matrices can also optimize Batchman. When considering an unbalanced instruction set, our tight
ZK CPU improves over Batchman by ≈ 5-7×, depending on the network. We remark that even with
more bandwidth, our runtime would not converge to Batchman – we additionally save constant-
factor computation. The decrease in our relative improvement comes from the streamlining nature.
Our ZK CPU communicates only ≈ 1KB per step.

Our speedup becomes more significant when considering instructions with larger differences in
size; see Figure 14.

Comparison with insecure execution path. We compare our ZK CPU with an “insecure”
execution where P and V agree on a public execution path. Namely, we constructed a single
plaintext circuit encoding an execution path and then ran the QuickSilver protocol (which achieves
FCPZK) on that circuit. Of course, a ZK CPU will use more resources than such a circuit, since a
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Network Bandwidth Total
ΠZKCPU

Step 2 and Sub-step 7a Step 3 Step 5 Sub-step 6a Sub-step 6b (ΠCPZK-UROM) Sub-step 7b Sub-step 7c

1 Gbps 30.1 7.1 3.2 5e− 4 0.2 15.0 0.1 3.9
500 Mbps 38.3 10.4 4.7 5e− 4 0.2 17.7 0.1 4.5
100 Mbps 123.7 39.1 19.1 5e− 4 0.2 53.1 0.1 11.3

Figure 16: Fine-grained analysis of ΠZKCPU. Sub-step 6b can be further decomposed as it includes
hybrid calls to ΠCPZK-UROM (see Figure 17). Our ZK CPU was loaded with 50 instructions and 20
registers. It was executed 500K steps. The distribution over the size of instructions is varied, as
factors of 10.

Network Bandwidth Total
ΠCPZK-UROM (Sub-step 6b of ΠZKCPU)

Steps 5 and 6 Step 7 Sub-steps 8a and 8(b)i Sub-step 8(b)ii Sub-step 8(b)iii Sub-step 8c

1 Gbps 15.0 3.9 0.3 2e− 4 6.1 2.0 2.5
500 Mbps 17.7 5.5 0.3 2e− 4 6.8 2.0 3.1
100 Mbps 53.1 19.7 0.3 2e− 4 20.3 2.4 10.3

Figure 17: Fine-grained analysis of ΠCPZK-UROM. Our ZK CPU was loaded with 50 instructions and
20 registers. It was executed 500K steps. The distribution over the size of instructions is varied,
as factors of 10.

ZK CPU provides a stronger privacy guarantee. These experiments illustrate the performance gap
between our ZK CPU and the informal “lower bound”. Figure 15 tabulates the results. Our ZK
CPU has a ≈ 6× overhead in communication (as a constant). Further optimizing this constant is
an interesting direction.

Rounding optimization. Recall that our ZK CPU supports an optimization such that if the size
of each instruction is a multiple of ε, several contributing costs are reduced by factor ε. To evaluate
the effectiveness of this optimization, we loaded our ZK CPU with 50 balanced instructions. By
varying the size of each instruction and letting the ZK CPU execute 6.4M multiplications, we
deployed the rounding optimization with different ε. Our experiments show that, when ε ≥ 16, the
rounding optimization can speed up our ZK CPU by ≈ 2×, independent of the network bandwidth.
The improvement comes from savings in communication and matches our asymptotic analysis.

Microbenchmarks. We tested fine-grained execution time for our ZK CPU. We decomposed
the entire execution time according to the main steps in ΠZKCPU, which can be further decomposed
to the main steps in ΠCPZK-UROM. Figures 16 and 17 tabulate the results.
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SUPPLEMENTARY MATERIAL

A Deferred Complete Proofs

A.1 Complete Proof of Theorem 1

Theorem 1. Let the UROM be initialized by B non-zero-end vectors where the i-th vector is of
length-n(i). Let the read-out vector be of length-n. Then, protocol ΠCPZK-UROM (Figure 8) UC-
realizes FCPZK-UROM (Figure 7) in the FCPZK-ROM-hybrid model (Figure 4) with soundness error
max{n,n(1),...,n(B)}−1

|F| and perfect zero-knowledge, in the presence of a static unbounded adversary.

Proof. By constructing the simulator S for malicious V∗ and malicious P∗. Note that the Zero-
Knowledge part of ΠCPZK-UROM is handled by the hybrid FCPZK-ROM directly. In particular, the
instructions of the Zero-Knowledge part in FCPZK-UROM is the same as FCPZK-ROM. Thus, the
simulation for the instructions of the Zero-Knowledge part is straightforward. Here, we only focus
on constructing the simulator for the unbalanced non-zero-end read-only memory part.

Malicious V∗: Since P has no output, we only need to sample the transcripts seen by malicious
V∗. In particular, the simulator S interacts with FCPZK-UROM, runs V∗ as a subroutine, and emulates
FCPZK-ROM for him as follows:

• For the instruction InitUROM: Since P is honest, the messages received by the real-world
V∗ are only some cids and true for the check of Ccheck

0 . Note that these cids are either (1)
revealed by FCPZK-UROM to S; or (2) sampled by P, which obviously can be sampled by S.
Furthermore, Ccheck

0 is determined by B only. Hence, S can trivially generate the identical
messages for ideal V∗ as interacting with a real-world P.

• For the instruction SetProg: Since P is honest, in the real world, the messages received by
V∗ are only some cids from P as well as an open to 1 and a check to true from FCPZK-ROM.
Note that these cids are revealed by FCPZK-UROM to S and Ccheck

1 is determined by n only, S
can trivially generate the identical messages for V∗ as interacting with a real-world P.

• For the instruction ReadUROM: The messages received by V∗ are only some cids as P is honest.
Note, these cids are revealed by FCPZK-UROM, S can trivially generate the identical messages
for V∗ as interacting with a real-world P.

• For the instruction CheckUROM: Since P is honest, in the real-world, V∗ will only receive true
for each check in ΠCPZK-UROM coming from the hybrid FCPZK-ROM regardless of V∗’s challenge
γ. Thus, the only messages S needs to simulate for V∗ are fresh cids, which obviously can be
sampled by S. Note that the circuits Ccheck

2 , Ccheck
3 are decided by S-known γ, n.

Overall, the distributions between ideal/real are identical.
Malicious P∗: The simulator S interacts with FCPZK-UROM, runs P∗ as a subroutine and

emulates the hybrid FCPZK-ROM for her. In particular, the simulator will emulate a real-world honest
V interacting with P∗. Note that V has no input, so S can trivially emulate him. Furthermore,
this implies that the crucial part is to simulate ideal V’s output. In detail, S proceeds as follows:

• For the instruction InitUROM: If the emulated V outputs (initurom,u (1), . . . ,u (B)), it implies
that P∗ uses these committed cids to initialize the ZK UROM. Furthermore, each vector
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committed by u(i∈[B]) must be non-zero-end since Ccheck
0 must output 0.7 S can simply send

(InitUROM,u (1), . . . ,u (B)) to FCPZK-UROM on behalf of P. Note, FCPZK-UROM will always
output the message (initurom,u (1), . . . ,u (B)) to the ideal V, which is identical to the real-
world V. S can send abort to FCPZK-UROM, if the emulated V halts.

• For the instruction SetProg:

– If the emulated V halts, that means P∗ uses a committed vector that is not a boundary
string, then S can trivially send abort to FCPZK-UROM.

– If the emulated V does not halt, he must output (setprog, cid (p), cid (id)). Let n ≜
|cid (p)| = |cid (id)|. Note that this means that cid (p) must commit a valid boundary
string, i.e., p ∈ {0, 1}n−1∥1 since Ccheck

1 must output 0. Hence, S can simply send
(SetProg, cid (p), cid (id)) to FCPZK-UROM on behalf of P then the ideal-world V will
always output (setprog, cid (p), cid (id)), which is identical to the real-world V.

• For the instruction ReadUROM: If the emulated V outputs (readurom, cid (d)), it implies that
P∗ uses the fresh cids in cid (d). Since S emulates FCPZK-ROM for P ∗ and P ∗ sends d to
FCPZK-ROM, S can trivially extract d. S can then send (ReadUROM, cid (d),d) to FCPZK-UROM

on behalf of P. Note that FCPZK-UROM will always output the message (readurom, cid (d)) to
the ideal V, which is identical to the real-world V. Note that furom inside FCPZK-UROM will
be set to cheating according to d, p, id and logic inside FCPZK-UROM.

• For the instruction CheckUROM: S, on behalf of P, sends (CheckUROM) to FCPZK-UROM. The
emulated V can have the following potential outputs:

– The emulated V outputs (checkurom, cheating): S sends Cheat to FCPZK-UROM, setting
furom inside FCPZK-UROM to cheating. As a result, FCPZK-UROM will always output
(checkurom, cheating) to the ideal V, which is identical to the real-world V.

– The emulated V outputs (checkurom, honest): S does not sends Cheat to FCPZK-UROM.
FCPZK-UROM will then output (checkurom, furom) to the ideal V.

∗ If furom = honest, the ideal V output message is identical to the real-world V.
∗ If furom = cheating, the ideal V output message is different from the real-world V.
This is the only case where the ideal/real distribution differs!

We now focus on analyzing the distributions between ideal and real. Indeed, the difference hap-
pens only when ideal-world V outputting (checkurom, cheating) while the real-world V outputting
(checkurom, honest). We argue that this event only happens with negligible probability (i.e., the
soundness error). Note that this event happens when S submits a malicious input to FCPZK-UROM

that sets furom to cheating. We perform case analysis over the reason why furom has been set to
cheating (see Steps 2 and 4 in ReadUROM of FCPZK-UROM):

• Case 1: id is not [B]n (Step 2 in ReadUROM of FCPZK-UROM). This will not happen because
id is used as indexes to access a hybrid single-element ZK ROM (i.e., FCPZK-ROM) of size B
(see Sub-step 8(b)i in CheckUROM of ΠCPZK-UROM). Hence, if there exists an index that is not in
[B], the hybrid ZK ROM will catch it, and will output (checkrom, cheating) to the real-world

7Of course, certain soundness must be added when instantiating the ZK part in FCPZK-ROM. Here, we work in the
FCPZK-ROM-hybrid model.
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V. Therefore, the real-world V must output (checkurom, cheating) (see Sub-step 8(b)iii in
CheckUROM of ΠCPZK-UROM).

• Case 2: there exists x ∈ Partition(p,d) such that last(x) is 0 (Step 4 in ReadUROM of
FCPZK-UROM). This will not happen because the check of C2 in ΠCPZK-UROM must output
false (see Step 7 in CheckUROM of ΠCPZK-UROM). Specifically, let α be the index of last(x) in
d, to let check of C2 output true, P∗ has to find some inv ∈ F such that inv · dα = pα. This
is impossible since dα = 0 and pα = 1.

• Case 3: there exists x ∈ Partition(p,d), y ∈ Partition(p, id) pair8 such that x is not
equal to the vector committed by u(last(y)) (Step 4 in ReadUROM of FCPZK-UROM). Let
the k-th pair be the first place where this happens and assume |x(k)| = |y(k)| = m. Note that
this means that any pair x(j), y(j) where j ∈ [k − 1], x(j) is equal to the vector committed

by u(last(y(j))). Let q ≜
∑

j∈[k−1] |x(j)|. This implies

q∑
j=1

dj · sj =
q∑

j=1

pj · smacj (6)

where s = Expand2(p, γ) and smacj = mac(idj) (see Sub-step 8a in ReadUROM of FCPZK-UROM

for definition of mac). Note, if smacj ̸= mac(idj), the real-world V must output (checkurom,
cheating) since (checkrom, cheating) must be sent from FCPZK-ROM (see Sub-steps 8(b)ii
and 8(b)iii in ReadUROM of FCPZK-UROM). Now, consider the probability that the real-world
V outputs (checkurom, honest), it implies that V must receive true for the check of Ccheck

3 .
This further implies that

q+m∑
j=1

dj · sj =
q+m∑
j=1

pj · smacj (7)

Subtracting Equation (7) by Equation (6) we have

q+m∑
j=q+1

dj · sj =
q+m∑
j=q+1

pj · smacj

⇔ ⟨(1, . . . , γm−1),x(k)⟩ = mac last(y
(k))

⇔ ⟨(1, . . . , γm−1),x(k)⟩ = ⟨(1, . . . , γn(last(y(k)))−1),v⟩

where v is the vector committed by u(last(y(k))). Since v ̸= x(k) and are both non-zero-end,

the equality holds with probability up to max{m,n(last(y(k)))}−1
|F| based on Corollary 1 conditioned

over γ ∈$ F.

To sum up, the overall soundness error is up to max{n,n(1),...,n(B)}−1
|F| . This finishes our proof.

8There are n pairs in total.
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A.2 Complete Proof of Theorem 2

Theorem 2. Protocol ΠZKCPU (Figure 10) UC-realizes FZKCPU (Figure 6) in the FCPZK-UROM-
hybrid model (Figure 7) with soundness error 2n+2m+1

|F| and perfect zero-knowledge, in the presence
of a static unbounded adversary.

Proof. By constructing the simulator S for malicious V∗ and malicious P∗. Note that the (ZK)
simulator for malicious V∗ is trivial as V∗ has no input. In particular, the only messages V∗ received
that are not revealed by FZKCPU are just some cids, which can be trivially sampled by S. Indeed,
a malicious V∗ can select arbitrary χ ∈ F as the random challenge. However, χ is independent
of V∗’s transcripts since they always include true for each check since P is honest. Note that S
has enough information to build Ccheck

4 , Ccheck
5 , Ccheck

6 including n,m, χ, st (0), st (final). Henceforth,
we only focus on constructing S for P∗.

Malicious P∗: The simulator S interacts with FZKCPU, run P∗ as a subroutine and emulates
the hybrid FCPZK-UROM for her. In particular, the simulator will emulate a real-world honest V
interacting with P∗. Note that V has no input, so S can trivially emulate him. Furthermore, this
implies that the crucial part is to simulate ideal V’s output. In detail, S proceeds as follows: if
the emulated V outputs (prove, false, n), the simulator can trivially configure FZKCPU to output
(prove, false, n) to the ideal V (see Step 3 in Figure 6); if the emulated V outputs (prove, true, n),
this means the P∗ past all checks in ΠZKCPU. Now, since P∗ has submitted all commitments via
FCPZK-UROM (emulated by S), the S can trivially extract in (in Step 2) and p, id (in Step 3). Note
that the emulated V outputting true implies the following:

1. p must be a length-n boundary string. If not, the SetProg instruction in FCPZK-UROM hybrid
must catch it (see Sub-step 6a), and V should output false.

2. id must be [B]n. If not, the ReadUROM in FCPZK-UROM hybrid must catch it (see Sub-step 6b),
and V should output false.

3. dmust be v(i1)∥ · · · ∥v(iτ ) where v(j∈[B]) is the topology vector of the j-th instruction (see Step 5)
and (i1, . . . , iτ ) ≜ Filter(p, id). If not, the ReadUROM instruction in FCPZK-UROM hybrid must
catch it (see Sub-step 6b), and V outputs false.

Our S will send (Prove, τ ≜ HW(p), i1, . . . , iτ , in) to FZKCPU (more specifically, in will be broken
into τ pieces trivially). Now, it suffices to argue that FZKCPU will send false to the ideal V with
negligible probability (i.e., the soundness). To see this, note the following additional facts (recall,
conditioned over the emulated V outputting true):

4. l ⊙ r must be equal to o. If not, the Check in FCPZK-UROM hybrid of Ccheck
4 must catch it

(see Sub-step 7a), and V should output false.

5. Filter(p,o) must be a length-τ 0-vector. If not, the Check instruction in FCPZK-UROM hybrid
of Ccheck

5 must catch it (see Sub-step 7b), and V should output false.

6. The following two values must be equal:

s×M ×
(
1, st (0), in1, o1, . . . , inn, on

)T
=

s×
(
ℓ1, r1, . . . , ℓn, rn, 1, 1, 1, st

(final)
1 , . . . , 1, st(final)m

)T
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where s ≜ (1, χ, . . . , χ2n+2m+1). If not, the Check instruction in FCPZK-UROM hybrid of Ccheck
6

must catch it (see Sub-step 7c), and V should output false.

If the ideal-world V outputs false, it means that extracted witness by S does not transfer st (0) to
st (final). Conditioned over the above facts 1-5, it implies the following inequality :

M ×
(
1, st (0), in1, o1, . . . , inn, on

)T
̸=(

ℓ1, r1, . . . , ℓn, rn, 1, 1, 1, st
(final)
1 , . . . , 1, st(final)m

)T
Since two unequal vectors are of length-(2n + 2m + 2), the probability that the fact 6 happens
will be bounded by 2n+2m+1

|F| , conditioned over χ ∈$ F, based on the Schwartz–Zippel lemma. This
finishes our proof.

B Fine-grained Cost Analysis

B.1 ΠCPZK-UROM in FCPZK-ROM-hybrid

The cost of ΠCPZK-UROM in FCPZK-ROM-hybrid includes:

• InitUROM requires (1) B Commit hybrid calls; (2) 1 Check hybrid call with the circuit Ccheck
0 ;

and (3)
∑

i∈[B] n
(i) cids from P to V. Besides, P needs to compute B multiplicative inverses

in F.

• SetProg requires (1) 1 Open hybrid call; (2) 1 Check hybrid call with the circuit Ccheck
1 ; and

(3) n cids from P to V.

• ReadUROM requires n Commit hybrid calls.

• CheckUROM requires (0) V to send γ to P; (1) n Commit hybrid calls; (2) 1 Check hybrid call
with the circuit Ccheck

2 ; (3) B Linear hybrid calls where the ith call is of length n(i)+1; (4) 1
InitROM hybrid call to initialize a size-B balanced ROM; (5) 1 ReadROM hybrid call to read n
elements from the hybrid balanced ROM; (6) 1 CheckROM hybrid call; and (7) 1 Check hybrid
call with the circuit Ccheck

3 .

• Note that the check of circuit Ccheck
3 requires P and V to generate the commitments of s ≜

Expand2(p, γ). This can be achieved by (1) n Commit hybrid calls to commit s; and (2) 1
Check hybrid call with the circuit to define Expand2, which has n− 1 multiplications.

Hence, we tally the overall optimized cost of ΠCPZK-UROM (in FCPZK-ROM-hybrid), where 4
instructions are all executed. Let εurom ≜ gcd(n(1), . . . , n(B)), the cost includes:

• V sends γ to P.

• n+ n
εurom

Commit hybrid calls.

• O
(∑

i∈[B] n
(i)
)
field operations to compute mac.

• B Linear hybrid calls to commit constants.
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• 1 Open hybrid call.

• 1 InitROM hybrid call to initialize a size-B (balanced) ROM.

• 1 ReadROM hybrid call to read n
εurom

elements from the hybrid (balanced) ROM.

• 1 CheckROM hybrid call.

• 3 Check hybrid calls with circuits Ccheck
1/2 and Expand2. Each circuit has n

εurom
multiplications.

• 1 Check hybrid call with Ccheck
3 (of n+ 2n

εurom
multi.).

• n
εurom

cids from P to V.

B.2 ΠZKCPU in FCPZK-UROM-hybrid

The cost of ΠZKCPU in FCPZK-UROM-hybrid includes:

• Step 1 requires P to send n to V.

• Step 2 requires 4n Commit hybrid calls.

• Step 3 requires 2n Commit hybrid calls.

• Step 4 requires V to send χ to P.

• Step 5 requires 1 free InitUROM (and free Linear) hybrid call since vectors v(i∈[B]) are public.

To compute each v(i∈[B]), P and V need to cost O
(∑

i∈[B] n
(i)
)
field operations. In particular,

they can “evaluate the circuit backward” (see [YHH+23] for detail). Note that the length of
v(i∈[B]) would be 2n(i).

• Step 6 requires (1) 1 SetProg hybrid call to set up the length-2n vector to read from the
UROM9; (2) 1 ReadUROM hybrid call to read the length-2n vector d from UROM; and (3) 1
CheckUROM hybrid call.

• Step 7 requires (1) 1 Check hybrid call with circuit Ccheck
4 of n multiplications; (2) 1 Check

hybrid call with circuit Ccheck
5 of n multiplications; and (3) 1 Check hybrid call with circuit

Ccheck
6 of 4n multiplications. Note that to construct the commitments of s (see Sub-step 7c),

P needs to make (1) 2n Commit hybrid calls to commit s; and (2) 1 Check hybrid call with
the circuit to define Expand1, which has 2n MULTs.

9Note that the commitment indexes of id no longer needs to be transferred from P to V. I.e., P and V already
agree them in Step 3.
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