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Abstract—The increase in traffic volumes in urban areas
makes network delay and capacity optimisation challenging.
However, the introduction of connected vehicles in intelligent
transport systems presents unique opportunities for improving
traffic flow and reducing delays in urban areas. This paper
proposes a novel traffic signal control algorithm called Multi-
mode Adaptive Traffic Signals (MATS) which combines position
information from connected vehicles with data obtained from
existing inductive loops and signal timing plans in the network to
perform decentralised traffic signal control at urban intersections.
The MATS algorithm is capable of adapting to scenarios with
low numbers of connected vehicles, an area where existing traffic
signal control strategies for connected environments are limited.
Additionally, a framework for testing connected traffic signal
controllers based on a large urban road network in the city
of Birmingham (UK) is presented. The MATS algorithm is
compared with MOVA on a single intersection, and a calibrated
TRANSYT plan on the proposed testing framework. The results
show that the MATS algorithm offers reductions in mean delay
up to 28% over MOVA, and reductions in mean delay and
mean numbers of stops of up to 96% and 33% respectively
over TRANSYT, for networks with 0-100% connected vehicle
presence. The MATS algorithm is also shown to be robust under
non-ideal communication channel conditions, and when heavy
traffic demand prevails on the road network.

Index Terms—Intelligent transport systems, Connected vehi-
cles, Communication systems, Traffic signal control, Adaptive
signal control, V2I

I. INTRODUCTION

INCREASING traffic volumes in urban areas make network
delay and capacity optimisation challenging. The Centre

for Economics and Business Research (CEBR) estimated the
cost of traffic delays in 2013 for the UK, France, Germany,
and the USA as 20.5, 22.5, 33.43, and 124.158 billion dollars
respectively (see Table I) and these values are expected to
increase significantly over the next 15 years [1]. CEBR defines
delay cost as the combination of the direct cost of fuel and
time wasted, along with the indirect cost resulting from delays
impacting on business efficiency. In 2017, INRIX estimated
that traffic congestion cost the combined economies of the
UK, Germany, and the USA $450 billion in lost time and
wasted energy [2]. Traffic delays are a significant problem in
developed countries.
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Table I
COUNTRY-LEVEL SUMMARY OF THE ECONOMY-WIDE COST OF TRANSPORT

DELAY, AND DELAY COST FORECASTS UNTIL 2030 (BILLIONS USD) [1].

Country Delay Cost (Billions USD)
2013 2020 2025 2030 Cumulative

UK 20.5 25.4 29.2 33.4 479.9

France 22.5 25.4 27.5 29.6 468.7

Germany 33.5 37.3 40.4 43.8 693.3

USA 124.2 151.3 169.7 186.2 2,806.8
Total 200.7 239.4 266.8 293.0 4,448.6

Connected Vehicles (CV) are those that use wireless
communications to share data with other vehicles and
infrastructure. CVs present unique opportunities to improve
urban traffic management systems’ effectiveness at reducing
delay. CVs have the advantage over inductive loops in that
they do not require intrusive roadworks to be undertaken
to install infrastructure, such as inductive loops, to use
their data. However, their networking protocols are more
complex than those of unconnected vehicles, and they require
fleets to contain significant proportions of CVs before their
applications become effective. Previous literature does not
adequately address the issue of traffic signal delay at CV
penetrations below 50%. The current literature also does
not properly address the issue of imperfect communication
channel conditions and testing traffic signal control algorithms
at increasing penetrations of CVs, and in realistic scenarios.
This paper proposes a novel traffic signal control algorithm
called Multi-mode Adaptive Traffic Signals (MATS) which
combines position information from CVs with information
collected through existing inductive loops and fixed-time plans
to perform decentralised intersection control in urban areas to
reduce overall traffic delay. In order to comprehensively test
the MATS algorithm, a microsimulation testing framework
for traffic signal controllers using CV data is presented. The
testing framework is based on a large urban road network
in the city of Birmingham (UK). It highlights how traffic
signal control algorithms should be evaluated under varying
traffic demands of mixed-mode traffic, varying levels of CV
penetration, and under imperfect communication channel
conditions. The MATS algorithm is tested against MOVA using
the case study in [3]. In addition, a calibrated TRANSYT [4]
plan is used as a benchmark in the testing framework. The
MATS algorithm is capable of performing under various levels
of connectivity and aims to reduce traffic delay.
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The contributions of this paper are as follows:
1) A new traffic signal control algorithm, MATS, is proposed

which combines information from existing fixed-time
plans and loop detectors, and position data from CVs to
perform decentralised control on signalised intersections.
The MATS algorithm operates under similar principles
to the state-of-the-art MOVA algorithm [5], that is to
optimise network capacity for saturated conditions and
minimise stops and delays for undersaturated conditions.
The MATS algorithm is novel in that it does not require
entirely new infrastructure, high penetrations of CVs, or
ideal data. Rather, the algorithm can be deployed alongside
legacy systems to augment them with data from CVs, even
under non-ideal communication channel conditions, an
area where existing literature is limited.

2) A testing framework for the microsimulation of traffic
signal controllers that use CV data is proposed. The
new testing framework overcomes the limitations of
existing tests by implementing a large-scale, realistic
simulation case study, which accounts for mixed-mode
traffic, multiple levels of traffic demand, degraded loop
detector coverage, and a full 24-hour simulation period.

3) A communication channel noise characterisation system
for the testing framework is proposed. In this paper,
non-ideal communication channel conditions are more
comprehensively treated than in previous simulation
studies. Typically, only channel latency is considered.
Here, GPS measurement error and packet loss are also
included in the communication channel error model and
is shown to have a significant impact on the connected
signal control strategy.

Section I-A reviews traffic signal control literature while
Section II explains the proposed MATS algorithm. The al-
gorithm is tested using the proposed microsimulation testing
framework based on a large-scale urban road network in the city
of Birmingham (UK), at varying levels of traffic demand, at CV
penetrations from 0-100%, and under imperfect communication
channel conditions in Section III. The microsimulation results
comparing the MATS algorithm with MOVA, and a calibrated
TRANSYT plan on two case studies are presented in Section IV.
Finally, the conclusions and avenues for future work are drawn
in Section V.

A. Related Work

Effective traffic signal control strategies for urban road
networks have been well-studied [6, 7]. There are three
approaches to traffic signal control that are currently used:
fixed-time, actuated, and adaptive.

Fixed-time traffic control systems create optimised signal-
timing plans from historical data and are suitable in areas
where traffic remains similar to the calibration state. Fixed-
time plans do not adapt to live traffic conditions, so do not
perform well where traffic demand varies significantly. The
TRAffic Network StudY Tool (TRANSYT) [4], is one of the
most widely deployed fixed-time optimisation packages still
in modern usage. TRANSYT uses historic flow measurements
to generate optimum signal timing plans for both isolated

and networked intersections. TRANSYT calculates the optimal
signal timings for a given road network model by minimising
a performance function consisting of delay, number of stops,
and economic factors. TRANSYT has been shown to reduce
delay up to 24% over pre-existing signal timing plans in the
New England region of the USA [8].

Actuated signal control systems, employ data gathered from
roadside sensors such as inductive loops or video cameras to
extend the green time of a signal stage between a minimum
and maximum limit depending on the current traffic conditions.
Microprocessor Optimised Vehicle Actuation (MOVA) [5] is
an example of an actuated signal control strategy that uses
loop detector data to attempts to minimise delay and stops
for the entire intersection. MOVA typically reduces delay at
isolated intersections by 13% on average over other actuated
systems [9].

Adaptive signal controllers use data from infrastructure in
real-time to optimise an objective function to reduce traffic
delays and congestion. Adaptive strategies can work with
both isolated (decentralised) intersections, and with groups
of signal controllers to reduce traffic delays. Currently used
adaptive signal controllers include: SCOOT [10], SCATS [11]
and InSync [12]. In the UK, SCOOT has been shown to reduce
traffic delays by 12% on average, but up to 33% compared
with TRANSYT, and 26% on average but up to 48% compared
with an isolated vehicle actuation scheme [13].

There has been a great deal of success in reducing delays
with adaptive traffic signal control strategies that use data from
infrastructure to best respond to varying traffic demand on
the road network. The introduction of CVs and the concept
of Connected Intelligent Transport Systems (C-ITS) present
exciting opportunities for innovation in traffic signal control.
CV systems are inherently well suited to mitigate delay, as
CVs are an abundant source of data for Adaptive Traffic Signal
Control Systems (ATSCS). ATSCSs are more beneficial than
traditional traffic control strategies at reducing traffic delay [14],
especially in urban areas with fluctuating traffic demands. This
paper focuses on using data sent from CVs to infrastructure to
improve decentralised adaptive traffic signal control in urban
areas.

Recent research has developed traffic signal controllers for C-
ITS environments (see [15] and [16] for reviews) which assume
perfect communication between vehicles and infrastructure, or
require all of the vehicles in the network to be connected as in
the slot-based reservation system of Fajardo et al. [17]. As CVs
are only anticipated to be introduced into the road network
from 2020 onward, it will take time for the vehicle fleet to
become fully connected [18], and hence there is a need to
develop signal control strategies that support this transition
period. Other traffic signal controllers for CVs rely entirely on
CV data, with limited consideration for unconnected vehicles
such as in forecast based departure strategy optimisation [19].
More recent traffic signal control algorithms have begun to
consider both connected and unconnected data sources. Beak
et al. [20] used stop bar detectors to supplement an adaptive
phase optimisation strategy using CV data at CV penetrations
as low as 25% using a perfect communication system. Ilgin
Guler et al. [21] proposed an algorithm to enumerate and
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optimise discharge sequences to reduce delay and tested it
at CV penetrations from 0-100%. However, they only test an
intersection with two one-way streets at two demand levels, and
with perfect communications. Yang et al. [22], went further
to incorporate loop detectors and trajectory data into their
signal control optimisation strategy where varying levels of CV
penetration and GPS errors were considered, across a single
intersection at two static demand levels. Common limitations
in both the algorithms and testing frameworks from these
studies were: 1) only cars were simulated, 2) the road network
size was small (4 intersections on average), 3) CV data were
perfect or only had one source of error, 4) the parameter space
was limited, and 5) the impacts of roadside and connected
infrastructure degradation are ignored.

The research gaps identified in the literature are addressed
in this paper in two ways: 1) the MATS control algorithm
that has been developed, and 2) a realistic testing framework
for comprehensively testing traffic signal control strategies
for connected environments. The MATS algorithm addresses
the issue of reducing delay at existing traffic signal control
sites in environments with increasing numbers of CVs and
where existing infrastructure is degraded. The MATS algorithm
does this in a novel way that combines 3 data sources (fixed-
time plans, loop detectors, and CVs) rather than two, as is
typical in the literature. This paper completes the concepts
introduced in [23, 24] by modifying the algorithm to be robust
in real-world networks, addressing mode-switching issues,
and performing simulations under a comprehensive testing
framework. The proposed microsimulation testing framework is
unique in that it combines data from the Birmingham and West
Midlands traffic data portal [25] with OpenStreetMap (OSM)
data [26] to create a large-scale, current, and realistic simulation
case study. The testing framework overcomes the limitations
identified in the literature by allowing traffic signal control
algorithms to be tested with increasing levels of CV penetration,
mixed-mode traffic, and multiple traffic demands over a 24-hour
period. Furthermore, the three main issues that create imperfect
communication channel conditions (GPS measurement error,
channel latency, and packet loss) are addressed, which has
been lacking in the literature.

II. THE MULTI-MODE ADAPTIVE TRAFFIC SIGNALS
CONTROL ALGORITHM

A. Concept

The MATS algorithm builds upon the principles for managing
oversaturated and undersaturated flows from the state-of-the-art
vehicle actuated control algorithm – MOVA [5], and extends
those principles with blocking back detection and queue length
estimation using CV data. Similar to MOVA, the MATS
algorithm reduces delays in undersaturated conditions, and
increases capacity in saturated conditions. In addition, the
MATS algorithm uses speed, position, and heading data from
CVs in combination with fixed-time plans and data from
inductive loop sensors to actuate signal timings, to detect
blocking back, and to estimate queue lengths.

The MATS algorithm bridges the gap between existing and
future technologies for traffic management by offering multiple

modes of operation based on what sources of data are available.
At its lowest level of operation, it operates a fixed-time plan
in the absence of data from CVs or roadside infrastructure.
As data from loop detectors and CVs becomes available, the
MATS algorithm adapts its mode of operation to actuate signal
timings using the gathered data. Furthermore, it can respond
to traffic demand in real-time and preserves driver privacy as
it does not require individual drivers to be tracked through
the network. Also, it builds on established traffic management
techniques and uses optimisation/heuristic procedures that are
clearly defined, making the algorithm intuitive for transport
planners to deploy. To increase capacity and reduce delays
in the network, the MATS algorithm maintains a cyclic stage
pattern and reduces the load on the downstream intersection
rather than modifying its stage to serve stages with high demand
(i.e. in back-pressure routing). By synthesising fixed-time plans,
loop detector data, and CV data into a single algorithm, delays
and stops are minimised for road users.

In the following subsections, data acquisition and intersection
control in the MATS algorithm are detailed. Data acquisition
considers the management of available data from connected
sources. Intersection control considers integrating the gathered
data into traffic signal control and timing decisions.

B. Vehicle Data Acquisition
Vehicle data acquisition determines which data originate from

vehicles in the junction’s control region, determining the queue
length on routes that are not inactive, and the locations and
speeds of the vehicles on the active lanes. A junctions’ control
region is the area surrounding the junction in which wireless
communications are possible. If another junction exists inside
the control region, the boundary is cropped to the conflicting
junction’s nearest stop line. The boundary reduction covers
the widest possible control region while allowing data from
vehicles associated with other junctions to be ignored. The
junction controller receives data from all vehicles inside its
control region, ignoring those that are not.

The junction controller monitors time-dependent data re-
garding the vehicles’ positions, headings, and speeds. The
junction controller has knowledge of its own layout/map and
can determine the headings that correspond to an approach on
each of its lanes. Vehicles in range of the junction and travelling
with headings matching one of the known approaches (± a
tolerance to allow for GPS positioning error) are considered
to be approaching the junction.

C. Intersection Control
1) Initial Stage Time: The initial stage time is defined based

on the length of the queue in inactive lanes. Control strategies
frequently use queue length estimates as a parameter, and as a
quantity that is desirable to minimise [19]. Queue lengths are
determined from the distance of the furthest queuing vehicle
from the intersection. A vehicle is considered to be queuing if
its speed is less than 0.01 m/s (inferring that vehicles travelling
so slowly are at or approaching the end of the queue). The
queue clearance time for a lane is given by:

tclear,queue =
lqueue

lqueue,max
× tgreen,max (1)
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where tclear,queue is the queue clearance time, lqueue is the
queue length, tgreen,max is the maximum green time a stage
can have, and lqueue,max is the maximum length a queue may
have. Setting the queue clearance time in this way means that
as the queue length tends towards the maximum range of the
communication system, the initial green time tends towards the
maximum green time. The queue clearance calculation is unique
in that, neglects the start-up loss time that drivers need to react
and accelerate. The reason start-up loss is neglected is that the
stage time is extended by the presence of the connected vehicle
at the tail of the queue if it has not crossed the stop line. This
allows the preliminary green time to be automatically corrected
if the queue clears slower than expected. In comparison, the
MOVA algorithm uses a queue length estimated from vehicle
counts over its detectors, so the locations of each inductive
loop restrict its estimation.

2) Blocking-back Detection: Blocking-back occurs at neigh-
bouring intersections where queues of vehicles at a downstream
intersection are long enough to obstruct subsequent vehicles
from joining the queue. Blocking-back can cause gridlock
if traffic cannot proceed in any direction [27], and is typi-
cally alleviated through signal coordination. For example, the
SCOOT algorithm measures the proportion of the cycle time
where queues occupy its detectors. The queuing information is
passed to the optimiser, which then minimises the likelihood
of the upstream junction creating a blocking queue [10]. Even
though blocking-back is a well-understood problem [28], the
literature on traffic signal control for CVs appears to ignore the
issue. In literature for traffic signal control strategies for CVs,
Goodall et al. [19] and He et al. [29] were the only studies to
consider blocking-back. Goodall et al. [19] detected blocking-
back using CV data. If vehicles were blocking a movement,
then the movement that clears the blocking vehicles was given
higher priority. In He et al. [29], vehicle platoon movements
and ques lengths were used to prevent the creation of queue
spillback that would cause blocking-back.

Here the control is decentralised, so a method of locally
detecting blocking-back is developed. Blocking-back is detected
by the MATS algorithm using CV position and speed data
to determine if the vehicles are stationary during a stage that
should permit the vehicles to travel. If blocking-back is detected,
the MATS algorithm ends the current stage to allow vehicles
in other lanes to traverse the junction on unobstructed routes.
Although stage cancelling reduces service to the vehicles in the
cancelled stage, it gives vehicles in other stages the opportunity
to use the intersection to increase throughput and gives the
downstream intersection time to clear the blocking traffic.
Compared with back-pressure routing approaches [30], the
MATS algorithm maintains a cyclic stage pattern and reduces
the load on the downstream intersection rather than modifying
its stage to serve stages with ’high-pressure’.

3) Inductive Loop Data Integration: The green time ex-
tensions are applied when vehicles are detected in real-time
on the existing inductive loops in the road network. The
MATS algorithm extends the stage by one extension interval
if a vehicle is detected in the previous extension interval.
The actuation behaviour is defined based on the actuated
timing parameter recommendations of the Federal Highways

Administration Signal Timing Manual (STM) [31].
4) CV Data Integration: Real-time information from CVs

is used to derive a stage extension time dynamically. If a CV
is detected close to the intersection in an active lane, the time
it takes for that vehicle to reach the intersections is estimated
from the driver’s current speed and position. This time is added
to the stage duration if it satisfies the acceptable travel time
requirements set by Highways England [32]. The acceptable
travel time factor is 1.67 times the free flow journey time. This
factor times the average time headway between vehicles gives
the time threshold for green extensions. The time for a CV to
clear the intersection is:

tclear,CV =
d(xv, xi)

vvehicle
(2)

where tclear,CV is the time it takes a CV to clear the
intersection. d(xv, xi) is the Euclidean distance between the
2-D Cartesian coordinates for the positions of the vehicle (xv)
and the intersection xi in meters. vvehicle is the speed of the
vehicle. This approach achieves control that is functionally
similar to MOVA in that if continuous vehicle flow is present
(oversaturation), the algorithm allows vehicles to proceed
until the maximum green time is reached or the queue is
dispersed, which maximises capacity. If the vehicle flow is
undersaturated, the MATS algorithm allows vehicles to pass
as long as unacceptable gaps do not appear in the flow.

5) Algorithm Overview: Figure 1 shows the flowchart for
the MATS algorithm and highlights how the components of
the algorithm integrate, and how MATS switches its mode of
operation based on which data sources it has available to it.
In order to reduce the computational load, the algorithm only
makes control decisions if the remaining green time is less
than a check threshold, which here is 5 s. The MATS algorithm
extends traditional vehicle actuated systems by incorporating
multiple data sources to compensate for the loss of CV or
inductive loop data. CV data is only used if the CV penetration
is high enough that using the data provides performance
superior to fixed-time control.

The pseudocode for the MATS algorithm is presented in
Algorithm 1. The semantics for the pseudocode are based
on a combination of the Python programming language [33]
and American Mathematical Society notation [34], where ‘//’
infers a comment rather than a command, and ‘DO’ describes
in plain English an action to be taken by an external part of
the program.

III. TESTING FRAMEWORK

A. Case Study 1
Figure 2 illustrates the T-junction type intersection used to

assess the performance of the MOVA algorithm in [3]. The
OD matrix for the model is given in Table II. The OD matrix
is reported to yield flows that operate the intersection close to
its saturation point.

B. Case Study 2: A Realistic Testing Framework
The microsimulation testing framework presented in this pa-

per is based on the road network in the Selly Oak area of Birm-
ingham (UK): the roadway from Selly Oak (latitude/longitude:
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Algorithm 1: MATS Algorithm Pseudocode
1 begin MATS
2 DO: Gather CV data from the communications channel, collect flow data from inductive loops
3 remainingTime ← stageDuration − elapsedTime
4 if remainingTime ≤ checkThreshold then

// Get loop extension time if loop data available
5 if loopDataForControlledLanes then
6 if ANY(lastDetectTime ≤ extensionThreshold) then
7 loopExtendTime ← loopStageExtension
8 else
9 loopExtendTime ← 0

10 else
11 loopExtendTime ← NONE

// Get CV extension time if CV data available
12 if CVpenetration > CVPthreshold then
13 if nearestVehicleSpeed ≥ 0.01 and nearestVehicleIsInRange then
14 cvExtendTime ← nearestVehicleDistance / nearestVehicleSpeed
15 if cvExtendTime > 2×loopStageExtension then
16 cvExtendTime ← 0

17 else
18 cvExtendTime ← 0

19 else
20 cvExtendTime ← NONE

// Select extension from the available data, default to fixed-time plan
21 if loopExtendTime 6= NONE and cvExtendTime 6= NONE then
22 stageExtendTime ← max(loopExtendTime, cvExtendTime)
23 else if loopExtendTime = NONE and cvExtendTime 6= NONE then
24 stageExtendTime ← cvExtendTime
25 else if loopExtendTime 6= NONE and cvExtendTime = NONE then
26 stageExtendTime ← loopExtendTime
27 else
28 stageExtendTime ← max(0, fixedTimeDuration− elapsedTime)

// Update stage time to fall within the upper and lower green time bounds
29 stageDuration ← elapsedTime +max(stageExtendTime, remainingTime)
30 stageDuration ← max(stageDuration,minGreenTime)
31 stageDuration ← min(stageDuration,maxGreenTime)

// If this is a new stage set a preliminary green time based on the queue length
32 else if newStage and numberOfCVs > 0 then
33 if lastVehicleDistance 6= NULL then
34 queueClearanceTime ← lastVehicleDistance × (maxGreenTime/maxQueueLength)
35 stageDuration ← max(queueClearanceTime,minGreenTime)
36 stageDuration ← min(queueExtendTime,maxGreenTime)
37 else
38 stageDuration ← minGreenTime

// If no vehicles are moving due to blocking back then end stage
39 else if elapsedTime > minGreenTime and remainingTime > checkThreshold and numberOfCVs > 0 and not queueIsMoving then
40 DO: Set stage to end
41 else
42 DO: Continue

// Continue stage if time remaining, else transition to next stage
43 if elapsedTime < stageDuration then
44 elapsedTime ← elapsedTime + timeStep
45 else
46 DO: Transition to next stage
47 elapsedTime ← 0
48 stageDuration ← 0

52.439177, -1.940248) to the Warwickshire Country Cricket
Club (latitude/longitude: 52.455288, -1.907067) (see Figure 1).
This area covers 8.26 km2 with 12 signalised intersections, and
64 inductive loop detectors. This area is chosen since it covers
the route with the highest number of working loop detectors
within Birmingham. Also, traffic signal data from this area
were available for public use [25]. Additionally, high volumes
of traffic were observed in this area due to the presence of large
retail and residential centres, and key sites of trip generation
such as a 1000+ bed hospital and the University of Birmingham.

The specification of the testing framework and details of how
it overcomes the limitations of previous work identified in
Section I are presented in the following sections.

1) Road Network Modelling: A road network model for this
testing framework was created using OpenStreetMap (OSM)
data [26] and vehicle flow data from the Birmingham and West
Midlands traffic data portal [25]. Figure 3 shows the modelled
Selly Oak road network (Birmingham, UK) in SUMO [35]. The
extent of the network and the number of intersections are greater
than the models typically used in the literature. The Four-Step
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Figure 1. Flowchart for the MATS algorithm.

Figure 2. SUMO model of the T-junction type intersection used in [3].

Model (FSM) [36] approach was used for demand modelling
in this study and is described in the following sections.

a) Trip Generation: From the flow data publicly available
in Birmingham and West Midlands traffic data portal, the time-
dependent frequency of use for each origin and destination
point in the network was estimated. In this study, flow data
of weekdays (Monday-Friday, excluding holidays) in 2016
and 2017 were used. Each detector was matched to its
corresponding origin or destination lane in the road network
model. The flow information was then translated to the total
trips per hour going to/from the corresponding lane over 24
hours.

b) Trip Distribution: Using the information from the
previous step, the trips were distributed between connected
Origin-Destination (OD) pairs, and an OD matrix was formed
from collected flow data. As there were no prior travel survey
information or turn counts available for the network, the initial
traffic was assigned proportionally using the methodology
originally proposed by Robillard [37]. The OD matrix was
then calibrated using the Furness method [38], to ensure the

Table II
OD MATRIX FOR THE T-JUNCTION MODEL. ROWS DENOTE ORIGINS,

COLUMNS DENOTE DESTINATIONS. FLOWS ARE IN VEHICLES PER HOUR.

East West South
East – 948 48

West 750 – 198

South 162 162 –

Figure 3. SUMO representation of the Selly Oak road network. Intersections
with traffic signals are highlighted with the red-amber-green light block (12 in
total). The locations of the inductive loops are marked with yellow rectangles.

OD matrix was consistent with the loop detector flow data
after assignment. All vehicle flows are uniformly distributed
across their insertion intervals.

c) Mode Choice Assignment: With the trips determined,
the next step was to allocate each trip a mode of travel (e.g. car,
motorcycle, Light Goods Vehicle (LGV), Heavy Goods Vehicle
(HGV)), bus). The UK Department for Transport provides
information about the distribution of different vehicle types on
a regional basis in the VEH0104 dataset [39]. The distribution
of vehicles registered in the West Midlands area of the UK,
where Birmingham is located, is:

Cars 82.7% Motorcycles 3.0% LGVs 12.3%
HGVs 1.6% Buses 0.4%

The vehicle type distribution data from the VEH0104 dataset
are used for mode choice assignment, improving the testing
framework’s realism over studies that only consider passenger
cars.

d) Route Choice Allocation: With the trips and travel
modes determined, the routes used for each trip can be
calculated. The Selly Oak network is a local area with
few alternative paths between origins and destinations. It is
reasonable to assume that drivers in the network follow the
shortest path to their destination. Dijkstra’s algorithm [40] for
finding the shortest path between two nodes was used for this
localised road network.

C. Simulation Parameters

Microsimulation was used to test whether the MATS al-
gorithm offers improved intersection management compared
to TRANSYT and MOVA. The simulations were performed
using the open-source SUMO (version 0.30.0) microsimulation
environment [35], and were controlled using Python [33].
The MATS algorithm was tested with and without loop data,



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 7

and under non-ideal communication channel conditions. The
parameter configurations for the various simulation scenarios
are explained below.

1) CV penetration: In order to understand how the number of
CVs present in the network can affect intersection management,
simulations were run across a range of CV penetrations. The
CV presence in the network was incremented from 0% to
100% in steps of 10%.

2) Traffic Demand: The amount of traffic in the network
is a contributory factor in determining how effective a traffic
signal control strategy is. Case Study 1 uses one hour of static
demand that is close to the intersections saturation point. Case
Study 2 tests 24-hours of low, average, and high flow levels so
that the change in performance of the signal control strategies
at varying demand levels can be assessed. By analysing the
data collected from the loop detectors in the Selly Oak study,
the base case shows average flow levels. The high and low
demand cases were defined as being ±20% of the average flow
experienced by the detectors, respectively.

3) Car-Following Model: Here, the Krauss model [41] was
used as the car-following model as it produces stable collision-
free traffic flow and is well validated. The Krauss model
has been shown to outperform other traffic-flow models in
mixed traffic scenarios [42]. It is also stable at the 0.1 s
simulation time-step, which was needed to represent the
wireless communication system dynamics. Table III describes
the parameters used in the Krauss car-following model for
the five considered vehicle modes (cars, motorcycles, LGVs,
HGVs, and buses). Both connected and unconnected vehicles
have the same car-following parameters as it is assumed that
CVs ability to share data with a traffic signal controller does
not affect driver behaviour.

Table III
THE KRAUSS CAR-FOLLOWING MODEL PARAMETERS FOR THE

CONSIDERED VEHICLE TYPES [43].

Parameter (unit) Car MC LGV HGV Bus
Acceleration (m/s2) 2.6 5.0 2.0 1.3 1.0

Deceleration (m/s2) 4.5 9.0 4.0 3.5 3.5

Driver Imperfection - σ 0.5 0.5 0.5 0.5 0.5

Reaction Time - τ(s) 1.0 1.0 1.0 1.0 1.0

Length (m) 4.3 2.2 6.5 7.1 12.0

Min. Gap (m) 2.5 2.5 2.5 2.5 2.5

Max. Speed (km/h) 180 200 160 130 85

L/HGV: Light/Heavy Goods Vehicle
MC: Motorcycle

4) Control Strategies: In order to assess the performance of
the proposed MATS algorithm, the results were compared with
those from TRANSYT plans calibrated on an average flow
case in the Selly Oak area. TRANSYT signal timing plans
were produced using the TRANSYT 15 software. Separate
timing plans were calibrated for off-peak (00:00-06:00, 20:00-
00:00), peak (06:00-11:00, 16:00-20:00) and inter-peak flows
(11:00-16:00).

5) Intersection Configuration: Intergreen times for each
intersection were set per the UK Government guideline

intergreen times [44]. The MATS algorithm (Algorithm 1)
was configured with an extension interval of 2 s per the work
of Bonneson and McCoy [45]. The minimum and maximum
green times were 2 and 10 times the intergreen time for the
intersection, respectively. The junction control region was
defined as a circle with radius 250 m [46] centred on the
intersection. The check interval for the MATS algorithm was
5 s, not 1 s, to allow sufficient time for decisions in the event
of long communication latencies and high levels of packet loss.

6) Stochastic Effects: Many of the processes within the
simulation rely on randomness to generate values, especially
the traffic generation process. All random number generators
used in the codes for this research were drawn from seeded
uniform distributions so that the results are repeatable. As the
system is stochastic, each simulation must be repeated to create
a sample space, and the results averaged in order to determine
the typical performance resulting from the underlying system
dynamics. The sample space for this research contains 50
repetitions per experiment.

7) Communication Channel, Errors, and Delays: Where
CVs transmit information, data were sent at a rate of 10 Hz
based on the ETSI CAM [47] specification. Messages were
transmitted via an IEEE 802.11p [48] Dedicated Short-
Range Communication (DSRC) channel. Research on IEEE
802.11p networks shows that signal strength is high enough
within a 250 m radius to allow messages to be received
correctly [46, 49], and that packet latency of approximately
50 ms are achievable at vehicles speeds of up to 90 km/h [49].
In this research, CAMs were received by the intersection
controller with ideal information content, but with a delay
of 100 ms.

In order to assess the lower-bound performance of the MATS
algorithm, it was tested under non-ideal conditions. In the
non-ideal case, the MATS algorithm was tested with a CAM
generation rate of 1 Hz instead of the usual 10 Hz. The packet
loss in the system was set to 50%. Finally, Gaussian noise
of the form X ∼ N (µ, σ2), with mean µ = 0 and variance
σ2 = 2.79, was added to GPS measurements (i.e. the position
±5 m in both the x and y coordinates, typical for differential
GPS systems [50]).

IV. RESULTS AND DISCUSSION

A. Performance Indicators

Mean travel time delay and mean stops were selected as the
performance indicators for this research. Delay and stops are
primary components on which TRANSYT optimises signal
timings [51] and allow comparison. Free-flow travel times were
the basis for delay calculations. In this study, free-flow travel
time is the time a vehicle takes to make its journey at the
speed limit, unimpeded by external factors such as other traffic
or signalised intersections. Travel-time delay characterises the
excess time a vehicle takes to complete its journey compared
to the free-flow travel time along the same route. As simulation
was used to study the traffic dynamics, the time delay Tdelay

for a vehicle is defined as:

Tdelay = Texit − Tenter − Tfreeflow (3)
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where Tenter and Texit are the times a vehicle enters and exits
the simulation, respectively. Tfreeflow is the time it takes the
vehicle to make its journey on an unobstructed route. Delay
time indicates the amount of time actually saved compared
to the complete journey time and highlights the performance
limitations of each method.

In this study, a vehicle is defined as being stopped if its
speed is less than 0.01 m/s. The total number of stops a vehicle
makes on its journey were recorded for analysis. To normalise
the results in Case Study 2, the mean delay and mean stops are
represented per kilometre. The mean data points are banded
by the 5th and 95th percentiles of their corresponding dataset
as indicators of variability.

The results also compare the mean delays and the mean
stops in terms of the percentage reduction between them. The
percentage reduction is calculated by:

100

(
1− x

xref

)
(4)

which yields the percentage reduction between a result value
from the MATS algorithm x, and the corresponding reference
value from the MOVA or TRANSYT results, xref .

To establish how the performance of the MATS algorithm
differs depending on the quality and availability of input
data, three varieties of the MATS algorithm are defined and
compared:

• MATS-FT: The MATS algorithm combining data from
fixed-time plans and CVs

• MATS-HA: The MATS algorithm with hybrid actuation,
combining data from fixed-time plans, inductive loops,
and CVs

• MATS-ERR: MATS-FT but under imperfect communica-
tion channel conditions.

The fixed time plan was derived from the TRANSYT plan.
The times given by the TRANSYT plan were truncated in
the MATS algorithm if they exceed the junction’s maximum
green time value. During initial testing, it was found that
the use of loop data was detrimental to the performance of
the MATS-HA variant at 0% CV penetration. The negative
behaviour was due to placing the algorithm in a network with
imperfect coverage. In the case study, the loop placement was
for a SCOOT system. It was found during testing that the loop
coverage is too degraded to be beneficial at 0% CV penetration,
so loop detectors are only used in the presence of CV data for
this case study, and the base level of performance is fixed-time.

In Sections IV-B and IV-C, the results of the tests on the
two case studies are presented. First, the results comparing
the MATS algorithm to MOVA are discussed. Secondly, the
results comparing the MATS algorithm to TRANSYT on the
realistic testing framework are discussed.

B. Case Study 1: Comparison with an Actuated Controller

The MATS algorithm is compared to the state-of-the-art
vehicle actuated signal controller of MOVA using the single
intersection case study developed in [3]. In that study, it was
demonstrated that at a single intersection with ideal loop
detector data and traffic conditions just below saturation, the
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Figure 4. Comparison of the mean delay of the MATS algorithm with MOVA
on Case Study 1.

average delay is 20.3 s using MOVA. Figure 4 shows the
difference in delay between MOVA and the MATS algorithms
for CV penetrations from 0%–100%. Table IV shows the
percentage difference in delay between the MATS algorithm
and MOVA. Under the same traffic conditions and ideal
communication conditions, the MATS-FT algorithm showed
lower mean delay than MOVA above 20% CV penetration,
with mean delay reductions of 20%-28% above 30% CV
penetration. Under non-ideal communication conditions, the
MATS algorithm reduces mean delay better than MOVA above
40% CV penetration, with reductions in mean delay between
19%-29% above 40% CV penetration. When both inductive
loop and CV data are used in the MATS-HA algorithm, the
MATS-HA algorithm reduces mean delay between 12%-15%
compared with MOVA for CV penetrations ≥10%. The MATS-
FT and MATS-ERR use fixed-time plans up to 10% and 20%
CV penetration, respectively, indicating that for this case study,
there is a threshold below which CV data is not beneficial. The
MATS-HA algorithm does the best at 0% CV penetration as it
can use loop detectors to actuate signal timings, but is worse
than MOVA as its actuation strategy is not as sophisticated.
The results show that the MATS algorithm is better than the
state-of-the-art vehicle actuation strategy MOVA, and that loop
detector data is useful at low CV penetrations but can limit
performance at high CV penetrations.

Table IV
BENCHMARK RESULTS OF THE MATS ALGORITHM AGAINST MOVA ON
CASE STUDY 1. THE PERCENTAGE REDUCTION IN AVERAGE DELAY AT

10%, 30% 50%, 70% AND 100% CV PENETRATION ARE SHOWN.

Algorithm
CV Penetration

10% 30% 50% 70% 100%
MATS-FT -22.16% 13.11% 24.1% 27.4% 27.9%

MATS-HA -4.27% 14.64% 14.66% 14.14% 13.46%

MATS-ERR -22.16% -22.16% 19.8% 26.82% 28.2%

C. Case Study 2: Test on a Realistic Road Network
Tables V show the results from the benchmarking of MATS

against TRANSYT on the low, average, and high traffic demand
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Table V
BENCHMARK RESULTS OF THE MATS ALGORITHM AGAINST TRANSYT

FOR THE THREE DEMAND CASES. THE PERCENTAGE REDUCTION IN
AVERAGE DELAY AND AVERAGE NUMBER OF STOPS AT 10%, 50%, AND

100% CV PENETRATION ARE SHOWN.

A: Low Traffic Demand
CV Penetration

Algorithm 10% 50% 100%
Delay Stops Delay Stops Delay Stops

MATS-FT 82% 7% 87% 19% 89% 24%

MATS-HA 83% 19% 87% 23% 88% 26%

MATS-ERR 40% 4% 82% 20% 86% 25%
B: Average Traffic Demand

CV Penetration
Algorithm 10% 50% 100%

Delay Stops Delay Stops Delay Stops
MATS-FT 93% 3% 95% 26% 96% 32%

MATS-HA 93% 20% 95% 32% 96% 35%

MATS-ERR 28% 9% 94% 25% 95% 33%
C: High Traffic Demand

CV Penetration
Algorithm 10% 50% 100%

Delay Stops Delay Stops Delay Stops
MATS-FT 86% -29% 97% 40% 98% 47%

MATS-HA 90% -1% 97% 46% 97% 49%

MATS-ERR 27% 13% 96% 37% 97% 47%

cases. The numbers in Tables V(A), (B), and (C) show the
percentage reduction in the average delay and the average
number of stops compared to TRANSYT at 10%, 50%, and
100% CV penetration.

Figure 5 shows the plots of mean delay per kilometre and the
mean number of stops per kilometre for three traffic demand
scenarios. As shown in Figure 5, the MATS algorithm resorts
to using the fixed-time plan in the absence of CV data (0%
CV penetration). As shown in Figure 5, the grey lines for both
delay and number of stops are straight for TRANSYT. These
lines are expected to be straight as TRANSYT does not use
CV data, so its performance is invariant with increases in CV
penetration. The results are discussed in further detail under
two categories (stops and delays) in the following sections:

1) Stops: It can be seen in Figures 5(b), (d), and (f) that
there is little difference in the average number of stops made
across the MATS algorithm variants compared with TRANSYT,
even with the addition of inductive loops. Across all of the stop
results, it can be seen that as the CV penetration increases the
variability in the number of stops made by vehicles reduces.
The reduction in variability shows that vehicles which stop
many times, stop less frequently when there are CVs present
in the network. The variability remains wide even at high CV
penetrations due to the varied route lengths in the network
resulting from its large size.

In addition, there are visible peaks in the MATS-FT and
MATS-HA variants at 10% CV penetration in the high demand
case. The peaks occur as a result of frequent switching

between fixed-time and adaptive modes due to the sparsity
of CV data, resulting in a slightly higher frequency of stops.
Conversely, MATS-ERR does not exhibit the same peaks due
to a relaxation in the frequency of switches between modes
due to communication delays. However, it can be seen that the
behaviour of the MATS algorithm variants stabilises for CV
penetrations above 10%.

From Table V(B), it can be seen that the MATS algorithm
provides reductions of up to 35% over TRANSYT under
average traffic demand. Additionally, the effects of imperfect
communication conditions do not significantly impact the
performance of the MATS algorithm in terms of the number of
stops made. From Tables V(A) and (C), it can be seen that the
MATS algorithm can achieve greater reductions in the number
of stops as the traffic demand increases.

2) Delay: Looking at results in Figures 5(a), (c), and (e)
and Tables V(A), (B), and (C), it can be seen that the MATS
algorithm offers significant reductions in delay at all levels of
traffic demand. In addition to reducing the mean delay, the
MATS algorithm significantly reduces the delay variability
experienced by drivers with CV penetrations above 10%. In
the case of imperfect communication conditions, the MATS
algorithm’s performance is degraded compared to MATS-FT
but still offers reductions in delay and variability compared with
TRANSYT, emphasising its robustness. Across the results, there
is some variability in the delay even at high CV penetrations
due to the varied route lengths in the network resulting from
its large size.

In Figures 5(a), (c), and (e), the MATS-ERR variant under-
performs the MATS-FT and MATS-HA variants across all
demand cases. The discrepancy between MATS-ERR and the
other MATS algorithm variants can be attributed to MATS-ERR
overestimating or underestimating the queue clearance time
and stage extensions due to the noise, error, and delay in the
communication channel. However, the effects of the non-ideal
communication channel conditions were overcome by 30%
CV penetration. Despite the non-ideal communication channel,
MATS-ERR reduces delay and delay variability. Interestingly,
the mean in the MATS-ERR plot lines lies close to the upper-
bound of the error bars, suggesting some skew towards vehicles
on longer journeys being less well served than those on shorter
journeys. As with the results for the number of stops, the
skew results from lower mode switching frequency due to
the sparsity of CV data are greater under high traffic demand.
These results suggest that at low CV penetrations and higher
traffic demands, less frequent data transmissions reduce the
amount of mode switching, which is beneficial in decreasing
the number of stops but detrimental to reducing delay.

It can be seen from the comparison between the MATS
algorithm and TRANSYT, that under average demand, the
MATS algorithm reduces delay up to 96%. Table V(B) indicates
that by 10% CV penetration up to 93% delay reduction can
be achieved, which was most of the maximum achievable
delay reduction of 96%. Additionally, Figures 5(a), (c), and (e)
show that by 30% CV penetration MATS-ERR reduces delay
almost as well as MATS-FT. These results suggest that with a
relatively low proportion of CVs in the road network, significant
delay reductions can be achieved using the MATS algorithm
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(a) Low Flow Scenario: Delay
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(b) Low Flow Scenario: Stops
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(c) Average Flow Scenario: Delay

0 10 20 30 40 50 60 70 80 90 100
Percentage CV Penetration

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

S
to

p
s

[/
k
m

]

Selly Oak Avg.: Stops vs. CV Penetration

(d) Average Flow Scenario: Stops
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(e) High Flow Scenario: Delay
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(f) High Flow Scenario: Stops

Figure 5. Plots of mean delay per kilometre and mean stops per kilometre for each of the three flow scenarios (low, average, high). Each plot compares the
performance of the MATS algorithm with and without loop information (MATS-FT), and MATS with errors (MATS-ERR), to TRANSYT. The bands on the
data represent the 5th and 95th percentiles of the data as indicators of variability.

even under non-ideal communication channel conditions. These
findings were consistent when comparing the MATS algorithm
with TRANSYT under low and high traffic demands seen in
Tables V(A) and (C).

Comparing MATS-FT to MATS-HA in Figures
5(a), (c), and (e), the results suggest that in the presence of
CV data, the data from inductive loops does not significantly
improve the performance of the algorithm. In terms of

deploying the MATS algorithm, given an existing system with
degraded roadside infrastructure, it would be more beneficial
to re-calibrate the fixed-time plan than to restore the loop
hardware. Having a reliable fixed-time instance provides the
most robust fall-back behaviour for the MATS algorithm, and
that having even a small amount of CV data provides most
of the benefits of using the proposed adaptive traffic control
system. Therefore, MATS-FT is the best implementation for
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use in existing but degraded road networks.
3) Hypothesis Testing: As the simulations were stochastic,

hypothesis tests were performed on the delay and stop data
in order to assess its statistical independence across the 50
experiment runs, and incremental increases in CV penetration.
Here, the null hypothesis H0 was that the mean stops and
delay data at CV penetrations greater than 0% were drawn
from the same normal distribution as the mean delay for
0% CV penetration. The alternative hypotheses H1 tested
were that the mean delay and stop data for all simulated CV
penetrations greater than 0%. A two-sample independent T-test
was performed between H0 and each H1, and the p-value was
determined.

The hypothesis testing determined that all scenarios reject
the null-hypothesis with p < 0.001. The results indicate that
the addition of connected vehicles into the transport network
changes the MATS algorithm such that it meaningfully impacts
the delays and number of stops experienced by road users in
all cases where CVs were present. The rejection of the null
hypothesis also confirms that there was a significant reduction
in delay in all cases for CV penetrations as low as 10%, which
addresses the gap in previous research.

V. CONCLUSION

In this paper, the MATS algorithm that augments existing
traffic signal control systems with CV data was introduced.
A microsimulation testing framework that comprehensively
covers the parameters that need to be explored to simulate
traffic signal controllers that use CV data was also presented.
In initial tests, the MATS algorithm reduced delays better
than the MOVA algorithm. Under the testing framework,
the MATS algorithm was shown to outperform the industry-
standard TRANSYT traffic signal timing algorithm under
increasing traffic demands through the combination of data
from CVs, existing fixed-time plans, and roadside infrastructure.
Furthermore, the framework highlights that assessing connected
traffic signal control strategies at multiple CV penetrations and
in the presence of communication errors is critically important.

Simulating the MATS algorithm on the introduced testing
framework’s realistic simulation case study in Selly Oak,
Birmingham, UK demonstrated that the MATS algorithm was
highly robust across a spectrum of scenarios. The MATS
algorithm outperforms TRANSYT at minimising delay across
varying traffic demands and offers significant performance
improvements even in the presence of imperfect communication
conditions and measurement noise. The MATS algorithm offers
reductions in the average delay of up to 96% and the number
of stops up to 33% over TRANSYT, for networks with 0-100%
connected vehicle presence. The results confirm that significant
reductions in delay can be achieved for CV penetrations as
low as 10%, highlighting that not all the vehicles in the road
network need to be connected to achieve delay reductions. In
comparison with MOVA, the MATS algorithm reduced mean
delay better than MOVA for CV penetrations above 20%, and
achieved reductions in the mean delay of 20%-28% for CV
penetrations above 30%.

The findings showed that for networks where the loop
placement is imperfect, such as in older, degraded urban

networks, the performance of the MATS algorithm is hindered
at low CV penetrations when attempting to use data from these
loops. Further work should address the issues of data from
partial or degraded roadside infrastructure in order to improve
how the MATS algorithm generalises to other road networks.

In conclusion, this study has found that the MATS algorithm
addresses the identified issue of enhancing existing traffic signal
control systems in urban environments with increasing numbers
of CVs, and operates robustly in realistic scenarios provided
under a comprehensive testing framework. The presented
testing framework improves on those in previous literature in
terms of scale, traffic demand levels, vehicle types considered,
resolution of CV penetrations tested, and communication
channel error sources considered. In future work, the testing
framework can be improved by accounting for both pedestrian
and vehicle movements, and through estimating the prevailing
CV penetration. Further testing scenarios could include lane
closures due to disabled vehicles, and response to emergency
service vehicles. Future trials should also investigate how the
MATS algorithm applies to other urban road networks with
different demands, and in other countries.

ACKNOWLEDGEMENT

The authors acknowledge support from the Engineering and
Physical Sciences Research Council under grant EP/L015382/1
in partnership with the Transport Research Laboratory (TRL).
Thanks to TRL for providing TRANSYT access.

REFERENCES

[1] CEBR, “The future economic and environmental costs of
gridlock in 2030,” tech. rep., London, 2014.

[2] INRIX, “Global Traffic Scorecard,” tech. rep., 2017.
[3] B. Waterson and S. Box, “Quantifying the impact of probe

vehicle localisation data errors on signalised junction control,”
IET Intell. Transp. Syst., 2012.

[4] D. I. Robertson, “TRANSYT: a traffic network study tool,”
Minist. Transp. Road Res. Lab. Rep., 1969.

[5] G. R. Vincent and J. R. Peirce, “MOVA: Traffic responsive,
self-optimising signal control for isolated intersections,” TRRL
Res. Rep., 1988.

[6] M. G. Bell, “Future directions in traffic signal control,” Transp.
Res. Part A Policy Pract., 1992.

[7] M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and
Y. Wang, “Review of road traffic control strategies,” Proc. IEEE,
2003.

[8] S. J. Agbolosu-Amison, A. W. Sadek, and W. ElDessouki,
“Inclement Weather and Traffic Flow at Signalized Intersections:
Case Study from Northern New England,” Transp. Res. Rec. J.
Transp. Res. Board, 2004.

[9] Hertfordshire County Council, “Intelligent Transport Systems
Strategy Package Report,” tech. rep., 2011.

[10] P. Hunt, D. Robertson, R. Bretherton, and R. Winton, SCOOT:
A Traffic Responsive Method of Coordinating Signals. TRRL,
1981.

[11] P. R. Lowrie, “Scats, sydney co-ordinated adaptive traffic system:
A traffic responsive method of controlling urban traffic,” 1990.

[12] Rhythm Engineering, “InSync: The Traffic Bot,” 2019.
[13] R. Bretherton, “SCOOT URBAN TRAFFIC CONTROL SYS-

TEM - PHILOSOPHY AND EVALUATION,” in Control.
Comput. Commun. Transp., Elsevier, 1990.

[14] A. Stevanovic, “Adaptive Traffic Control Systems: Domestic
and Foreign State of Practice A Synthesis of Highway Practice,”
tech. rep., NCHRP, 2010.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 12

[15] L. Li, D. Wen, and D. Yao, “A Survey of Traffic Control With
Vehicular Communications,” IEEE Trans. Intell. Transp. Syst.,
2014.

[16] Y. Feng, Intelligent Traffic Control in a Connected Vehicle
Environment. PhD thesis, University of Arizona, 2015.

[17] D. Fajardo, T.-C. Au, S. T. Waller, P. Stone, and D. Yang, “Au-
tomated Intersection Control Performance of Future Innovation
Versus Current Traffic Signal Control,” Transp. Res. Rec., 2011.

[18] T. Litman, “Autonomous Vehicle Implementation Predictions,”
Victoria Transp. Policy Inst., 2019.

[19] N. Goodall, B. Smith, and B. Park, “Traffic Signal Control with
Connected Vehicles,” Transp. Res. Rec., 2013.

[20] B. Beak, K. L. Head, and Y. Feng, “Adaptive Coordination
Based on Connected Vehicle Technology,” Transp. Res. Rec.,
2017.

[21] S. Ilgin Guler, M. Menendez, and L. Meier, “Using connected
vehicle technology to improve the efficiency of intersections,”
Transp. Res. Part C Emerg. Technol., 2014.

[22] K. Yang, S. I. Guler, and M. Menendez, “Isolated intersection
control for various levels of vehicle technology: Conventional,
connected, and automated vehicles,” Transp. Res. Part C Emerg.
Technol., 2016.

[23] C. B. Rafter, B. Anvari, and S. Box, “Traffic Responsive
Intersection Control Algorithm Using GPS Data,” in 20th Int.
IEEE Conf. Intell. Transp. Syst., 2017.

[24] C. B. Rafter, B. Anvari, and S. Box, “A hybrid traffic responsive
intersection control algorithm using global positioning system
and inductive loop data,” in Proc. Transp. Res. Board 97th Annu.
Meet., 2017.

[25] Birmingham City Council, “Birmingham and West Midlands
real-time traffic data,” 2016.

[26] OpenStreetMap Foundation, “Open Street Maps.”
[27] K. Wood, C. Bielefeldt, F. Biora, and G. Kruse, “COSMOS -

CONGESTION MANAGEMENT STRATEGIES AND METH-
ODS IN URBAN SITES,” tech. rep., Transportation Research
Laboratory, 1998.

[28] M. Smith, “Traffic signal control and route choice: A new
assignment and control model which designs signal timings,”
Transp. Res. Part C Emerg. Technol., 2015.

[29] Q. He, K. L. Head, and J. Ding, “PAMSCOD: Platoon-based
arterial multi-modal signal control with online data,” Transp.
Res. Part C Emerg. Technol., 2012.

[30] T. Wongpiromsarn, T. Uthaicharoenpong, Y. Wang, E. Frazzoli,
and D. Wang, “Distributed traffic signal control for maximum
network throughput,” in 2012 15th Int. IEEE Conf. Intell. Transp.
Syst., IEEE, 2012.

[31] P. Koonce, L. Rodegerdts, K. Lee, and S. Quayle, Traffic signal
timing manual. Federal Highway Administration, 2008.

[32] Highways England, “Operational Metrics Manual,” tech. rep.,
2019.

[33] G. Rossum, “Python Reference Manual,” tech. rep., Amsterdam,
The Netherlands, 1995.

[34] S. Pakin, “The Comprehensive LATEX Symbol List,” 2015.
[35] D. Krajzewicz, M. Bonert, and P. Wagner, “The Open Source

Traffic Simulation Package {SUMO},” Rob. 2006, 2006.
[36] J. De Dios Ortúzar and L. G. Willumsen, Modelling transport.

John Wiley & Sons, 2011.
[37] P. Robillard, “Estimating the O-D matrix from observed link

volumes,” Transp. Res., 1975.
[38] K. P. Furness, “Time function iteration,” Traffic Eng. Control,

1965.
[39] UK Govt. Dept. Transport, “VEH0104: Licensed vehicles by

body type, by region and per head of population: Great Britain
and United Kingdom,” 2017.

[40] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numer. Math., 1959.

[41] S. Krauß, “Microscopic modeling of traffic flow: Investigation
of collision free vehicle dynamics,” D L R - Forschungsberichte,
1998.

[42] T. Mathew and K. Ravishankar, “Car-following behavior in
traffic having mixed vehicle-types,” Transp. Lett., 2011.

[43] DLR, “SUMO Vehicle Type Parameter Defaults,” 2018.
[44] UK Govt. Dept. Transport, “Traffic Advisory Leaflet 1/06 -

General Principles of Traffic Control by Light Signals,” tech.
rep., 2006.

[45] J. A. Bonneson and P. T. McCoy, Manual of Traffic Detector
Design. Texas Transportation Institute, Texas A & M University
System, 2005.

[46] Z. Hameed Mir and F. Filali, “LTE and IEEE 802.11p for
vehicular networking: a performance evaluation,” EURASIP J.
Wirel. Commun. Netw., 2014.

[47] ETSI, “ETSI EN 302 637-2 V1.3.2 Intelligent Transport Systems
(ITS); Vehicular Communications; Basic Set of Applications;
Part 2: Specification of Cooperative Awareness Basic Service,”
tech. rep., 2014.

[48] IEEE, “IEEE Standard for Information technology – Local and
metropolitan area networks – Specific requirements – Part 11:
Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications Amendment 6: Wireless Access in
Vehicular Environments,” IEEE Std 802.11p-2010, 2010.

[49] I. C. Msadaa, P. Cataldi, and F. Filali, “A Comparative Study
between 802.11p and Mobile WiMAX-based V2I Communica-
tion Networks,” in Conf. Next Gener. Mob. Appl. Serv. Technol.,
IEEE, 2010.

[50] S. Box and B. J. Waterson, “Signal control using vehicle
localization probe data,” in 42nd UTSG Conf., 2010.

[51] J. C. Binning, M. Crabtree, and G. Burtenshaw, “TRANSYT 15
User Guide,” tech. rep., TRL Software, 2013.

Craig B. Rafter received the M.E. in Electronics
and Computer Engineering from University College
Dublin in 2015. He has completed the Engineering
and Physical Sciences Research Council centre for
doctoral training in Next Generation Computational
Modelling. He is currently completing a PhD in-
vestigating the effects of traffic signal control using
connected vehicle data on the transport network at
the University of Southampton sponsored by the
Transportation Research Laboratory.

Bani Anvari received the M.Sc. degree in Advanced
Architectural Studies from UCL and the PhD degree
in Mixed Traffic Modelling from Imperial College
London in 2009 and 2014, respectively. She is
currently a Lecturer in Intelligent Mobility in the
Centre for Transport Studies at UCL. Her research
interests include traffic and infrastructure modelling,
autonomous vehicles, and vehicle-to-vehicle/vehicle-
to-infrastructure communications in order to create
intelligent transportation systems.

Simon Box received a PhD degree in automotive
sensor simulation from the University of Cambridge
in 2007. He holds the position of visiting researcher at
the University of Southampton and is also Architect
for simulation at Aurora Innovation. Simon’s research
interests include autonomous vehicle systems simu-
lation, traffic simulation and sensor simulation.

Tom Cherrett is a Professor in Logistics and
Transport Management at the University of Southamp-
ton. He lectures in transport planning, freight and
passenger systems and construction management. His
research interests cover i) Core goods distribution
and retail logistics optimisation within and between
our urban areas ii) Smartphone technology use in
logistics iii) Using remote monitoring technology
with optimisation techniques to effectively manage
waste and recyclable collection in urban areas.


	Introduction
	Related Work

	The Multi-mode Adaptive Traffic Signals Control Algorithm
	Concept
	Vehicle Data Acquisition
	Intersection Control
	Initial Stage Time
	Blocking-back Detection
	Inductive Loop Data Integration
	CV Data Integration
	Algorithm Overview


	Testing Framework
	Case Study 1
	Case Study 2: A Realistic Testing Framework
	Road Network Modelling

	Simulation Parameters
	CV penetration
	Traffic Demand
	Car-Following Model
	Control Strategies
	Intersection Configuration
	Stochastic Effects
	Communication Channel, Errors, and Delays


	Results and Discussion
	Performance Indicators
	Case Study 1: Comparison with an Actuated Controller
	Case Study 2: Test on a Realistic Road Network
	Stops
	Delay
	Hypothesis Testing


	Conclusion
	Biographies
	Craig B. Rafter
	Bani Anvari
	Simon Box
	Tom Cherrett


