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Abstract

Our ability to play games like chess and Go relies on both plan-
ning several moves ahead and on recognition or gist-intuitively
assessing the quality of possible game states without explicit
planning. In this paper, we investigate the role of recognition
in puzzle solving. We introduce a simple puzzle game to study
planning and recognition in a non-adversarial context and a re-
inforcement learning agent which solves these puzzles relying
purely on recognition. The agent relies on a neural network
to capture intuitions about which game states are promising.
We find that our model effectively predicts the relative diffi-
culty of the puzzles for humans and shows similar qualitative
patterns of success and initial moves to humans. Our task and
model provide a basis for the study of planning and intuitive
notions of fit in puzzle solving that is simple enough for use in
developmental studies.

Keywords: decision-making; games; planning; deep learning;
neural networks

Introduction

When playing a game like chess or Go, we decide what moves
to take through a mixture of planning several moves into the
future and assessing the gist of a game state through heuris-
tics and intuition, without explicit planning. Relying on intu-
ition to some degree is necessary due to the vast state spaces
of these games, as it is not feasible to evaluate the poten-
tial outcomes of all possible moves using brute-force search
techniques. In chess, it is typically believed that the pri-
mary difference distinguishing grandmasters from amateurs
is their superior ability to interpret the gist of possible game
states rather than an ability to plan more moves into the future
(De Groot, 1978; Gobet & Simon, 1996). In contrast, the dif-
ference between skilled and unskilled amateurs is more often
due to skilled amateurs thinking further ahead. This pattern
has been found in games with much smaller state spaces as
well; van Opheusden et al. (2021) found that players who per-
formed better at a simple kind of game planned more moves
ahead than those who achieved worse performances.

There are several possible explanations as to why chess
grandmasters tend to rely more on recognition than planning.
When we play a game like chess, we tend to imagine the
outcomes of different moves in light of how the other player
might respond. Simulating or searching through the space of
possibilities only goes so far, however; in most games we can
only consider a tiny fraction of possible outcomes, so we must
also rely on a sense of what intermediate outcomes are better
or worse. Sometimes this involves concrete events — a move
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might lead to taking or losing a piece — but experienced play-
ers also develop a holistic sense of how good or bad a partic-
ular game state or intermediate outcome is. There is evidence
that people rely on both mental simulation and a holistic sense
of the “gist” of an outcome (Gobet & Simon, 1996) when
making decisions in general. In understanding how people
learn to play games, we can shed light on the foundations of
human planning, learning, and decision-making.

Computational models are valuable tools for understand-
ing how people play games and solve puzzles. Given mod-
els that successfully play games such as chess and Go, we
can probe their internal representations to provide hypotheses
as to how humans might represent game states and approach
game play. For example, algorithms like AlphaZero use a
mixture of planning and recognition via Monte Carlo Tree
Search to achieve human-level or super-human performance
in a wide variety of games (Silver et al., 2018).

In this paper, we investigate how people use planning and
recognition when playing games using a puzzle-solving task.
While adversarial games have been used to study facets of
human cognition (Charness, 1992, for example), and are well-
studied testbeds for reinforcement learning methods, a single-
player puzzle-solving task has some advantages.

First, in an adversarial game, a player must reason about
both their own moves and how their opponent might respond.
This engages a mixture of problem-solving and theory of
mind, as the player must assess their opponent’s play style
and tailor their moves accordingly. While theory of mind in
competitive games is a rich area of research (Pynadath et al.,
2013; Oey et al., 2019; Brockbank & Vul, 2020), we often
want to focus exclusively on the problem-solving component
in order to isolate specific problem-solving strategies. Dif-
ferences in how people apply theory of mind might interfere
with attempts to study problem-solving exclusively.

Second, typical adversarial games have extremely large
state spaces — even versions of these common games that are
modified to be simpler. For example, 9x9 Go still has over
10?2 possible states (Tromp & Farnebick, 2006).

Third, players often memorize explicit sequences of
moves in games like chess, such as common openings and
endgames. Human play in these games might then reflect the
common sequences that players have memorized rather than
general-purpose game-playing strategies.

Finally, the rules of games such as chess and Go tend to be
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Figure 1: An example of a puzzle in our digital experiment. The leftmost panel shows the unsolved puzzle and the centre and

right panels show the two possible solutions.

too complex for developmental studies. It is rare for children
to learn to play chess before the age of 6. These games, then,
are not suitable for the study of cognitive development. Chil-
dren and adults have previously been shown to differ in how
they learn and explore (Lucas et al., 2014; Blanco & Sloutsky,
2020) so understanding developmental differences in game
playing and puzzle solving is potentially valuable.

We introduce a simple puzzle game for the study of
decision-making and problem-solving which addresses these
problems. Our puzzle-solving task is non-adversarial, ap-
propriate for developmental studies, and it is amenable to
customization, e.g., changing the number of possible moves,
maximum game length, and other factors that influence diffi-
culty. We also present a computational model of the game that
allows us to explore the limits of recognition-based strategies
and predict the performance of human players.

Related Work

While recognition is useful and even necessary in many
games, it can be a double-edged sword. A line of work in
developmental psychology has shown that adults’ strong ex-
pectations about the causal structure of the world can inhibit
their ability to learn unintuitive causal rules. In contrast, chil-
dren tend to have weaker expectations and be more successful
in learning true causal rules (Lucas et al., 2014). Kosoy et al.
(2020) compared reinforcement learning agents to children
directly by having children explore mazes in the DeepMind
Lab environment. Both children and reinforcement learning
agents learn about their environments by exploring, so rein-
forcement learning can be an appropriate framework for mod-
elling children’s active exploration.

Many game-playing algorithms in reinforcement learning
achieve human-level performance or greater through a combi-
nation of planning and recognizing good game states. Meth-
ods such as Monte Carlo Tree Search (Coulom, 2006) and
SAVE (Hamrick et al., 2019) use value estimates to plan sev-
eral states ahead when choosing actions. These algorithms
plan a few steps into the future, but the number of steps
forward on each possible path is determined by recognition.
Deep neural networks have previously succeeded at recogni-
tion, learning which states tend to lead to high and low re-
wards based on previous experience (e.g., Mnih et al., 2015).
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In another investigation of how humans play games, Lind-
stedt & Gray (2020) found that world champion Tetris players
exhibit a “cognitive speed bump”, taking slightly more time
to make their first rotation compared to novices, but press-
ing fewer buttons overall in rotation. This suggests that the
highly skilled Tetris players planned where to place a piece
by mentally rotating and moving it, then executed a sequence
of rotations to bring the piece to its planned locations. In
contrast, novice Tetris players tend to favor one rotation di-
rection and make more rotations overall. This suggests that
they do less planning at the outset than the expert players, in-
stead rotating pieces to help search through the state space.
Tetris has important similarities to our puzzle task, such as
being non-adversarial, so skilled players’ reliance on search
might suggest that people also rely heavily on search in puz-
zle solving. However, Tetris players only know the next piece
that will appear on the board and have limited time to plan,
so it is possible that recognition also plays an important role.

Here, our focus is on understanding the role of intuitive as-
sessments of how promising a state is in human puzzle solv-
ing. Do people search several steps using uninformed meth-
ods, or do they rely mostly on the gist of possible states? To
investigate this question, we develop a computational model
of recognition-based puzzle solving. We then compare the
model’s behaviour to that of humans in an experiment, fo-
cusing on overall success at solving puzzles, which kinds of
puzzles humans and our model find challenging, and qualita-
tive aspects of puzzle-solving strategy.

Puzzle Task

In designing a puzzle task for humans and reinforcement
learning agents to solve, we sought to create a task that is sim-
ple enough that humans can quickly learn the task and solve
it, but challenging enough that people do not always succeed.
We also wanted people to be able to use existing spatial in-
tuitions to estimate the values of game states with minimal
prior experience. To meet these criteria, we designed a game
where users try to fit pieces together to fill a grid.

The puzzle game consists of a square grid, walls, and
pieces. The goal is to place the pieces on the grid such that
they cover all of the empty squares. Some of the squares on
the grid are walls where pieces cannot be placed. Once a



piece is placed on the grid, it cannot be moved or removed.
This makes the analysis cleaner as it eliminates the risk of
models getting stuck in loops of repeatedly adding and re-
moving pieces. A puzzle might also have some extra pieces
which are not necessary to solve it, making the game more
difficult. Puzzles can have one solution or multiple. Figure 1
shows an example of a puzzle. The empty squares are white,
the walls are black, and each piece is a different colour.

Automatic Generation of Puzzles

Algorithm 1: Puzzle generation algorithm

piece_index < 0

while empty squares > 0 do
piece_index < piece_index + 1

Select a random empty tile (i, j) on the grid
while rrue do
board[i, j] < piece_index
with probability p,, break
if there are no empty neighbours, break
i, j < the indices of a random empty
neighbouring tile
end

end
return board

In order to create a large amount of training data for our
models, we developed an algorithm to automatically generate
puzzles. Puzzles were situated on a 7-by-7 grid. We gener-
ated three types of puzzle. First, we created standard single-
solution puzzles. These were made using Algorithm 1. In
brief, the board was filled by a series of random walks, with
the tiles covered by each walk turned into a piece. Next, two
of the pieces were converted into walls. We generated puz-
zles repeatedly and selected those that had a total of 5 pieces,
which we decided created a puzzle that was neither too easy
nor too complex. While this algorithm can sometimes gener-
ate puzzles with multiple solutions, we inspected many puz-
zles and found that solutions were never meaningfully differ-
ent. For example, the algorithm might generate a puzzle with
two interchangeable single-tile pieces, but the random walk
tends to generate oddly shaped pieces that can only fit into a
complete solution in one place.

We also generated multi-solution puzzles to test whether
people tend to arrive at the same solution to multi-solution
puzzles or whether they find different solutions. To generate
these puzzles, we took the single-solution puzzles described
above and then randomly placed the existing pieces on the
board until no more could be placed. Next, all contiguous re-
gions of remaining empty space were turned into new pieces,
creating a second solution. Thus, multi-solution puzzles have
more pieces than are necessary to solve the puzzle. This can
be seen in Figure 1 (right), where the puzzle is complete but
there are still remaining pieces on the right. We repeated this
process, starting from the same single-solution puzzle until
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we created a new puzzle with 7 pieces in total.

Finally, we created single-solution puzzles with extra
pieces in order to distinguish between the effects of having
multiple possible solutions and having extra pieces. To gen-
erate these puzzles, we started with a single-solution puzzle,
then did two more random walks on the board, keeping the
walls and replacing the previous pieces with empty spaces.
This results in a puzzle with 7 pieces.

We also created versions of the multi-solution and single-
solution extra-pieces puzzles with fewer possible paths
through the state space to test whether simpler puzzles were
easier for humans. We generated puzzles as described above
but kept only those with at most 5000 paths possible paths.

Computational Methods

Our puzzle-solving task is an instance of a Markov Decision
Process (MDP). At each time step, the agent can place any of
the unplaced pieces in any of the locations on the grid where
that piece fits. It repeats this until it can no longer place any
pieces and receives a reward of 100(27"), where 7 is the num-
ber of empty squares remaining on the board. We chose this
reward structure to create a strong incentive to find correct
and complete solutions to puzzles, while still providing par-
tial credit for almost complete ones.

We use a neural network to assess state values. Our model
uses an e-greedy policy with € = 0.1. At each time step, it
places a random piece in a random legal location with prob-
ability €. With probability 1 — &, it assesses the value of each
possible future state using the neural network and takes the
action which the network predicts is best.

Our reinforcement learning agent models one extreme
of the spectrum between planning and recognition: purely
recognition-based puzzle solving. At every step, the agent
either selects an action randomly with a small probability or
considers every possible action available and the state that
would result from taking it, then takes the action whose re-
sulting state has the highest estimated value. The state values
are based on which states led to high rewards during training,
so the neural network’s estimates can be viewed as approxi-
mate planning toward a solution.

Neural Value Approximation for Assessing Fit

We model people’s intuitions about the goodness of a given
puzzle piece’s fit using a neural network. Neural networks
have previously succeeded at capturing intuitive knowledge
that is not easily expressible in words, such as determining
whether a sonar signal resembles that of a mine or rock (Gor-
man & Sejnowski, 1988), which suggests that a neural net-
work is appropriate for recognizing good puzzle states.

We designed state representations to assess three aspects
of the state: the piece that is newly placed, the previously-
placed pieces, and the walls of the puzzle. These are each
represented as layers, which are two-dimensional grids of the
same size as the board that capture one aspect of the game
state. The first layer represents the shape and location of the
most recently placed piece, with a 1 in locations occupied by
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Figure 2: Mean size of the pieces added by humans (blue), the
neural model (orange), the square-counting model (green),
and the perimeter-aware model (red) on each placement.

that piece and a O elsewhere. The second layer consists of
1s representing the tiles covered by previously-placed puzzle
pieces, and the third layer consists of 1s representing walls.
This state representation is fed into the neural network,
which first applies two two-dimensional convolutional layers,
then three fully-connected layers. All layers use ReLU acti-
vation functions. The neural network was trained using the
deep Q-learning algorithm (Mnih et al., 2013). For each puz-
zle type without a restricted state space, we generated train-
ing, validation, and test sets of 1000 puzzles each. The model
was trained on a single type of puzzle but run across all test
puzzles. We trained 34 instances of this neural network on the
single-solution puzzles and 33 on each of the multi-solution
puzzles and single-solution puzzles with extra pieces, then se-
lected the trained model that performed best across all puzzle
types on the validation sets for further use. The puzzles with
restricted state spaces are computationally more intensive to
generate, so we only generated 100 test puzzles of each type.

Model Behaviour

On the entire training set, the model! solved the puzzle cor-
rectly 28% of the time on the single-solution puzzles, 29% of
the time on the multi-solution puzzles, and 21% of the time
on the single-solution puzzles with extra pieces. It achieved a
mean reward of 30.7, 35.2, and 26.8 on the single-solution,
multi-solution, and single-solution extra-pieces puzzles re-
spectively. It performed better on the puzzles with restricted
state spaces, getting the multi-solution and single-solution
extra-pieces puzzles correct 62.2% and 36.6% of the time
and achieving mean rewards of 63.9 and 43.6, respectively.
Model scores on each condition are shown in Figure 3.

The neural model tended to place a very large piece first
and decrease the size of the placed piece in a concave fashion.
Figure 2 shows the precise curve of the average added piece
size for each placement. This suggests that the neural network
has learned to evaluate game states where more of the board
is filled as more promising than emptier states since they are

IReported model results use the version trained on single-
solution puzzles which overall performed best on the validation puz-
zles of all types, but results are similar for the versions trained on the
different puzzle types.
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Proportion Correct By Condition
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Puzzle Type

Figure 3: Proportion of puzzles solved correctly by humans
(blue), the neural model (orange), the square-counting model
(green), and the perimeter-aware model (red) per condition.
Model scores are across all test puzzles while human scores
are across the 30 puzzles in the experiment. Error bars denote
standard error of the mean.

fewer tiles away from being complete.

Alternative Models

We introduce two alternative models to represent different
approaches to puzzle solving that humans could be taking:
a square-counting heuristic model that simply places large
pieces first and a perimeter-aware model that uses knowledge
of the existing perimeter in addition to piece size.

The square-counting model captures the basic fact that fill-
ing more of the board by placing larger pieces brings the puz-
zle closer to completion. This model simply places the pieces
in descending order of their size, where size is the number of
squares they occupy, choosing randomly between pieces in
case of ties. The model does not make any judgments about
where to place the chosen piece, so it simply places it ran-
domly. If the largest piece does not fit anywhere on the board,
it skips it and places the next largest piece that fits somewhere.

The perimeter-aware model also places larger pieces first,
but it decides where to place each piece by maximizing con-
tact between the piece’s perimeter and the edges of the exist-
ing board. Here “edges” includes the walls of the puzzle, the
boundaries of the board, and squares covered by previously-
placed pieces. This model favours placements that fit snugly
within the existing board. If multiple locations have the same
perimeter contact, it chooses randomly between them. This
corresponds to the intuitive strategy of placing the largest
available piece wherever it fits most snugly on the board.

Experiment: How do People Solve Puzzles?

We tested the predictions of our model in an online be-
havioural experiment where humans solve some of the same
puzzles presented to our model. There were three main hy-
potheses we tested in this experiment.

First, we wanted to test whether our model can effectively
predict which puzzles humans find easy and hard. Secondly,
we wanted to test our model’s qualitative prediction that peo-
ple will place larger pieces earlier. If people plan their action
sequences beforehand via brute-force methods, the order in
which they add pieces should be roughly random. If they rely
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Figure 4: Scatterplot of mean score for humans and the neural
model (p =0.71. Scores in this plot were calculated using the
model trained on single-solution puzzles; results are similar
when trained on the other conditions. Log model scores were
averaged over 100 runs on each puzzle.

more on recognition, they would likely place larger pieces
first, as our model did. Finally, we wanted to test how often
people discover alternative solutions when they exist. When a
puzzle has multiple solutions, do people tend to find the same
solution, or do they uncover multiple solutions?

Methods

Participants and Design We recruited 100 adult partici-
pants on Amazon Mechanical Turk and paid $0.50 for com-
pleting the task. Ninety-two participants’ data were analyzed;
eight were excluded due to not completing an attention check.

Materials and Procedure Participants completed an on-
line puzzle-solving task. In this task, they first read an in-
structions page, then saw a sequence of ten puzzles with a
grid in the centre of the screen and a collection of pieces on
the right. Participants could click the pieces and drag them
onto the board. Once pieces were placed on the board, they
could not be moved or removed. Participants could click a
“Done” button if they could not place any more pieces.

Participants were assigned to one of three possible sets of
ten puzzles, with two puzzles from each of the five types.
The puzzles were displayed to participants in random order.
After completing a puzzle, participants saw a score computed
identically to the reward function for the model. However,
these scores did not correspond to any monetary bonus.

The puzzles shown to participants were generated using
the automatic puzzle generation method outlined above, then
hand-selected to be interesting and challenging. For each
single-solution puzzle that was included, the multi-solution
and single-solution with extra pieces puzzles based on that
puzzle were also included, while the restricted state space
puzzles were each generated and chosen independently. Fig-
ure 1 shows examples of the puzzle-solving interface.

Results and Discussion

Humans solved the puzzles 37%, 33%, and 21% of the time in
the single-solution, multi-solution, and single-solution with
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Figure 5: Scatterplot comparing mean log score for hu-
mans and the perimeter-aware model (top, p = 0.43) and the
square-counting model (bottom, p = 0.79). Log model scores
were averaged over 100 runs on each puzzle.

extra pieces conditions respectively, achieving mean scores
of 36.9, 36.1, and 25.0. They solved the puzzles 82% and
73% of the time in the multi-solution and single-solution ex-
tra pieces puzzles with restricted state spaces, achieving mean
scores of 83.1 and 74.0. Figure 3 shows the mean score
achieved by participants in each condition.

Humans performed much better on the puzzles with re-
stricted state spaces compared to those without restricted state
spaces. A two-way mixed effects ANOVA on state space (re-
stricted vs. unrestricted) and puzzle type with participant as
a random effect (multi-solution vs. single-solution with extra
pieces) revealed significant effects of state space (F(1,273) =
233.3, p < 0.0001) and puzzle type (F(1,273) =9.7, p =
0.002), but no significant interaction (F(1,273) = 0.16, p =
0.69). This suggests that humans find puzzles with fewer pos-
sible paths through the state space easier. The neural model
also performed better on puzzles with restricted state spaces,
but the increase was less dramatic.

As Figure 5 shows, there is a strong correlation between
the log-scores achieved by our model and human participants
(p =0.71, p < 0.0001). The square-counting model’s per-
formance also correlated strongly with human performance
(p=0.79, p < 0.0001) while the perimeter-aware model cor-
related fairly weakly with human performance (p =0.42,p =
0.020). Human intuitions might incorporate a piece’s perime-
ter to some extent, but relying exclusively on the perimeter in



deciding where to place a piece results in different behaviour
than humans. There was also a significant negative correla-
tion between the logarithm of the number of possible paths in
the state space, as computed through depth-first search, and
the mean log scores achieved by humans (p = —0.49, p =
0.006), the neural model (p = —0.36, p = 0.048), the square-
counting model (p = —0.39, p = 0.031), and the perimeter-
aware model (p = —0.52, p = 0.003). Humans and all of the
models do better on simpler puzzles.

Among puzzles with multiple solutions, we find that par-
ticipants arrive at the most common solution for a given puz-
zle on 67% of trials. A brute-force strategy has no reason
to favour any solutions over others, so we would expect to
see an approximately uniform distribution over solutions. In-
stead, people cluster around one solution, which suggests that
shared intuitions about which states are good and bad lead
them through similar paths. The neural model did not solve
the experimental puzzles frequently enough to compare, but
across all 1000 multi-solution test puzzles it arrived at the
most common solution 85% of the time.

Finally, we compared the size of pieces placed at each time
step between humans and the models. Figure 2 shows the
mean size of the piece added at each time step for humans, the
neural model, and the square-counting model. The same gen-
eral pattern of a sharp decrease for the first two placements,
then gradual levelling off occurs in all three. However, the
trend becomes flatter around placement 3 for humans com-
pared to the models, with the square-counting model exhibit-
ing the sharpest decrease. This might be due to people using
some amount of planning rather than relying on recognition
entirely. In particular, it is possible that people place one or
two large pieces first to reduce the complexity of the remain-
ing puzzle, then either apply brute-force search or partially
gist-informed strategies for the remainder of the puzzle.

Figure 3 also shows that the improvement in performance
on puzzles with restricted state spaces is greater for humans
than for the neural model. Humans might rely more on gist
when puzzles are more complex and more on brute-force
planning when puzzles are simpler. The neural model does
not plan, so it cannot benefit from simpler puzzles in this way.

General Discussion

In this paper, we presented a puzzle game that we used to
study the relationship between planning and recognition in
games. We developed a computational model of recognition-
based puzzle solving and compared its behaviour to that of
humans in a behavioural experiment, finding that humans do
better on puzzles with smaller state spaces, their scores cor-
relate strongly with those of the model, and humans and the
model both show a pattern of decreasing placed piece sizes.
Our experiment provided evidence that a purely
recognition-based model of puzzle solving effectively
captured the difficulty of a puzzle. The correlation between
the neural model’s and humans’ performance across puzzles
indicates that how straightforward it is to recognize good
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and bad states in a particular puzzle is a major determinant
of the difficulty of the puzzle for humans. The scores of the
neural and square-counting models both correlated strongly
with human scores, which suggests that humans might rely
on a combination of recognizing promising states and the
simple, effective heuristic of placing the biggest possible
piece first wherever it fits. Placing pieces in descending order
of size appears to be a fairly effective strategy, particularly
on simpler puzzles with relatively small state spaces. In
fact, learning this heuristic might even be a consequence of
recognition. The neural model also learns to place larger
pieces first, indicating that it tends to recognize states
resulting from placing larger pieces as more promising.

Furthermore, our models show qualitative similarities to
human puzzle solving. The size of placed pieces starts large,
decreases sharply, and gradually levels off. The decrease is
less steep for humans compared to any of the models af-
ter the second placement. This might indicate that people
rely on recognition for the first one or two piece placements,
shrinking the remaining state space significantly, which likely
makes subsequent planning much easier.

The finding that on average 67% of participants arrived
at the most common solution for each puzzle indicates that
while people may have some shared notions of promising and
unpromising puzzle states, these intuitions may not be uni-
versal, or may not be the only consideration when placing a
piece. For example, if people switch between search and intu-
ition at different points in a puzzle, different solutions might
become more or less available under different strategies.

In future work, we hope to investigate the relationship be-
tween planning and recognition developmentally. If adults
fail to solve some puzzles because they have unhelpful prior
expectations about which states are good, children might per-
form better on those puzzles or discover different solutions.
Previous studies have suggested that children tend to have
weaker priors in tasks like causal inference and search hy-
pothesis spaces more widely than adults, which can lead them
to uncover counter-intuitive patterns that adults miss (Lucas
et al., 2014). Determining whether a similar effect exists in
puzzle solving could be a valuable step toward understanding
other developmental phenomena, such as changes in suscep-
tibility to functional fixedness (German & Defeyter, 2000).

Furthermore, it is likely that planning still plays a signif-
icant part in our puzzle-solving strategies, which our model
does not capture. We plan to improve the model by incor-
porating variable levels of planning. Reinforcement learning
agents often select actions by planning several states into the
future via methods like Monte Carlo Tree Search (Coulom,
2006). These methods often use recognition to estimate
which possible future states are most promising and allocate
more planning resources there. Developing a model that can
interpolate between fully brute-force planning and pure re-
liance on recognition could be valuable in determining how
people combine recognition and planning more precisely.
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