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Abstract 
After learning that one stimulus predicts an outcome (e.g., an 
aqua-colored rectangle leads to shock) and a very similar 
stimulus predicts no outcome (e.g., a slightly greener rectangle 
leads to no shock), some participants generalize the predictive 
relationship on the basis of physical similarity to the predictive 
stimulus, while others generalize on the basis of the relational 
difference between the two stimuli (e.g., “higher likelihood of 
shock for bluer stimuli”). To date, these individual differences 
in generalization rules have remained unexplored in associative 
learning. Here, we present evidence that a given individual 
simultaneously entertains belief in both “similarity” and 
“relational” rules, and generalizes using a mixture of these 
strategies. Using a “mixture of experts” modelling framework 
constrained by participants self-reported rule beliefs, we show 
that considering multiple rules predicts generalization 
gradients better than a single rule, and that generalization 
behavior is better described as switching between, rather than 
averaging over, different rules.  

Keywords: generalization; associative learning; rules; mixture 
of experts models; peak shift  

Introduction 
Pavlov (1927) noted that after conditioning where a 
conditioned stimulus (CS) was repeatedly paired with an 
outcome (+), conditioned responses were emitted not only to 
the trained CS+, but also to other stimuli sharing properties 
with the CS+. This ability to generalize learning to novel 
situations and stimuli is fundamental to human and non-
human animal behavior. Understanding the theoretical 
processes behind generalization is therefore important to 
explain how behaviors can be adaptive or sometimes also 
maladaptive (overgeneralization of fear or threat; see Lissek, 
2012).   

In associative learning, a typical generalization experiment 
consists of an initial training phase where a visual CS+ (e.g., 
an aqua-colored rectangle presented on a screen) is paired 
with an outcome (e.g., electric shock). Participants are then 
presented with generalization stimuli (GS) varying along a 
continuous stimulus dimension (e.g., hue, size) and the 
amount of responding (e.g., conditioned physiological 
responses or explicit predictive ratings of the outcome) is 
measured. Plotting these responses along the dimension 
produces a generalization gradient. The typical form of the 
gradient after training with a single CS+ is symmetrical, 
peaked, and roughly Gaussian in shape (Ghirlanda & Enquist, 

2003; Shepard, 1987). Gradients with this shape are typically 
interpreted as generalization based on physical similarity to 
the trained CS+ (see the “similarity” gradient in Figure 1). 
 

 
 

Figure 1: Idealized similarity-based, relational-based, and 
peak-shifted generalization gradients following differential 

training with an aqua (bluey-green) CS+ and slightly 
greener CS-. Note that the peak-shifted gradient is the 

average of the similarity and relational gradients. 
 

A generalization phenomenon that has received a 
considerable amount of attention in the conditioning 
literature is the peak shift effect (Hanson, 1959; see Purtle, 
1973 for a review). Peak shift describes a phenomenon where 
responding is maximal at a novel stimulus, rather than at the 
CS+ encountered during training, which would be expected 
under similarity-based responding. Peak shift is obtained 
using differential training with a CS+ and CS- that differ 
slightly within a dimension (e.g., the CS+ is slightly bluer 
than the CS-), and can be inferred if the gradient peak shifts 
to a novel stimulus on the opposite side of the CS+ to the CS- 
(see the peak shift gradient in Figure 1). Although appearing 
to be evidence of relational responding, associative models 
predict peak shift as arising from the interaction between 
excitation from the CS+ and inhibition from the CS- (e.g., 
Blough, 1975; Ghirlanda & Enquist, 1998; McLaren & 
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Mackintosh, 2002). Therefore, demonstrations of peak shift 
in humans are often explained in associative terms (e.g., Lee 
& Livesey, 2018; Livesey & McLaren, 2009; Wills & 
Mackintosh, 1998).  

A recent study from our lab (Lee et al., 2018), however, 
suggests a different explanation - that peak shift might instead 
be explained by individual differences in self-generated 
hypotheses about how the learned association generalizes 
along the dimension (i.e., participants’ generalization rules). 
Note that we use the term “rule” to describe these explicit 
generalization strategies, but are agnostic as to whether they 
are generated by different mechanisms (see Pothos, 2005).  
Lee et al. showed that after differential training, there were 
two major rules reported by participants. Some participants 
reported generalizing on the basis of the physical similarity 
to the CS+ (similarity subgroup) whereas others reported 
generalizing on the basis of the relational difference between 
the CS+ and CS- (e.g., “bluer than”; relational subgroup). 
The form of the generalization gradients was consistent with 
these self-reported rules, with a monotonically increasing 
linear/sigmoidal gradient shown in the relational subgroup, 
and a peaked, symmetrical gradient shown in the similarity 
subgroup (see Figure 1 for idealized gradients). Critically, 
these distinct gradients formed a peak-shifted gradient when 
averaged (Figure 1), demonstrating that at the aggregate, a 
peak shift effect in humans can be explained through 
mixtures of generalization rules between participants. 

The mixture-of-rules explanation presented by Lee et al. 
(2018) assumes that each participant derives and uses a single 
rule. This account can explain a peak-shifted gradient 
displayed at the aggregate-level, but it cannot account for 
peak shift displayed at the level of a subgroup where all 
participants have reported the same rule. Indeed, in both 
experiments of Lee et al., the gradient in the similarity 
subgroup was numerically (but not significantly) peak-
shifted, suggesting that a similar mixture of similarity and 
relational learning might be occurring within a subgroup or 
even within an individual. This idea is supported by evidence 
that individuals can show both similarity- and rule-based 
generalization when learning patterning discriminations 
(Shanks & Darby, 1998), categories (Nosofsky & Palmeri, 
1998; Little & McDaniel, 2015; Thibault et al., 2018), and 
continuous functions (DeLosh et al., 1997). The aim of the 
current study was to test the premise that participants use 
multiple rules in associative generalization and extend the 
mixture-of-rules explanation of generalization proposed by 
Lee et al. (2018) to a formal model. Specifically, we asked: 

1. Do participants entertain belief in multiple 
generalization rules during differential training? 

2. Does consideration of multiple rules predict 
generalization better than a single rule? 

3. How do the rules combine to determine 
generalization performance? 

To answer these questions, we report data from an 
experiment and compare three “mixture of experts” models – 
a single expert model, an averaging model, and a choice 
model – in their ability to predict the empirical gradients. 

Experiment 
In this experiment, we presented participants with standard 
differential training using the same stimulus dimension 
(colored shapes varying between green-blue) as Lee et al. 
(2018).  

Method 
Participants 100 Mechanical Turk workers (34 female, M 
age = 34.2, SD age = 9.7) participated in exchange for 
payment (USD$2 for a 12 minute task). Workers had to have 
completed 500 Human Intelligence Tasks and have an 
approval rate > 90% in order to be eligible for the task. 

 
Procedure Participants completed an online computer task 
where their task was to predict whether a machine would give 
a hypothetical “Mr. X” electric shocks (no actual shocks were 
administered). Participants were told that different symbols 
would appear on the machine, and that they should use those 
symbols to predict whether a shock would be delivered. 

The stimuli were 11 colored rectangles (S1-S11) varying 
between green and blue (.4 and .6 hue on the HSB scale, 
keeping saturation and brightness constant at 1 and .75 
respectively, see Figure 2). 

 

 
 

Figure 2: Stimuli presented in the experiment for a 
participant allocated to the green-blue counterbalancing 

condition.  
 

All participants received differential training where the 
CS+ was the midpoint (S6) on the green-blue dimension and 
the CS- (S4) was either slightly greener or slightly bluer than 
the CS+ (counterbalanced; see Figure 2). The CS+ was 
followed by the outcome 75% of the time and the CS- was 
never followed by the outcome. Participants received 12 CS+ 
and 12 CS- trials randomized in 3 blocks of 4 trials of each. 
The first CS+ trial of each block was always followed by the 
outcome. 

On each trial, participants were presented with a symbol in 
the middle of the screen and asked to make a prediction about 
the outcome for Mr. X. They were told to press the L key if 
they predicted a shock, or press the A key if they predicted 
no shock. After making a response, participants were shown 
feedback about the actual outcome (shock or no shock) for 5s 
alongside the stimulus, followed by a blank 2s inter-trial-
interval (ITI).  

After the training phase, participants were told that for the 
following phase they would not be receiving feedback about 
the shock outcome. Each of the 11 test stimuli were presented 
once, in randomized order. On each trial, participants were 
presented with the symbol and asked “What is the likelihood 
of this symbol leading to a SHOCK?”. Participants made a 
rating on a visual analogue scale ranging from “Definitely 
NO SHOCK” to “Definitely SHOCK”. Participants clicked 
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“Continue” once they were finished making their rating. All 
test ratings ranged between 0-100. 

To assess the rules participants generated, they were first 
presented with a 3 alternative forced-choice (3AFC) question 
and asked to select the option they thought was most true. 
Participants chose from three options: a similarity rule (“The 
more SIMILAR the symbol to an AQUA (greeny-blue) color, 
the HIGHER the likelihood of shock”), and two relational 
rules (“The GREENER/BLUER the symbol, the HIGHER 
the likelihood of shock”). One of the relational rules was 
consistent, and the other was inconsistent, with the training 
contingencies. We have previously shown that these 3 
options are sufficient to capture the range of rules reported in 
a free-response question after differential training (Lee et al., 
2018). 

Participants then rated their degree of belief in the same 
three rules. The rules appeared on the same screen with a 
rating scale below each ranging from “Definitely FALSE” to 
“Definitely TRUE” (0-100). Each rating was independent of 
the others. Participants were required to make all three ratings 
before continuing. 

Results 
Participants were excluded from analysis if they did not pass 
the training criterion (accuracy > 50% in last block of 
training) or if they indicated that they were colorblind. We 
also excluded participants who chose the relational rule stated 
in the opposite direction to the training contingencies. After 
exclusions, 78 participants remained.  

Figure 3a shows acquisition over training trials, and Figure 
3b shows the overall generalization gradient. Note that the 
mean gradient is slightly peak-shifted, with the highest 
predictions of the outcome for the stimulus adjacent to the 
CS+. For brevity, we will not report any analyses for the 
training data nor the group-level gradient. 

 

 
 

Figure 3: a) Acquisition over training trials, b) Mean 
generalization gradient 

 
Figure 4 shows the joint distribution of rule beliefs scaled 

to range between 0-1. Note that we coded relational belief as 
the belief rating given to the rule that was in the consistent 
direction (greener/bluer) with each participants’ training 
contingencies. From the figure, it is clear that the majority of 
participants have a moderate-to-high degree of belief in both 
similarity and relational rules, and that generally, participants 
gave higher belief ratings to the rule that they selected in the 

forced-choice question. Despite a negative correlation 
between relational and similarity beliefs, r = -.473, t(76) = 
4.68, p < .001, it seems that many participants hold some 
level of belief in relational and similarity generalization rules 
following differential training.  

Participants’ responses on the initial forced-choice 
question were consistent with their subsequent belief ratings. 
Participants who chose the similarity option gave higher 
belief ratings to the similarity (M=84.8, SE=2.8) than to the 
relational (M=49.0, SE=3.7) and inconsistent relational 
(M=24.0, SE=4.1) rules, and those who chose the relational 
option gave higher ratings to the relational (M=79.5, SE=3.7) 
than to the similarity (M=50.2, SE=5.4) and inconsistent 
relational (M=23.8, SE=4.7) rules. 

 

 
 

Figure 4: Scatterplot of rule beliefs. Color/shape represent 
whether participants chose relational (blue squares) or 

similarity (aqua crosses) in the forced-choice question. The 
grey dotted line represents equal belief for both rules. 

Modelling 
The critical questions are whether participants use multiple 
rules in generalization, and if so, how? To answer these 
questions, we adopted a “mixture-of-experts” modelling 
framework, similar to the Population of Linear Experts 
Model (POLE) in function learning (Kalish et al., 2004). This 
framework conceptualizes generalization as the result of 
multiple underlying experts,  which are hypothetical learners 
generalizing in a specific way. For the current differential 
training procedure, we assumed the existence of three 
experts: 

1. A similarity expert, that generalizes according to a 
Gaussian function (with 3 parameters: 𝑚𝑒𝑎𝑛, 
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, and ℎ𝑒𝑖𝑔ℎ𝑡), weighted by 𝑆 

2. A relational expert, that generalizes according to a 
logistic function (with 3 parameters: 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 
𝑠𝑐𝑎𝑙𝑒, and 𝑚𝑎𝑥𝑖𝑚𝑢𝑚), weighted by 𝑅 

343



3. A guessing expert, that responds at the midpoint of 
the scale (50), weighted by 𝐺 

The inclusion of the guessing expert was to ensure that for 
participants who gave relational and similarity beliefs in 
similar ratios, the model treated participants with higher 
degrees of belief (low guessing parameter) differently to 
participants with lower degrees of belief (high guessing 
parameter).  

The degree to which each expert influences behavior is 
determined by the relative weights of 𝑆, 𝑅, and 𝐺. For 
example, a weight of 1 for 𝑅 would mean that behavior is 
driven entirely by the relational expert, and would follow a 
logistic function. A key point of departure from the POLE 
model (Kalish et al., 2004) is that we used participants’ 
empirical beliefs in each rule (scaled to range between 0-1) 
to determine the weights of the similarity and relational 
experts. For the guessing expert, we calculated the weight 
for each participant using the equation: 

𝐺 = (1 − 𝑆)(1 − 𝑅) 

The weights were normalized so that they added to 1 by 
dividing each weight by the sum of the three weights. The 
expert weights were calculated for each participant and 
entered into the models as fixed parameters.  

We chose a Gaussian function for the similarity expert as 
it captures the shape of generalization gradients in animals 
and humans (Ghirlanda & Enquist, 2003; Shepard, 1987). 
The Gaussian function has three parameters: the 𝑚𝑒𝑎𝑛, 
which is the location along the dimension where the gradient 
peaks, the standard deviation (𝑆𝐷), which controls the width 
of the gradient, and the ℎ𝑒𝑖𝑔ℎ𝑡 of the gradient, which is the 
height of the peak. The Gaussian function is given by: 

𝑦 = ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑒
(>?@ABC)D

EFGD  

We chose a logistic function for the relational expert as 
many instances of relational-based generalization follow a 
sigmoidal shape (e.g., Lee et al., 2018; Livesey & McLaren, 
2009). The logistic function also has three parameters: the 
location (𝑙𝑜𝑐), which is the location of the midpoint, the 
𝑠𝑐𝑎𝑙𝑒, which controls the steepness of the curve, and the 
maximum (𝑚𝑎𝑥), which is the maximum height of the curve. 
The logistic function is given by: 

𝑦 =
𝑚𝑎𝑥

1 + 𝑒?IJBKA(>?KLJ) 

A strength of the model is that it estimates the parameters 
of the underlying Gaussian and logistic functions (mean, SD, 
height, location, scale, maximum). We implemented the 
model in a hierarchical Bayesian framework, estimating 
subject-level and group-level parameters and thus enabling 
us to capture individual differences in the underlying expert 
functions.  

We compared three different models: 
1) A single expert model: assumes that participants 

respond according to a single expert (the similarity or 
relational experts were given a weight of 1, using 
responses on the forced-choice question) 

2) An averaging model: assumes that participants 
respond according to the weighted average of the 
relational, similarity, and guessing experts 

3) A choice model: assumes that responding on each trial 
is determined by a probabilistic choice (using the 
weights) between the three experts 

We assumed that the 6 key group-level parameters were 
drawn from Gaussian (normal) distributions (see Table 1). 
We calibrated the priors by dividing the data into halves 
(based on odd/even subject numbers) and fitting the first half 
of the data using non-hierarchical versions of each model 
with uniform priors for the 6 expert function parameters 
(mean, standard deviation, height, location, scale, 
maximum). For each parameter, we used the mean and 
standard deviation of the posterior distributions as the mean 
and standard deviations of the Gaussian priors to fit the 
second half of the data (see Table 1 for the values used for 
the Gaussian priors).  

We used the “rstan” package (Stan development team, 
2018) to fit the models and computed WAICs (Widely 
Available or Watanabe-Akaike Information Criterion; 
Watanabe, 2010) using the “loo” package (Vehtari et al., 
2017) to perform model comparison. WAIC is a Bayesian 
measure of predictive accuracy that accounts for model 
complexity, and is preferable to other criteria as it considers 
the whole posterior (Gelman et al., 2014). This was important 
as the choice model has more flexibility than the other two 
models. Since the majority of participants reported some 
degree of belief in both relational and similarity rules, the 
choice model can sample from three different experts (albeit 
probabilistically, and constrained by the empirical weights) 
and therefore potentially provide a closer fit to the data.  
 

Table 1: Group-level parameters for the similarity (Gaussian: Mean, SD, Height) and relational (logistic: location, scale, 
maximum) expert functions. The prior values were obtained from fitting the first half of the data with uniform priors, and the 

posterior values were obtained from fitting the second half of the data using the calibrated priors.  
 

Model Prior Posterior 
M SD Ht Loc Scale Max M SD Ht Loc Scale Max 

Single expert  .19 .29 74.7 -.11 7.1 81.5 .19 .29 75.4 -.11 7.3 81.7 
Averaging .13 .35 58.7 -.08 38.8 88.2 .13 .34 63.6 -.08 46.8 89.6 
Choice .16 .29 67.1 -.10 34.2 81.7 .16 .29 69.1 -.10 47.8 83.5 
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Figure 5 shows the posterior predictives for each of the 
three models for a selected participant who responded 
“relational” in the forced-choice question and reported .66 
belief for the similarity rule and .92 belief for the relational 
rule. It is clear that the choice model provides the best fit to 
the data, presumably for the reason stated above (greater 
flexibility). The averaging model does a moderately good 
job, but it is apparent that the single expert model is 
constrained to generalize exclusively according to a Gaussian 
or logistic function (logistic in this case), and thus provides 
the worst fit of the three candidate models. 

 
 

Figure 5: An empirical gradient (solid black line) and 
posterior predictives (overlaid red points) from each model. 
This participant was assigned weights S=.41, R=.57, G=.02. 
 

Using the calibrated priors, the best model (lowest WAIC) 
was the choice model, followed by the averaging model, and 
then the single expert model (see Table 2). These results 
suggest that the choice model best fit the individual gradients, 
and that consideration of multiple rules better accounted for 
generalization performance than consideration of a single 
rule, even after accounting for differences in model 
complexity.  

 
Table 2: WAIC and standard error for each model using 

calibrated priors. 
 

Model WAIC SE 
Single expert 4064.5 127.0 

Averaging 3833.3 77.2 
Choice 2859.4 227.8 

General Discussion 
Following differential training with an aqua rectangle as the 
CS+ and a slightly greener or bluer rectangle as the CS-, 
participants reported simultaneous belief in both similarity 
and relational rules. That is, they believed that the likelihood 
of the outcome increased according to the physical similarity 
to the CS+ (similarity rule), but also according to the 
relational difference between the CS+ and CS- (greener/bluer 
than). Although beliefs along these dimensions were 
negatively correlated, participants did seem to believe in two 
rules that were mutually contradictory for parts of the 
stimulus space.  

To test whether participants used both of these rules when 
generalizing, we compared three different mixture of experts 

models in their ability to fit the individual gradients. The first 
was a single expert model, which assumed that each 
participant only used a single rule (and therefore only one 
expert was active for a given participant). A further two 
models considered the possibility that a given subject would 
be using multiple rules–one model assumed that performance 
was the weighted average between experts (averaging model) 
and the other assumed that performance was the result of a 
probabilistic choice between experts on each trial.  

After accounting for model complexity, both models that 
considered multiple rules (averaging and choice) were more 
accurate in predicting individual generalization gradients 
than a model that assumed each participant only used a single 
rule. Importantly, we also found that a model where 
generalization was determined by a probabilistic choice 
between the experts was preferred over a model where 
generalization resulted from the weighted average between 
experts. This implies that although individuals may favor one 
rule over another overall, they switch flexibly between rules 
from trial to trial. To the best of our knowledge, this is the 
first attempt to model individual differences and multiple rule 
use in associative generalization. 

A mixture of experts 
Rule- and similarity-based generalization have generally 
been treated as theoretically distinct in associative learning 
(e.g., Shanks & Darby, 1998) and other cognitive domains 
(e.g., Pothos, 2005). In contrast, our mixture of experts model 
integrates relational and similarity-based generalization into 
a single theoretical framework. In this way, it is similar in 
philosophy to recent hybrid and rational models that assume 
joint contribution of rules and similarity in other types of 
learning (category learning: Schlegelmilch et al., 2020, 
function learning: DeLosh et al., 1997; Griffiths et al., 2008; 
Lucas et al., 2015).  

The modelling results support the idea that individual 
participants use multiple rules in their generalization. At face 
value, it may be surprising that individuals entertained belief 
in mutually contradictory rules. Although counterintuitive, 
these results are consistent with knowledge partitioning, the 
notion that people are capable of representing pieces of 
contradictory knowledge in separate parcels (Kalish et al., 
2004). When this occurs, studies show that participants 
alternate in their responding, similar to our participants 
switching between rules across test trials. 

One area in which knowledge partitioning occurs is in 
function learning, which involves learning the function 
relating a continuous outcome (y) to a continuous input (x). 
The major difference between function learning and 
generalization in associative learning is that in function 
learning participants are making predictions about a 
continuous output (y), while in associative learning the 
outcome is binary (present or absent), but the dependent 
measures of learning are often continuous (e.g., predictive 
ratings, physiological response level). Interestingly, when 
participants observe inputs and outcomes consistent with 
multiple linear functions, their behavior appears to be 
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multimodal, suggesting that they sample from multiple 
possible functions (see also León-Villagrá et al., 2019). This 
idea is captured by the POLE model (Kalish et al., 2004), 
which posits multiple linear experts that accrue weights over 
training. The current model differs from POLE in that we 
only had 3 experts, the experts generalized in qualitatively 
different ways, and we weighted the experts empirically (i.e., 
based on participants’ own responses). In this way, our model 
ties the hypothetical experts to participants’ explicit beliefs. 

In a similar task, Konolova and Le Mens (2018) 
administered a feature inference task where participants were 
asked to predict the level of a hormone (Protropin, y) based 
on the level of another hormone (Rexin, x). Critically, the 
levels of Rexin were predictive of category membership (the 
samples belonged to either rats or mice), and category 
membership was a reliable indicator of the levels of 
Protropin. Konolova and Le Mens found that when 
categorization based on Rexin levels was uncertain, 
participants showed bimodal responding, producing answers 
for each category in proportion to the likelihood of each 
category. Our results are thus consistent with the existing 
literature on knowledge partitioning in showing that when 
participants have multiple hypotheses about how a property 
should generalize, they switch between hypotheses–rather 
than averaging their implied responses–when making 
predictive judgements.   

Implications for peak shift 
Peak shift is known to be parameter-dependent in animals 
(Purtle, 1973) and is only inconsistently found in humans 
(e.g., Lee et al., 2018; Lovibond et al., 2020). Although this 
may be partly due to the statistical methods employed to 
measure peak shift (see Lee et al., 2021), the current study 
presents an additional reason for its elusiveness in humans. If 
participants sample from relational and similarity rules when 
generalizing, then this might result in very few individuals 
showing a peak shift. Whether a peak shift is detected at the 
aggregate level will be dependent on the exact shape of the 
similarity and relational functions, as well as the degree to 
which participants believe in each rule, which will vary from 
experiment to experiment. Sampling from multiple rules also 
provides one reason why generalization gradients in humans 
exhibit a high degree of variability from individual to 
individual (Lee et al., 2021) even in subgroups of participants 
who report the same generalization rule. Similar to our 
previous work (Lee et al., 2018), the current results highlight 
how analysis of aggregate gradients can be misleading when 
participants derive multiple, qualitatively distinct hypotheses 
about how to generalize. 

Conclusion 
In this study we have provided evidence that participants 
derive and use multiple rules when generalizing learned 
associations, and that participants are more likely to integrate 
the rules by sampling between them on a particular trial rather 
than averaging. Generalization in associative learning thus 
appears to exhibit similar characteristics to that in other 

cognitive domains. In particular, the results suggest that 
mixture of experts models and sampling effects are relevant 
to a wide variety of inductive phenomena. Formal modelling 
of individual differences and explicit rules and hypotheses 
may help to better understand associative generalization in 
humans.  
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