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Abstract 

Goldwater and Gentner (2015) showed that the sensitivity for 
causal structures can be promoted with an intervention 
combining explication of causal models and guided structural 
alignment of situations from disparate fields with the same 
underlying causal model. We extended this intervention with 
inference questions and combined it with a subsequent 
complex problem-solving (CPS) task, in order to investigate 
whether enhanced sensitivity for causal structures results in 
better performance in CPS. This study (N = 108) compares the 
CPS performance indicators knowledge acquisition and 
knowledge application among three experimental groups 
(intervention, intervention extended with inference questions, 
control group) and reveals the following results: 1) The 
effectiveness of the intervention in increasing the sensitivity 
for causal structures was replicated. 2) Sensitivity for causal 
structures and CPS performance indicators were significantly 
positively correlated. 3) There is no direct effect of the 
intervention on CPS performance, but an indirect-only effect 
via enhanced sensitivity.  

Keywords: relational categorization, analogical transfer, 
education, complex problem-solving 

Introduction  

The emergence of new technologies and the accompanying 

increased levels of automation have shifted the tasks 

performed by humans in many workplaces. We see an 

evolving emphasis of non-routine, dispositive tasks that 

require active problem solving skills and the ability to draw 

upon previously acquired knowledge to deal with new 

situations (Hirsch-Kreinsen & ten Hompel, 2017). One 

example of such core skills  critical to the 21st century 

workplace is complex problem solving (CPS, Neubert, 

Mainert, Kretzschmar, & Greiff, 2015). CPS refers to 

activities necessary for dealing with dynamic non-routine 

situations and handling of complex systems, i.e. systems 

composed of many interconnected elements, dynamics and 

intransparent causal relations. CPS requires the active 

acquisition and application of knowledge about the system’s 

structure and dynamics (Fischer et al., 2012; Funke, 2001). In 

order to meet the requirements of modern workplaces, 

building flexible knowledge that may be applied to novel 

situations becomes increasingly important in human operator 

training.  

The application of prior knowledge to a new situation is 

referred to as knowledge transfer. Analogical reasoning 

constitutes a key process for knowledge transfer (e.g., 

Gentner, 1983). It involves structurally mapping of a 

previously encountered situation (i.e., source) to a novel, 

superficially distinct but structurally equivalent situation 

(i.e., target) (e.g., Holyoak, 2012). By matching the 

corresponding elements of the situations, conjectures on 

future developments of the target may be drawn based on 

knowledge about the source. A prerequisite for analogical 

reasoning is the ability to detect the underlying causal 

structure of the current situation in order to activate a suitable 

source analogue from memory.  

Increased sensitivity for relational, or more specifically, 

key causal structures in the world, has been shown to develop 

with increasing expertise. While novices tend to concentrate 

on salient superficial characteristics, experts have been found 

to focus on causal structures. This shift of early focus on 

concrete features to a later focus on relational structures (e.g. 

causal structure) is referred to as relational shift. It has been 

reported for cognitive development in general (Rattermann & 

Gentner, 1998; Richland et al., 2006), but more importantly 

for our endeavor, it has been shown to accompany 

development of expertise in different domains. Chi et.al 

(1981) showed that physics experts were more likely to sort 

physics problems according to underlying principles, 

whereas novices tended to sort by superficial feature-based 

similarity. Shafto and Coley (2003) reported that professional 

fisherman grouped fish according to behavioral and causal 

relations, while novices organized them according to 

similarity in appearance. Rottman, Gentner and Goldwater 

(2012) designed the Ambiguous Card Sorting Task (ACST), 

which requires participants to cluster different descriptions of 

real-world phenomena. The phenomena vary in their 
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underlying causal structures (e.g., common cause or common 

effect) and their scientific content domain (e.g., biology or 

environmental sciences). Hence, the sorting procedure can 

either be performed according to the content domain or 

according to underlying causal structures of the phenomena. 

In line with research on relational shift, physical sciences 

experts were more likely to spontaneously detect and sort 

phenomena from different physical sciences by causal 

patterns in the ACST, while novices mainly concentrated on 

surface features, and hence sorted by the more salient 

dimension of content domain. Further, experts in 

environmental sciences showed a higher tendency to detect 

the key causal models in other domains such as economics, 

indicating generalized sensitivity beyond their domain of 

expertise. This tendency was attributed to the fact that experts 

had acquired abstract mental representations of these causal 

models. Formation of abstract mental representations 

constitutes the foundation to draw inferences across domains 

and facilitates spontaneous transfer from a source to 

phenomena from disparate fields (e.g., Gentner et al., 2003). 

This is because for situations that require the same solution 

strategy, the relational content such as underlying causal 

models is likely to remain constant across domains, whereas 

superficial features are likely to lack similarity and may even 

be misleading.  

Goldwater and Gentner (2015) investigated what it takes to 

acquire such abstract mental representations on causal 

structures in order to perceive causal models across multiple 

contexts. In their study, they focused on high-level abstracted 

key causal models that are prevalent in the world (i.e., 

common cause, common effect, chain, positive feedback). 

They tested the effect of different learning experiences and 

found a combination of explication of these causal models 

and guided structural alignment to be most effective in 

enhancing the ability to notice the key causal models in novel 

situations from different fields. The explication phase 

ensured that participants thoroughly understood the included 

key causal models. A thorough understanding of the key 

causal models increased the effectiveness of subsequent 

guided pair-wise comparisons of analogs, i.e. structural 

alignment. Analogical comparison promotes the formation of 

abstract mental representations, i.e., schema abstraction 

(Gentner, 2010). The structural alignment renders the 

common underlying causal structure of the analogs more 

salient, thus fostering schema abstraction which in turn 

promotes transfer (Gick & Holyoak, 1983; Markman & 

Gentner, 1993; Reeves & Weisberg, 1994). The effectiveness 

of analogical comparisons in facilitating learning and transfer 

of relational content has found considerable evidence in prior 

studies and has reached “gold-standard“ status for promoting 

spontaneous transfer (see Alfieri et al., 2013, for review). 

Participants who accomplished both tasks, explication and 

structural alignment, were more likely to sort situation 

descriptions according to common underlying causal 

structures, rather than by more salient superficial 

characteristics in the ambiguous card sorting task (ACST). 

This relational shift in category understanding was 

interpreted to be a result of the acquisition of abstract mental 

representations of the key causal models. The causal systems 

studied in the intervention can be conceptualized as relational 

categories. In relational categories, membership is 

determined by common underlying causal structures such as 

the key causal models addressed in the intervention. In 

contrast, feature-based categories are defined in terms of 

directly observable properties, hence instances usually have 

high perceivable similarity in feature-based categories 

(Gentner & Kurtz, 2005).  

Relational knowledge is fundamental for many higher 

cognitive processes (Halford et al., 2010). Understanding of 

(causal) relations between elements in the world constitutes 

the basis of mental models which are used as descriptions of 

the mental representation of phenomena (Vosniadou, 1994) 

and form the foundation for predictions and inferences about 

situations (Kokkonen, 2017). Given the importance of 

relational knowledge, increased sensitivity for key causal 

structures is likely to have an impact on CPS performance. 

Key steps in CPS are the acquisition of knowledge of the 

system’s structure by systematically exploring the system’s 

behavior and relational links, building an appropriate mental 

model of the relations between system components and using 

this representation and knowledge for successfully 

controlling a complex system (Dörner, 1986). All of those 

steps may benefit from heightened understanding and 

increased sensitivity for causal structures.  

We want to shed light on the effect that enhanced 

sensitivity for key causal structures exerts on the process of 

exploring and controlling a complex problem or system.   

The current study 

The aim of the current study is to combine the intervention   

of Goldwater and Gentner (2015) with a subsequent CPS 

task, in order to investigate whether enhanced sensitivity for 

key causal structures results in better performance in solving 

a complex problem. We hypothesize to 1) replicate the 

effectiveness of the intervention consisting of explication of 

causal models and guided structural alignment in enhancing 

sensitivity for causal structures, 2) show a positive 

relationship between the level of sensitivity for causal 

structures and CPS performance, 3) demonstrate better 

performance in CPS for participants who received the 

intervention. We additionally included a second intervention 

group (IG 2) that received the same intervention followed by 

an additional inference question task. The task was designed 

to induce a mental simulation process of the key causal 

models. The idea was that detecting the key causal models, 

i.e. sensitivity, may aid during the knowledge acquisition 

phase in CPS, but for successful controlling a dynamic 

system, it is likely that people benefit from a more profound, 

in-depth understanding of the implications of the relational 

patterns between elements. Inclusion of this experimental 

task, permits discerning the supplementary impact of mental 

simulation processes beyond enhanced sensitivity for those 

structures. 
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Methods  

We recruited 108 participants (females = 62; males = 45; 

diverse = 1) from the psychology experiment pool of the TU 

Dresden. Participants were full-aged (mean = 25.29 years) 

and had at least C1 level of German language proficiency 

which corresponds to the ability to use the language 

proficiently. Participation in the study was compensated with 

10€, 15€, or 20€ or 1h, 1.5h, or 2h class credit for 

participating in the study.  

Design, Materials and Procedure 

Participants were randomly assigned to one of three 

conditions in a between-subjects design: Intervention group 

1 (IG1) that received the intervention, intervention group 2 

(IG2) that received the intervention and the inference 

questions task, and a control group (CG) that did not receive 

any sort of intervention and served as a baseline measurement 

of the sensitivity for causal structures and baseline CPS 

performance. Participants in the CG started with the ACST 

and proceeded with the CPS task. The participants in the 

intervention groups received the intervention first (IG1 & 

IG2), followed by the inference question task (only IG2), 

before performing the ACST, and finally the CPS task. The 

causal structures that were addressed in the intervention (i.e., 

common effect, common cause, self-enhancing system, and 

chain) are identical to the ones in the ACST and the CPS task. 

 

Intervention We used an adapted version of the intervention 

by Goldwater and Gentner (2015) that was designed to 

efficiently support the acquisition of abstract mental 

representations of the addressed causal structures. Because it 

was impossible to implement the positive feedback system 

from the original intervention into the CPS task, we changed 

the positive feedback system to a self-enhancing system in 

the intervention to make it compatible with the requirements 

in the CPS task.  

The explication part of the intervention comprised eight 

situation descriptions differing in their underlying causal 

structure and domain (four causal structures from the domain 

of electrical engineering, four from history, see Figure1). 

Each situation description was followed by the label of the 

according underlying causal structure and an explication on 

how the causal structure fits the particular example situation. 

Participants were asked to draw a causal diagram for each of 

the eight situation descriptions.  

For the structural alignment task, participants were asked 

to compare pairs of example descriptions from the 

explication phase that differed in their content domain 

(history vs. electrical engineering), but shared the same 

underlying causal structure. For each of these pairs the 

structural alignment was guided by providing participants 

with a two-column table listing the elements of one example 

description in the first column. Participants were asked to fill 

in the second column with the corresponding element of the 

other example, i.e. to structurally align the two examples. 

Participants did not receive any feedback on the correctness 

of their causal diagrams or guided structural alignment. 

 
 

Figure 1: Matrix of materials used in this study 

 

Inference questions Participants in the IG2 were presented 

with eight additional phenomena descriptions from different 

content domains (two examples for each of the four causal 

structures). For each description, participants were asked to 

state which of the four causal models applied and received 

corrective feedback on their response. Subsequently, they 

had to answer one multiple choice question for each 

description. The multiple choice questions were designed to 

elicit mental simulations of the implications (i.e., inferences) 

of the respective key causal model (see Figure 2). 

 

 
 

Figure 2: Example of one phenomena description and MC 

question from the inference question task 

 

Ambiguous Card Sorting Task (ACST) We used an 

adapted version of the ACST by Rottman et al., (2012) as a 

measure for sensitivity for causal structures. In order to match 

it with the causal models in the intervention, we modified the 

structure of a positive feedback system to the structure of a 

self-enhancing system as we did for the intervention. The task 

required participants to cluster descriptions of phenomena. 

Each description differs in content domain and in underlying 

causal model and hence allowed for a domain or causal 

sorting strategy (see Figure 1). Each phenomena description 
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was printed on a file card. Four cards were chosen as “seed 

cards” which served as the column “header” for the sorting 

task. The seed cards and an additional card with the label 

“other” were laid on the table. Participants were instructed to 

read the seed cards and then sort the remaining 12 cards to 

one column each which they felt was the best match (see 

Table 2). The number of cards sorted according to the 

underlying causal model served as a measure for sensitivity 

for causal structures. It indicates how frequently participants 

detected the causal structure and granted more weight to this 

information than to the more salient domain characteristics.  

 

 
 

Figure 3: Example of one seed card and a card with domain 

match and a card with causal system match, taken from the 

ACST (Rottman et al., 2012) 

 

CPS performance As a measure for CPS, we used the 

MicroDYN framework (Greiff et al., 2012) which is a well-

established measurement tool for CPS with good 

psychometric characteristics (e.g., Greiff & Wüstenberg, 

2014). MicroDYN enables the construction of computer-

based microworlds built on linear structural equation systems 

with input and output variables and opaque relations between 

them. Causal relations are defined by the experimenter and 

can exist between input and output variables, between input 

and input variable, and in form of self-enhancing effects on 

output variables that add a dynamic character to the 

microworld (Greiff & Wüstenberg, 2014). We used the 10 

items of the standard item battery and kept the semantic 

embedding of the original items, but altered their internal 

causal structure in order to match it to the key causal models 

addressed in the intervention. 

Solving a MicroDYN item involves two successive tasks: 

1) Exploration of the underlying causal structure of the 

microworld and 2) controlling of the microworld in order to 

reach indicated goal states. During the exploration phase, 

participants can manipulate the input variables. By observing 

the induced changes in the output variables, they can infer the 

underlying causal relations within the system and record their 

assumptions in form of a causal model. Correctness of the 

model serves as a measure for the CPS indicator knowledge 

acquisition with a dichotomous scoring for each microworld 

(incorrect: 0, correct: 1). In the control phase, participants are 

shown the correct underlying causal model and have to reach 

specified values in the output variables in a maximum of four 

steps. Success in reaching the indicated goal states serves as 

a measure for the CPS indicator knowledge application with 

a dichotomous scoring for each MicroDYN item (incorrect: 

0, correct: 1). The two performance indicators (knowledge 

acquisition, knowledge application) were averaged across the 

ten items for each participant for further analyses.  

 

 
 

Figure 4: Screenshot of the MicroDYN microworld 

"Butterflies". The knowledge acquisition phase is shown in 

panel A), the knowledge application phase in panel B).  

Results  

The ACST scores revealed that the adapted version of the 

intervention was effective in enhancing sensitivity for the key 

causal structures (see Figure 2) Comparing the number of 

causal sorts between the experimental groups, revealed a 

significant main effect F(2, 105) = 27.80, p < .001, η² = .35. 

Post-hoc tests (bonferroni-corrected) showed significantly 

higher levels of sensitivity in IG1 compared to the CG, t = 

6.26, p < .001, d = 1.47, and IG2 compared to the CG, t = 

6.63, p < .001, d = 1.55, but no differences between the two 

intervention groups t = -.37, p = 1.0, d = -.09 (see Figure 5). 
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Figure 5: Causal structure sensitivity scores by groups 

 

In order to discern the effectiveness of the intervention on 

an individual level, we assessed to what degree participants 

sorted according to causal model. We were particularly 

interested in the proportion of participants who adopted a 

mainly causal sorting strategy (i.e. causal sorter), because we 

assumed that the effects in CPS performance will become 

apparent only if the relational shift is strong. We set the cut-

off for classification as a causal sorter to at least 9 (out of 12) 

causally sorted cards in the ACST. This cut-off entails that 

participants detected at least three out of four causal models 

reliably. About two thirds of the participants in the 

intervention groups were classified as causal sorters (IG1 = 

63.9 %, IG2 = 66.7 %), compared to only 4 subjects (11%) in 

the CG. The difference in distribution between groups was 

statistically significant χ²(2) = 28.31, p < .001, Cramer’s 

V = .51.  

In order to test the assumption that sensitivity for causal 

structures is positively associated with CPS performance, we 

correlated the CPS indicators with the number of causal sorts 

in the ACST. Results showed significant positive correlations 

for both CPS indicators (knowledge acquisition: r = .34, p < 

.001; knowledge application: r = .22, p < .05). Further, we 

wanted to test whether those participants who adopted a 

mainly causal sorting style, i.e. causal sorters, performed 

better in the CPS task. A one-way MANOVA with the two 

CPS performance indicators as the dependent variables and 

sorting style as the independent variable revealed 

significantly better performance for causal sorters Wilk’s Λ = 

.88, F(2,105) = 6.88, p = .002. Post-hoc ANOVAs showed 

significant main effects for both CPS performance indicators: 

knowledge acquisition F(1,106) = 13.88, p < .001, knowledge 

application F(1,106) = 4.14, p < .05 (see Figure 6). 

 

 
 

Figure 6: Differences between causal and non-causal sorters  

 

To test the hypothesis that the intervention groups 

outperformed the control group, we conducted a one-way 

MANOVA with the CPS performance indicators as the 

dependent variables and experimental condition as the 

independent variable which revealed no effect of condition, 

Wilk’s Λ = .97, F(4,210) = .71, p = .59 (see Figure 7).   
 

  

  

Figure 7: CPS performance scores by experimental group 

 

This lack of difference between the experimental groups 

may be attributed to the fact that about two thirds of the 

participants responded to the intervention in the intended 

way, while others only partly shifted to a more causal sorting 

pattern. The rationale for an expected effect of condition was 

that the intervention increases the sensitivity for causal 

structures, which would then boost performance in CPS. To 

test whether this holds true, we conducted mediation analyses 

to examine whether the effect of the intervention on CPS 

performance is indirect and mediated by increased sensitivity 

for causal structures. According to the classification 

suggested by Zhao et.al (2010) these mediation analyses 

revealed indirect-only effects of intervention via enhanced 

sensitivity for causal structures on each CPS performance 

indicator. Bootstrapping with 5000 samples was employed to 

compute confidence intervals, indicating significant results 

for both indicators: knowledge acquisition = .144, 95%-

CI[0.054-0.254], knowledge application = .084, 95%-

CI[0.033-0.145] (see Figure 8). 
   

 
 

Figure 8: Mediation paths analyses 

 

Discussion  

Expertise is commonly accompanied by increased sensitivity 

for recurring causal structures in the world. This sensitivity is 

thought to be a result of having acquired abstract mental 

representations which facilitates their recognition across 
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various contents and aids understanding and prediction of key 

phenomena. Intriguingly, Goldwater and Gentner (2015) 

found that causal structure sensitivity can be promoted 

through a short intervention combining (a) the explication of 

key causal models with (b) subsequent guided structural 

alignment. In order to investigate to what extent the enhanced 

sensitivity for causal structures can translate into a more 

expert-like approach of dealing with complex problem 

situations, we studied the effect of the intervention on 

subsequent CPS performance.  

The key findings of this study include firstly the replication 

of the effectiveness of the intervention in enhancing 

sensitivity for the included key causal models. Secondly, we 

found that higher levels of sensitivity for causal models was 

associated with better performance in CPS, which held true 

for both CPS indicators knowledge acquisition and 

knowledge application. Participants who exerted a mainly 

causal sorting strategy significantly outperformed 

participants with a mixed or mainly domain sorting strategy 

in a CPS task. Thirdly, the intervention did not increase 

performance in CPS for all participants in the intervention 

groups. Instead, the effect was indirect-only and mediated by 

enhanced sensitivity for causal structures. Finally, the 

inference questions that were meant to induce the mental 

simulation of the causal structures had no added impact on 

CPS performance.  

The results of this study add to the growing body of 

research highlighting the power of construction of relational 

categories in supporting transfer of knowledge across 

disparate fields. In essence, relational categories subsume 

analogue instances that share little superficial similarity but 

are based on the same causal structure. That is, relational 

categories take the underlying causal structure or principle as 

a taxonomy for classification which is often more informative 

for deciding upon an adequate solution strategy and hence 

aids transfer (Goldwater & Schalk, 2016). In this study, the 

phenomena descriptions in the ACST that are based on the 

same underling causal structures, can therefore be 

conceptualized as members of the four relational categories 

common cause, common effect, chain and self-enhancing 

system.  

Organizing knowledge in relational categories, increases 

the propensity to classify new phenomena descriptions as 

instances of a particular relational category. In our study, the 

tendency to organize newly encountered situations either in 

terms of causal structures or in terms of superficial features, 

was measured with the ACST. A mainly causal sorting 

strategy employed in the ACST, i.e. organizing new 

situations in terms of relational categories, was in fact 

positively associated with CPS performance. According to 

the category status hypothesis the construction of relational 

categories may promote spontaneous transfer by paving the 

way for the activation of structurally similar cases from 

memory that are usually difficult to access by mere 

superficial, feature-based similarity (Kurtz & Honke, 2020; 

Snoddy & Kurtz, 2020). Further, perceiving the underlying 

causal structure and activation of the corresponding relational 

category, may not only ease the access of previously 

encountered analogous cases, but also allow for activation of 

previously successful problem solving strategy for this 

particular problem type. Based on these considerations and 

the findings of our current study, it would be worthwhile to 

combine the sensitivity intervention with training 

components addressing problem solving strategies for 

successful manipulation of each of the causal structures, and 

investigate if this increases the benefits in CPS performance.  

To our knowledge, this is the first study that related 

sensitivity for particular causal structures with performance 

in CPS based on these particular structures. Though these are 

just initial results, they point towards a new and promising 

avenue for further research. Bridging of insights from 

cognitive psychology on relational categorization and the 

concept of CPS that taps into 21st century skills, highlights 

the scope of applicability and relevance of the concept of 

relational categorization. In educational settings, many of 

which seeking to impart flexible knowledge ready to be 

transferred, cross-domain comparisons and the set-up of 

relational categories should be encouraged, rather than 

isolated teaching of phenomena in separated content domains 

(Goldwater & Schalk, 2016). This may support adequate 

performance in future workplaces. Creating more 

opportunities and providing support for the successful 

acquisition of abstract mental representations and according 

relational categories, should be granted high priority. 
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