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ABSTRACT OF THE DISSERTATION

Distributed Dataset Synchronization in Named Data Networking

by

Wentao Shang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2017

Professor Lixia Zhang, Chair

Distributed dataset synchronization (sync for short) provides an important abstraction for

multi-party data-centric communication in the Named Data Networking (NDN) architec-

ture. Several NDN Sync protocols have been developed so far, each takes a different design

approach than the others. They all enable a group of distributed nodes to publish to, and

consume data from, a shared dataset and maintain a consistent state about the dataset

among the participants. However, each of them has its own issue in the protocol design that

causes inefficiency in the dataset synchronization. In addition, none of them provides built-

in membership management support, making it difficult to remove departed nodes from the

sync protocol state (maintained by every node in the group). As a result, existing applica-

tions running on top of sync have to implement group management by themselves, either at

the application layer or by extending the underlying sync protocol.

In this dissertation we first present a comparative study on the design of existing sync

protocols. Our analysis focuses on the data naming convention, the representation of dataset

namespace, and the state synchronization mechanism. Through the side-by-side comparison

on those key design aspects, we identify common design patterns in the existing protocols

and articulate their design issues.

Based on the lessons learned from the comparative study, we design a new sync protocol

called VectorSync that addresses the issues in the existing works and enables new functions.

In VectorSync, the state of the shared dataset namespace is concisely represented by version
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vector, which allows the sync nodes to detect and reconcile inconsistencies efficiently. Ev-

ery node maintains a consistent view of the current group members through a leader-based

membership synchronization mechanism, which also provides the basis for data authentica-

tion and access control. Our simulation-based evaluation shows that the VectorSync design

improves the efficiency of dataset synchronization compared to the widely used Chrono-

Sync protocol under various network conditions and provides efficient group membership

management without affecting the synchronization speed.

At the end of this dissertation we present the design of a few pilot applications in the

Internet of Things (IoT) area that utilize different NDN sync protocols to enable important

functions that are often difficult to achieve under the current TCP/IP-based IoT architecture.

These new applications demonstrate the importance of NDN sync and illustrate the unique

sync-based application design patterns that arise from NDN’s data-centric communication

model.
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CHAPTER 1

Introduction

Named Data Networking (NDN) [JST09, ZAB14] is an information-centric network (ICN)

architecture designed to replace the host-oriented communication model in TCP/IP with a

data-centric one. At its network layer, NDN employs a basic Interest-Data exchange mecha-

nism to provide best-effort name-based retrieval of individual data objects over the network.

This simple yet powerful communication primitive enables the network layer to forward the

requests for data (called Interest packets) based on the application-layer data names and

provide pervasive in-network caching for the application data in the NDN forwarders. At

the application layer, the NDN names express the trust relations between the data and

the signing keys and allow consumers to authenticate the data packets according to the

application-defined trust policy [YAC15] regardless of where the packets are retrieved from.

While the Interest-Data exchange primitive has significantly narrowed the semantic gap be-

tween the application layer and the network layer, it is cumbersome to use directly to build

large-scale distributed applications (e.g., Web services, content sharing, big data processing,

etc.).

Early on in the NDN research effort, sync was identified as an important abstraction for

multi-party communication, that can be built on top of NDN’s network layer primitives, to

simplify the development of distributed application in a data-centric network architecture.

Applications running on top of sync can publish and consume messages in the local copy of

a shared dataset that is synchronized across a group of distributed nodes. The sync protocol

disseminates the knowledge of the application data and maintains a consistent state of the

shared dataset across all nodes participating in the same group. This is typically achieved

by synchronizing the namespace of the dataset, thanks to the unique and secured binding
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between names and immutable data objects in NDN. After learning the new data names

via sync, the applications can decide whether to fetch the new data according to their own

semantics. When multiple nodes request the same data, the data can be delivered efficiently

using NDN’s built-in multicast data delivery and cached in the network to satisfy future

requests. Sync is essentially playing a transport layer role in the NDN architecture that

bridges the gap between the functionality required by the distributed applications and the

semantics offered by the network-layer primitives, similar to the role TCP played in bridging

the gap between applications’ need for reliable data delivery and IP’s datagram service.

In this dissertation, we first present a comparative study of existing sync protocols includ-

ing CCNx 0.8 Sync [Pro12a], iSync [FBC15], CCNx 1.0 Sync [Mos14], ChronoSync [ZA13],

RoundSync [HCS17], and PSync [ZLW17]. While they all implement distributed dataset

synchronization service, those sync protocols differ in several key design aspects such as how

to name the data in the shared dataset, how to represent the state of the dataset, and how

to synchronize the dataset state via NDN’s Interest-Data exchange mechanism. Our com-

parative study highlights those differences and the tradeoffs behind different design choices.

Through the side-by-side comparison we also extract a few common design patterns shared

by the existing works and identify the issues in the existing designs that affect the efficiency

of the synchronization process in various aspects.

Many distributed applications require explicit group membership management so that

the nodes can keep track of the current active participants in the group. However, existing

sync protocols do not provide group membership management support. As a result, the

existing sync protocols cannot easily remove departed nodes from the dataset state, causing

the size of the state representation to grow unbounded over time. Applications that demand

group membership management have to implement them either as part of the application

protocol or by extending the underlying sync protocol.

Motivated by the above observation, we design and implement a new NDN sync protocol

called VectorSync to enable new functions not offered by the existing works. The design

of VectorSync is informed by the past experience in developing the existing sync protocols,

which provides valuable insights into the tradeoffs between various design choices. Similar to
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ChronoSync, RoundSync, and PSync, VectorSync adopts the naming convention that each

sync node name its data under its data publishing prefix with continuous sequence numbers.

This enables VectorSync to represent the state of the shared dataset namespace efficiently

using a version vector [PPR83]1 that contains the latest data sequence number from each

producer in the group. When new data is published, VectorSync notifies the group members

about the name of the new data so that others can fetch the data immediately upon receiving

the notification. The data carries the state of the producer at the time it is published, which

allows receiving nodes to detect and reconcile inconsistency in the dataset using version

vector operations.

The key difference between VectorSync and its predecessors is the integration of the

leader-based group membership management mechanism that synchronizes the view of the

current group membership among the active participants while the nodes join and leave

the group over time. By maintaining a consistent group membership list at each node,

VectorSync is able to compact the version vector in to an array of sequence numbers where

the nodes are ordered by their data publishing prefixes. The group membership information

also includes the members’ security credentials, which can facilitate data authentication and

access control. Synchronizing with managed group also allows VectorSync to support useful

services such as dataset state snapshot and data total ordering.

At the end of this dissertation we describe a few new applications in the Internet of

Things (IoT) area that utilize NDN sync to achieve important functions. IoT networks

often comprise constrained sensor and actuator devices communicating over intermittent

wireless channels, which creates significant challenges for network communication [SYD16].

The NDN architecture enables an efficient, secure, and robust solution to IoT networking by

leveraging name-based data retrieval, data multicast delivery, and in-network data caching

that are all built into NDN’s network layer primitives [SBL16]. On top of the data-centric

architecture, NDN sync can support distributed IoT applications and services that are either

infeasible or inefficient to achieve in the TCP/IP-based IoT systems. Through the exercise

1Hence the name of the protocol.
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of developing those applications, we further demonstrate the usefulness of NDN sync in

simplifying application design and improving data communication efficiency.

The rest of this dissertation is organized as follows. Chapter 2 gives an overview of the

NDN architecture and the distributed dataset synchronization problem in NDN. In Chapter 3

we present our comparative study of the existing sync protocols proposed for the NDN/ICN

architecture. In Chapter 4 we describe the design of the VectorSync protocol and present

the simulation study on the performance of this new protocol in various network scenarios.

Chapter 5 describes the design of a few sync-related services that can be implemented on top

of VectorSync to provide useful functions for the distributed applications. Chapter 6 presents

the design of three new applications that leverage NDN sync in the IoT environments.

Finally, Chapter 7 concludes this dissertation.
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CHAPTER 2

Background

In this chapter we give an overview of the Named Data Networking (NDN) architecture and

a general introduction to the distributed dataset synchronization (or sync) problem in NDN.

2.1 Named Data Networking Overview

Named Data Networking (NDN) [JST09, ZAB14] is a recently proposed future Internet

architecture that shifts the network communication model from host-centric as in today’s

TCP/IP to data-centric. NDN replaces host-addressed IP packets with named and secured

data objects as the new narrow waist of the “hourglass” protocol stack. At the network layer,

NDN defines two types of packets: Interest and Data. Each Data packet is uniquely identified

by a hierarchical name which is also used by the applications to express application-layer

semantics of the data. To retrieve a piece of data, a consumer sends an Interest packet that

carries the name or name prefix of the desired data. It is the underlying NDN network’s

responsibility to find the data whose name matches the Interest name (i.e., the Interest

name is a prefix of the Data name) and return it to the consumer. This is fundamentally

different from today’s TCP/IP architecture where the network is responsible only for setting

up connections between two end-hosts and the application data is carried over the established

connections.

NDN forwarders in the network forward the Interest packets based on the Interest name.

When a forwarder receives an Interest, it first looks up the Interest name using longest

prefix matching in the Content Store (CS), a.k.a., the data cache, to see if a matching

Data packet can be found in the local cache. If a matching Data packet is found, it is
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returned immediately to the incoming interface of the Interest. Otherwise, the forwarder

checks the local Pending Interes Table (PIT) to see if the Interest with the same name has

been forwarded before. If a PIT entry with exactly the same name is found, the forwarder

records the incoming interface in the existing PIT entry and drops the received Interest,

aggregating multiple pending requests for the same data. Otherwise, the forwarder creates

a new PIT entry for that Interest and records the incoming interface. Then it looks up the

Interest name in the Forwarding Information Base (FIB) using longest prefix matching to

find a set of next-hop interfaces that guide the Interest towards the potential locations where

the data can found. Finally, the forwarder executes the forwarding strategy defined for the

namespace that covers the Interest name, which may forward the Interest to all, or a subset,

of the next-hop interfaces, or delay the Interest for certain amount of time based on the

current network condition (e.g., congestion level and packet loss rate). This stateful Interest

forwarding plane [YAM13] enables the NDN network to make smarter forwarding decisions

compared to the stateless IP forwarders.

When a matching Data packet is encountered, either in the forwarder’s cache or in the

local storage of the data producer, the Data packet is returned to the consumer by following

the reverse forwarding path of the Interest packet as recorded by the PIT entries in the

forwarders. The forwarders along the path also keep a local copy of the returned Data packet

in their own cache, which can be used to satisfy future requests for the same data. Each

forwarder maintains its local cache independently based on some cache management policy

(e.g., Least Recently Used (LRU), or popularity-based). This opportunistic in-network data

caching mechanism significantly improves the efficiency of disseminating popular contents:

when multiple consumers in a distributed system request the same content, only the first

request needs to be forwarded towards the producer, while later requests can be satisfied

immediately from the forwarder cache.

The NDN architecture provides inherent data-centric security support. The binding

between the data and its name is secured by a cryptographic signature created by the data

producer. Each Data packet carries the KeyLocator field that identifies the data signing key,

which is another piece of content and can be retrieved over the NDN network in the form of
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a key certificate. The consumer verifies the signature in the Data packet according to a pre-

defined application-layer trust policy that specifies the relationship between the data name

and the signing key name [YAC15]. To bootstrap the trust relationship, the trust policy

also includes one or more trust anchors whose public keys are trusted by the consumers a

priori. To authenticate the received data, the consumer follows the application trust policy

to verify the signatures carried in the Data packet and, if necessary, walk up the certificate

chain of the signing keys recursively until it reaches one of the trust anchors. To enforce

access control, the producer can encrypt the content of the Data packets and distribute the

decryption keys only to the authorized consumers [YAZ16]. The encrypted data can also

be cached in the network to satisfy the Interests from the consumers who share the data

decryption key. Compared to the channel-based security model in TCP/IP (e.g., using TLS

or IPsec), the data-centric security model in NDN protects the content both in transit and at

rest without requiring pair-wise secured channels between the communicating parties, which

is particularly beneficial for improving the communication scalability in distributed systems.

2.2 Sync: Efficient Multi-party Communication in NDN

Today’s Internet applications are typically built around large-scale distributed systems that

require efficient support for multi-party communication. Popular examples of distributed

applications today include file sharing, collaborative editing, group messaging and confer-

encing, and the fast-growing Internet of Things (IoT) which has become increasingly popular

over the past few years. In NDN’s data-centric communication paradigm, the multi-party

communication problem becomes a distributed data synchronization (sync for short) problem

where multiple participants in an application publish data in a shared dataset and consume

data published by others from that dataset. NDN sync provides an important layer of ab-

straction to support distributed applications and services on top of NDN’s Interest-Data

exchange primitives. All participants in a distributed application join a sync group that

operates on a shared dataset. When a node in the group publishes new data in the dataset,

the data will be propagated to all the other nodes in the group via the sync protocol so
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that the application instances running on those nodes will be notified of the new data. NDN

sync greatly simplifies the design and development of distributed applications which can

publish and consume data in the local copy of the shared dataset that is kept up-to-date by

the underlying sync protocol without worrying about how to get the latest data from other

participants in the group.

A number of sync protocols have been developed since the start of the NDN project.

In Chapter 3 we will give a thorough analysis on the design of the existing sync protocols.

There are also a number of applications developed by the NDN team that depend on sync

to achieve critical functionality. Below is a non-exhaustive list of the existing sync-based

applications:

• CCNx repo [Pro12b]: the earliest NDN/CCN application that uses sync to replicate

the data across the repos that manage the same data collection;

• ChronoShare [AZY15]: a distributed file sharing application that uses sync to prop-

agate the changes in the local file system to other peers managing the same shared

folder;

• ChronoChat [ZBA12]: a server-less group chat application that uses sync to distribute

chat messages among the users in a chat room;

• NLSR [VYW16]: a link-state routing protocol for NDN that uses sync to distribute

routing announcements among the NDN routers;

• NDN-RTC [NDN17]: a group conferencing software that uses the sync channel

to discover peers in the conference automatically and deliver chat messages (like in

ChronoChat);

• Federated catalog [FSD15]: a distributed catalog for scientific data that uses sync

to maintain consistency among the distributed catalog instances.
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CHAPTER 3

Comparative Study of Existing NDN Sync Protocols

In this chapter, we examine the set of existing sync protocols that have been developed for

the NDN/CCN architecture, including CCNx 0.8 Sync [Pro12a], iSync [FBC15], CCNx 1.0

Sync [Mos14], ChronoSync [ZA13], RoundSync [HCS17], and PSync [ZLW17]. Our goal is to

extract common design patterns for NDN sync protocols and identify different design choices

and tradeoffs made in different protocols. Through this analysis we hope to offer insights for

the design of new sync protocols in the future.

3.1 Overview

The NDN sync protocols typically follow a common design framework. To synchronize a

shared dataset, the sync protocol needs to first generate a concise summary of the dataset

namespace that can be communicated efficiently between the sync nodes. The sync nodes

then exchange this summary periodically via the sync protocol in order to detect and recon-

cile any inconsistency in the state of the dataset. To speed up the synchronization process,

the sync protocol may optionally provide a quick notification of changes when a node pub-

lishes new data in the shared dataset. Note that the periodic summary exchange and the

event-driven notification are not exclusive to each other and may be employed together in

the sync protocol.

Our analysis focuses on the following key design aspects:

Data naming Thanks to the unique and secured binding between names and immutable

data object in NDN, a shared dataset can be uniquely identified by the namespace con-
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taining the hierarchical names of all data packets in the dataset.1 Therefore the dataset

synchronization problem in NDN is conveniently reduced to the synchronization of the

corresponding namespace. The sync protocol may directly synchronize the application

data names with arbitrary structure, or leverage naming convention to simplify the

dataset namespace (and encapsulate the application data names if necessary).

Namespace representation The data structure that represents the state of the shared

dataset namespace is often referred to as the sync state. Every sync node keeps a

local copy of the sync state and uses the sync protocol to keep up with the changes

generated by other nodes in the sync group. This requires the sync state to encode the

namespace without loss of information and allow sync nodes to detect and reconcile the

differences in the shared namespace between distinct states. The sync protocol may

simply enumerate all names in the namespace (which is inefficient to be communicated

over the network), or apply various compression techniques such as one-way hashing

and Invertible Bloom Filter (IBF) [EGU11].

State sync mechanism Each node participating in a sync group may publish new data

at any time. The sync protocol needs to ensure that other nodes in the group can

eventually receive the new data and reach agreement on the state of the dataset.

The state synchronization mechanism therefore should enable the nodes to (1) learn

about the updates as soon as possible and (2) detect and reconcile inconsistency in

the sync state caused by other factors such as packet loss and/or network partition.

The synchronization process can be either notification-driven (i.e., nodes inform others

when they publish new data), or based on periodic exchange of the state summary.

The notification and the state summary can be carried in the Interest packets sent by

the publishing node, or retrieved as Data packets.

To support dataset synchronization inside a group, the sync protocol also requires a group

communication namespace for the sync nodes to publish and exchange protocol messages.

1The NDN sync protocols generally assume well-behaved applications that do not reuse the same name
for different data objects.
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Table 3.1: Design comparison of existing NDN sync protocols

CCNx 0.8

Sync
iSync

CCNx 1.0

Sync
ChronoSync RoundSync PSync

Sync

namespace

Application

data names

Application

data names

Application

data names

Node

prefix +

seq#

Node

prefix +

seq#

Stream

prefix +

seq#

Namespace

representa-

tion

Name tree

IBF of

hashes of

names

Manifest

storing

names or

digests of

data

List of

{prefix :

seq#}

List of

{prefix :

seq#} +

round log

IBF of

hashes of

names with

highest

seq#

State

change

detection

Periodic

RootAdvice

Interest

Periodic

Interest

carrying

IBF digest

Notification

Interest

carrying

hash of

manifest

Data

replying to

long-lived

Sync

Interest

Sync

Interest

carrying

round

digest

Data

replying to

long-lived

Sync

Interest

State

update

retrieval

NodeFetch

Interest

retrieving

child node

hashes

Interest

retrieving

IBF

content

Interest

retrieving

manifest

Data

replying to

long-lived

Sync

Interest

Data

replying to

Data

Interest

Data

replying to

long-lived

Sync

Interest

To achieve group communication, the protocol may rely on the underlying network to pro-

vide multicast capability (which is the case in all existing sync protocols), or explore other

group rendezvous mechanisms such as structured communication (e.g., Distributed Hash

Table [SMK01]) and epidemic dissemination [DGH87]. Note that the design of the group

communication mechanism is outside the scope of the sync protocol (and therefore not the

focus of our analysis), but may have a significant impact on the protocol design choices.

Table 3.1 summarizes the design choices made by different sync protocols. In the rest of

this chapter, we give a high-level survey of each sync protocol by focusing on the key design

aspects mentioned above.
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RootHash = H0

Figure 3.1: Example of a sync tree in CCNx 0.8 Sync

3.2 CCNx 0.8 Sync

The CCNx 0.8 Sync protocol [Pro12a] is the earliest synchronization solution originally

proposed for the NDN/CCN architecture as a service module of the ccnr repo daemon.

CCNx 0.8 Sync allows a set of repos to synchronize a shared data collection that contains

data with arbitrary application names. The set of data names under a common collection

prefix is organized into a tree structure called the sync tree (see Figure 3.1), where a node

in that tree may store a single data name (i.e., a leaf ) or a list of (leaf and non-leaf) nodes.

The structure of the sync tree is determined by the order in which the data names are added

to the collection, which is independent from the canonical ordering of the data names.

Each node in the sync tree is associated with a hash value: the value of the leaf node is

simply the hash of the name stored in that node; the value of the non-leaf node is recursively

computed as the arithmetic sum of the hashes of all its children. In other words, the hash

value of a node is the sum of the hashes of all data names contained in the sub-tree under

that node. For example, in Figure 3.1, H3 = Hash(/a/b/1), H2 = H5 + H6 + H7, and H0 =

H1 +H2. The root hash (H0 in Figure 3.1) then provides a summary of the entire namespace

(i.e., sum of all data name hashes). Note that the sum of hashes is not a cryptographically

strong summary: in certain cases two sync trees may store different sets of names but happen

to have the same root hash.

12



Any producer connected to a repo can publish new data into the data collection at any

time. The sync module in the repo daemon (called sync agent) keeps track of the insertions

of new data and updates the sync tree accordingly, adjusting the hash values along the path

from the new leaf node to the root. For example, in Figure 3.1 the insertion of a new data

“/a/c/d/2” (marked as the red dashed square at the bottom right) will cause the sync agent

to update the node hashes H7 and H2, eventually propagating the change up to the root

hash H0.

The sync agent periodically advertises the latest root hash by sending a RootAdvice

Interest to all the other repos that store the same data collection. The RootAdvice Interest

name starts with a multicast prefix for the sync tree, which is shared by all repos and

different from the collection prefix, followed by the current root hash of the sync tree. When

a sync agent receives a remote root hash that is different from its own, it replies to this

RootAdvice with its own root hash. The sync agent who receives a RootAdvice reply will

send a NodeFetch Interest, which is also named under the multicast prefix of the sync tree,

to the replying repo to retrieve the list of hashes for all the children under the root node

of the remote sync tree. The NodeFetch process is recursively applied to all the nodes in

the sync tree, skipping those with the same hash value between local and remote, until all

nodes with different hash values have been visited. Once it learns the names of the new

data from the leaf nodes, the sync agent can fetch those data from the remote repo via

normal Interest-Data exchange and insert that data to its local copy of the data collection.

An example of the synchronization process in CCNx 0.8 Sync (triggered by the update to

the sync tree shown in Figure 3.1) is illustrated in Figure 3.2. Note that while we show the

sync protocol messages only between two repos for clarity, the RootAdvise and NodeFetch

Interests actually carry multicast prefix and will be received by all repos storing the same

data collection.

One problem in the update propagation mechanism in CCNx 0.8 Sync is that when

multiple repos publish new data simultaneously, there will be more than one reply to a

RootAdvice Interest and only one of them will be returned to the Interest issuer. In such

case, the sync agent who sends the initial RootAdvice Interest need to issue additional
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Time Time

New data /a/c/d/2
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NodeFetch reply: /a/c/d/2

RootAdvice: H0’

Update sync tree
RootHash = H0’
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Request Data: /a/c/d/2

Reply: {content…}

Figure 3.2: Synchronization in CCNx 0.8 sync

Interests to fetch other replies. The proposed solution is to attach exclude filters to the

Interest to list the root hashes of the remote sync trees that have already been received.

This ensures that each unique remote sync tree is examined only once for missing data.

A side-effect of the CCNx 0.8 Sync algorithm, which compares the local and remote

sync trees and updates the local state to be the union of the two, is that the repo cannot

remove any data once it is added to the data collection. This is because the algorithm cannot

distinguish the case where a repo intentionally removed a piece of received data from the case

where the repo has never received the data before. As a result, the data collection maintained

by CCNx 0.8 Sync must be monotonically growing, which creates usability issues with the

applications who generate a large mount of data and need to perform garbage collection
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periodically to reclaim the storage. For example, when the NDNVideo application [KB12]

was deployed on top of CCNx repo to publish live video streams, the system administrator

had to cleanup the data and restart all repo instances every day at midnight in order to

avoid overwhelming the storage of the repo server.

3.3 iSync

iSync [FBC15] is a direct optimization on top of the CCNx 0.8 Sync design. Like in CCNx 0.8

Sync, it supports the synchronization of shared data with application names. To represent

the sync state more efficiently, iSync uses Invertible Bloom Filter (IBF) [EGU11] to store

all the names from the shared dataset in compressed form. Since the IBF can only store

fixed-length items, the data names must be first mapped to fixed-length IDs (generated from

the hash of the names) before they are added to the IBF. A bi-directional mapping table is

maintained by every sync node so that it can recover the original NDN names from the IDs.

Different from CCNx 0.8 Sync,2 iSync uses “digest broadcast” Interests (equivalent to

the RootAdvise Interest in CCNx) to advertise its current state to other nodes periodically,

rather than a solicitation for different sync states. Since the encoded size of the IBF is

typically very big, the advertisement Interest carries only the digest of the current IBF from

the sending node. When a node receives a digest different from its own, it sends another

Interest to request the corresponding IBF content. After it receives the IBF from a remote

node, the node subtracts its own IBF from the remote IBF and extracts individual IDs from

the resulting “diff” IBF. Once the sync node extracts all new IDs, it issues Interests to

request the original NDN names corresponding to those IDs and then fetches the new data

using the original names. An example of the synchronization process in iSync is shown in

Figure 3.3.

Note that the iSync node does not expect any reply to the initial advertisement Interest

it sends. It therefore gets around the issue with multiple replies generated for the same

2The original iSync paper [FBC15] describes the CCNx 0.8 Sync protocol differently compared to the
official specification [Pro12a] released in the CCNx source code package.
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Figure 3.3: Synchronization process in iSync

broadcast or multicast Interest. Note that this causes imbalance in the Interest-Data packet

flow in the network. Assuming the number of advertisement Interests is negligible compared

to the total network traffic, the impact can be a tolerable amount of waste of PIT entries

that eventually expire and get removed.

A major limitation in the IBF data structure is that it can losslessly encode up to

a certain number of items, beyond which some of the stored items cannot be extracted.

Unfortunately, it is not uncommon that during the synchronization process the set difference

between the namespace of some sync nodes may contain too many IDs that cannot be

encoded in the IBF in a lossless fashion. iSync provides several ways to control the size

of the set difference at multiple levels in the protocol design. First, the shared dataset is

divided into multiple collections that host data for different applications; each collection

maintains its own IBF independently from others. Second, iSync protocol enforces each
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node to periodically advertise its local sync state and resolve the difference, which bounds

the delay of the data propagation and the size of the set difference between any two nodes.

Third, iSync creates multiple local IBFs to record the small-step changes during each sync

period; if the advertised IBF (called global IBF ) contains too many changes, the sync node

can fetch the local IBFs instead and perform more fine-grained difference reconciliation.

3.4 CCNx 1.0 Sync

The design proposal of CCNx 1.0 Sync [Mos14] abandons the CCNx 0.8 Sync design and

adopts a simple manifest-based solution. The manifest packets are named under a routable

data collection prefix announced by every sync node, followed by the hash of the manifest

and segment numbers. The manifest contains the SHA256 hashes or the exact names of all

data objects in the shared data collection. When the SHA256 hashes are used, the names

of the data objects are constructed by appending the hash value to the same data collection

prefix in the manifest name. The application-layer data (with real application names) may

be encapsulated in those data objects.

Each sync node uses Interest packets to advertise the hash of its local catalog manifest

when it generate new data. The advertisement Interests are also named under the data

collection prefix and forwarded to all sync nodes announcing that prefix. They have short

lifetime and do not retrieve any data. To increase the possibility that all nodes can receive

the advertisement, the node repeats the advertisement Interest once or twice within a few

seconds after the first advertisement is sent. Once a node receives a different hash, it should

also advertise its own hash under the control of some gossip protocol (with random backoff

and duplicate suppression). It then sends out Interests to retrieve the corresponding (pos-

sibly segmented) manifest packets, compares the names listed in the manifest with its local

namespace, and then retrieves the missing data over the network. This approach is similar

to iSync but without the benefit of efficient encoding and differentiation provided by the

IBF data structure.
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3.5 ChronoSync

Different from CCNx 0.8 Sync and iSync, ChronoSync [ZA13] improves the efficiency of

dataset synchronization by utilizing naming conventions to simplify the sync protocol design.

In ChronoSync, each node publishes data that contains application-layer messages under its

own unique name prefix, which also serves as the identifier for the node in the sync group

and is aligned with the routable prefix of the access network for each node. The data name

is constructed by concatenating the node prefix with a sequence number that starts from

zero and gets incremented by one for each new data published by the sync node. Real-world

applications may require more complex naming conventions to encode richer information

other than sequence numbers. ChronoSync supports those applications using “one level of

indirection” by encapsulating the application data names (or the data itself if the size is

small) in the content of the sequentially named data.

The sync node maintains a 2-level “flat” sync tree, as is shown in Figure 3.4, with each

leaf containing the data prefix and the latest sequence number of each producer in the sync

group. Each leaf is associated with the digest calculated over node’s prefix and the latest

sequence number. The root of the tree maintains the digest of concatenation of leaf digests

canonically ordered by the corresponding prefix names. Since the naming convention is to

publish data with continuously increasing sequence numbers (starting from zero), this sync

tree is essentially a condensed representation of the namespace containing all the data ever

published in the group, and the root digest is a short summary of the dataset.

ChronoSync nodes maintain long-lived Sync Interests in the network by transmitting a

new Sync Interest immediately when the previous one expires or gets satisfied. The long-

lived Interest stays in the pending Interest table of the forwarders in the network so that

any reply to the Sync Interest can be returned to every node in the group as soon as it is

generated. The Sync Interest name starts with the multicast sync group prefix and carries

the current root digest of the sender’s local sync tree. The Sync Interest serves two important

purposes: first, it advertises the sender’s digest in the group so that other nodes can detect

inconsistency in the sync state; second, it solicits the next state changes generated on top of
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Figure 3.4: Example of a sync tree in ChronoSync

the state identified by the digest carried in the Sync Interest.

In the steady state, all nodes generate identical state digests and send out the same Sync

Interest that is aggregated by the NDN forwarders. When some node publishes new data and

increments its sequence number, instead of replying to the long-lived Sync Interest with its

new root digest as in CCNx 0.8 Sync, the node replies with the name of its newly published

data (i.e., the node prefix and the sequence number).3 This Sync Reply is efficiently delivered

to all the other nodes in the group, following the multicast tree built by the pending Sync

Interest. After they receive the reply, the nodes update their local sync tree, recompute the

root digest, and then send out Sync Interests carrying the new digest. An example of the

synchronization process in ChronoSync is shown in Figure 3.5.

To allow efficient state reconciliation, each ChronoSync node maintains a limited log

of historical digests and the corresponding dataset states. If some node is lagging behind

in the synchronization process and sends out a Sync Interest with a digest that has been

observed by other nodes, these sync nodes can respond with all the data published in the

group since that digest is announced. Note that when multiple sync nodes reply to the Sync

Interest carrying a previous digest (potentially with different sets of updates if they are not

synchronized), at most one of those relies will be received by the sender of that Interest.

Nevertheless, the reply helps speed up the synchronization process of the Interest sender

3If multiple data packets are generated, the Sync Reply carries only the largest sequence number of all
new data.
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Figure 3.5: Synchronization process in ChronoSync

who is trying to catch up with the rest of the group.

There are several cases where a node may receive Sync Interests with unrecognized di-

gests. For example, a node may receive a Sync Interest with an updated digest before

receiving the Sync Reply that triggered the update. To handle that situation, ChronoSync

injects a random delay to process the Sync Interest with unknown digest at a later time,

hopefully after the corresponding Sync Reply has been received. Another scenario is when

multiple nodes publish new data simultaneously, multiple Sync Replies will be generated

in response to the same Sync Interest, and each node can receive at most one of the Sync

Replies. After they update their local sync state based on the received Sync Reply, different

state digests will be computed and announced in the sync group. A more complicated sce-

nario arises if the network is partitioned for a long period of time and then reconnected: the

sync nodes in different partitions have cumulated multiple updates to the sync tree, leading

to a sequence of digests that are unrecognizable to the nodes in other partitions.

ChronoSync handles the simple case when the nodes diverge by at most one Sync Reply

by resending the previous Sync Interest with exclude filters that contain the implicit digests

of the received Sync Replies. However, if multiple changes have been applied to the sync

state at some node, the mechanism using exclude filters will not be able to retrieve the
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diverging sync replies generated by every node (see 3.6 for detail). In such case ChronoSync

falls back to a recovery mechanism: when a node observes an unknown digest, it will send

out a special Recovery Interest containing the unknown digest; the nodes who recognize that

digest will reply with the complete information about its sync tree, rather than the specific

changes that lead to that digest; when the requesting node gets the reply, it will merge the

received sync tree into its local sync tree by taking the higher sequence number from both

trees for each sync node.

3.6 RoundSync

RoundSync [HCS17] revises the ChronoSync design based on the following key observation:

the Sync Interest in ChronoSync is overloaded with two functions: (1) detecting different

states among the sync nodes and (2) retrieving the updates from other nodes. As a result, the

Sync Replies carrying the updates to the shared dataset will be named after the previous

Sync Interest name which contains the digest of the corresponding sync state. If a node

generates Sync Replies on top of a diverged state (e.g., in the scenario with partitioned sync

group), nodes with different state will not be able to derive the correct name for those Sync

Replies and therefore cannot send Interests to retrieve them.4 In that case ChronoSync must

rely on the recovery mechanism to bring the group in sync again.

To address this problem, RoundSync introduces a new type of Interest packet called

Data Interest in order to decouple state notification from update fetching. In RoundSync,

the Sync Interest carrying the state digest merely serves as a notification mechanism (similar

to iSync) so that the sync nodes can detect state divergence in the group when it happens.

The updates generated by other sync nodes are retrieved via Data Interests whose names

do not depend on the state digests. This allows the sync nodes to construct Data Interests

to fetch the updates even if their states are not fully synchronized. The replies to the Data

Interest achieve the same functionality as the Sync Reply in the original ChronoSync design,

i.e., carrying node prefix and sequence number of the newly published data.

4Note that merging the diverged sync states will only create another sync state with a new digest value.
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Figure 3.6: Synchronization process in RoundSync

Another major change made by RoundSync is to divide the synchronization process into

multiple rounds, which are identified by unique round numbers. A sync node can publish at

most one data packet in each round and must move to a new round when it receives new data

published by others in the current round. This helps reduce the chances of state divergence

caused by simultaneous data production. The names of both Sync Interest and Data Interest

carry the round number so that each round is synchronized independently. For example, a

sync node may start publishing data at round 11 even though it is still trying to synchronize

with other nodes at round 10 or earlier. If multiple nodes publish data in the same round

simultaneously, they will detect the inconsistency through Sync Interest and then send Data

Interests with exclude filters to retrieve those Data Interest replies. Since there will be at

most one reply from each node in a single round, the exclude filter mechanism will allow the

nodes to eventually retrieve all updates. A basic example of the synchronization process in

RoundSync is shown in Figure 3.6.

RoundSync maintains digest for each round in a rounds log table. To allow nodes who
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missed the Sync Interests in earlier rounds to detect and recover the missing data, RoundSync

also computes cumulative digests for the previous rounds that have been stable for a long

time (which therefore has high probability of remaining stable in the future). The cumulative

digest for a round covers the entire dataset as observed in that round and is piggybacked in

the Data Interest replies of future rounds. Upon receiving a different cumulative digest for

some round that is long before the node’s current round, the sync node sends out a Recovery

Interest to fetch the full sync state and the current round number S from the node who

generated that cumulative digest, instead of retrieving missing data round-by-round (which

may take a long time). After receiving the reply, the node merges the received dataset

with its own, discards the rounds log entries for the rounds before S and resumes normal

RoundSync operation for the rounds after S.

3.7 PSync

PSync [ZLW17] was originally designed for the consumers to synchronize a subset of a large

data collection with a single producer. The data packets published by the producer are

organized into data streams which are identified by the unique stream prefixes. Like in

iSync, PSync also employs IBF to represent the namespace by storing the hash of the names

(called KeyID) in the fixed-length slot of the IBF. However, PSync also adopts the naming

convention in ChronoSync and RoundSync that data packets from the same stream are

ordered by the continuous sequence numbers. Therefore the IBF only needs to store the

latest data name from each stream. This further reduces the amount of information stored

by the IBF and allows the applications to choose a smaller IBF size that can be transmitted

more efficiently over the network.

To support the synchronization of a subset of the producer’s data (a.k.a., partial sync),

PSync introduces the subscription list to encode the prefixes of the data streams that the

consumer is interested in.5 The subscription list is a Bloom Filter (BF) that stores the hashes

of those stream prefixes. The size of the Bloom Filter is determined by the total number of

5PSync allows the consumers to specify their subscription only at the granularity of data streams.
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streams a consumer may subscribe to and the false positive rate the consumer is willing to

accept. Special cases like empty and full subscription may be encoded more efficiently with

special markers.

During the sync process, the consumer keeps a local copy of the producer’s IBF which

indicates the data it has received so far. To sync up with the producer and retrieve new

data, the consumer maintains long-lived Sync Interest whose name contains the local IBF

copy and the consumer’s subscription list. When the producer publishes new data, it first

subtracts the IBF in the pending Sync Interest from its new IBF, and extracts the KeyIDs of

the new data packets that have not been received by the consumer yet. Then the producer

checks whether the stream prefixes of those new data packets are included in the consumer’s

subscription list (subject to certain false positive rate). Finally the producer generates a

Sync Reply containing the original names of the new data packets in the subscribed streams

and also its latest IBF. Upon receiving the Sync Reply, the consumer updates its local IBF

copy with the received IBF, and sends out Interests to fetch the new data. An example of

the synchronization process in PSync is shown in Figure 3.7.

An important feature in the PSync design is that each consumer maintains its own data

consumption and subscription status. The producer, on the other hand, does not maintain

per-consumer state, which significantly reduces the amount of data stored by the producer.

If multiple producers are serving the same set of data streams, the consumers may send

Sync Interests via anycast to get replies from any producer that is available online, assuming

that these producers have run sync protocols among themselves to sync up their dataset.

However, this stateless producer design introduces two additional costs: first, the Sync

Interest and Sync Reply need to carry the IBF and the subscription list (BF) which will

bloat the size of the Interest name up to hundreds of bytes; second, the producer needs

to generate Sync Replies in real-time for each Sync Interest since it does not remember the

previous consumption status of each consumer and cannot pre-generate the next Sync Reply.

While it was initially designed for producer-consumer synchronization, PSync can also be

extended to support group synchronization (like other sync protocols previously discussed)

where each sync node is both producer and consumer at the same time. This is achieved by
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Figure 3.7: Synchronization process in PSync

having every node subscribe to all data streams published by every other node. However,

in this “full synchronization” mode each node only needs to maintain a single IBF which

represents the state of the whole dataset, rather than keeping a separate IBF for each node

in the group. In addition, the Sync Interests need to be forwarded via multicast to the entire

group so that any node who has produced new data can respond with a reply that carries

the updates.

3.8 Summary

From the previous discussion, we can see that a few common design patterns have arisen in

the key design aspects among the existing NDN sync protocols. ChronoSync, RoundSync,

and PSync have adopted the sequential data naming conventions, i.e., naming the data

packets using sequence numbers under a common name prefix for each producer or data
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stream, to simplify the representation of the shared dataset namespace. Having continuous

and monotonically increasing sequence numbers in the data name allows the cumulative data

collection generated by the same producer or in the same data stream to be summarized by

the highest sequence number. This reduces the amount of information that needs to be

encoded in the sync state and also simplifies the protocol design since the sync protocol

needs to only focus on synchronizing the latest sequence numbers rather than the whole

namespace.

The existing sync protocols have used a variety of data structures to represent the sync

state. All of those data structures provide lossless encoding of the data names (or the hashes

of the names) in the shared dataset. CCNx 0.8 Sync and CCNx 1.0 Sync enumerate the

dataset namespace in the hierarchical sync tree and the “flat-structured” manifest, respec-

tively. To reconcile the set difference, the sync nodes simply compare the content in the sync

tree or the manifest and then retrieve the missing data from the remote nodes. ChronoSync

and RoundSync also enumerate the dataset namespace by listing the latest sequence num-

bers from all data producers in the sync state. State reconciliation is achieved by comparing

the sequence number of each producer between the local and remote sync states and taking

the maximum as the latest sequence number. iSync and PSync use IBF to compress the

dataset namespace and perform set reconciliation using IBF subtractions. However, due to

the limited IBF capacity, both iSync and PSync have to provide means for controlling the

size of the set difference between the IBFs maintained by different nodes.

The existing sync protocols typically use one of the two communication models for prop-

agating the information about the new data published in the sync group. The first model

is to use multicast Interests to advertise the summary of the sync state changes (e.g., di-

gest of the updated sync state), which serves as a notification to prompt other nodes in

the sync group to retrieve detailed information about the changes. The second model is to

have the sync nodes send “long-lived” Interests to each other (typically using multicast) to

pre-establish the return path for the data packet that carries the information about the sync

state changes. The “long-lived” Interests essentially become a “one-packet” subscription to

the sync state updates generated in the future.

26



Table 3.2: Comparison of existing NDN sync protocols on common performance metrics
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IBF size
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Size of the
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names with

new seq#

Number of

names with

new seq#

in a round

IBF size +

number of

names with

new seq#

It is often difficult to compare the efficiency of different sync protocols because it usually

depends on the application scenarios and the implementation choices. Table 3.2 compares

the existing NDN sync protocols on a few important performance metrics. One metrics is

the data dissemination delay, i.e., the number of round-trips necessary for propagating new

data to other nodes. In CCNx 0.8 Sync and iSync, the synchronization process is triggered

periodically based on an internal sync timer. Once the process starts, the number of round-

trips required to retrieve all updates from a remote node in CCNx 0.8 Sync depends on the

depth of the sync tree, while in iSync the process usually finishes within 3.5 RTT, unless the

number of changes exceed the capacity of the global IBF in which case the nodes need to

retrieve additional “local IBFs”. CCNx 1.0 Sync triggers the synchronization process when

there is new data published in the dataset, and the data dissemination delay depends on
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how the nodes retrieve the segmented manifest (e.g., sequentially or pipelined).

ChronoSync and RoundSync achieve optimal synchronization delay when there is no

simultaneous data publishing. If multiple nodes generate Sync Replies at the same time, the

protocols need additional round-trips to retrieve all Sync Replies using Interests with exclude

filters. Therefore the worst-case RTT will be proportional to the number of simultaneous

updates in the group, which is bounded by the number of data publishing nodes in the group.

PSync achieves the data dissemination delay of 1.5 RTT because the Sync Interests carry

specific information about the state of the consumer, which allows the producer to reply

with specific changes without spending additional round-trip to request more information.

Note that both ChronoSync and PSync require maintaining long-lived Sync Interests in the

network so that the replies can be propagated to other nodes as soon as possible. This leads

to the overhead of keeping long-lived soft state in the forwarders’ PIT (with one PIT entry

per sync group).

Another performance metrics is the packet size of the sync protocol messages, which

reflects the network bandwidth requirement of the sync communication. Here we mainly

focus on the encoding size of the sync state (or state updates) carried in the Interest and/or

Data packets. For iSync and PSync, the size of the IBF that summarizes the dataset name-

space depends on the size of the hash function output and the data publishing rate of the

applications. In a typical implementation that uses 64-bit hash functions and 32-bit counter

values, the size of each slot in the IBF is 20 bytes. For an IBF with capacity of 20 items (i.e.,

allowing at most 20 items to be extracted successfully), the encoded size of the IBF [EGU11]

is around 1.5 * 20 * 20 = 600 bytes. Once the size of the IBF is chosen, all Interest and Data

packets carrying the IBF will have the same size even if the number of updates is lower than

the maximum capacity. Note that PSync usually requires a smaller IBF than iSync because

the sequential data naming simplifies the namespace and effectively bounds the number of

changes by the number of data prefixes. This enables PSync to carry the IBF directly in

the Sync Interest. In iSync, the number of changes within an Interest period depends on

the data publishing rate and is unbounded, therefore requiring a larger IBF to accomodate

bursty data publishing events.
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In contrast, ChronoSync and RoundSync require only the updates to be propagated in

reply to the Sync Interests and Data Interests, respectively. Those update data packets

contain the prefix and the latest sequence number from each producer who has published

new data. Assuming the average size of the data name (i.e., prefix + sequence number) is 40

bytes, the maximum content size of the update is 40 * N, where N is the number of producers

in the sync group. In practice, not all producers will be publishing at the same time and

the size of the update packets is typically smaller than in the IBF-based approaches. The

Sync Interests and Data Interests in ChronoSync and RoundSync usually carry the current

state digest only. However, when simultaneous data publishing happens, the nodes need to

send additional Interests with exclude filters that enumerate the implicit digests of all the

previously received replies. This may cause the size of the Interest packets to grow linearly

with the number of simultaneous replies.

In CCNx 0.8 Sync, the size of the NodeFetch reply packets is proportional to the number

of children under the requested node in the sync tree; also, the protocol requires multiple

NodeFetch packets to resolve all the differences. In CCNx 1.0 Sync, the size of the manifest

is proportional to the number of data names listed in the manifest.
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CHAPTER 4

Design of VectorSync Protocol

This chapter presents the design and evaluation of VectorSync, a new sync protocol for the

NDN architecture. VectorSync learns from the past experience in developing the existing

NDN sync protocols analyzed in Chapter 3. The protocol design also benefits from the rich

set of literature on distributed synchronization algorithms and protocols developed in the

distributed system research area. The goal of designing this new protocol is to (1) address the

issues identified in the design of existing NDN sync protocols, and (2) enable new functions

not covered by the existing works.

4.1 Motivation

From the discussion in Chapter 3, we can see that all existing sync protocols have their

own design issues. CCNx 0.8 Sync represents the dataset namespace using a tree structure,

which requires multiple round-trips to walk down the tree and detect all the differences in the

namespace. iSync and CCNx 1.0 Sync reduce the synchronization round-trip at the cost of

larger encoding size for the namespace representation. ChronoSync, RoundSync, and PSync

all use Interest packets to fetch the update generated on top of the state identified by the

digest or IBF in the Interest name, which faces the issue with simultaneous data publishing

from different producers:1 the nodes need to send additional Interests (with exclude filter)

to discover the simultaneous replies in multiple round-trips. Moreover, ChronoSync and

PSync use long-lived Interest to pre-establish the return path for the data carrying the state

changes, which causes the overhead of maintaining the soft-state PIT entries in the network

1Note that PSync was originally designed for synchronizing with a single producer.
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(through periodic retransmission of the Interests).

VectorSync addresses those issues with a new protocol design. First, VectorSync adopts

the sequential data naming convention that has been used in ChronoSync, RoundSync and

PSync to simplify the dataset namespace. This enables VectorSync to represent the state

of the dataset concisely and efficiently using version vector [PPR83], a well-known mech-

anism for detecting and reconciling mutual inconsistency in distributed systems. Second,

VectorSync avoids the long-lived Interest mechanism and instead uses a notification-driven

approach in the sync communication. The notification is an Interest packet that carries spe-

cific information about the name of the newly published data, which enables the sync nodes

to fetch the new data as soon as they receive the notification. Third, VectorSync piggybacks

the version vectors in the sync-layer data (which carries the application data name or con-

tent) to allow the receiving nodes to detect inconsistency in the sync state without requiring

another round-trip to fetch the state information. With those design decisions, VectorSync is

able to achieve lower data synchronization delay and less communication overhead compared

to the existing sync protocols.

Another key motivation of designing a new sync protocol is based on the observation

that many distributed applications require explicit group membership management so that

the nodes can always keep track of the current active participants in the application. A

typical example of such applications is resource discovery in IoT networks, where the IoT

devices announce their services by publishing the relevant information (e.g., service name and

description) in a “discovery dataset” and synchronize with other devices. In this application

scenario, the devices need to know what other devices are active in the system so that their

services are still available online. This requires the nodes to maintain explicit membership

information about the sync group. Another application example is sync-based routing, where

the routers need to keep track of the reachability information advertised by each active router

in the network and remove obsolete routes from the dead routers as soon as possible.

The existing sync protocols operate over unmanaged sync groups and do not provide

the built-in support for group membership management, which makes it difficult to remove

inactive nodes from the protocol state maintained by each distributed node. It also creates
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challenges in implementing services such as group-wide dataset snapshot and data total

ordering for the sync-based applications due to the lack of consistent group membership

information at each node. Different from its predecessors, VectorSync provides a leader-

based group membership management mechanism that maintains a consistent view of the

group among the active participants. Managing group membership at the sync layer is

necessary not only for controlling the size of the protocol state, but also for efficient data

loss detection within a “closed” space of the protocol state. It also enables VectorSync

to provide high-level sync-related services for the distributed applications (which will be

described in Chapter 5).

In the rest of this chapter, we first introduce the system model for the VectorSync pro-

tocol. Then we describe the design components of VectorSync in detail. After that we

present an extensive simulation-based study to evaluate the performance of the protocol

under various network environments.

4.2 System Model

In this section we describe the system model and assumptions about the sync nodes and

the networks in the design of the VectorSync protocol. We consider a sync group with a

finite number of nodes (called sync nodes) participating in some distributed NDN applica-

tion. Nodes may join and leave the sync group at any time. Although the synchronization

algorithm in VectorSync can support a sync group of arbitrary size, in practise we limit the

size of the group so that the entire sync state can be encoded in a single Data packet. Each

node is assigned a data publishing prefix that is aligned with the topological prefix of the

underlying network and unique within the sync group. The underlying network is unreli-

able: packets may be lost, corrupted, delayed, duplicated, or reordered during transmission.

However, we assume the sync nodes in the same group can communicate with each other

most of the time. The network may be partitioned temporarily, dividing the sync group into

multiple subgroups, but will eventually reconnect.

Applications running on the sync nodes publish data in the shared dataset through the
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Figure 4.1: VectorSync Protocol Software Architecture

interface provided by the VectorSync service module. The information about the published

data is propagated to other sync nodes over the network by the VectorSync protocol. After it

receives new data published by other nodes, the VectorSync module notifies the application

layer using a pre-configured callback function. When multiple applications are running on the

same set of nodes, each application creates its own sync group and operates independently.

Different applications do not share the dataset in which they generate new data.

Figure 4.1 illustrates the software modules implemented by a VectorSync node. Each

VectorSync node maintains three important data structures:

• Shared dataset : the local storage of the data items published in the sync group. Data

published locally or received from the remote nodes via VectorSync is stored in this

data structure for easy access by the local applications.

• Dataset state: a version vector representation of the shared dataset namespace contain-

ing all published data that the sync node is aware of. This data structure summaries

the node’s latest knowledge about the state of the shared dataset and supports efficient

set difference reconciliation between two copies of the dataset.

• Group membership list : the list of current active members in the group and associated
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information, including their data publishing prefixes and public key certificates. The

membership information is often referred to as the view of the group, a terminology

initially devised by the Viewstamped Replication protocol [OL88, LC12] and adopted

by many other synchronization protocols that also perform group management. Each

view is uniquely identified by a view identifier, which is used for detecting inconsistent

knowledge of the group membership among the active participants.

4.3 Basic Protocol

The VectorSync protocol consists of two interdependent components: the dataset state syn-

chronization mechanism for maintaining a consistent state of the shared dataset among the

sync nodes, and the group membership synchronization mechanism for maintaining a con-

sistent knowledge about the current group membership. Both the dataset synchronization

and the group management processes are non-blocking: a sync node can publish new data

at any time even if it has been disconnected to the group and/or has incomplete knowledge

about the current group membership; the changes in the dataset and the group membership

information are propagated asynchronously in the group to achieve eventual consistency.

In this section, we first introduce the naming design and the representation of the dataset

namespace. Then we describe the details of the dataset state synchronization process and

the group membership synchronization mechanism. At the end of this section we briefly

describe how to secure the VectorSync protocol using NDN’s built-in data authentication

support.

4.3.1 Data Naming and Dataset State Representation

Figure 4.2(a) shows the naming convention for the data in the shared dataset (called Node

Data). Each node publishes data in the shared dataset under its own data publishing prefix

that is aligned with the unicast prefix of the underlying network. This data prefix also serves

as the unique node name in the sync group. The “app-name” component indicates the name

of the application, which is known to every node in the group a priori. The last component
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(a) Node data name:

(b) Notification Interest name:

(c) ViewInfo data name:

/[unicast-node-prefix]/[app-name]/[seq#]

/[multicast-group-prefix]/vid/[view#]/[leader-name]/%DA/[publisher-name]/[seq#]

/[multicast-group-prefix]/vinfo/[view#]/[leader-name](/[segment#])

Figure 4.2: VectorSync naming conventions

in the data name is a monotonically increasing sequence number that uniquely identifies

the data objects from the same producer. Note that many applications publish data in a

dedicated namespace that is independent from the topological prefixes of the nodes and may

require more expressive data naming conventions (e.g., for expressing trust relationship).

Like in other sync protocols that utilize sequential data naming, the application data names

can be encapsulated in the sequentially named Node Data published by the sync module.

After receiving the Node Data, the applications can decide whether to fetch the application-

layer data using the encapsulated name. If the size of the application data is small, the

applications may also encapsulate the whole data object in the content of the Node Data,

which saves the round-trip of retrieving it by name.

Since each node’s sequence number increments continuously, the entire namespace of the

shared dataset is concisely summarized by a list of (node name, latest sequence number)

pairs. This namespace representation essentially becomes a version vector [PPR83] that

identifies the state of the shared dataset. VectorSync further compresses the version vector

representation by pre-configuring the data prefix of each node via the consistent group mem-

bership list maintained at each node (described later). This allows VectorSync to omit the

node prefixes in the version vector, reducing it to an array of nonnegative integers (called

state vector) that can be efficiently encoded and transmitted over the network. The order

of each node in the version vector is determined by the canonical order of the node prefixes

so there is no ambiguity in interpreting the vector as long as the nodes have the same view

of the group membership. Figure 4.3 shows an example of representing the namespace of a
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Figure 4.3: Representing the dataset namespace using a state vector

dataset with a state vector based on the pre-configured group membership information.

4.3.2 Dataset State Synchronization

The synchronization of the dataset state is performed in two steps. When a node publishes

new data, it sends out a multicast notification Interest to announce the data in the sync

group. After receiving the notification Interest, other sync nodes issue a second Interest

to fetch the data based on the information carried in the name of the notification Interest.

The Node Data carries the publisher’s full state vector together with the application-layer

message, which allows the receiving node to check for inconsistency in the dataset caused by

various factors such as the loss of previous notification Interest and/or Node Data.

Figure 4.2(b) shows the naming convention for the notification Interest name, which

starts with a multicast prefix that uniquely identifies the sync group (and the application),

and carries the publisher’s name and the sequence number of the published data at the end.

Upon receiving a notification Interest, a node sends a reply packet with a short freshness

period (e.g., 5ms) to satisfy the pending notification Interests in the network and provide

an acknowledgement to the notification. The reply also carries the replying node’s own

state vector, which provides an opportunistic channel for propagating sync states to the
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data publisher.2 If the publisher does not receive any reply before the notification Interest

expires, it will retransmit the notification up to a pre-configured number of times. However,

note that the receipt of a single reply does not imply that all other nodes in the group have

received the notification. This is inherently due to the multicast nature of the notification

mechanism and the “one-Interest-one-Data” requirement in NDN.

Since the notification carries specific information about the published data (i.e., publisher

name and the data sequence number), the node can easily construct the name of the new data

following the naming convention in Figure 4.2(a), and issue Interest to retrieve that data.

The Node Data carries the publisher’s state vector at the time the data is produced and the

view ID representing the publisher’s knowledge of the group membership, which provides

context for interpreting the state vector. If the publisher’s view ID is different from the

node’s local view ID, the node may need to synchronize the group membership information

(described in the next subsection) before processing the state vector. Having the consistent

group membership information ensures both local and received state vectors contain latest

sequence numbers from the same set of nodes, with each node’s sequence number listed at

the same position in the vector. The receiving node then performs a Join operation that

takes the entry-wise maximum of the received and local vectors. The result represents the

union of the local and the remote dataset.

Definition 4.3.1. Given v1 = (a1, a2, ..., an) and v2 = (b1, b2, ..., bn),

Join(v1, v2) = (Max(a1, b1),Max(a2, b2), ...,Max(an, bn)) (4.1)

The node replaces its local state vector with the output of Join. If any entry in the new

state vector contains a higher sequence number than before, it will issue Interests to fetch

the new data identified by the sequence numbers in between. The data publishing prefix of

the node corresponding to that entry is readily available in the membership list.

An example of dataset synchronization among three nodes is illustrated in Figure 4.4. In

2Note that the publisher will receive at most one of the replies generated by the group members, which
may not reflect the latest state of the shared dataset in the group.
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Figure 4.4: VectorSync protocol message exchange in a group of three nodes

this example, Alice publishes a new data packet with sequence number 15 and sends out a

notification Interest via multicast to the group. After sending the reply, Bob and Ted issue

Interests to fetch the new data from Alice. When there is no packet loss and no cached data

in the network, the minimum delay for propagating the data from the publisher to another

node is 1.5×RTT (plus processing delay).

Packet loss and link failure in the network may cause the nodes to miss some data

published by others, due to the loss of notification Interests and/or Node Data. VectorSync

provides two measures for detecting and eventually reconciling inconsistency in the dataset

state. First, VectorSync requires each node in the group to periodically publish new data.

When the application is idle, the nodes still publish heartbeat packets with no application

message. (The heartbeat mechanism is also required for group membership maintenance,

which is described in the next subsection.) As long as there is no permanent failure in the

network, the nodes will eventually receive some new data from each member in the group.

Since the sequence number is continuous, the receipt of a newer sequence number will allow

the nodes to detect any missing data generated earlier by the same publisher. Second, both

the notification reply and the Node Data carry the state vector of the node who generates

the data. Due to periodic data publishing from each node in the group, the nodes can

periodically detect and reconcile inconsistent state using the state vectors.
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In addition to the built-in state synchronization mechanism, VectorSync can also benefit

from link-layer loss detection and fast retransmission (if available) to achieve fast recovery

from packet loss in the network, instead of waiting for new data to be published in the group.

4.3.3 Group Membership Synchronization

VectorSync operates over managed groups, where each node keeps the information about

the current active members in the sync group, which is called the view of the group, and

synchronizes dataset state with the nodes in the same view. To synchronize the view among

a group of nodes, the node with the highest-ordered name is selected as the leader of the

view and publishes the definitive information about the current members (called ViewInfo)

which is followed by other nodes in the group. Each view is uniquely identified by a pair

that includes a monotonic-increasing view number and the name of the view leader. The

leader increases the view number when it creates a new view after membership change. The

view ID essentially becomes a logical clock [Lam78] that keeps track of the view change

events. All notification Interests carry the current view ID of publisher in the Interest name,

as is shown in Figure 4.2(b). The view ID is also piggybacked in the Node Data together

with the publisher’s state vector. This allows the nodes to detect inconsistency in the group

membership knowledge and then synchronize their views.

In VectorSync, each node is required to publish data in the shared dataset periodically in

order to refresh its membership in the group. When the application is idle, the node publishes

heartbeat data with no application message in the shared dataset.3 The application data and

heartbeat packets are propagated to all other group members via dataset synchronization

and serve as the authenticated assertion of the node’s active participation in the group.

This allows the nodes in the same group to monitor the membership status of each other

without introducing additional liveness detection mechanism. Like normal application data,

the heartbeat data contains the publisher’s current view ID and state vector, which helps

the receiving node synchronize the dataset state as is described in Section 4.3.2.

3The heartbeat messages are processed only by the VectorSync module and not passed to the application
layer.

39



If a node’s heartbeat is missed for M times (M = 3 in our current implementation),

the node is considered to have left the group. When the view leader detects some node has

left the group, it initiates a view change process to move the remaining members to a new

view.4 If the current leader leaves the group, the node with the second highest-ordered name

immediately becomes the new leader and initiates the view change to remove the previous

leader from the view.

Note that the heartbeat mechanism assumes the nodes’ clocks advance at roughly the

same speed, but does not require the clocks to be synchronized. A smaller heartbeat interval

allows the group to react to node departure more promptly, but may lead to higher com-

munication overhead because more heartbeat messages need to be propagated. Setting the

heartbeat interval too small may also introduce unnecessary view changes when some node

experiences short-term network disconnection. In practice, applications should choose the

heartbeat interval to be roughly the same as the average application data rate and adjust

the node timeout threshold M based on the deployment scenarios.

To start the view change process, the leader increments the current view number by one

and then publishes the ViewInfo packet for the new view following the naming convention

shown in Figure 4.2(c). Note that the ViewInfo is named under the multicast group prefix

rather than the unicast leader name, which allows any node in the group to store and serve

the ViewInfo packet to other nodes. The ViewInfo contains the list of active members in the

view with their unique node names (i.e., data publishing prefixes) and public key certificates,

which essentially provides a certificate bundle for all members in that view. The ViewInfo

may be segmented if it is too large to fit into a single Data packet. After the ViewInfo

is generated, the leader publishes a heartbeat packet in the new view, which triggers a

notification Interest that carries the new view ID to inform other nodes about the new view.

Upon receiving a notification Interest with a higher view number (than its own), a node

tries to fetch the corresponding ViewInfo based on the view ID carried in the Interest name.

4Optionally, the leader may inject a short delay before removing the inactive node. If multiple nodes
leave the group around the same time, the leader can remove all of them from the view via a single view
change process.
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2. Notification Interest:
/group1/vid/5/ucla/alice/…

3. Interest:

/group1/vinfo/5/ucla/alice

3. Interest:/group1/vinfo/5/ucla/alice

4. ViewInfo Data:
/group/vinfo/5/ucla/alice

Alice

Carl

1. Remove Carl;
create view #5

5: Move to
view #5

5: Move to
view #5

0. Carl leaves the group

Figure 4.5: View change process after removing a node

Before receiving the new ViewInfo, the node keeps publishing data in its current view. The

node joins the new view if it is included in the membership list of the new view. Otherwise

it ignores the received ViewInfo and stays in its current view. After joining the new view,

the node needs to update the dataset state by resizing the state vector to the number of

members in the new view and filling the state vector with the latest sequence numbers for the

members the node already knew. For unrecognized members their entries in the state vector

will be initialized to zero. After that the node can start processing the state vector carried

in the data packets published in the new view, as is described in the previous subsection.

Figure 4.5 illustrates a simple example of the view change process happening in a group

when the leader Alice announces a new view (5, /ucla/alice) after Carl leaves the previous

view (4, /ucla/alice). When there is no packet loss, other nodes will join the new view

1.5 × RTT after the leader sends out the notification Interest to announce the new view.

Note that this view change process is similar to the dataset synchronization process described

earlier: the leader publishes the ViewInfo data packet and announces the view ID in the

notification Interest name so that other nodes in the group can fetch the ViewInfo packet

using the data name constructed using the view ID (see Figure 4.2(c)). In other words,

VectorSync turns the membership management problem into a data synchronization problem

by publishing the membership information as data and synchronizing the latest membership

data in the group.
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/group1/vinfo/4/ucla/bob

3. ViewInfo Data:
/group/vinfo/4/ucla/bob

Alice

Carl
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(4, /ucla/bob)

1. Notification Interest:
/group1/vid/4/ucla/bob/…

5. Notification Interest:
/group1/vid/7/ucla/alice/…

4. Create view
(7, /ucla/alice)

Figure 4.6: Merging two sub-groups after network partition heals

When network partition happens, each partition may select its own leader that creates

a new view including a subset of nodes in the group. After the network partition heals,

the leaders of different views will eventually receive notification Interests from each other

that indicate the view IDs of the divided sub-groups. In this case, VectorSync requires the

leader with the highest-ordered name among all existing leaders to take the responsibility of

merging the sub-groups. This ensures the new view will still have the node with the highest-

ordered name as its leader. When a leader node detects a different view with a smaller

leader name, it fetches the corresponding ViewInfo, creates a new view containing members

from both existing views, with the view number set to one plus the higher of the existing

view numbers, then announces the new view ID to the group. Before merging the views, the

leader needs to authenticate the received ViewInfo data to make sure the nodes in the other

view are authorized to participate in the sync group. The detail of member authentication

is discussed in the next subsection.

Figure 4.6 illustrates an example of the view change process that merges two sub-groups

originated from the same sync group, with view IDs (4, “/ucla/alice”) and (6, “/ucla/bob”),

respectively, into a single group (7, “/ucla/alice”).

An interesting fact to note is that VectorSync does not provide a separate group-joining

mechanism. To join an existing sync group, a node first creates a single-node view with view
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number equal to 1 (the smallest possible view number) and itself being the leader. Then the

leader of the existing view will follow the view-merging process described above to add the

new node into the group.

4.3.4 Securing VectorSync Communication

VectorSync requires that the nodes in the same group share a common trust anchor and

have obtained public key certificates from that trust anchor before participating in the ap-

plication. After authenticating the ViewInfo published by the leader, a node can directly use

the public keys in the ViewInfo packet to authenticate the data published by other nodes,

including application data, heartbeat, notification reply, etc. This prevents malicious nodes

from publishing invalid ViewInfo (which may contain unauthorized nodes as members) or

application data with invalid state vector under a legitimate node’s name. Note that an

attacker can still send notification Interests containing arbitrary sequence numbers, in which

case the legitimate nodes will ignore those sequence numbers since no corresponding data

can be retrieved. If necessary, such attack can be prevented by requiring the producer to

sign the notification Interest so that others can authenticate the notification before fetching

the new data.

Access control can also be achieved by leveraging the group membership information,

similar to the solution in NDN-ACT [ZWY11]. The leader may periodically generate a sym-

metric data encryption key and distribute the key to every node on the current membership

list [YAZ16]. The key distribution process can utilize the dataset synchronization mecha-

nism: the leader publishes the data encryption key (encrypted with each member’s public

key) in the shared dataset, which is synchronized to every member in the current view. The

producers encrypt the application messages using the latest encryption key, which can be

decrypted only by the members in the same view.
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4.4 Simulation Study

We implemented a prototype VectorSync module [Sha17] using the ndn-cxx library.5 In

this section we study the behavior of VectorSync under various network environments by

running simulation experiments on the latest version of ndnSIM [MAM16] simulator which

supports easy integration of real-world applications developed with ndn-cxx. To evaluate the

performance of VectorSync, we developed a simple application that runs on top of VectorSync

and publishes data continuously in a shared dataset following the Poisson process with a pre-

configured data rate. We focus on three important performance metrics:

• Data dissemination delay: the time needed for a piece of data to be received by any

node in the group after it is published;

• Data synchronization delay: the time needed for a piece of data to be received by all

nodes in the group after it is published;

• Network traffic volume: the amount of Interest and Data packets sent in the network

during the experiment.

We start by analyzing the data synchronization process in VectorSync using a simple hub-

and-spoke network topology with a fixed sync group. Then we compare the performance

between VectorSync and ChronoSync using more realistic topologies, including a small cam-

pus network and a large ISP network. In the end, we analyze the behavior of VectorSync

under dynamic group changes.

4.4.1 Synchronization in Lossless Network

We start with the basic scenario when there is no packet loss in the network. We set up

the simulation scenarios with a simple hub-and-spoke network topology, where all nodes

connect to a common central hub via point-to-point links. Using such simple topology

allows us to calculate the expected values of the performance metrics based on the protocol

5https://github.com/named-data/ndn-cxx
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Figure 4.7: Hub-and-spoke topology

design and then validate our analysis using the simulation results. All participating nodes

are pre-configured the group membership information that stays unchanged throughout the

simulation. Each node publishes new data continuously in the shared dataset with an average

inter-arrival time of 1 second. Each simulation runs for 100 seconds, allowing each sync node

to publish about 100 packets in total. The heartbeat interval is set to be the same as the

average inter-arrival time of the application data (i.e., 1 second).

A hub-and-spoke network topology with N nodes is shown in Figure 4.7. To simplify the

analysis, we configure each point-to-point link to have the same link delay D. As a result, the

RTT between any pair of sync nodes is 4×D. When there is no packet loss, the minimum

data dissemination delay from the producer node to another sync node is 1.5× RTT = 6D

(plus a small amount of queueing delay modeled by the ns3 simulator). Since the RTT is the

same between any pair of nodes, both the average data dissemination delay and the average

data synchronization delay should be 6D, regardless of the size of the group.6

Figure 4.8 shows the data dissemination delay with link delay D = 10ms, as the size

of the group grows from 4 nodes to 10 nodes. Figure 4.9 shows the data synchronization

delay under the same configuration. As is expected, VectorSync performs consistently across

different group sizes, with average data dissemination and synchronization delay staying

close to 60ms.

6Note that the data cache at the central hub node does not help reduce the delay because the notification
Interest from the producer node will trigger other nodes to fetch the published data at roughly the same
time.

45



4 5 6 7 8 9 10
Number of nodes

A
ve

ra
ge

 d
at

a 
di

ss
em

in
at

io
n 

de
la

y 
(m

s)
0

20
40

60
80

10
0

Figure 4.8: Data dissemination delay in a hub-and-spoke network with different number of

nodes
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Figure 4.9: Data synchronization delay in a hub-and-spoke network with different number

of nodes

Figure 4.10 and Figure 4.11 show the data dissemination and synchronization delay with

10 nodes in the group while the RTT changes from 200ms to 800ms. In both scenarios,

the average data dissemination and synchronization delay grows linearly with the RTT as

expected.

When a node publishes new data and sends out a notification Interest, triggering multiple
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Figure 4.10: Data dissemination delay in a hub-and-spoke network with different link delays
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Figure 4.11: Data synchronization delay in a hub-and-spoke network with different link

delays

nodes to issue Interests to fetch the new data around the same time, those Interests will

be aggregated by the central hub node and only one of them (i.e., the first one arrived)

will be forwarded to the producer to bring back the data. The data is then returned to

all other nodes following the multicast delivery path established by the pending Interests.

Therefore each Interest and the corresponding data will traverse each link in the hub-and-

spoke network exactly once. The same property also holds for notification Interests and the
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Figure 4.12: Total network traffic per-link in a hub-and-spoke network with 10 nodes

replies. Figure 4.12 shows the total amount of packets sent over each link of the hub-and-

spoke network with 10 nodes in the group, which confirms our analysis.

4.4.2 Synchronization in Lossy Network

In this subsection we turn our attention to the performance of VectorSync over lossy net-

works. We use a hub-and-spoke network topology with 10 nodes and 10ms link delay, but

configure the network device on each sync node to randomly drop received packets at a

pre-configured packet loss rate. We configure VectorSync to retransmit expired Interests

up to 5 times. The lifetime of both notification Interest and Node Data Interest is set to

50ms (which is larger than the RTT between any two nodes) in order to avoid premature

retransmission.

We run the experiment with three different configurations of data publishing rates and

heartbeat intervals. In the first configuration each node publishes with 10-second average

inter-arrival time and 10-second heartbeat interval. In the second configuration each node

publishes with 1-second average inter-arrival time and 10-second heartbeat interval. In the

third configuration each node publishes with 1-second average inter-arrival time and 1-second

48



0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Data synchronization delay (ms)

C
D

F
●●●

●

●●

●●●
●●●●

●●●

●

●●
●●●
●●●●●
●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ● ● ●● ● ● ●

●●●

●

●●●
●●●●●●
●
●●●●
●

●●●●●
●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●

●●

●
●●●●●●
●●
●
●●●
●

●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●

Loss rate

0%
1%
5%
10%

Figure 4.13: Data synchronization delay (0.1 pps data rate and 10-sec heartbeat interval)

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Data synchronization delay (ms)

C
D

F

●

●

●

●

●●
●●
●
●●●●●

●

●

●
●

●●
●●
●
●●●●●●●●

●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●● ● ●●●● ●

●

●
●●

●●●●
●●●●●

●●●●●●
●
●
●●

●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●● ●●●

●

●●●
●●●●●
●●●●

●
●
●●

●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●● ● ● ●

Loss rate

0%
1%
5%
10%

Figure 4.14: Data synchronization delay (1 pps data rate and 10-sec heartbeat interval)

heartbeat interval.7 With each configuration we run the experiment under 0%, 1%, 5%, and

10% packet loss rates, respectively. The CDF plots of the data synchronization delay are

shown in Figure 4.13, Figure 4.14, and Figure 4.15.

It is clear to see that as the loss rate increases the average data synchronization delay also

increases in all scenarios. On the other hand, increasing the data rate and/or the heartbeat

7The running time of the experiments is adjusted based on the data rate to ensure that each node publishes
around 100 application data packets in total.
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Figure 4.15: Data synchronization delay (1 pps data rate and 1-sec heartbeat interval)

rate can mitigate the impact of packet loss on the synchronization delay. This is because

VectorSync enables each node to detect inconsistency in the whole dataset using the state

vector carried in every application data packet and heartbeat packet published in the group.

Furthermore, it allows the data producer to detect inconsistency based on the state vector

carried in the notification replies, which provides additional opportunity for the nodes to

recover from packet loss. However, the lower synchronization delay is achieved at the cost

of generating more traffic in the network. By comparing Figure 4.16 with Figure 4.17, we

can see that there is roughly a 50% increase in the total amount of network traffic when the

heartbeat interval is reduced from 10 seconds to 1 second (under the same application data

rate).

4.4.3 Comparison with ChronoSync

In this subsection we compare the performance between VectorSync and ChronoSync. The

main reason of choosing ChronoSync for comparison is that it is currently the only sync

protocol developed for the NDN architecture with mature published implementation8. As

we have discussed in Chapter 3, ChronoSync achieves a minimum data dissemination delay of

8https://github.com/named-data/ChronoSync
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Figure 4.16: Total network traffic (1 pps data rate and 10-sec heartbeat interval)
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Figure 4.17: Total network traffic (1 pps data rate and 1-sec heartbeat interval)

1.5×RTT 9, but may experience longer delay if multiple nodes publish data simultaneously,

because the nodes have to spend extra round trips to retrieve additional Sync Replies using

exclude filter. In addition, when the state of the group has already diverged, ChronoSync

relies on the recovery mechanism to retrieve the full sync state that corresponds to some

“unrecognized” state digest. This will cause additional synchronization delay and higher

9Here we assume the published data is retrieved by Interest in a separate round trip rather than encap-
sulated in the Sync Replies, in which case the minimum dissemination delay is 0.5×RTT .
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Figure 4.18: Campus network topology

traffic in the network (because the recovery Interest is sent to multicast namespace and

forwarded to all nodes in the group).

To ensure fair comparison, we ported the same data publishing application used in the

VectorSync experiments on top of ChronoSync. We conduct the experiments using two

realistic network topologies: a small-scale campus network and a large-scale ISP network.

In both topologies we vary the data publishing rate of the sync nodes10 and the packet loss

rate in the network, then measure the data synchronization delay and the total amount of

network traffic for both sync protocols.

The small campus network topology used in the simulation is shown in Figure 4.18: two

backbone routers (BB) interconnect the department routers (DR) from different department

networks; each department network has a few gateway routers (GW) that connect end nodes

(EN) to one or two department routers. Table 4.1 summarizes the bandwidth and delay of

the links connecting different types of network devices. Each experiment involves the 10

end nodes (EN1 – EN10) participating in the same sync group, each publishing around 100

10The heartbeat interval is set to be the same as the average application data interval.
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Link Type Bandwidth Delay

BB – BB 10Gbps 5ms

BB – DR 1Gbps 10ms

DR – GW 1Gbps 5ms

GW – EN 100Mbps 2ms

Table 4.1: Bandwidth and delay for different types of links in the campus network topology
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Figure 4.19: Data synchronization delay in the campus network (data rate = 0.1pps)

application data.

We first compare the data synchronization delay under various packet loss rates with

each node publishing data at 0.1 pps on average. Figure 4.19 shows the CDF plots of the

data synchronization delay in the campus network for VectorSync and ChronoSync. We can

see that even if there is no packet loss in the network, ChronoSync nodes still experience

significantly longer synchronization delay for about 40% of the published data. This is due

to simultaneous data publishing that causes ChronoSync nodes to spend extra round-trips to

fetch simultaneous sync replies or even invoke the recovery mechanism. On the other hand,

VectorSync is resilient to simultaneous data publishing because the notification Interest

carries explicit information about the new data name (instead of a state digest), which

allows receiving nodes to fetch the new data immediately after receiving the notification.
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Figure 4.20: Total number of packets transmitted in the campus network (data rate =

0.1pps)

When the packet loss rate increases, both sync protocols experience longer synchronization

delay but VectorSync still performs better than ChronoSync.

We also measure the total number of Interest and Data packets transmitted over the

entire campus network during the experiment, which is shown in Figure 4.20. Compared to

VectorSync, ChronoSync generates much higher volume of Interest packets because Chrono-

Sync nodes need to send additional multicast Sync Interests with exclude filter to detect

simultaneous updates every time they receive a Sync Reply. The recovery Interests for re-

pairing diverging states also contribute to the high number of Interests. On the other hand,

in VectorSync the Interest traffic volume shows only slight growth as the packet loss rate

increases, due to the retransmission of expired Interests.

We repeated the same experiments with higher per-node data rate (1pps), which causes

lots of simultaneous publishing that leads to conflicting states in the sync group. Figure 4.21

shows the results of data synchronization delay for VectorSync and ChronoSync. As we can
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Figure 4.21: Data synchronization delay in the campus network (data rate = 1pps)

see, increasing the data rate in the sync group enables VectorSync to recover from packet loss

faster since the state vector carried in each data enables detection of missing data published

by all group members. When there is no packet loss, ChronoSync exhibits significantly higher

synchronization delay compared to VectorSync due to simultaneous publishing. However, as

the packet loss rate increases, the synchronization delay of ChronoSync becomes similar to

that of VectorSync. This is because ChronoSync invokes the recovery mechanism frequently

under high data rate, and the recovery data carries the full ChronoSync state which is similar

to the state vector in VectorSync. This allows ChronoSync to reconcile the dataset state in

a similar way as VectorSync does, which leads to similar synchronization delay (especially

under higher packet loss rates).

The key difference between the ChronoSync recovery mechanism and the VectorSync

dataset state synchronization is that the recovery Interest is sent to every node in the group

via multicast, and the recovery process is invoked in additional to the normal synchronization

process in ChronoSync. This causes ChronoSync to generate much higher amount of traffic

in the network, as is shown in Figure 4.22.

We conducted similar experiments using a larger ISP network topology generated from

real-world measurements [SMW04], which is shown in Figure 4.23. We randomly pick 10

nodes in the network to participate in a sync group and publish data at 0.1pps on aver-
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Figure 4.22: Total number of packets transmitted in the campus network (data rate = 1pps)

Figure 4.23: Large ISP network topology
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Figure 4.24: Data synchronization delay in the large ISP network (data rate = 0.1pps)
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Figure 4.25: Total number of packets transmitted in the large ISP network (data rate =

0.1pps)

age. To simulate packet loss, we configure all nodes in the network to randomly drop the

received packets at a pre-configured error rate. Figure 4.24 and Figure 4.25 show the data

synchronization delay and the total number of packets transmitted during the experiment,

57



respectively, under different packet loss rates. Both results are consistent with the previous

measurements based on the campus network topology.

4.4.4 Dynamic Membership Changes

In this subsection, we study the impact of dynamic group membership changes on the per-

formance of VectorSync. We set up the simulation scenario where each node in a sync group

leaves the group (by shutting down the data publishing application and the VectorSync mod-

ule) at a randomly selected time point, and compare the data synchronization delay to the

scenario where there is no membership change throughout the experiment. We carry out

the experiment on all three network topologies that have been used so far (hub-and-spoke

network, campus network, and large ISP network) under different packet loss rates and data

publishing rates, and the results are similar in all scenarios. Here we report only the results

and analysis from the experiments over the large ISP network (with 0.1pps per-node data

rate) to highlight the key insights we obtained.

Figure 4.26 shows the CDF plots of the data synchronization delay under different packet

loss rates with and without dynamic membership changes. As we can see, the synchroniza-

tion delay is mostly unaffected by the view change processes during the experiment when

the packet loss rate is below 10%. This is mainly due to three important design properties

of the VectorSync protocol. First, VectorSync decouples view change from dataset synchro-

nization: nodes can always fetch the new data based on the explicit information carried in

the notification Interest even if their membership knowledge is not synchronized with the

data producer yet. Second, VectorSync synchronizes the membership information by pub-

lishing the ViewInfo and announcing the view ID in all notification Interests, which allows

the nodes to detect and synchronize their views quickly after the view change starts. Third,

VectorSync utilizes a deterministic leader selection algorithm that allows the group to pick a

new leader as soon as the current leader leaves, which also improves the view synchronization

speed.

The main reason for the noticeable increase in the synchronization delay under 10%
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Figure 4.26: Data synchronization delay in the large ISP network with dynamic membership

changes (data rate = 0.1pps)

packet loss is because the overall data rate in the group gradually decreases as the nodes

leave the group over time; consequently, the remaining nodes have to wait longer for the

next application data or heartbeat packet to provide updated state vector in order to detect

missing packets. Note that in the scenario with no packet loss, the maximum data synchro-

nization delay under dynamic membership changes is longer than that without membership

changes. This is because the benefit of in-network caching diminishes when there are less

nodes in the network to fetch the published data.
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CHAPTER 5

Building High-level Services over VectorSync

Maintaining explicit group membership information enables VectorSync to support protocols

and algorithms in distributed systems that require collecting information from all partici-

pating members. In this chapter we describe the design of two sync-related services, dataset

snapshot and data ordering, on top of VectorSync. Both of them offer important function-

ality that is frequently used in distributed applications.

5.1 Dataset Snapshot

An important design choice made in VectorSync is that the state vectors generated in a

view contain only the sequence numbers from the current members in that view. This

allows VectorSync to effectively remove the departed nodes from the state vector, preventing

the size of the vector from growing unbounded as nodes come and leave in a long-running

application session. Consequently, the new nodes that join the group late will not learn

about the data published by the departed nodes from the state vectors of the current and

future views (unless a departed node rejoins the group later). While this design is suitable

for applications that require synchronization among the active members only (e.g., resource

discovery and routing protocol), some application may also require preserving the historical

data, including the data published by the departed nodes, so that new members joining the

application can still discover and retrieve the old data they need. This can be supported

by providing a dataset snapshot service on top of VectorSync to generate snapshots that

capture the dataset state at the end of each view throughout the history of the group.

The snapshot process is triggered by the view change events. After joining a new view,
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Alice Bob Carl TedView ID =
(4, /ucla/alice)

Carl leaves the group

Alice Bob TedView ID =
(5, /ucla/alice)

Local snapshot:
(4, /ucla/alice) ->
[15, 80, 51, 113]

Local snapshot:
(4, /ucla/alice) ->
[15, 80, 52, 112]

Local snapshot:
(4, /ucla/alice) ->
[14, 79, 52, 114]

Seq# = 15 Seq# = 80 Seq# = 52 Seq# = 114

Group snapshot:
(4, /ucla/alice) ->
[15, 80, 52, 114]

Figure 5.1: Example of generating a group snapshot after a view change

each node in the group records and publishes its local state vector of the previous view

(together with the view ID) in a data packet called local snapshot, which represents the

dataset state observed by the node at the end of the previous view. The local snapshot

packets are published in the shared dataset and propagated to other group members via

VectorSync. The leader of the new view is responsible for collecting local snapshots from

all current members in order to compute the Join of the state vectors reported in those

local snapshots which summarizes the knowledge of the dataset state of the previous view.1

The leader then publishes the “joined” state vector and the corresponding view ID in a

data packet called group snapshot and notifies other nodes that a group snapshot has been

generated, upon which the nodes can remove the recorded state vector (since it has been

covered by the group snapshot). Figure 5.1 illustrates the snapshot process with a simple

example. To permanently store the historical data, the dataset snapshot service requires a

stable storage component (e.g., a repo) to collect the data published in the shared dataset

based on the group snapshots and the corresponding ViewInfo.2

1Note that if a node crashes immediately after publishing some data, the information about that data
will not be retained in the group snapshot since none of the remaining members in the group knows about
such data.

2As an optimization, the leader may expand the state vectors into version vectors (i.e., annotating each
entry in the vector with the corresponding node name) when it publishes the group snapshot.
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There are several important details worth discussing in the design of the snapshot mecha-

nism. First, the group snapshot data is named under the current view ID using the following

naming convention: “/[group-prefix]/snapshot/[view-number]/[leader-name]”, and the content

carries the ID of the previous view. Therefore the group snapshot packets published over

time essentially record a chain of view IDs, which links successive views and can be used to

trace the history of view changes. Second, when group partition happens, each sub-group

will generate its own group snapshot for the previous view. If a node wants to fully recover

the dataset state for that view, it would need to trace the branches in the view change

history to obtain all published group snapshots. Third, after the group partition heals, the

nodes that belonged to different subgroups will publish local snapshots for different views.

Consequently, the generated group snapshot will contain multiple state vectors, one for each

unique view reported in the local snapshots. Finally, calculating the group snapshot requires

collecting state vectors from all members in the current view. If a node crashes before it

publishes its local snapshot, the leader will not be able to generate a group snapshot until

it removes the dead node and creates a new view. As a result, the remaining nodes need to

keep the state vectors from all previous views not covered by any group snapshot and report

all of them in the local snapshots published in the future. Figure 5.2 shows an example of

different group snapshots generated over the history of multiple view change events.

5.2 Data Ordering

Like other existing NDN sync protocols, VectorSync provides eventual consistency which

guarantees that all nodes sharing the same distributed dataset will eventually receive all

the data published by each other, as long as there is no permanent node or network failure.

During temporary group partition, the nodes may continue publishing data (if the application

semantics permits) which will be propagated to other nodes by the sync protocol after the

partition heals. This weak consistency model is sufficient for synchronizing unordered dataset

(e.g., replicating the data collections among the repos).

However, many distributed applications require some data ordering property to be pre-
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View (4, E)
Members: A, B, C, D, E

View (5, C)
Members: A, B, C

View (5, E)
Members: D, E

B crashes before joining the view
No snapshot generated in (5,C)

Snapshot generated in (5,E):
{ (4,E) : [38, 20, 54, 33, 117] }

View (6, C)
Members: A, C

Snapshot generated in (6,C):
{ (4,E) : [40, 21, 54, 30, 113];

(5,C) : [44, 21, 57] }
View (7, E)

Members: A, C, D, E

Snapshot generated in (7,C):
{ (6,C) : [51, 60] }
{ (5,E) : [45, 131] }

Figure 5.2: Example of dataset snapshots generated in different views over a group’s history

served while the data is published and synchronized in the distributed system. For example,

a group chat application may require the messages from each participant to be displayed

in their publishing order in the chat window; moreover, it is beneficial if the order of the

chat messages from different participants can also preserve their causal relations: if message

A was generated in reply to message B, the participants in the chat room should observe

message B before A in order to avoid confusion. Some applications such as distributed

databases may further require a consistent total ordering of all data published in the system

(e.g., database transactions issued by the clients from different server replicas). Satisfying

those application-layer requirements would require data ordering support to be built on top

of the eventually consistent sync protocols.

To support different data ordering models over VectorSync, we take a layered approach

that decouples the synchronization of the shared dataset from the enforcement of ordering

constraints. The eventually consistent VectorSync protocol ensures that data published by

any active node in the group will be delivered to every other node in the sync group. On

top of the core protocol we can build a shim layer that delays the notification of new data to

the application until the ordering constraints are satisfied. This separation of responsibility
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allows VectorSync to support multiple data ordering models to fit the semantics of various

applications.

VectorSync can easily support per-node FIFO data ordering thanks to the sequential data

naming convention adopted by the protocol. The data ordering layer buffers the out-of-order

data packets in a per-node FIFO queue and delays the notification of a data packet from a

node with sequence number S until all data published by that node with sequence numbers

up to (S − 1) has been received and consumed by the upper layer. Causal ordering can also

be supported by utilizing the state vector piggybacked in each data packet, which essentially

serves as a vectorstamp that provides a causal order over the data publishing events in the

group. Tagging data with vectorstamps is a well-known method that has been utilized in

many distributed systems such as Amazon DynamoDB [DHJ07]. If two data packets are

published in different views and carry incompatible state vectors, the causal ordering can

be resolved by using the view IDs (also piggybacked in the data) as a logical clock [Lam78]:

the data published in an earlier view (ordered by the view ID) is causally ordered before the

data published in a later view. Similar to FIFO ordering, the causal ordering layer delays

the notification of a new data packet until all other data that is causally ordered before the

new data has been received and consumed by the upper layer.

Many algorithms and protocols have been developed to solve the total ordering problem

in a distributed system. Traditional solutions usually achieve total ordering by picking a

stable master node to order all the messages and replicate them to the slave nodes in the

system via two-phase commit (2PC) or consensus algorithms [Lam98, Lam01]. While it is

possible to implement the classic 2PC or consensus protocols over VectorSync, our design

of the total ordering module employs a simple and elegant algorithm proposed by Lamport

using totally ordered logical clocks [Lam78] to ensure the data published in the group is

committed in a consistent total order by all participants. The key idea behind this algorithm

is that a node can commit a data packet with logical clock LC only if it has committed

all data packets with logical clock smaller than LC from all other nodes in the group. The

original algorithm assumes in-order delivery of messages over point-to-point links between

any pair of nodes. In the rest of this section we describe the design detail of the total ordering
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mechanism over VectorSync that adapts the original algorithm to the NDN environment.

Each node maintains a logical clock (independent from the view IDs and the data sequence

numbers) which contains a monotonic-increasing counter c and the node name N . A total

ordering on the logical clocks is defined as follows:

Definition 5.2.1. Given two logical clocks (ci, Ni) and (cj, Nj) from nodes i and j, respec-

tively, (ci, Ni) < (cj, Nj) if either (1) ci < cj or (2) ci = cj and Ni < Nj.

Every data packet published through the total ordering layer carries the value of the

producer’s current logical clock as its timestamp. When a node receives an application data

packet, it advances the counter in its logical clock to be one higher than the counter in the

timestamp of the received data (unless its logical clock is already higher than the received

one), and immediately publishes an acknowledgement (no-op) data packet timestamped with

the new value of its logical clock.3 Both application data and acknowledgement data are

published in the shared dataset and synchronized to other nodes via VectorSync. All data

packets, including remote and local data, are placed temporarily in a local message queue in

the timestamp order and wait to be committed by the application. Note that the application

do not commit a local data packet immediately after publishing it because there could be

data packets from other nodes with smaller logical clocks that have not been committed or

received yet.

Before committing a data packet in the FIFO queue with timestamp (c,N), a node needs

to receive, from each node i in the current view, at least one data packet Di (possibly an

acknowledgement) with timestamp greater than (c,N) and all data published before Di by

node i (i.e., with smaller sequence numbers).4 In addition, the node needs to commit all

received data with timestamp smaller than (c,N) (i.e., the data to be committed must be

at the head of the message queue). These two conditions (adapted from Lamport’s original

algorithm) ensure that all data packets published in the group with logical clock smaller than

(c,N) have been received and committed. Once the data is committed by the application

3The nodes do not generate acknowledgement for the acknowledgement packets.

4For node N , only the data published before (c,N) needs to be received.
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Figure 5.3: Example of publishing and committing data in total order

layer, it is removed from the message queue. Figure 5.3 shows an example of publishing

and committing total-ordered data in a sync group with three nodes. Note that the order

in which the data is committed is consistent with the total order of the logical clocks of the

data, which is indicated by the dashed arrows in the figure.

Like the dataset snapshot service described earlier, the data total ordering algorithm

requires active participation from every node in the group. If one or more nodes fail, they

need to be removed from the group through the view change process before the applications

can commit any more data.
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CHAPTER 6

New Applications of NDN Sync in Internet of Things

In this chapter we discuss the applications of sync protocols (including VectorSync and

several other existing sync protocols) in the emerging application area of “Internet of Things”

(IoT) where the ICN architecture is widely accepted as a key enabler for more powerful

applications and services than what is available in the current TCP/IP architecture. We first

give an overview of how NDN brings fundamental change to the IoT network and application

architecture compared to TCP/IP. Then we describe a few pilot IoT applications developed

on top of the NDN architecture that rely on various sync protocols to support multi-party

communication and achieve critical functions that are often challenging, if not impossible,

to implement using the traditional TCP/IP protocol stack.

6.1 Named Data Networking of Things

(The content of this section is adapted from the previous publications [SBL16] and [SWA17].)

The Internet of Things (IoT) vision proposes to interconnect things of all kinds by lever-

aging the proliferation of increasingly small and affordable embedded devices for processing,

sensing, actuation, and wireless communication. The global realization of this vision will

easily exceed the scale of devices and data objects found in the current Internet by orders

of magnitude [WSJ15]. However, the roll-out of IoT faces two fundamental and often con-

flated challenges. The first is how to enable all different types of digital devices that provide

IoT functionality to communicate locally and globally. The second is how to consistently,

securely communicate the data associated with the things themselves, once connectivity is

achieved. The latter is the heart of the IoT vision, providing access to everything from door
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lock status and lighting levels in home automation to the flow of water measured by a mu-

nicipal meter in a smart city, an individual’s blood-glucose level, and the soil pH measured

across a field by a truck-mounted sensor.

Current TCP/IP-based IoT systems and frameworks focus on interconnecting devices,

primarily addressing the first challenge. Building up from the host-to-host communication

paradigm of IP, these frameworks conflate the embedded devices with their associated real-

world things at the network layer. They tend to emphasize solutions for device-to-device

connectivity and then meet the applications’ need of accessing the associated real-world data

through a series of mappings. To fetch data about a thing itself, a typical application process

may have to traverse a long series of mappings among interface addresses, devices, channels,

and subnetworks, each of which must be secured. Such mappings add complexity and brit-

tleness to what are often simple communications of sensor data, actuation commands, and

configuration operations. For example, consider a light (a thing) in a contemporary building

automation and management system. To control its intensity, an application must be able

to get packets to the appropriate VLAN and IP subnet, as well as know the lighting gateway

device’s IP address and protocol, before dealing with the light itself via an application-layer

identifier. While consumer devices have made this easier, often allowing Web-based control

over IoT devices from the operator’s laptop or mobile phone, they do so by requiring complex

(and often manual) configurations to specify the mappings between identifiers at different

layers in the network stack1, or relying on cloud services to achieve what is essentially local

communication [SWA17].

By naming and securing the things and data directly at the network layer, NDN is able

to provide a more straightforward and secure solution to IoT networking as compared to

TCP/IP:

• The Interest-Data exchange model in NDN closely resembles the RESTful protocols

such as HTTP and CoAP that are widely adopted in today’s IoT systems. In monitor-

ing and measurement applications, clients can issue Interests to retrieve named sensor

1Certain level of auto-configuration may be supported by making assumptions about such mappings, for
example, that all devices are on the same subnet.
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data over the NDN network. In actuation applications, controllers can use Interests to

express the actuation commands, with the Interest names identifying the object and

what needs to be done to the object, e.g., “/LivingRoom/Lighting/OFF”.

• Name-based forwarding simplifies the network stack by removing the extra step of

resolving application names to network identifiers (e.g., IP and MAC addresses). The

IoT devices advertise and discover application names directly at the network layer.

The stateful forwarding plane allows fine-grained control and adaptation of forwarding

decisions at each node, adapting to network connectivity changes.

• Data-centric security is more efficient and IoT-friendly than the channel-based or phys-

ical/logical isolation-based alternatives. By securing the named data directly, NDN

enables IoT data to traverse boundaries between heterogeneous network environments

without losing security properties. It is also possible to store data in an application-

transparent manner in in-network caches and persistent data storage. NDN allows IoT

applications to freely distribute data to any place in the network without requiring

them to trust any intermediate node to keep data intact and confidential.

• Ubiquitous in-network data caching and permanent storage (i.e., repos) helps improve

the efficiency of information dissemination, especially for resource constrained IoT en-

vironments. For example, sensors with limited storage deployed in an agricultural field

can transfer monitoring data immediately after its acquisition to a nearby repository.

A remote controller can later retrieve this data from the repository, more effectively

using available bandwidth and consuming less energy. In typically disconnected envi-

ronments, “data mules” can carry Data packets in their in-network storage, enabling

data to be diffused even when consumers and producers never have a directly connected

channel between them.
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6.2 Sync in IoT Networks

NDN sync can be utilized to achieve many important functions in the IoT environments that

are often challenging to implement in the traditional TCP/IP architecture. In this section

we describe three sync-based IoT applications in order to demonstrate the power and usage

of sync. First, we describe how to use sync to provide resource discovery and rendezvous

service in smart home environments without relying on centralized servers or remote cloud

services. Second, we describe how to use sync to improve the data availability and facilitate

information dissemination in constrained IoT mesh networks where the devices need to go

to sleep mode periodically to conserve energy. Last, we introduce a distributed publisher-

subscribe (pub-sub) framework built on top of multiple sync protocols to support pub-sub

communication in enterprise building management systems (BMS).

6.2.1 Resource Discovery in Local Environments

IoT applications often benefit from auto-discovery of resources in the network, which allows

the devices and services to discover and interact with each other without human intervention

(i.e., machine-to-machine communication). For example, it is desirable for a newly installed

light switch to automatically discover and associate with the light bulbs in a smart home

or smart building without manual configuration from the users, since there could be a large

number of those devices in the same network and those devices may not even provide a

user-friendly configuration interface. In TCP/IP-based IoT systems, resource discovery is

typically achieved by deploying centralized servers (e.g., CoRE Resource Directory [BSS17]

and DNS-SD [CK13a] servers) in the local network or offloading the device management and

discovery task to the remote cloud service such as AWS-IoT2. However, both solutions have

major drawbacks that affect the usability and reliability of the IoT system: the resource

discovery servers can easily become a single-point-of-failure and require additional manage-

ment effort from the users, while the cloud service introduces external dependency to the

local communication in the IoT system which becomes subject to the failures in the cloud

2https://aws.amazon.com/iot
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platform itself [Ama17] or the connection to it through the public Internet.

NDN sync enables a robust and distributed design of resource discovery as a local service

running in the IoT network without external dependency. The shared dataset maintained

by the sync protocol essentially becomes a rendezvous point where multiple IoT devices and

services can publish information about their resources (identified by the NDN names) and

obtain the up-to-date knowledge about other resources available in the system. One of our

pilot NDN-IoT applications called “Flow” [SWA17], a home entertainment system imple-

mented on top of NDN network, utilizes sync to implement resource discovery locally in a

smart home environment by requiring the local devices to publish the list of device names

and application prefixes in a shared “discovery” dataset. The IoT devices can join the dedi-

cated “discovery” sync group to synchronize the “discovery” dataset using ChronoSync and

learn about the resources available in the home network. Those who wish to provide services

to other devices also join the sync group and publish their device or application prefixes in

the “discovery” dataset. Figure 6.1 illustrates the synchronization of the “discovery” dataset

in a Flow instance deployed in a smart home network.
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The sync-based discovery service generally achieves higher reliability, efficiency, and se-

curity for information discovery, and provides more flexibility in supporting the application-

specific semantics, compared to the general network-layer discovery mechanisms such as

flooding and self-learning. Note that the mDNS [CK13b]-based DNS-SD service also tries to

achieve resource discovery in a distributed fashion over the IP networks. However, it merely

utilizes IP multicast as a rendezvous channel where the devices in the same local network

can send DNS queries and receive answers. Although the devices may cache the answers and

reply to similar requests on behalf of the resource origin, it does not synchronize the devices

to provide up-to-date knowledge about the resources in the local network. Furthermore, the

security issues such as the authentication of the DNS records are left unaddressed by the

mDNS standard and must be resolved through additional higher-level protocols.

6.2.2 Improving Content Availability

Just like traditional Internet applications use synchronization protocols to replicate data

across multiple nodes for fault tolerance, the IoT applications can also leverage sync to

replicate the sensor data on multiple devices in order to improve content availability. This

is particularly useful for constrained environments where the IoT devices need to go to

sleep mode periodically in order to conserve energy. If the IoT data is stored solely on

the producer device itself, the data will become unavailable during the producer’s sleeping

period. In contrast, if the data is replicated cross multiple devices and those devices to not

exhibit synchronized sleeping schedule, a data request is more likely to get replied by one of

those devices at any time, even when some of those devices are offline.

To explore this idea, we have recently started a new research project aiming at designing

a scalable and robust forwarding scheme for wireless IoT mesh networks.3 The key idea

is to leverage an existing geo-forwarding mechanism (originally proposed for NDN-based

vehicular networks [WAK12]) to support NDN communication over a large-area IoT mesh

network, and run VectorSync among devices within the vicinity of each other to improve the

3This ongoing work is in collaboration with Xin Xu, a visiting student at UCLA IRL lab.
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availability of IoT data. NDN sync is session-less and based on representing the knowledge

of each participant about the shared dataset. This makes it suitable for disseminating

information in disruptive environments where the network exhibits intermittent connectivity

due to sleeping nodes and/or wireless interference.

The proposed mesh forwarding scheme targets application scenarios that consist of sta-

tionary and energy-constrained devices communicating with each other in a mesh network

over low-energy wireless technology such as IEEE 802.15.4. The entire mesh network is di-

vided into multiple regions, each identified by a 2D or 3D geo-coordinate that represents the

physical location of that region. Each device is configured with its location information (i.e.,

which region it belongs to) at installation time so that they do not need to be equipped with

GPS interface (which is typically energy-inefficient). We require the mesh network to have

certain density so that each region contains multiple devices that are within the coverage

of each other’s wireless signal and can directly communicate with each other in one hop

over the wireless channel. To support cross-region communication, we adopt the existing

geo-forwarding scheme where the devices farther away from the previous hop and closer to

the destination region transmit the Interests sooner than other devices in order to dissem-

inate the packet faster. However, different from the previous work, our new design applies

geo-forwarding only at the level of regions. Once the Interests reach the region where the

data producer resides, they are propagated to the nodes within that region via the one-hop

wireless channel.

To increase the availability of sensor data in the presence of sleeping nodes, the devices

in the same region form a VectorSync group and synchronize the dataset that contains the

most recent data published by all the devices in that region (subject to the storage limit

of each device). Both the group sync prefix and the data publishing prefix of the devices

in the group carry the geo-coordinate of the region. When an Interest requesting the data

published in that region arrives, any device who is currently awake and has a local copy of

the requested data can reply to the Interest.4 Figure 6.2 shows an example of fetching the

4The device also adds a random delay before sending the Data packet so that it can suppress its own
reply if another device in the region has already replied to the same Interest.
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Figure 6.2: Fetching replicated data from a target region via geo-forwarding over a wireless

mesh network

soil pH data via geo-forwarding from certain region of an agricultural field with the soil pH

meters participating in a wireless mesh network and replicate the data within each region

through VectorSync. The proposed design also includes a distributed scheduling algorithm

to make sure at least some node is awake in each region to reply to data requests.

6.2.3 Pub-sub Communication in Building Management Systems

Publish-subscribe (pub-sub) is a common communication paradigm adopted by many IoT

applications: sensors “publish” their readings as it is generated, while aggregators, analytics

engines, and actuators “subscribe” to the data sources of interest to receive notifications of

new sensor data. It is a common misconception to confuse NDN’s basic Interest-Data ex-

change model with the pub-sub pattern. The core NDN architecture implements a pull-based

request-response paradigm. To ensure flow balance at the network layer, it does not directly

provide persistent subscriptions with publisher-initiated communication of new data. How-

ever, the effect of push-notification can be achieved at a higher level via the sync protocol,

where the subscribers participate in the sync group and consume the publishers’ data prop-

agated by the sync protocol. In many pub-sub scenarios the subscribers are interested in

only a subset of the entire dataset generated by the publishers. The PSync protocol can be

utilized to support “partial” synchronization efficiently between producers and consumers.

To demonstrate the feasibility of sync-based pub-sub communication, we designed NDN-
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PS [SZA17], a pub-sub communication framework for transporting data streams produced

by the sensors in building management systems (BMS). The core functionality of a building

management system is the production and consumption of sensor data. As such, a major

challenge we face is how to enable consumers to receive sensing data of their interest in real

time over the network. Note that (1) each consumer may be interested in a different subset

of the sensors; (2) sensors and consumers may not be online at the same time; and (3) the

number of sensors and consumers can potentially be very large. NDN-PS builds on top of

our earlier work NDN-BMS [SDM14] to address the challenges in BMS data consumption.

Each sensor’s data points form a data stream, which is published under an NDN name prefix

by the smart panel that the sensor attaches to. To overcome intermittent connectivity and

resource (e.g., CPU, storage, and energy) limitations, the published sensor data is stored

in a nearby repo for archiving and access. In order to provide redundancy and efficiency of

data retrieval, sensor data is replicated in multiple repos using ChronoSync. Consumers can

then retrieve the data from any of the repos (or the in-network cache). The repos serving

a particular replicated dataset and consumer applications interested in that dataset form a

pub-sub group.

Consumer applications in a pub-sub group may subscribe to any subset of the BMS data

streams that are identified by the stream name prefixes, and receive notifications from one

of the pub-sub repos about the newly published data in their subscribed data streams. The

PSync protocol can be readily used to support the communication between the consumers

and the pub-sub repos. For example, a pub-sub group may generated data under the prefix

/Company/Building1/Electricity, where each pub-sub repo stores data streams with pre-

fixes of the form /Company/Building1/Electricity/<panel>/<device>/<metric>/. Sup-

pose a consumer is interested only in Panel 2’s data, it can subscribe to that panel’s name

prefixes and communicate with the repo using PSync to get notification whenever there are

new data points published under those name prefixes. Based on the notification, the appli-

cations can then make local decisions of whether to retrieve the data, which can be done

through regular NDN Interest-Data exchanges. The resulting system architecture is similar

to the distributed pub-sub system in TCP/IP networks such as Apache Kafka [KNR11],
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Figure 6.3: Data flow in a pub-sub group in NDN-PS

which implements the pub-sub semantics at the application layer. Figure 6.3 illustrates the

data flow inside an NDN-PS pub-sub group with three repos.

All data packets in NDN-PS are authenticated using a hierarchical trust model expressed

in the NDN names, which is aligned with real-world physical or logical structures such

as campus buildings and enterprise management. The sensor data may be encrypted for

access control [SDM14], in which case the data decryption keys (typically refreshed every

few minutes) are also distributed to the consumers as data streams over NDN-PS.

Multiple pub-sub groups can be deployed independently on the campus network to sup-

port different applications and services either around the same location or across different

buildings, which is illustrated in Figure 6.4. Different pub-sub groups can also be concate-

nated together, with the BMS applications subscribing to and processing the input data

in one group and publishing the output data in another group. This enables a powerful

design pattern of connecting multiple data aggregators and filters via pub-sub to achieve

pipelined data analytics and event processing. For example, in a large enterprise campus

the fine-grained raw data collected from the sensors in each building is usually consumed

and processed by the data aggregation services deployed close to the panels and controllers,

which may perform basic pre-processing for each data stream such as down-sampling or
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computing sliding-window average of the raw data points. Then the digested data is fed

into a different pub-sub group and consumed by the next-stage processing jobs that further

aggregate the data across multiple streams (e.g., computing the total power consumption

of the whole building by adding up the power measurements from each room). A BMS

data acquisition and analysis system can even go beyond simple aggregation and filtering

by bridging multiple pub-sub groups to form arbitrary data flow graphs that can support

complex data processing frameworks such as MapReduce [DG04].

77



CHAPTER 7

Conclusion

Distributed dataset synchronization provides a powerful abstraction for multi-party commu-

nication on top of NDN’s network-layer primitives. It enables a group of distributed nodes

to publish into and consume data from a shared dataset that holds the application data. At

the center of the sync-based application architecture is the sync protocol that maintains a

consistent state of the shared dataset among the participants in the sync group. The sync

protocol typically provides means for representing the state of the shared dataset in order to

support efficient detection and reconciliation of inconsistency among the sync nodes. When

a new data packet is published in the shared dataset, the sync protocol disseminates the

information about the new data to other nodes in the group, allowing others to update their

local sync state to reflect the latest data published inside the group. Several sync protocols

have been proposed for the NDN architecture to facilitate the development of distributed

applications. While they all provide the basic dataset synchronization service, the existing

sync protocols make different design decisions in several critical aspects such as data naming,

dataset state representation, and state synchronization mechanism. In this dissertation we

systematically analyze six existing sync protocols through a comparative study and identify

the common design patterns in different approaches and the design trade-offs affecting the

efficiency of sync communication under various conditions.

Informed by the past experience in developing the existing sync protocols, we design

VectorSync, a novel sync protocol for the NDN architecture with built-in group membership

management. Maintaining the group membership information at the sync layer facilitates

data authentication and access control and improves the sync protocol efficiency by removing

the departed nodes from the protocol state. It enables support for high-level services such as
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dataset state snapshot and data total ordering that are often utilized by various distributed

applications. We implement a prototype of the VectorSync module on top of the ndn-cxx li-

brary and evaluate the performance of VectorSync through simulation study. Our evaluation

shows that VectorSync is able to provide consistent performance across different network en-

vironments with packet loss and simultaneous data publishing. Comparing with the widely

adopted ChronoSync protocol, VectorSync achieves lower data synchronization delay and

generates lower amount of traffic in the network when the nodes constantly publishing new

data around the same time.

To demonstrate the utility of NDN sync in simplifying application design and improving

data communication efficiency, this dissertation also describes three pilot IoT applications

that utilize different NDN sync protocols to achieve important functions that are often

difficult to implement in the TCP/IP-based IoT systems. Benefiting from NDN’s data-

centric communication mechanism, NDN sync efficiently synchronizes the knowledge of the

data published in the IoT network without requiring pair-wise secured channels between the

devices or deploying centralized server (either locally or in the cloud). This makes NDN

sync suitable for supporting information dissemination in infrastructure-less edge network

environments with energy-constrained devices and/or intermittent connectivity. NDN sync

can also serve as the building block for designing large-scale distributed applications such as

the NDN-PS publish-subscribe framework that utilizes distributed and synchronized repos

to collect the sensor data and serve consumer requests in a building management system.

Our work on distributed dataset synchronization and its applications in NDN is still

preliminary and there are a few interesting research directions that are worth exploring in

future work.

First, an important research question is how to support group communication efficiently

in the NDN network. All existing sync protocols, including VectorSync, assume the availabil-

ity of network-layer multicast so that the nodes participating in a sync group can easily send

multicast Interest packets to all the other nodes at once. However, there are many application

scenarios where network-layer Interest multicast is either infeasible or prohibitively expen-

sive, such as the ad hoc network environments. One alternative to network-layer multicast is
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viral propagation (also called epidemic dissemination) [DGH87], where a node disseminates

a message to a subset of its neighbors (e.g., nodes within the coverage of the wireless signal)

and those neighbors further propagate the message until all nodes in the distributed system

have received it. An interesting future work direction is to examine how to utilize the vi-

ral propagation mechanism to extend the applicability of NDN sync to the disruptive and

infrastructure-less environments and how this new group communication model may affect

the design of the sync protocol.

Second, we need to apply VectorSync to more NDN applications in order to (1) demon-

strate the effectiveness and efficiency of the new protocol; (2) discover implementation issues

in the prototype such as programming bugs and inconvenient API; (3) improve the perfor-

mance of existing applications and explore new sync-based application design. We believe

VectorSync will be able to support a variety of NDN applications and inspire new research

activity in the area of NDN sync protocols and applications.
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