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Abstract

Semantic memory research often draws on decisions about the
semantic relatedness of concepts. These decisions depend on
cognitive processes of memory retrieval and choice formation.
However, most previous research focused on memory retrieval
but neglected the decision aspects. Here we propose the se-
quential sampling framework to account for choices and re-
sponse times in semantic relatedness decisions. We focus on
three popular sequential sampling models, the Race model,
the Leaky Competing Accumulator model (LCA) and the Drift
Diffusion Model (DDM). Using model simulations, we investi-
gate if and how these models account for two empirical bench-
marks: the relatedness effect, denoting faster “related” than
“unrelated” decisions when judging the relatedness of word
pairs; and an inverted-U shaped relationship between response
time and the relatedness strength of word pairs. Our simula-
tions show that the LCA and DDM, but not the Race model,
can reproduce both effects. Furthermore, the LCA predicts a
novel phenomenon: the inverted relatedness effect for weakly
related word pairs. Reanalyzing a publicly available data set,
we obtained credible evidence of such an inverted relatedness
effect. These results provide strong support for sequential sam-
pling models — and in particular the LCA — as a viable compu-
tational account of semantic relatedness decisions and suggest
an important role for decision-related processes in (semantic)
memory tasks.

Keywords: Semantic memory; Memory Retrieval; Decision-
Making; Cognitive Modeling; Sequential Sampling Models

Introduction

As part of human declarative memory, semantic memory con-
tains our general knowledge about the world. Most theoreti-
cal perspectives view semantic memory as some kind of space
or structure, such as a network that carries conceptual repre-
sentations of objects in the world and the relationships be-
tween them (Jones, Willits, & Dennis, 2015). In this article,
we investigate the cognitive processes involved in retrieving
and acting on the strength of relationship between concepts,
commonly referred to as semantic relatedness. Specifically,
we evaluate three sequential sampling models as novel theo-
retical accounts for key empirical benchmarks in a frequently
used semantic relatedness task.

Two benchmarks of semantic relatedness decisions

The literature has proposed many tasks to behaviorally mea-
sure people’s representations of semantic relatedness (Kumar,
2020; Wulff et al., 2019). Here we focus on the semantic
relatedness decision task (SRDT), a two-alternative, forced-
choice task that requires participants to decide whether two
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words are semantically related or not. Using this task, previ-
ous research has established two key benchmarks that models
of the underlying processes should be able to account for.

The first benchmark is the so-called relatedness effect, de-
scribing that “related” responses tend to be given faster than
“unrelated” responses (Balota & Black, 1997). The related-
ness effect has been demonstrated repeatedly using the SRDT
(Karwoski & Schachter, 1948; Balota & Paul, 1996; Balota &
Black, 1997). The second benchmark is an inverted-U shaped
relationship between semantic relatedness and response times
(RTs), with strongly and weakly related words resulting in
shorter RTs than moderately related words. The inverted-U
shaped relationship was demonstrated by two recent stud-
ies (Kenett, Levi, Anaki, & Faust, 2017; Kumar, Balota,
& Steyvers, 2019) using a similar SRDT, but different ap-
proaches to semantic relatedness.

Both benchmarks have been linked to theoretical accounts
based on spreading activation in a semantic network (Collins
& Loftus, 1975). According to this and other accounts of
memory retrieval, such as random walks (Abbott, Austerweil,
& Griffiths, 2015) or compound cue mechanisms (Ratcliff &
McKoon, 1988, 1994), RTs are proportional to the distance
between two concepts within the network. In the case spread-
ing activation, distance determines the amount of activation
required to spread from one concept to the other. Spreading
activation, thus, produces faster responses to strongly-related
compared to moderately-related word pairs (see Kenett et al.,
2017), explaining half of the inverted U-shaped relationship.
It also predicts the relatedness effect, as long as “related” re-
sponses are given to more strongly related word pairs than
“unrelated” responses (Balota & Black, 1997).

It remains unclear, however, how spreading activation
would explain faster responses to weakly as compared to
moderately related pairs, and whether spreading activation
alone is sufficient to explain the relatedness effect, or if other
decision-relevant processes such as response caution or re-
sponse competition play a role.

Present study

We propose that sequential sampling models, a popular mod-
eling framework in the field of judgment and decision making
(Busemeyer, Gluth, Rieskamp, & Turner, 2019; Ratcliff &
McKoon, 2008), can potentially account for the benchmarks
described above and help to illuminate the cognitive pro-



cesses underlying semantic relatedness decisions. Sequen-
tial sampling models assume an accumulation process that,
in essence, is similar to the notion of spreading activation and
embed it within a decision process. Next, we will describe
three prominent representatives of sequential sampling mod-
els and explain how they give rise to “related” and unrelated”
decisions in the SRDT. Then, we present a simulation study
evaluating the model predictions with respect to the inverted-
U shaped relationship and the relatedness effect. Finally, we
present an analysis of existing data to test a novel prediction
derived from our simulation analysis.

Sequential Sampling Models

The family of sequential sampling models comprises numer-
ous different specifications. In order show that sequential
sampling models can account for empirical benchmarks of
the SRDT, we focus on basic implementations of three fre-
quently used variants, the Race model, the Leaky Compet-
ing Accumulator model (LCA) and the Drift-Diffusion Model
(DDM), following the implementations by Bogacz, Brown,
Moehlis, Holmes, and Cohen (2006). There exist more flex-
ible versions of these variants that might allow them to in-
dividually explain a broader set of phenomena (see General
Discussion). However, we would like to emphasize that the
goal of this study is not to provide decisive evidence between
these models but to investigate how the sequential sampling
framework in general can be used to identify mechanisms in
semantic relatedness decisions.

Race Model

The Race model formulates a decision process where inde-
pendent accumulators /; and I, accumulate noisy evidence
over time until one of them reaches a decision threshold Z
(see Figure 1). In this context, evidence is an abstract unit of
preference for either choice option.

To account for behavior in the SRDT, one accumulator
Lieiateq 18 set to an externally derived estimate of semantic re-
latedness of a given word pair. Conceptually, this accumu-
lator can be regarded as analogue to the strength of memory
trace activation within a spreading-activation account. The
accumulator, I,,¢aed, 1S e€stimated from the data and serves
as a reference value against which /4.4 is compared. Thus,
Linrelateq acts as decision criterion comparable to the criterion
in signal detection theory (Green & Swets, 1966). Specif-
ically, when I,j40q 1s larger than I,,01004, the agent likely
responds “related” and vice versa. It is assumed that the two
accumulators are independent of each other.

Leaky Competing Accumulator Model

The Leaky Competing Accumulator model (LCA, Usher and
McClelland, 2001) also models the decision as a competition
between two accumulators !. In contrast to the Race model,
however, the accumulators in the LCA are not independent,

INote that we consider the implementation by Bogacz et al.
(2006), which, in contrast to the original implementation by Usher
and McClelland, permits negative accumulator states.
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Figure 1: Sequential sampling models. The left panel illus-
trates two accumulators in the race model representing *’re-
lated” (orange) and "unrelated” (blue) decisions in the SRDT.
The middle panel illustrates two decisions under the LCA,
subject to different levels of lateral inhibition. The right panel
illustrates the relative decision variable (gray) in the DDM
between two decision boundaries.

but influence each other through a lateral inhibition process
(w). Lateral inhibition inhibits the rate of one accumulator as
a function of the evidence state of the competing accumula-
tor. Figure 1 illustrates that lateral inhibition can both speed
up (solid lines) and slow down (dashed lines) the divergence
of the accumulators, depending on how similar the accumu-
lation rates are. Finally, the LCA is equipped with a leakage
parameter k that results in a decay of evidence over time.

To account for behavior in the SRDT, 7,44 is set equal to
the semantic relatedness of two words. The leakage k and the
within-trial noise c are fixed. All other parameters, including
Liurelared, 1ateral inhibition w, and threshold Z are estimated
from the data.

Drift Diffusion Model

In contrast to the other two models, the DDM assumes a pro-
cess of relative evidence accumulation. Specifically, the ac-
cumulation drifts according to a Wiener process in-between
two decision boundaries, one for each response option, until
one of them is reached. The direction and rate of accumula-
tion is determined by the drift-rate v. Additional model pa-
rameters include a boundary separation a, often interpreted
as response caution, a starting point bias z, representing an
a-priori preference towards either option, and a non-decision
time 7, reflecting sensory and motor preparatory processes.

To account for behavior in the SRDT, the drift-rate v is
equal to the difference between the semantic relatedness and
the reference value (i.e., V = Lojgred — Lunretateq)- Within-trial
noise c is fixed. All other parameters are estimated from the
data.

Simulation of semantic relatedness decisions

To investigate how well the three models can account for the
inverted-U shaped relationship of RTs and the relatedness ef-
fect, we generated data from each of the three models using
a range of plausible parameter values and analyzed whether
and how consistently they produce the two benchmark effects
in question.



Simulation details

Parameter values for the two parameters, Ireiareq a0d Lirelateds
were chosen as follows. Lejareq = (.09,.20,.32,.43,.60) was
set to five different levels representing low, low-medium,
medium, medium-high, and high relatedness. The exact val-
ues were derived by calculating the cosine similarity val-
ues of a representative word-pair data set (Bruni, Tran, &
Baroni, 2014), using the fastText word2vec model (Grave,
Bojanowski, Gupta, Joulin, & Mikolov, 2018). L eiared =
(.20,.26,.32,.38,.43) was set to five values ranging between
“low-medium” and “medium-high” relatedness. This range
was chosen to allow I,40q to be either smaller, equal or
larger than 1,reiated-

The threshold parameter Z = (.05,.10,.15,.20,.25) in the
Race model and the LCA, and the boundary separation a =
(.05,.10,.15,.20,.25) in the DDM were set to five equally
spaced levels in a range taken from a recent simulation study
on the LCA (Mileti¢, Turner, Forstmann, & Maanen, 2017).
Following the same study, the within-trial noise ¢ was set to
.01, and the lateral inhibition parameter w = (.5,1,2,4) was
set to four different values. The leakage parameter k was fixed
to 1. The non-decision time 7, of the DDM was set to a
plausible value of .2. We chose three levels of starting point
bias z, reflecting an a-priori bias towards “unrelated” (z < .5)
and related” (z > .5), as well as an unbiased DDM (z = .5).

For each parameter combination, we simulated a total of
10,000 semantic relatedness decisions and associated RTs. To
limit computational load, responses were simulated up to a
maximum response time of 7 seconds. Trials that would have
taken longer were rejected.

Inverted-U shaped relationship

Figure 2 shows the relationships between relatedness and RT's
produced by the three models under the various parameter
combinations. The results for the Race model revealed a
strictly monotone relationship, with higher levels of related-
ness being associated with lower RTs. Hence, the Race model
did not produce the inverted-U shaped relationship.

For nearly all parameter combinations, the LCA exhibited
an inverted-U shaped relationship between relatedness and
RTs. Only for the smallest values of the criterion parame-
ter Lyrelated, the threshold parameter Z, or the lateral inhibi-
tion parameter w, this pattern did not emerge. Conversely, the
inverted-U shaped relationship tended to be more pronounced
for large criterion, threshold, and inhibition parameters. The
pattern produced by the LCA exhibited a consistent right-
skew, with moderately-low relatedness exhibiting the slowest
RTs and very high relatedness being associated with faster
RTs compared to very low ones. This pattern was particularly
pronounced for low criterion (Zreiareq) Values and attenuated
for high criterion values.

The results for the DDM revealed equally consistent
inverted-U shaped relationships. In contrast to the LCA, the
DDM tended, on average, to produce symmetric relationships
centered around I,oj4req = Lunrelated, Where the drift was min-
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imal (Ratcliff & Rouder, 1998). The slope of the inverted-U
shape scaled with boundary separation. The inverted-U shape
was skewed to either side depending on whether the starting
point bias favored the “related” or "unrelated” decision.

Taken together, the LCA and DDM but not the Race model
produced the inverted-U shaped relationship of RTs. These
results are consistent with previous research showing that in-
dependent accumulator models fail to account for inverted-U
shaped RTs associated with choice difficulty (Teodorescu &
Usher, 2013). It suggests that the lateral inhibition process in
the LCA, which introduces accumulator dependency and dis-
tinguishes it from the Race model, and the relative accumula-
tion in the DDM are chiefly responsible for model’s abilities
to account for the inverted-U shaped relationship.

Relatedness effect

To assess how well the candidate models can account for the
relatedness effect, we calculated for each simulation the stan-
dardized difference in RTs between “related” and “unrelated”
measured as Cohen’s d. Figure 3 shows these differences as a
function of the difference between Izju0q and Lyreiared, With
positive values of Cohen’s d reflecting a positive relatedness
effect.

As illustrated in Figure 3, the Race model simulation re-
sults demonstrate a consistently linear relationship across pa-
rameter combinations, where Cohen’s d values grow steadily
from a substantial negative relatedness effect for negative dif-
ferences between ILeigteq and I,eiareqd towards a substantial
positive relatedness effect for positive differences. Thresh-
old values moderated this relationship, with large thresholds
resulting in a steeper relationship than lower ones. These re-
sults imply that the Race model predicts the relatedness ef-
fect for Lojureqd > Linrelarea and an inverted relatedness effect
for Lejared < Lunrelatea- The LCA simulation results exhibit the
same positive linear relationships as the Race model, with a
similar moderation of the effect size by the threshold and lat-
eral inhibition parameters. Overall the relationships emerged
as somewhat more extreme for the LCA, with high threshold
and high lateral inhibition values resulting in stronger effects.

In contrast to the Race and LCA models, the DDM sim-
ulation results showed only weak differences between RTs
for “related” and “unrelated” responses®. If anything, we
found a slightly negative relationship between the difference
in Lejared > Lunreiarea @nd effect size. That is, the DDM pre-
dicted an inverted relatedness effect for Lejareq < Lunrelatea and
a conventional relatedness effect for Lejated > Lunreiatea- The
boundary separation and starting point bias had no systematic
effect on the direction of this relationship. However, changes
in starting point resulted in additive shifts that implied either
a consistent conventional (z > .5) or inverted (z < .5) related-
ness effect irrespective of the difference between /,.47.q and

I unrelated «

2This finding is consistent with the property of (unbiased) dif-
fusion processes to yield equal expected RTs for both alternatives
(Ratcliff & McKoon, 2008). This constraint is relaxed when assum-
ing between-trial variability in drift-rate (see General Discussion).
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Figure 2: Response times as a function of semantic relatedness (I¢;q4.q) for the Race model (left column), the LCA (middle
column), and the DDM (right column). The rows show the predictions pooled across all simulations (first), as well as stratified
for decision reference values I,,010104 (S€cond), decision threshold Z and boundary separation a values (third), and lateral

inhibition k and starting point bias z values (fourth).

In sum, all the three models are in principle able to predict
the relatedness effect, but they do so to different degrees, un-
der different circumstances, and using different mechanisms.
For all parameter combinations, the Race and LCA mod-
els predicted a relatedness effect, but only when legeq >
Linreiated- The DDM on the other hand predicted a constant re-
latedness effect independent of the difference between Iejqeq
and Lreiateq, but only in the presence of a starting point
bias. These differences in model predictions suggest a novel,
critical test for cognitive mechanisms underlying the SRDT:
Does the relatedness effect emerge consistently across differ-
ent levels of relatedness or could there be an inverted relat-
edness effect for less strongly related word pairs? In the next
section, we will use empirical data to investigate this ques-
tion.
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The Inverted Relatedness Effect

To test the prediction of an inverted relatedness effect for
weakly-related word pairs, we reanalyzed a publicly available
data set by Kumar et al. (2019). In this study, N = 40 partic-
ipants from Amazon Mechanical Turk performed 240 trials
in a SRDT as described above. To be able to analyze RTs as
a function of relatedness, we determined for each word pair
cosine similarity scores using the fastText word2vec model
(Grave et al., 2018). As done in previous analyses (Kumar
et al., 2019; Kenett et al., 2017), we excluded trials with ex-
tremely short RTs (< 250 ms) since they are unlikely to have
arisen from an evidence-accumulation process. In total, we
analysed on average 220.7 (SD = 26.8) trials per participant,
for which cosine values could be determined.

Figure 4 illustrates the relationship between relatedness
(cosine similarity) and response time for both “related” (or-
ange) and “unrelated” (blue) decisions. For the upper range of
cosine similarity values (cosine > .4) the data show the con-
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Figure 3: Relatedness effect in Cohen’s d as a function of accumulation rate difference (Iyejareq — Lunrelated) for the Race model
(left column), the LCA (middle column), and the DDM (right column). The rows show the predictions pooled across all
simulations (first), as well as stratified for decision threshold Z and boundary separation a values (second), and lateral inhibition

k and starting point bias z values (third).

ventional relatedness effect, where related” responses are on
average faster than “unrelated” responses. For the remaining
lower range, however, we observe the inverted relatedness ef-
fect, where “related” responses are actually slower than “un-
related” responses.

To confirm the above effect, we ran a Bayesian linear ran-
dom effects model with random effects on the participant
level. Consistent with the reversal of relatedness effects, we
found a credible interaction effect of cosine similarity x re-
sponse type on log RTs (95% highest posterior density inter-
val, HDI: [—.68, —.42]). Also, there were main effects of co-
sine similarity (95% HDI: [.09,.28]) and response type (95%
HDI: [.14,.25]), indicating slower RTs for more related pairs
and for “related” responses, respectively. The former implies
that, unlike previous studies, the current data set did not pro-
duce the conventional relatedness effect on aggregate?.

The reversal of relatedness effects for low relative to high
relatedness values is inconsistent with the DDM, which can
only account for constant relatedness effects, but is predicted
by the Race and LCA models. Another noteworthy observa-
tion from Figure 4, lending further support for the LCA, is the
noticeable right-skew in distribution of RTs, which is consis-

3The regression analysis additionally controlled for two other
known influences on RTs, word frequency (95% HDI: [—.01,.05])
and word length (95% HDI: [.01,.03]), of which the latter effect was
credible (longer words led to higher RTs).
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tent with the shape of LCA’s simulation results (Figure 2).

2.0

= |Unrelated
1.51 Related
1.0 A
0.5 A

log RTs

-0.5

—1.0 1

-1.5 T T T T
0.0 0.2 0.4 0.6 0.8

cosine similarity

Figure 4: Empirical log RTs as a function of word2vec cosine
similarity for “unrelated” (plus, blue) and “related” responses
(circle, orange). Regression lines for both response types are
depicted with 95% bootstrapped confidence intervals.

General Discussion

Semantic relatedness is a key concept in cognitive science
that underlies models of human memory, reasoning, and cre-



ativity. The behavioral output of these models is oftentimes
thought to be linked directly to estimates of semantic relat-
edness as derived, for instance, using vector-space models.
This has resulted in a simplified view of semantic relatedness
decisions, where the probability of a “related” decision and
associated response times are thought to be proportional to
the strength of semantic relatedness. Our results suggest that
this view needs correction. We demonstrated that the class
of sequential sampling models, which is regularly employed
for various kinds of decisions, such as old-new decisions in
recognition memory (Ratcliff, 1978) or preferential choices
between monetary lotteries (Busemeyer & Townsend, 1993),
can fully account for existing and novel benchmarks of se-
mantic relatedness decisions. The LCA achieved this by not
only considering the strength of semantic relatedness, but also
a reference level against which semantic relatedness is eval-
uated, as well as competition between the responses. These
results highlight the importance of decision-related processes
in behavior pertaining to semantic relatedness and suggest in-
teresting avenues for future scientific inquiry.

Table 1: Phenomena explained.

Race LCA DDM
Inverted U Shape v vV
Relatedness effect 1/ Vv Vv
Interaction effect 1/ vV

A key implication of our results is that semantic related-
ness decisions are likely to be susceptible to typical decision-
related phenomena such as sensitivity to differences in base
rates or incentives, or to strategic tendencies, such as embod-
ied by speed-accuracy trade-offs. This is fully consistent with
resource-rational accounts of memory retrieval (Dougherty,
Harbison, & Davelaar, 2014), according to which the contin-
uation of retrieval processes is subject to an assessment of
costs and benefits. We believe that formal accounts as pre-
sented by sequential sampling models can be instrumental in
describing and predicting existing and novel phenomena in
this direction, especially due to their ability to jointly account
for choice and response times (Kraemer, Fontanesi, Spektor,
& Gluth, 2020; Wilson & Collins, 2019).

Among the sequential sampling models considered in the
present study, only the LCA was able to account for the estab-
lished benchmarks and the inverted relatedness effect (see Ta-
ble 1). The failure of the Race model and the DDM to account
for some of the benchmarks might be due to the model speci-
fications in our study. Alternative specifications of the models
could account for the benchmarks in question. For instance,
an extended form of the DDM (Ratcliff & McKoon, 2008)
depends on additional between-trial variability parameters
which allow the model to account for a wider range of em-
pirical phenomena (Ratcliff & Smith, 2004). The between-
trial variability of drift-rate would allow the extended DDM
to predict “slow errors”, thereby potentially accounting for
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the inverted relatedness effect for weakly related word pairs.
The Race model, on the other hand, could be formulated as
an advantage Race model (van Ravenzwaaij, Brown, Marley,
& Heathcote, 2020; Mileti¢ et al., 2021), which should help
to account for the inverted-U shape. Future work interested in
arbitrating between these models should consider a more di-
verse set of model variants. In the present study, however, our
main goal was to establish sequential sampling models as a
general framework to explain and predict empirical phenom-
ena that memory retrieval processes alone cannot explain.

Our findings also tie into an ongoing discussion on disen-
tangling representational (structures) and the cognitive pro-
cesses that draw on it (Siew, Wulff, Beckage, & Kenett, 2019;
Kenett, Beckage, Siew, & Wulff, 2020). It has been argued
that computational modeling may be one route to potentially
accomplishing this (Kumar, 2020; Wulff et al., 2019). Ap-
proaches in this direction typically consider a representational
structure, such as a word-vector space or a free-association
network, and retrieval processes, such as such as spreading
activation or random walks (Siew et al., 2019). Some of
these retrieval processed include elements of decision pro-
cesses, such as Luce choice rule to transform memory activa-
tion to response probabilities (Jones, Gruenenfelder, & Rec-
chia, 2018; Waulff, Hills, & Hertwig, 2013). However, with
few exceptions (e.g, Jones et al., 2018), these elements are
viewed as auxiliary assumptions rather than an integral part
of the cognitive processes underlying behavior. Based on our
results, we would argue that there is much to gain by tak-
ing decision-related processes more seriously. One route to
doing this could be to integrate sequential sampling models,
such as the LCA, with plausible memory frameworks, with
the goal of building joint models of representational structure,
retrieval processes, and decision processes.
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