
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Arc Length as a Geometric Constraint for Psychological Spaces

Permalink
https://escholarship.org/uc/item/9nx7j6mq

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43)

ISSN
1069-7977

Authors
Ralston, Robert
Sloutsky, Vladimir

Publication Date
2021
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9nx7j6mq
https://escholarship.org
http://www.cdlib.org/


Arc Length as a Geometric Constraint for Psychological Spaces 

Robert Ralston (ralston.123@osu.edu) 
Department of Psychology, 1835 Neil Avenue 

Columbus, OH 43210 USA 

Vladimir Sloutsky (sloutsky@psy.ohio-state.edu) 
Department of Psychology, 1835 Neil Avenue 

Columbus, OH 43210 USA 
 
 

Abstract 

Many cognitive models assume that stimuli can be represented 
as points in a latent psychological space. However, it has been 
difficult to provide these spaces with a geometric structure 
where the distance between items accurately reflects their 
subjective dissimilarity. In this paper, we propose a new 
method to give psychological spaces a geometric structure by 
equating the amount of change undergone by a stimulus with 
the arc length of a curve in psychological space. We then assess 
our method with a categorization experiment where 
participants classified continuously changing visual stimuli 
according to their rate of change. Our results indicate that 
individuals’ judgements are well predicted by arc length, 
suggesting that it may be a promising geometric constraint for 
psychological spaces in other contexts.  

Keywords: similarity; psychophysics; selective attention; 
psychological spaces 

 
One of the fundamental principles of behavior is that 
sufficiently similar stimuli evoke similar responses. To 
embody this principle, many cognitive models assume that 
stimuli lie in a latent psychological space, where subjectively 
similar stimuli are assigned coordinates with similar values. 
For example, in the Generalized Context Model of 
classification (GCM; Nosofsky, 1986), items are represented 
as points in a metric space, where the similarity of items is a 
decreasing function of the distance between them. Models 
such as the GCM that employ a psychologically meaningful 
notion of distance are known as geometric models and have 
been applied in a variety of domains, such as categorization, 
recognition, and semantics (e.g., Love, Medin, & Gureckis, 
2004; Gӓrdenfors, 2017). 

Despite their successes, many researchers are skeptical that 
distance in a psychological space provides a good model of 
subjective similarity. A major reason for this skepticism is 
that explicit similarity judgements between two items may 
require a more complex comparison mechanism than is 
allowed by a metric (Tversky, 1977; Hahn, Chater, & 
Richardson, 2003).  

In this paper, we propose a new method to give 
psychological spaces a geometric structure reflecting the 
subjective difference between stimuli. However, unlike 
previous approaches, our method does not make use of 
similarity judgements or the confusability of items. In 
everyday life, we encounter many stimuli that change through 
time. For example, the individuals we know may change in 
height, weight, age, hair color, spatial location, and in a 

myriad of other ways. Additionally, not all stimuli appear to 
change at the same rate; it may seem like a stimulus has 
changed a greater or lesser amount through a period of time.  

In the sections that follow, we propose an account of 
psychological space that equates the amount of change an 
individual perceives a stimulus to undergo with the arc length 
of the curve that the changing stimulus follows in 
psychological space. This constraint paired with certain 
psychophysical hypotheses is sufficient to induce a geometric 
structure on psychological space and thus a way to calculate 
the distance between any two stimuli without relying on 
previously criticized tasks such as explicit similarity 
judgements. In the first section, we present a mathematical 
model of psychological space and derive an expression for 
the arc length of continuous curves, corresponding to stimuli 
that change continuously in time. Then, in section two, we 
test whether the predicted arc length of a curve is related to 
individuals’ judgements of the amount of change undergone 
by a stimulus.  

Arc Length in Psychological Space 

Finding Psychological Space 
Suppose that a collection of stimuli varies according to 𝑛 

continuous, measurable dimensions. We will place these 
stimuli into a psychological space by finding a function Φ 
that maps the objective coordinates of a stimulus – its values 
on each measurable dimension – onto a manifold ℳ 
embedded in a typically higher-dimensional space. A high-
level depiction of this approach can be seen in Figure 1.  

Formally, we will assume that the measurable dimensions 
of a stimulus set form a coordinate system Φ: 𝐴 ⊂ ℝ௡ → ℝ௠ 
for a differentiable manifold ℳ, embedded in ℝ௠, 
corresponding to an individual’s representation of those 
stimuli in psychological space. For example, Gabor patches 
are grating-like stimuli that vary according to two continuous 
dimensions, spatial frequency and orientation (Turner, 1986). 
For these stimuli, 𝐴 represents the subset of ℝଶ 
corresponding to the objective spatial frequencies and 
orientations making up possible Gabor patches, such as those 
used to generate the stimuli in Figure 1. Furthermore, since 
orientation is a measure of the angle of the grating, and an 
angle of 0 radians is identical to an angle of 2𝜋 radians, the 
manifold given by these coordinate functions does not have 
the topology of a plane, but rather a cylinder, which can be  
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Figure 1. Schematic representation of the modeling approach. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
embedded in ℝଷ. This treatment of psychological manifolds 
can be further generalized, and generalization may be 
necessary to study some stimuli or cognitive phenomena, but 
for simplicity we consider only this case.  

With this formulation, we will find an expression for Φ in 
two parts. First, we will transform the objective coordinates 
of stimuli by incorporating information about which 
dimensions are currently being attended and the 
psychophysics of those dimensions. Then, to form the 
manifold ℳ, we will embed the transformed space into a 
typically higher-dimensional space so that stimuli that are 
perceived to change in continuous ways are assigned 
continuous curves on the manifold. 
 
Incorporating Attention and Psychophysics. When 
perceiving or reasoning with stimuli, humans can selectively 
attend to the subset of the available information that is 
relevant to their goals (Carrasco, 2011; Driver, 2001). A key 
characteristic of selective attention is that, when dimensions 
are attended to, stimuli are more discriminable along those 
dimensions (Ho, Brown, Abuyo, Ku, & Serences, 2012; Ling, 
Liu, & Carrasco, 2009). In line with models such as the GCM, 
we assume that this process is well-modeled by a scaling 
mechanism, where each dimension is assigned a 
multiplicative attention weight between 0 and 1 that expands 
or compresses its scale. We will refer to these weights as 
𝑎ଵ, … , 𝑎௡ corresponding to the 𝑛 dimensions in our stimuli. 
Additionally, we will assume that attention is a finite 
resource, so that ∑ 𝑎௜ = 1௜ . 

We will now specify the psychophysical transformation 
which will modify the objective coordinates of stimuli. Our 
strategy will be to give a coordinate transformation on the 
objective parameter space 𝐴 under the constraint that  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
distances in the new parameter space should coincide with 
known psychophysical laws when complete attention is paid 
to single dimensions. For simplicity, we restrict the 
discussion below to the orthogonal case, where changes in the 
value of one dimension do not necessitate changes in the 
values of other dimensions. This assumption may seem 
limiting; however, the method shown here can be generalized 
to any case where a researcher has an explicit hypothesis of 
interactions between dimensions. 

 With this assumption, consider what happens when all 
attentional resources are paid to a single dimension 𝑖. In this 
case, the discriminability of stimuli is only determined by 
their value on dimension 𝑖. Discriminability along a single 
attended dimension is a heavily studied area of 
psychophysics, and experimental methods for determining 
the psychophysical mapping for a single dimension are well 
developed (Gescheider, 1997). Assume that researchers 
know, either a priori or through experimentation, the form of 
the psychophysical functions 𝜓ଵ, … , 𝜓௡ obeyed by each 
dimension in the current experimental context under total 
attention.  

We will use these psychophysical mappings to induce a 
coordinate transformation on the objective parameter space. 
Let Ψ: 𝐴 → ℝ௡ be the transformation given by Equation 1. 

 
 Ψ(𝑥ଵ, … , 𝑥௡) = (𝑎ଵ𝜓ଵ(𝑥ଵ), … , 𝑎௡𝜓௡(𝑥௡))  (1) 
   

Intuitively, Ψ may be thought of as the subjective coordinates 
used by an individual to represent stimuli under a particular 
attentional setting. Notice that this transformation will 
reproduce the above psychophysical functions (𝜓′𝑠) as 
curves in ℝ௡ when all attention is paid to a single dimension, 
and where the distance along the curve indicates the 
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subjective difference between two stimuli. Additionally, if 
the orthogonality assumption from above is violated, the 
form of Ψ may be substantially more complicated; but if 
dimensional interactions are hypothesized, a suitable 
coordinate transformation can still be derived. 
Specifying the Manifold. To specify the manifold 
corresponding to an individual’s subjective representation of 
the stimulus set, we must now embed the subjective 
coordinate space (𝑅𝑎𝑛(Ψ)) into a typically higher-
dimensional space where continuously changing stimuli are 
assigned continuous curves on the manifold. A stimulus that 
changes continuously is a sequence of stimuli where each 
stimulus is hard to discriminate from those that appear near it 
(Hénaff, Goris, & Simoncelli, 2019; Callahan-Flintoft, 
Holcombe, & Wyble, 2020). More rigorously, a continuous 
sequence of stimuli can be described for our purposes as a 
function 𝑓: [0, 𝜏] ⊂ ℝ → ℝ௡ such that Φ ∘ 𝑓 is differentiable 
(and thus also continuous). For stimuli that change through 
time, the function 𝑓 maps the time 𝑡 to the objective 
coordinates of the stimulus at 𝑡, and 𝜏 represents the total 
duration of the sequence. Informally, this definition indicates 
that a continuous sequence is one where small changes in 
time result in small changes to the perceived values of 
stimuli, and the function 𝑓 returns the objective coordinate 
representation of the changing stimulus at each time.  

Having the subjective coordinates Ψ(A) used by an 
individual, we now need to specify the manifold 
corresponding to an individual’s subjective representations of 
stimuli. This must be done on a case-by-case basis such that 
continuous curves on the manifold correspond to continuous 
sequences of stimuli as defined above. For example, as we 
explained above, Gabor patches can be well described by a 
cylinder in ℝଷ, while other two-dimensional stimuli may be 
better modeled as a plane (e.g., spatial frequency and 
saturation) or a torus (e.g., orientation and hue).  

In general, for orthogonal dimensions, a plausible manifold 
can be obtained from the quotient topology of the parameter 
space 𝐴, where the ends of dimensions are identified when 
that dimension is homeomorphic to a circle. Once a choice is 
made, an embedding 𝑒: 𝑅𝑎𝑛(Ψ) → ℝ௠ can be chosen that 
equates or well-approximates distances along single 
dimensions in this new space to distances along the manifold 
in ℝ௠. (In the next section, we will see how to calculate the 
length of curves on the manifold once it is specified.) With 
this specification, we obtain the coordinate map Φ = 𝑒 ∘ Ψ. 

Arc Length of Curves 
The most important assumption of our modeling approach 

is that the arc length of a continuous sequence of stimuli on 
the manifold is a measure of the magnitude that the stimulus 
is perceived to change during the sequence. In the previous 
section, we showed a method to obtain a representation of 
psychological space as a manifold embedded in ℝ௠ with a 
coordinate system Φ = 𝑒 ∘ Ψ. With this complete, the arc 
length of curves can be determined in the standard way 
(Kreyszig, 1959). Recall that 𝑓: [0, 𝜏] → ℝ௡ is a continuous 
sequence of stimuli, defined such that Φ ∘ 𝑓 is differentiable. 

Let a continuous sequence of stimuli 𝑓 be represented with 𝑛 
component functions, so that 𝑓(𝑡) = ൫𝑢ଵ(𝑡), … , 𝑢௡(𝑡)൯. With 
this formulation, the line element of the manifold ℳ can be 
determined via Equation. 2. 

 

dsଶ = ෍ ෍ ቆ
𝜕Φ

𝜕𝑢ఈ

∙
𝜕Φ

𝜕𝑢ఉ

ቇ
𝑑𝑢ఈ

𝑑𝑡

𝑑𝑢ఉ

𝑑𝑡

௡

ఉୀଵ

௡

ఈୀଵ
 (2) 

  
In this equation, the line element 𝑑𝑠 corresponds intuitively 

to the instantaneous distance traveled by 𝑓 along ℳ at 𝑡. 
With this specified, the arc length along ℳ traversed by 𝑓 
from 𝑡 = 0 to 𝜏, is given in Equation 3. 

 

𝑠 = න ඥ𝑑𝑠ଶ𝑑𝑡
ఛ

଴

 (3) 

  
Typically, this integral cannot be solved exactly. However, 

it can be estimated with arbitrary precision for any continuous 
sequence of stimuli. 
Arc Length for Two Dimensional Stimuli. Consider the 
example where a stimulus space is made up of Gabor-like 
stimuli varying in spatial frequency and saturation, such as 
those in Figure 2. Suppose that, in generating the stimuli, we 
used an objective parameter space 𝐴 ⊂ ℝଶ, providing a 
nonnegative value for the spatial frequency and the 
saturation. Prior research has found that a power law provides 
an acceptable psychophysical representation of both 
frequency and saturation in relation to objectively measured 
units (Stevens, 1957). Thus, we can obtain the coordinate 
transformation: 

 
Ψ൫𝑥௙ , 𝑥௦൯ = ൫𝑎௙𝜓௙(𝑥௙൯, 𝑎௦𝜓௦(𝑥௦)) 

     = (𝑎௙𝑥
௙

௖೑ , 𝑎௦𝑥௦
௖ೞ) 

 
In this expression, the subscripts 𝑓 and 𝑠 correspond to 
frequency and saturation respectively, while the two 𝑐 
parameters correspond to power coefficients.  

Since neither frequency nor saturation are homeomorphic 
to a circle, we can embed our transformed parameter space in 
ℝଶ via the identity map. Thus, coordinates of our manifold 

can be given by Φ൫𝑥௙ , 𝑥௦൯ = (𝑎௙𝑥
௙

௖೑ , 𝑎௦𝑥௦
௖ೞ).  

Consider a continuous sequence of stimuli that follows an 
ellipse in objective coordinates:  

 
 𝑓(𝑡) = (𝑟௙𝑠𝑖𝑛(2𝜋𝑡) + 𝑦௙ , 𝑟௦ cos(2𝜋𝑡) + 𝑦௦) 

 
(4) 

From Equations 2, 3, and 4, the arc length of this sequence is 
given in Equation 5. 
 

 

𝑠 = 2𝜋 න ඩ
ቀ𝑎௙

ଶ𝑐௙
ଶ𝑟௙

ଶ𝑥
௙

ଶ௖೑ିଶ
cosଶ 2𝜋𝑡ቁ +

൫𝑎௦
ଶ𝑐௦

ଶ𝑟௦
ଶ𝑥௦

ଶ௖ೞିଶ
sinଶ 2𝜋𝑡൯

𝑑𝑡
த

଴

 

 

(5) 
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In this expression, the lengthy sum goes from the top line to 
the bottom line, all under the radical. The arc length 𝑠 is 
hypothesized to correspond to an individual's representation 
of the total amount that the Gabor-like stimuli changes from 
𝑡 = 0 to 𝜏. 
From Arc Length to Distance. With a representation of the 
arc length of curves in psychological space, the distance 
between two points is canonically defined as the minimum 
arc length of a curve connecting them on the manifold, or the 
geodesic distance between those points. To test the model 
with continuous sequences of stimuli, we do not need to 
derive the geodesic distance. However, any attempt to define 
arc length will induce a geodesic distance between stimuli in 
this way. It can then be empirically determined whether the 
geodesic distance corresponds to the subjective difference 
between individual stimuli. 

Testing the Model 
In the previous section, we derived a model of psychological 
space that predicts the amount of change that an individual 
will perceive a stimulus to undergo throughout a 
transformation. To assess this model, we conducted an 
experiment to determine whether Equation 5 accurately 
predicts individuals’ judgements of the average rate of 
change for two dimensional Gabor-like stimuli. We decided 
to assess the average rate of change for stimuli rather than the 
total distance because online pilot participants found 
instructions based on the speed that images were changing 
more intuitive than other formulations. Therefore, in what 
follows we assume additionally that the average rate of 
change perceived by a subject for a changing stimulus is 
proportional to its arc length. Furthermore, all stimuli have 
an identical duration of change (1.0 seconds).   

Methods 
Participants. This study utilized data collected online during 
the COVID-19 pandemic. Our sample was recruited from 
university students (N=24) taking an introductory psychology 
course, and participants received course credit for 
participation. All procedures used in this study were 
approved by the appropriate Institutional Review Board. 
Stimuli. This study employed continuously changing two 
dimensional Gabor-like gratings varying in spatial frequency 
and saturation. All stimuli were presented 20° clockwise 
from a vertical orientation, while spatial frequency ranged 
from 0.3 to 11.2 cycles per stimulus (rescaled 0 to 1 for 
modeling analyses), and saturation values were determined 
on a 0 to 1 scale. Still images of these stimuli can be seen in 
Figure 2. Changing stimuli were created by saving static 
stimuli to a video file at a rate of 60 frames per second, where 
each frame was created using the GratingStim function in the 
Python 3 implementation of PsychoPy.  

In order to change continuously, stimuli needed to follow 
a curve in its objective parameter space (the set 𝐴 from 
above). For these curves, we chose to use ellipses parallel to 
the two coordinate axes, parameterized by center values radii 

as in Equation 4. Examples of these curves are shown in 
Figure 2.  

 

 
Figure 2. Two example stimuli varying in spatial 

frequency and saturation. 
 
Two sets of stimuli were constructed: exemplars and 

generalization items. The ellipses followed by both sets of 
items were evenly distributed over the four centers seen in 
Figure 3. The radii of exemplar items were chosen from two 
extreme values for both dimensions. Taking all possible 
combinations of a center and two radii, there were sixteen 
total exemplar items. In contrast, generalization items were 
created with four intermediate radius values for both 
frequency and saturation, resulting in 64 stimuli. 

 
Figure 3. Four ellipses in parameter space corresponding to 
the paths taken by four changing stimuli. The four pictured 
items are each exemplar items and show one example from 

each center location and one example with each 
combination of radii. Note that “Slow” and “Fast” examples 

are distinguished by change in spatial frequency. 
 

Procedure. This experiment was conducted online via the 
experimental platform Gorilla. Participants were first 
welcomed to the experiment and then introduced to static 
versions of the stimuli via text and images on their screen. 
They were informed that the stimuli could vary in two ways: 
“color” and “frequency” and were shown examples of static 
stimuli with varying saturation and frequency respectively. 
Then participants were introduced to changing stimuli and 
instructed that some were changing “Fast” while others were 
changing “Slow”. Participants were informed that they 
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should attend to the frequency dimension and judge whether 
a stimulus was changing fast or slow. 

After the instructions, participants were given a multi-
phase categorization task. During both phases, they were 
instructed on every trial to answer the question “Is this one 
changing fast or slow?” and presented with two response 
options labeled “Fast” and “Slow”. A video stimulus was 
placed in the center of the screen, and participants could play 
the video as many times as desired by clicking on it. 

During Phase 1, participants were shown each exemplar 
stimulus once and given feedback regarding their 
performance, determined only by the radius of the frequency 
dimension. Saturation was irrelevant for feedback, consistent 
with the instruction to pay attention to frequency. After eight 
and sixteen trials, participants were reminded via a text 
prompt to pay attention to changes in frequency.   

In Phase 2, stimuli were randomly assigned into fifteen 8-
trial blocks. Each block consisted of four exemplar stimuli 
chosen at random (with replacement) and 4 generalization 
stimuli chosen at random (without replacement). Feedback 
was provided as in Phase 1 for the exemplar stimuli. 
Additionally, between every block, participants were 
instructed to pay attention to changes in frequency. 
Modeling. Responses from each participant in Phase 2 were 
predicted as a logistic regression of arc length given attention 
and power parameters. A response y was modeled as a 
Bernoulli variable using the relation 

 
𝑦 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑙𝑜𝑔𝑖𝑡ିଵ(𝑚𝑠 + 𝑏)) 

 
Here, 𝑚 and 𝑏 are slope and intercept parameters fit for each 
subject individually, while 𝑠 is the arc length calculated 
according to Equation 5. To estimate the integral in Equation 
5 under different parameter values, we used the trapezoid 
rule, breaking the interval into 24 regions and taking the sum 
of the area of a trapezoid in each region. Finally, since 𝑎௙ +

𝑎௦ = 1, a single attention parameter 𝑎௙  was used.  
In order to estimate the values of latent parameters, a 

Bayesian modeling approach was implemented using 
RSTAN, the R implementation of the STAN modeling 
framework (STAN Development Team, 2017). For each 
participant, we gave latent parameters the following priors: 

 
𝑎௙  ~ Beta(1, 1) 

𝑐௙ , 𝑐௦  ~ Gamma(1, 1) 
𝑚, 𝑏 ~ Normal(0, 10) 

 
Here, the Gamma distribution is parameterized by shape and 
rate, while the Normal distribution is parameterized with 
mean and standard deviation. Once the model was specified, 
STAN used Hamiltonian Monte Carlo sampling to estimate 
the joint posterior distribution over parameters. 

Results 
Behavioral. In aggregate, participants were able to learn the 
two categories (“Fast” and “Slow”) by the end of the two 
training blocks, showing a mean accuracy of 0.81 over the 

final eight trials (Bayes Factor K = 1.62 × 10଻ against a 
model with chance level responding; Rouder et al., 2009; 
Morey & Rouder, 2018). Accuracy continued to improve for 
exemplar items into Phase 2, where participants achieved a 
mean accuracy of 0.88 (𝐾 = 2.61 × 10ଵ଻). This provides 
evidence that participants in aggregate learned the categories. 

Additionally, we examined responses to generalization 
items based on their two radii and center parameters. If 
nonlinear psychophysical laws affect the perception of 
subjective change, we should expect both the radius of a 
curve as well as its center to predict subjective distance. 
However, if participants experience stimuli veridically, we 
would expect no effect of the ellipse’s center.  

To test this hypothesis, we converted responses to 
generalization items into a binary variable, where 1 stands for 
“Fast” responses. We then used a linear model with both radii 
and centers as predictors to see which aspects of a changing 
stimulus predicted participant responses. We found that all 
four predictors increased the Bayes Factor of the linear 
model, with strong evidence that the two radii and the center 
of the frequency dimension predict generalization responses 
(increase in 𝐾 > 10଻ against a model with only an intercept), 
and only marginal evidence for the center of the saturation 
dimension (increase in 𝐾 = 1.81). This pattern of results 
supports the need for a coordinate transformation such as Ψ 
above, as with veridical representations, there would be no 
reason for the center of the frequency dimension to predict 
the speed of change. Additionally, stronger evidence for 
psychophysical effects on the frequency dimension may be 
explained by the instructions and the category structure 
encouraging participants to attend to frequency. 
Modeling. Our first modeling analysis aimed to determine 
whether arc length can predict subjective speed judgements. 
Fitting our model with RSTAN, we obtained samples from 
the joint posterior distribution of all parameters for each 
participant. A representation of these posterior distributions 
can be seen in Figure 4. From these posterior distributions, 
we found that the slope parameter (𝑚) was positive with 95% 
or greater posterior confidence for 22/24 participants. This 
suggests that arc length, calculated as in Equation 5, is a 
reliable predictor of subjective speed of change judgements 
at the individual level. 

Additionally, we examined whether the model could 
determine that participants were instructed to attend to the 
frequency dimension of stimuli (indicated by 𝑎௙ > 0.5). We 
found that there was 95% or greater confidence that 𝑎௙ > 0.5 
for 18/24 participants, with no participants showing the 
opposite pattern (6 participants showed ambiguous 
evidence). This suggests that, for many participants, the 
model is able to capture the top-down attentional bias 
specified in our instructions. However, it is unclear if the 
model is unable to identify this parameter for the remaining 
six participants or if this reflects a meaningful individual 
difference, such as a difference in attentional control. 

We also analyzed the two power parameters to examine the 
effect of psychophysics on participant responses. For the 
frequency dimension (𝑐௙), there was 95% or greater 
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confidence that nine participants had a power parameter less 
than one, corresponding to a negative concavity in their 
psychophysical function. For these participants, we have 
evidence that a nontrivial psychophysical transformation (Ψ) 
is important to predicting their judgements of changing 
stimuli. The remaining participants showed ambiguous 
evidence; however maximum a posteriori point estimates for 
22/24 participants showed a power parameter less than 1. 
Together, these findings suggest that psychophysical 
parameters are important for some participants, though more 
trials may be needed to identify these parameters.  

Finally, the power parameter for the saturation dimension 
(𝑐௦) was more uncertain relative to its expected scale than 
other parameters. MAP estimates for this parameter found 
that 13/24 participants showed a value less than 1 (mean = 
0.70), with 11 participants greater than one. This likely 
reflects the fact that participants attended to the frequency 
dimension. As 𝑎௙  approaches a value of one, stimuli become 
less discriminable on the saturation dimension, and in the 
limit (𝑎௙ = 1) all values of 𝑐௦ result in the same model 
predictions. 

Discussion 
In this paper, we presented a new method to assign 

psychological spaces a meaningful notion of distance as the 
arc length traversed by a stimulus through psychological 
space. We then derived an expression for arc length for 2-D 
stimuli (Equation 5) where each dimension is orthogonal and 
modeled psychophysically via a power law. We tested this 
prediction with an experiment where participants classified 
changing stimuli based on their rate of change. We found that 
arc length is a powerful predictor of the magnitude of change 
and found evidence that the attention parameter of the model 
accurately captures the dimension to which participants 
selectively attended. Finally, we found indirect evidence that 
a psychophysical model is needed to predict responses as well 
as explicit evidence that some participants deviate from a 
veridical representation of stimuli. Together, these results 
provide powerful preliminary evidence that arc length can be 
used as a geometric constraint for psychological spaces.  

As discussed above, any model which can measure the arc 
length of continuously changing stimuli can also be used to 
induce a notion of geodesic distance, where the geodesic 
distance between two stimuli is the minimum length of all 
curves between the two points. Defined in this way, the 
geodesic distance is a kind of “transformational distance”, 
measuring the magnitude of the shortest transformation that 
would convert one stimulus into another by continuously 
changing its attributes (Hahn, Chater, & Richardson, 2003). 
In the future we hope to explore commonalities and 
differences between geodesic distance and currently used 
distance functions in cognitive models, such as in the GCM.  

Additionally, the results of our approach can be compared 
to other methods attempting to estimate the geometric 
properties of psychological spaces. For example, Hénaff, 
Goris, & Simoncelli (2019) provide a method to estimate the 
curvature of the curve corresponding to a continuous 

sequence of stimuli using a discrimination paradigm. By 
combining multiple geometric constraints such as arc length 
and curvature, future research can determine if these 
measures are in conflict and work toward a unified geometric 
framework for perception, attention, and representation. 

 

 

 

 
 

Figure 4. Mean posterior estimates with 95% credible 
intervals for each parameter. Each plot corresponds to an 
estimated parameter, with one posterior estimate for each 

participant. Note that two intervals for 𝑐௙ are cut off because 
they extend far beyond the upper bound of the plot. 
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