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Abstract

Stock identification is of primarily importance for population structure as-

sessment of economically important species. This study investigates stocks

of striped red mullet using three automatic methods of stock identifica-

tion based on otolith shape and growth marks. Otolith shape is known to

be a promising approach for stock identification but interpreting patterns

of variance is a difficult problem. In this study, images in reflected and

transmitted light were acquired from 800 otoliths sampled in the Northwest

European seas from South Bay of Biscay to North Sea. The growth marks

are pointed out manually by an expert. The external shape of otoliths were

automatically extracted by computer vision process and then three auto-

matic classification methods were compared, two classical state-of-the-art

methods based on Fourier descriptors and Principal Component Analysis

(PCA), and a recently proposed method based on shape Geodesics. From
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a methodological point of view, results show that the shape geodesic ap-

proach significantly outperforms other classical methods. From a biological

point of view, this study shows that the population of striped red mullet in

Northwest European seas can be divided in three geographical zones: the

Bay of Biscay, a mixing zone composed of the Celtic Sea and the West-

ern English Channel and a northern zone composed of the Eastern English

Channel and the North Sea (67% of correct classification rate using both

shape and growth pattern information). Moreover, it shows that for a given

zone, two subsets of the same year have a lower variability in shape than

two subsets from two consecutive years.

Keywords: Striped red mullet, otoliths, stock identification, year

identification, shape analysis, Fourier descriptors, Principal Component

Analysis (PCA), shape Geodesics

1. Introduction 1

Striped red mullet (Mullus surmuletus) occurs along the coast of Europe 2

from the South of Norway [Wheeler, 1978] and the North of the Scotland 3

[Gordon, 1981] to Gibraltar, also along the northern part of West Africa 4

to Dakar, in the Mediterranean and Black Seas. Striped red mullet has 5

been extensively studied in terms of quantity in the Mediterranean Sea and 6

some studies were carried out in the Bay of Biscay [Desbrosses, 1933, 1935; 7

N’Da and Deniel, 1993] that correspond to oldest exploitation areas in the 8

Atlantic Ocean. Within the Atlantic Ocean, there are two main areas where 9

this species is caught in this region: Bay of Biscay and in the Eastern English 10

Channel. This species has been initially exploited by the Spanish fleets along 11

their coast to the Bay of Biscay. Initially considered as a valuable by catch 12
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[Marchal, 2008], the development of striped red mullet exploitation and a 13

strong increase in landings along the English Channel and the southern 14

North Sea by French, English and Dutch fleets have been observed since the 15

1990’s. The strong increase of catches is essentially due to French trawlers 16

and supplemented by the Netherlands and United Kingdom fleets which 17

are carried out in the Eastern Channel and the south of North Sea [Mahé 18

et al., 2005]. This could be attributed to an expansion of its migration 19

distribution, abundance of this species coupled by the decline of traditionally 20

targeted species in these areas and the sea-water warming trend [ICES, 21

2010; Marchal, 2008; Poulard and Blanchard, 2005]. Reports indicate a 22

steady increase in East English Channel landings reaching ten times recorded 23

landings in 1990 [Carpentier et al., 2009; Marchal, 2008]. Striped red mullet 24

is still considered as a non-quota species in the Northeast Atlantic region 25

and evaluation of the level of stock exploitation has only started since 7 26

years [ICES, 2010]. 27

Stock identification and spatial structure information provide a basis 28

for understanding fish population dynamics and provides reliable resource 29

assessment for fishery management [Reiss et al., 2009]. Each stock may 30

have unique demographic properties and responses or rebuilding strategies 31

to exploitation. Biological attributes and productivity of species may be 32

affected if the stock structure and fisheries management are not well consid- 33

ered [Smith et al., 1991]. 34

There are a variety of techniques for stock identification such as genetics 35

and morphometry studies. Genetic studies have been carried out in the 36

Mediterranean Sea [Apostolidis et al., 2009; Galarza et al., 2009; Mamuris 37

et al., 1998a,b]. In the Gulf of Pagasitikos (Greece sea), the analyses of three 38

molucar markers revealed that this is a panmictic population [Apostolidis 39
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et al., 2009]. However, on the level of the Mediterranean basin, the siculo- 40

Tunisian Strait seems to be the transition zone between the Mediterranean’s 41

eastern and western populations [Galarza et al., 2009]. A sharp genetic 42

division was detected when comparing striped red mullet originating from 43

the Atlantic Ocean and from Mediterranean Sea. 44

Among all available techniques, otolith shape has been proven to be 45

relevant feature for species and/or stock discrimination issues [Begg and 46

Brown, 2000; Burke et al., 2008; Campana and Casselman, 1993; Stransky, 47

2005; Stransky et al., 2008b]. Otolith shape reflects the growth pattern of the 48

fish as well as being markedly species specific. As a result, otolith shape can 49

be used to differentiate stocks of the same species. Another relevant feature 50

for stock identification is the growth law as growth is highly correlated to 51

the environmental conditions and is thus stock specific. 52

In the present study, the stock identification was investigated with two 53

methods based either on otolith shape or on growth marks (and both infor- 54

mation). Images in reflected and transmitted light were acquired from 800 55

otoliths sampled in the Northwest European seas from South Bay of Biscay 56

to North Sea. Growth marks have been pointed out manually by an expert. 57

External shapes were extracted by computer vision process and then three 58

automatic classification methods were compared, two classical state-of-the- 59

art methods based on Fourier descriptors, Principal Component Analysis 60

(PCA), and a recently proposed method [Nasreddine et al., 2009] based on 61

shape geodesics. 62
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2. Materials and methods 63

2.1. Otolith datasets 64

Striped red mullet otoliths were extracted from fish randomly sampled 65

from the southern bay of Biscay to the North sea. The study area was 66

divided into six geographic sectors: the NS (North Sea ; ICES Division 67

IVab), the EEC (Eastern English Channel ; ICES Division VIId), the WEC 68

(Western English Channel ; ICES Division VIIe), the CS (Celtic Sea ; ICES 69

Division VIIh), the NBB (North Bay of Biscay ; ICES Division VIIIa) and 70

the SBB (South Bay of Biscay ; ICES Division VIIIb) (Figure .1). All 71

sampling were collected from September to December 2009 except the EEC 72

otoliths which were collected from October-November 2007 and 2008. 73

{Figure .1 goes here } 74

The otoliths were selected from the routine surveys on board the RV 75

“Thalassa” and RV “Gwen-Drez” conducted by the Ifremer Institute (France) 76

and from fisheries markets. Fish were caught by otter trawl, bottom pair 77

trawl and set gillnets. Both sagittal otoliths were removed and cleaned be- 78

fore drying and storing in paper envelope. One otolith per fish was examined 79

using a light microscope connected to a video camera and a dedicated image- 80

analysis system TNPC (digital processing for calcified structures) developed 81

by Ifremer, ENIB and Noesis society. 82

Images of whole otoliths have been acquired using both transmitted and 83

reflected lights. From 800 otoliths coming from six different stocks of striped 84

red mullet (Figure .1), four different image datasets will be considered: 85

Dataset (1) : 600 otoliths sampled from six different stocks (100 otoliths per stock): 86

• NS: North Sea (IVab) - 2009 87
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• EEC08: Eastern English Channel (VIId) - 2008 88

• WEC: Western English Channel (VIIe) - 2009 89

• CS: Celtic Sea (VIIh) - 2009 90

• NBB: North Bay of Biscay (VIIIa) - 2009 91

• SBB: South Bay of Biscay (VIIIb) - 2009 92

Dataset (2) : 700 otoliths: the 600 otoliths of dataset (1) with 100 other otoliths 93

from Eastern English Channel but of a different year: 94

• EEC07: Eastern English Channel (VIId) - 2007 95

Dataset (3) : 200 otoliths: those from Eastern English Channel (VIId) over the two 96

consecutive years 2007 and 2008: 97

• EEC07: Eastern English Channel (VIId) - 2007 98

• EEC08: Eastern English Channel (VIId) - 2008 99

Dataset (4) : 200 otoliths from North Sea (IVab) from the same year 2009 randomly 100

divided in 2 classes: 101

• NS09a: North Sea (IVab) - 2009 a 102

• NS09b: North Sea (IVab) - 2009 b 103

These datasets illustrate two different types of applications of otolith 104

shape classification: stock discrimination (datasets (1) and (2)) and year 105

discrimination (datasets (3) and (4)). Both issues are quite hard for current 106

state-of-the-art computer vision techniques because the external shapes of 107

the considered otoliths exhibit very few differences. 108

For the year discrimination issue, the test is carried out on dataset 109

(3) and dataset (4) separately. As dataset (4) is composed of randomized 110
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classes, the classification performances on this dataset should be close to 111

those of a theoretical random classifier (i.e. 50%). The difference in perfor- 112

mances between dataset (3) and dataset (4) will give an idea of the validity 113

of the results. 114

2.2. Shape-based stock identification 115

The shape-based classification process can be decomposed in three main 116

steps (Figure .2). First, the otolith contour is extracted as described in 117

next section (§ 2.2.1) using an automatic threshold. Three approaches to 118

extract reduced-dimension feature vectors from the contours were consid- 119

ered: Fourier Transform (FT), Principal Component Analysis (PCA) and 120

a technique issued from shape geodesics [Nasreddine et al., 2009]. The dis- 121

criminative power of each approach is evaluated using its own distance ma- 122

trix as input for a classifier. In other words, for a query input the feature 123

vector is considered as the distance matrix calculated between this indi- 124

vidual and the training individuals. Here, we investigate the performances 125

of two widely used classifiers: (1) the K-Nearest Neighbors (KNN) classi- 126

fier with the “leave-one-out” heuristic and (2) the Support Vector Machine 127

(SVM) classifier [Vapnik, 1995] with two randomly-selected sub-samples, one 128

of them is used to build the SVM-model which is tested on the other. 129

{Figure .2 goes here } 130

2.2.1. Automatic contour extraction 131

The otolith image is acquired using two imaging modalities: by trans- 132

mitted light or by reflected light. These two modalities could give additional 133

information. To extract the otolith outline, a mixed image is built in order 134

to integrate information available in both modalities (Figure .3). This mixed 135
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image is a mean between the transmitted light image and the negative of 136

the reflected light image. Image contours are detected as local maximum 137

of the image gradient, approximated using a Sobel filtering. The resulting 138

contours are filled by a morphological closing operation and filtered to re- 139

tain the largest connected component which corresponds to the edge of the 140

otolith. The advantage of mixing both image modalities is illustrated on 141

example given by figure .3. The mixed image gives more details about the 142

contour especially on the region of the excisura major. 143

{Figure .3 goes here } 144

The resulting contour is then sampled into 300 points which describe 145

adequately the otolith shape. 146

2.2.2. Fourier descriptors 147

Shape can be described using complex Fourier descriptors [Granlund, 148

1972] or using elliptic Fourier descriptors [Kuhl and Giardina, 1982]. For 149

otolith shape analyses, both techniques have been extensively used and 150

proved to be efficient [Duarte-Neto et al., 2008a; Kristoffersen and Magoulas, 151

2008; Mérigot et al., 2007; Stransky et al., 2008a] [Cardinale et al., 2004; 152

Galley et al., 2006; Robertson and Talman, 2002; Schulz-Mirbach et al., 153

2008; Smith, 1992; Torres et al., 2000]. In our previous work [Nasreddine 154

et al., 2009] we have showed that for red mullet otoliths, classification results 155

are still similar by using these two methods. Elliptic Fourier descriptors are 156

more appropriate than complex Fourier descriptors when otolith contours 157

are composed of series of ellipse arcs (as for Trachurus mediterraneus otoliths 158

for example). Hence, for striped red mullet otoliths we have chosen to use 159

the complex descriptors which can be implemented more efficiently. 160

With a view to achieving translation, rotation and scaling invariance, 161

8



the first descriptor is aborted and the selected descriptors are scaled with 162

respect to the first non zero coefficient resulting in the so-called normalized 163

Fourier descriptors. The distance between two shapes is computed as the 164

Euclidean distance between the associated vectors of the normalized Fourier 165

descriptors. 166

2.2.3. Principal Component Analysis (PCA) 167

Principal Component Analysis (PCA) was first introduced by Pearson in 168

[Pearson, 1901] as a mathematical tool that transforms data linearly corre- 169

lated to uncorrelated variables called principal components. PCA is exten- 170

sively used in fisheries research for otolith shape analyses, in particular for 171

otolith stock identification. Usually, PCA is applied on Fourier coefficients 172

in order to assess differences in otolith shape [Duarte-Neto et al., 2008b; 173

Mérigot et al., 2007; Schulz-Mirbach et al., 2008]. PCA can also be applied 174

on morphometric variables [Torres et al., 2000], on a binary low resolution 175

image of the contour [Bermejo and Monegal, 2007] or for standardizing the 176

otolith contour orientation [Piera et al., 2005]. 177

However, PCA is not invariant to affine transformations, it is applied for 178

pattern recognition when the coordinates of input vectors can be ordered. 179

In face recognition for example, eyes and lips centers are manually selected, 180

then the images are rotated, in order to make the line connecting eye centers 181

horizontal, and resized to make the distances between the centers of the 182

eyes equal. The PCA is carried out on data vectors formed by cropped part 183

of images. In the case of calcified structures, it is not always obvious to 184

order the data vector coordinates on the basis of clearly defined landmarks. 185

A normalization procedure should then be applied to the raw contours to 186

be invariant with respect to translation, rotation and scaling, so that the 187
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normalized shape is the result of the fish history, independently of acquisition 188

settings. 189

The translation invariance is obtained simply by subtracting the coordi- 190

nates of the mass center to the coordinates of all points. Scale invariance is 191

also simply obtained by dividing each point of the contour in polar coordi- 192

nates by the mean radius. For rotation normalization, a first solution could 193

be to align shapes according to the main axis. This axis can be defined by 194

the two farthest points of the shape or by minimizing the covariance using a 195

PCA like in [Piera et al., 2005]. However, on striped red mullet otolith, the 196

main axis does not correspond to a meaningful biological feature. Instead, 197

we propose to normalize shapes according to the center of excisura major. 198

The corresponding point of the excisura major can be detected automat- 199

ically after subtraction of the original otolith shape from the corresponding 200

filled shape. Then, each shape is aligned according to the axis that passes 201

through this point and the mass center of the otolith contour (Figure .4). 202

{Figure .4 goes here } 203

After contours normalization, PCA is applied on a matrix where each 204

of the rows represents a different contour and the columns represent the 205

information about the contours: the Cartesian normalized coordinates and 206

the local curvature are all put together in a row, one after the other. 207

To compute a distance between all contours in a given dataset, we pro- 208

ceed with a “leave-one-out” heuristics. One after another, each contour Ci 209

of the dataset is left out and PCA is computed on the remaining contours. 210

Then contour Ci is projected into the eigenspace generated by the eigenvec- 211

tors. Finally the distances between the projected contour and each of the 212

other projected contours of the dataset are computed as Euclidean distances 213

in the eigenspace. 214
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2.2.4. The geodesics approach 215

A potential drawback of Fourier and PCA approaches comes from the 216

implicit global (spatial) characterization of the shape. Each descriptor holds 217

information about all points of the shape as it is calculated using all points. 218

Therefore, local (spatial) discriminant shape signatures, such as shape dis- 219

continuities or landmarks, may not be well exploited by such a global char- 220

acterization [Parisi-Baradad et al., 2005]. In contrast, a Geodesic approach 221

was recently proposed [Nasreddine et al., 2009] to take advantage of lo- 222

cal shape features while ensuring invariance to geometric transformations 223

(e.g. translation, rotation and scaling). In this approach, we have defined 224

distance between shapes as a deformation cost stated as a matching issue, 225

i.e. determining the optimal matching between two otolith contours with 226

respect to a similarity measure. 227

The distance d(Γ1,Γ2) between two shapes Γ1 and Γ2 is stated as the 228

minimum, over all mapping functions Ψ, of the similarity measure, ED(Γ1, φ(Γ2))229

between the reference shape Γ1 and the mapped shape φ(Γ2). 230

d(Γ1,Γ2) = min
φ∈Ψ

ED(Γ1, φ(Γ2)) (1)

As the important biological information is considered in the shape of 231

contour and not in its size, the shapes are parameterized in function of the 232

normalized curvilinear abscissa s which has a value between 0 and 1 inde- 233

pendently of the original contour length. A robust criterion is introduced in 234

order to improve the robustness of the proposed distance to outliers coming 235

from biological interindividual variabilities. The principle is supported by 236

the use of a function that adjusts weight ω in order to penalize the data 237

points of high variation compared to other points. 238
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Given two shapes locally characterized by the angle θ(s) between the 239

tangent to the curve and the horizontal axis, the distance between two con- 240

tours is defined by: 241

d(θ1(s), θ2(s)) = 2 inf
φ

arccos

∫

s

√

φs(s)

∣

∣

∣

∣

cos
ω(r(s))r(s)

2

∣

∣

∣

∣

ds (2)

where φs = dφ
ds

and r(s) = θ1(s) − θ2(φ(s)). The term
√

φs(s) allows to 242

avoid torsion and stretching along the curve. The weight function ω is 243

issued from the robust estimator of Leclerc [Black and Rangarajan, 1996]; 244

ω(r(s)) = 2
σ2 exp(

−r2(s)
σ2 ) where σ is the standard deviation of data errors 245

r(s). 246

Formally, the numerical computation of d(Γ1,Γ2) is solved by using a 247

dynamic programming technique (refer to [Nasreddine et al., 2009] for more 248

details). 249

2.3. Growth marks based stock identification 250

The growth-based classification process consists of three main steps (Fig- 251

ure .2). First, an expert manually points out the growth marks on the 252

otolith image (Figure .5). This step can be done using TNPC software 253

(www.tnpc.fr) in parallel with the image acquisition step; it is not a contra- 254

diction with the automatic process of classification. Then distance between 255

the growth laws of two otoliths is computed using the Euclidean distances 256

between growth vectors. In case of two different aged otoliths, distance is 257

computed using only the growth marks available on both otoliths. For ex- 258

ample, in figure .5 this distance is computed using the three growth marks 259

on each otolith. 260

Given two growth vectors G1 = {G1j}j=1···N1
and G2 = {G2j}j=1···N2

, 261

the growth distance is considered as the Euclidean distance: 262
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dGrowth =

√

√

√

√

Ng
∑

j=1

(G2j −G1j)2 (3)

where Ng = min{N1, N2} is the number of growth marks available in both 263

vectors. 264

Finally, all distances between otoliths are computed leading to a distance 265

matrix used as input for an SVM classifier. The feature vector is consid- 266

ered as the distance calculated between the query input and all training 267

individuals. 268

{Figure .5 goes here } 269

3. Results 270

Here performances are evaluated in terms of correct classification rates. 271

We have started experiments with the hypothesis that the six stocks (NS, 272

EEC, WEC, CS, NBB and SBB) are considered as individual separated 273

stocks with specific characteristics of shapes. 274

Compared to KNN, SVM classifier performs slightly better in terms of 275

correct classification rate (from 30% to 32.7% on dataset (1)) but at the 276

cost of increasing dramatically the standard deviation of the performances 277

between classes (from 10.9 to 15.2 on dataset (1)). Thus, as KNN clas- 278

sifier results in stable performances across the classes, it has been chosen 279

for shape-based classification. In contrast, applying KNN for growth-based 280

stock identification gives a correct classification rate of 25.5% whereas SVM 281

gives higher correct classification rate (35.4%) for the same dataset (dataset 282

(1)). Hence, SVM has been chosen for growth-based classification. 283

The correct classification rates remain high with respect to the random 284

classification but these rates show that the hypothesis of separated stocks 285
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should be aborted. The six stocks are then grouped into three stocks lead- 286

ing to a correct classification rate of 67%. Grouped stocks have in the first 287

hypothesis close shape characteristics and could not be really distinguished 288

easily. Classification errors could be due to genetic factors, migration among 289

others. A rate of 100% could then not be reached with the presence of all 290

these factors on the otolith shape. In comparisons to other stock identi- 291

fication methods, otolith shape is a promising approach but interpreting 292

patterns of variance can be difficult [Cadrin et al., 2005]. 293

In the following, geographical zones are ordered in the tables according 294

to their positions (from north (NS) to south (SBB)); thus neighbor classes 295

are also neighbor geographical zones. 296

3.1. Dataset (1) 297

Results on dataset (1) are given in tables .1-.3. Geodesic approach 298

reaches 30% of correct classification (Table .3) while this rate is 19.7% for 299

Fourier approach (Table .1) and 25% for PCA (Table .2). These scores are 300

better than a random classification that would theoretically reach 16.7% (for 301

six classes). 302

{Table .1 goes here } 303

{Table .2 goes here } 304

{Table .3 goes here } 305

In table .4, classification results are given when the growth information 306

is used for stock identification. The mean correct classification obtained by 307

SVM reaches 35.4%. 308

{Table .4 goes here } 309

As in [Nasreddine et al., 2009], we have tested stock identification with 310

both growth and shape information in order to improve classification per- 311
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formances. The mean correct classification rate is then increased to reach 312

49.4% (Table .5). 313

{Table .5 goes here } 314

3.2. Dataset (2) 315

On dataset (2), Fourier approach reaches 16.4% of mean correct clas- 316

sification (Table .6), PCA approach reaches 19% of correct classification 317

(Table .7) while Geodesic approach reaches 24.9% (Table .8). These scores 318

are also better than a random classification that would theoretically reach 319

14.3% (for seven classes). 320

{Table .6 goes here } 321

{Table .7 goes here } 322

{Table .8 goes here } 323

3.3. Datasets (3) and (4) 324

Regarding the year discrimination issue on dataset (3), the mean classi- 325

fication rate of the Fourier approach (56%, Table .9) is too close to the the- 326

oretical mean classification rate of a random classifier (50% for two classes). 327

Thus the classical Fourier approach fails on this specific year discrimination 328

issue. The mean classification rate on the random dataset (4) (43%, Ta- 329

ble .10) is lower but quite close to the theoretical mean classification rate of 330

a random classifier (50% for two classes), it shows that with this approach, 331

two arbitrary sets of the same stock and same year have no significant shape 332

differences. 333

Regarding PCA and Geodesic approaches, the mean classification rate 334

on dataset (3) (60%, Table .9) is higher than the mean classification rate 335

on the random dataset (4) (49.5%, Table .10). This shows that the otolith 336

15



morphology varies over two consecutive years and that this difference in 337

shape is higher than between two arbitrary groups of the same year and 338

same stock. 339

{Table .9 goes here } 340

{Table .10 goes here } 341

4. Discussion 342

4.1. Comparison of the three shape-based approaches 343

Performances of the three shape-based approaches are compared in ta- 344

ble .11. On both dataset (1) and dataset (2), the Geodesic approach exhibits 345

highest performances followed by PCA approach and Fourier approach last. 346

Regarding the stock discrimination issue on dataset (1) (Tables .1, .2 347

and .3), the three methods show that the population of striped red mullet 348

can be geographically divided in three zones: 349

• The Bay of Biscay (NBB+SBB) 350

• A mixing zone composed of the Celtic Sea and the Western English 351

Channel (CS+WEC) 352

• A northern zone composed of the Eastern English Channel and the 353

North Sea (EEC+NS) 354

To further the “three zones” hypothesis, we have tested the classification 355

when the otoliths were grouped in three classes corresponding to the three 356

zones. The results of this classification using the geodesic approach is shown 357

in table .12 below. It clearly validates the hypothesis as the obtained mean 358

correct classification rate reaches 54.3% and the error scores are higher be- 359

tween two neighbors zones than between two unconnected zones. Finally, 360
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this rate raises to 67.31% when the SVM classifier is used with geodesic 361

distances coupled with the growth information (Table .13). 362

Regarding the year discrimination issue, classical Fourier approach fails 363

while PCA approach shows a small difference in shape and Geodesic ap- 364

proach exhibits the highest difference (Table .11). Thus Geodesic approach 365

seems the most appropriate method for this task. 366

{Table .11 goes here } 367

{Table .12 goes here } 368

{Table .13 goes here } 369

4.2. Relevance of the shape and growth information 370

In this study three different approaches have been compared for shape- 371

based stock identification, two state-of-the-art methods (Fourier and PCA) 372

that have been extensively used in marine research on different species, and 373

a recent method (Geodesic) that proved to give very good performances 374

on different shapes [Nasreddine et al., 2010] and in particular on otolith 375

shapes [Nasreddine et al., 2009]. Although these three methods result in 376

high correct classification rates on several problems, they give quite low 377

correct classification rate for the particular cases tested in this study. It 378

tends to prove that otolith shape is not relevant for the particular case of 379

striped red mullet if we consider the six stocks separately. The growth- 380

based stock identification results are not so far from the shape-based stock 381

identification results. This study shows that both information are influenced 382

by different living conditions and different environments and can serve as 383

stock identifier. This identification is not very high as otolith shape is highly 384

due to the genetics. This result tends to prove that the genetic information 385

is quite homogeneously spread across all geographical zones in the north 386
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west European seas. 387

This study has proven that by coupling both information (shape and 388

growth patterns), stock discrimination becomes more efficient. These two 389

information are independent and multivariate analysis, including them with 390

other independent information (chemical concentrations, . . . ), should be 391

investigated for stock identification. 392

The observations above lead to two hypothesis on the striped red mullet: 393

• some adults move from one zone to another, 394

• some larvae or juveniles perform migration during growth. 395
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Figure .1: Map of the stocks of striped red mullet involved in this study.
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Figure .2: Shape-based and growth-based classification general schemes.

Figure .3: Contour extraction using transmitted light image (left), reflected light image

(middle) and resulting mixed image (right). Note that the contour extracted using the

mixed image is more efficient.
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Figure .4: Contour extraction and normalization. Left: contour before normalization,

right: contour after rotation normalization. In this figure we show the main axis passing

through the mass center and the excisura major center.

(a) (b)

Figure .5: Illustration of growth distance calculation. (a): Annual growth marks manually

positioned by expert. (b): Example of distance computation between growth laws of two

otoliths.
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Table .1: Confusion matrix (in %) for the Fourier approach on dataset (1) achieved by

KNN classifier. Mean correct classification rate: 19.7%.

Fourier approach on Dataset (1)

Actual Class

Estimated Class NS EEC08 WEC CS NBB SBB

NS 18 20 11 18 18 12

EEC08 21 28 25 17 6 14

WEC 8 19 12 16 7 14

CS 21 12 18 13 11 14

NBB 16 9 14 16 23 22

SBB 16 12 20 20 35 24

Table .2: Confusion matrix (in %) for the PCA approach on dataset (1) achieved by KNN

classifier. Mean correct classification rate: 25%.

PCA approach on Dataset (1)

Actual Class

Estimated Class NS EEC08 WEC CS NBB SBB

NS 29 13 15 19 10 12

EEC08 18 31 16 21 10 10

WEC 14 13 26 11 21 18

CS 17 21 15 20 11 12

NBB 15 11 12 13 21 25

SBB 7 11 16 16 27 23
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Table .3: Confusion matrix (in %) for the Geodesic approach on dataset (1) achieved by

KNN classifier. Mean correct classification rate: 30%.

Geodesic approach on Dataset (1)

Actual Class

Estimated Class NS EEC08 WEC CS NBB SBB

NS 15 20 11 8 5 11

EEC08 28 44 17 23 5 5

WEC 9 9 22 11 7 9

CS 24 15 24 32 15 13

NBB 10 5 16 13 27 22

SBB 14 7 10 13 41 40

Table .4: Confusion matrix resulting from an SVM classifier on growth distances (dataset

(1)). Mean correct classification rate: 35.4 %.

Growth-based approach on Dataset (1)

Estimated Actual class

class NS EEC08 WEC CS NBB SBB

NS 42.49 20.34 16.58 5.62 3.84 11.13

EEC08 12.30 50.38 13.12 2.36 5.56 16.28

WEC 12.14 19.26 41.35 5.13 8.54 13.58

CS 41.7 2.74 43.71 8.74 3.33 0.29

NBB 11.47 8.79 30.07 3.66 26.47 19.54

SBB 12.02 20.12 12.00 1.39 11.12 43.34
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Table .5: Confusion matrix resulting from an SVM classifier on geodesic distances coupled

with growth distances (dataset (1)). Mean correct classification rate: 49.4 %.

Growth and Geodesic-based approach on Dataset (1)

Estimated Actual class

class NS EEC08 WEC CS NBB SBB

NS 43.75 12.00 2.44 12.25 5.00 3.57

EEC08 31.25 66.00 21.95 18.36 0.00 0.00

WEC 12.50 16.00 60.98 4.08 0.00 25

CS 8.33 6.00 9.76 44.89 20.00 10.71

NBB 0.00 0.00 2.44 20.41 45.00 25.00

SBB 4.17 0.00 2.44 0.00 30.00 35.71

Table .6: Confusion matrix (in %) for the Fourier approach on dataset (2) achieved by

KNN classifier. Mean correct classification rate: 16.4%.

Fourier approach on Dataset (2)

Actual Class

Estimated Class NS EEC07 EEC08 WEC CS NBB SBB

NS 15 10 22 7 18 13 11

EEC07 15 19 12 23 14 11 11

EEC08 17 16 24 18 17 7 11

WEC 6 17 14 7 14 5 11

CS 20 14 8 17 7 12 11

NBB 16 14 8 12 15 20 22

SBB 11 10 12 16 15 32 23
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Table .7: Confusion matrix (in %) for the PCA approach on dataset (2) achieved by KNN

classifier. Mean correct classification rate: 19%.

PCA approach on Dataset (2)

Actual Class

Estimated Class NS EEC07 EEC08 WEC CS NBB SBB

NS 20 10 11 17 14 8 7

EEC07 16 15 17 8 14 16 14

EEC08 12 15 24 14 16 8 7

WEC 12 16 14 22 14 16 13

CS 19 12 16 14 15 11 9

NBB 13 19 9 10 14 15 28

SBB 8 13 9 15 13 26 22

Table .8: Confusion matrix (in %) for the Geodesic approach on dataset (2) achieved by

KNN classifier. Mean correct classification rate: 24.9%.

Geodesic approach on Dataset (2)

Actual Class

Estimated Class NS EEC07 EEC08 WEC CS NBB SBB

NS 10 13 16 8 7 2 10

EEC07 23 32 22 27 28 19 13

EEC08 23 15 36 13 17 6 5

WEC 5 3 5 15 9 4 7

CS 18 13 13 16 24 10 11

NBB 9 13 3 12 6 23 20

SBB 12 11 5 9 9 36 34
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Table .9: Confusion matrix (in %) on dataset (3) achieved by KNN classifier. Mean correct

classification rate: 56% with the Fourier approach, 60% by the PCA approach and 60.5%

with the Geodesic approach.

Year discrimination on Dataset (3)

by Fourier approach

Actual Class

Estimated Class EEC07 EEC08

EEC07 54 42

EEC08 46 58

by PCA approach

Actual Class

Estimated Class EEC07 EEC08

EEC07 58 38

EEC08 42 62

by Geodesic approach

Actual Class

Estimated Class EEC07 EEC08

EEC07 64 43

EEC08 36 57
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Table .10: Confusion matrix (in %) on dataset (4) achieved by KNN classifier. Mean

correct classification rate: 43% with the Fourier approach, 49.5% by the PCA approach

and 49.5% with the Geodesic approach.

Validation test on Dataset (4)

by Fourier approach

Actual Class

Estimated Class NS09a NS09b

NS09a 43 57

NS09b 57 43

by PCA approach

Actual Class

Estimated Class NS09a NS09b

NS09a 46 47

NS09b 54 53

by Geodesic approach

Actual Class

Estimated Class NS09a NS09b

NS09a 54 55

NS09b 46 45
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Table .11: Comparison of the mean correct classification rate (in %) obtained by the three

approaches on datasets (1), (2) and (3) achieved by KNN classifier.

dataset (1) Dataset (2) Dataset (3)

Fourier 19.7 16.4 56

PCA 25 19 60

Geodesic 30 24.9 60.5

Table .12: Classification results on dataset (1) with the Geodesic approach when the

otoliths were grouped in three classes according to their geographical zones. Mean correct

classification rate: 54.3% (KNN classifier).

Geodesic approach on Dataset (1)

with otoliths grouped by zones

Actual Class

Estimated Class Northern zone Mixing zone Bay of Biscay

Northern zone 53.5 29.5 13

Mixing zone 28.5 44.5 22

Bay of Biscay 18 26 65
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Table .13: Classification results (in %) on dataset (1) with the Growth and Geodesic-based

approach when the otoliths were grouped in three classes according to their geographical

zones. Mean correct classification rate: 67.31% (SVM classifier).

Growth and Geodesic-based approach on Dataset (1) with otoliths grouped by zones

Actual Class

Estimated Class Northern zone Mixing zone Bay of Biscay

Northern zone 74.30 26.76 8.61

Mixing zone 22.31 58.25 22.00

Bay of Biscay 3.39 14.99 69.39
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