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A novel detection approach of linear FM (LFM) signals, with
single or multiple components, in the time-frequency plane of
Teager-Huang (TH) transform is presented. The detection scheme
that combines TH transform and Hough transform is referred to as
Teager-Huang-Hough (THH) transform. The input signal is mapped
into the time-frequency plane by using TH transform followed by the
application of Hough transform to recognize time-frequency
components. LFM components are detected and their parameters
are estimated from peaks and their locations in the Hough space.
Advantages of THH transform over Hough transform of
Wigner-Ville distribution (WVD) are: 1) cross-terms free detection
and estimation, and 2) good time and frequency resolutions. No
assumptions are made about the number of components of the LFM
signals and their models. THH transform is illustrated on
multicomponent LFM signals in free and noisy environments and the
results compared with WVD-Hough and pseudo-WVD-Hough
transforms.
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I. INTRODUCTION

Linear frequency modulated (LFM) signals, also
known as chirp signals, are frequently encountered in
many applications such as radar, sonar, and
telecommunications. For example, due to target motion,
radar return signals can be modeled as LFM signals, the
parameters of which reveal useful information about the
target such as velocity and acceleration [1]. Detection and
estimation of the parameters of such signals are very
important for electronic intelligence applications [2–4].
Although the generalized likelihood ratio test has been
reported to be optimal for chirp detection [5], it requires
too much computational complexity to support practical
applications [6]. Methods based on the maximum
likelihood (ML) estimator [7, 8] are also used, but heavy
computational complexity is generally needed for high
estimation accuracy [9]. Time-frequency-based methods
have been reported to be effective for detecting and
estimating LFM signals [10, 11]. These techniques have
attracted considerable attention and proved themselves to
be effective among others [12]. The first time-frequency
approach involved spectrogram [11]. However, the
spectrogram suffers from fixed time and frequency
resolutions due to the fixed window length and is not a
totally cross-terms free representation [13] which limits its
application to LFM detection. Wavelet transforms can also
be used for LFM detection because they are not limited by
the fixed window constraint. However, it suffers from poor
frequency resolution [13]. Due to its high time-frequency
localization, Wigner-Ville distribution (WVD) is optimal
in the sense of maximum energy concentration about the
instantaneous frequency (IF), for LFM signals [13]. For
such signals, the detection approach computes the line
integral of the WVD along all the lines in the
time-frequency plane. The line that produces the
maximum value yields to the ML estimate of the linear IF
of the chirp. Thus, the principle of the method is to track
straight lines in the time-frequency plane by locating
maxima in the two-dimensional (initial frequency versus
chirp rate) plane [12]. This detection can be obtained by
combining the WVD with Hough transform [10] or Radon
transform [12–14]. Due to its bilinear nature, WVD
involves cross-product terms, which appear midway
between true signal components (auto-terms) in the case
of multicomponent signals. These cross-terms make the
transform space of VWD difficult to visually interpret.

Recently, a new time-frequency representation for
analyzing multicomponent AM-FM signals referred to as
Teager-Huang (TH) transform has been introduced [15].
Compared with WVD, TH transform shows further
benefits: fine time-frequency resolution and free of
cross-terms. TH transform relies on no prior choice upon
the number of AM-FM components of the analyzed signal.
Further, it is based on adaptive basis and is not constrained
by uncertainty principle. In this work, we present a novel
detection approach of multicomponent LFM signals,
based on a time-frequency domain representation of TH



Fig. 1. Block diagram of TH transform.

transform, that we named Teager-Huang-Hough (THH)
transform.1 Compared with our previous work [16] where
THH transform was limited to noise-free signals, the
present work contributions are the following.

1) THH transform is analyzed in noisy conditions. For
this analysis, subband filtering associated to THH
transform is introduced in Section VI.

2) Teager-Kaiser spectrum is introduced in
Subsection II-C.

3) A mathematical formulation of THH transform is
introduced (11).

4) A strategy for deriving the detection threshold is
presented in Subsection IV-B.

II. TEAGER-HUANG TRANSFORM

TH transform has been introduced recently for
time-frequency analysis [15]. It has found applications in
a lot of domains [17–22]. This transform first band-pass
filters a multicomponent AM-FM signal through the
empirical mode decomposition (EMD) into a reduced
number of oscillatory modes called intrinsic mode
functions (IMFs) [23]. Each extracted mode is
demodulated into IF and instantaneous amplitude (IA)
signals. An energy demodulation method, called energy
separation algorithm (ESA) [23], is used to
simultaneously track these IF and IA components. The
ESA is based on Teager-Kaiser energy operator (TKEO)
and shows high efficiency, in particular in terms of time
resolution. More particularly, TKEO is attractive due to its
computational simplicity and because it tracks physically
meaningful quantities. Applying ESA to IMFs yields IFs
as a function of time that enables sharp identifications of
embedded structures of the signal. Taken collectively, the
spectra of the IMFs supplied by ESA yield complete
time-frequency information (energy) about the original
signal. A common method for displaying the spectra
derived from the IMFs, is to generate a two-dimensional
plot with time and frequency axes. The block diagram of
TH transform, depicting multiband filtering followed by
energy separation is shown in Fig. 1.

A. EMD

The EMD has been introduced by Huang et al. [23] for
adaptively decomposing any signal into a reduced number
of IMFs and a residual that represents the trend. By

1Some elements of this paper were initially presented in [16].

definition, an IMF 1) must have the same numbers of
extrema and zero-crossing or differ at most by one; and 2)
is symmetric with respect to local zero mean. With these
two conditions, meaningfully IF and IA components of an
IMF can be well defined. In order to successfully
decompose a signal x(t) into IMFs, it must have at least
two extrema (one maximum and one minimum). Given
conditions 1 and 2, EMD is defined by an iterative process
called sifting and is summarized as follows [23].

1) Identify the extrema of signal x(t).
2) Generate its upper and lower envelopes, xu(t) and

xl(t), with spline interpolation.
3) Compute the local mean m(t) = (xu(t) + xl(t))/2.
4) Extract the detail d(t) = x(t)–m(t).
5) Check the properties of d(t).

If d(t) meets conditions 1 - 2, an IMF is derived and
r(t) ← x(t) – d(t).

If d(t) is not an IMF, x(t) ← d(t).

6) Repeat steps 1 - 5 until r(t) satisfies some stopping
criterion.

At the end of the process, x(t) is expanded as follows:

x(t) =
K∑

j=1

IMFj (t) + rK (t) (1)

where K is the number of IMFs and rK(t) denotes the final
residue. The IMFs are nearly orthogonal to each other, and
all have nearly zero means. The number of extrema is
decreased when going from one mode to the next, and the
whole decomposition is guaranteed to be finished with a
finite number of modes.

B. Energy Separation of IMFs

The salient property of an IMF is that it is a
monocomponent AM-FM signal [23] and therefore it can
be demodulated using ESA. For a twice derivable signal
s(t), the output of TKEO is given by

�[s(t)] = [ṡ(t)]2 − s(t)s̈(t) (2)

where ṡ(t) and s̈(t) are the first and second order
derivatives of s(t). A useful and important property of �[.]
is its behavior when applied to AM-FM signal s(t) in the
form

s(t) = a(t) cos

(
2π

∫ t

0
f (τ )dτ

)
. (3)

Then, the output of �[.] applied to s(t) and ṡ(t) is given by

� [s(t)] ≈ a2(t)φ̇2(t) (4)

� [ṡ(t)] ≈ a2(t)φ̇4(t). (5)

Thus, with negligible approximation error under general
realistic conditions, (4) shows that �[s(t)] is the squared
product of a(t) and the time-varying instantaneous phase



φ̇(t). Combining relations (4) and (5) we obtain the ESA
method [24]:

f (t) ≈ 1

2π

√
� [ṡ(t)]

� [s(t)]
, |a(t) | ≈ � [s(t)]√

� [ṡ(t)]
. (6)

A discrete-time counterpart of the TKEO �d [.] is given by
[24]

�d [s(n)] = s2(n) − s(n + 1) · s(n − 1). (7)

Equation (7) shows that TKEO is nearly instantaneous
because only three samples are required for the energy
computation at each time instant. By approximating the
continuous-time derivation in (4)–(5) to discrete
differences, one obtains different versions of discrete ESA
(DESA) [24]. For example, by approximating the
continuous-time derivatives in (6) by discrete asymmetric
backward differences, one obtains the DESA-1a
algorithm:

f (n) ≈ 1

2π
arccos

(
1 − �d [s(n) − s(n − 1)]

2�d [s(n)]

)
(8)

|a(n) | ≈
√√√√√ �d [s(n)]

1 −
(

1 − �d [s(n) − s(n − 1)]

2�d [s(n)]

)2 . (9)

Other DESAs can be derived [24].

C. Teager-Kaiser Spectrum

After applying DESA to each IMF component of a
signal x(t), one can express it in the following form:

x(t) = R

⎛
⎝ K∑

j=1

aj (t) exp

(
i

∫
ωj (t)dt

)⎞
⎠ + rK (t) (10)

where R stands for “real part”, ωj (t) = 2πfj (t) and
i = √−1. If we omit rK(t), which is either a monotonic
function or a constant, representation (10) gives both
amplitude and frequency of each component as functions
of time. This equation enables us to represent IA and IF as
functions of time in a three-dimensional plot: for each
IMF, we get a curve (t, fi(t), ai(t)). The weight assigned to
each time-frequency cell is the local spectrum amplitude.
We call the amplitude (or energy) depending on time and
frequency the Teager-Kaiser spectrum (TKS), TK(t, f ).
Formally, this is defined as follows. Let signal x(t) be
represented in the form (10). The TKS (amplitude) is
defined as

TK(t, f ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1(t) on the curve {(t, f1(t)); t ∈ R}
a2(t) on the curve {(t, f2(t)); t ∈ R}
...

aK (t) on the curve {(t, fK (t)); t ∈ R}
Given IFs, fj(t), and IAs, aj(t), at each instant t,
associated time-frequency of TH transform can be

written as

TK(t, f ) =
K∑

j=1

aj (t, fj (t)) =
K∑

j=1

aj (t)δ(f − fj (t)).

(11)

An advantage of TKS analysis over Hilbert spectral
analysis [23] is to circumvent the limitation of Bedrosian’s
theorem [25]. TH transform produces a sharp and sparse
representation. If x(t) is of dimension T in time and is
given in discrete-time, its time-frequency representation is
of dimension NfT when computed over Nf frequency bins.
Since the number of extracted modes (Eq. 1), K, is much
smaller than T, TH transform which satisfies relation (11)
is distributed over the time-frequency plane in a very
sparse way, with only K 1D trajectories where at most KT
values are expected to be non-zero. All information of the
TH transform is concentrated in a very small number of
1D trajectories. Thus, in terms of number of points, TH
transform is of KT dimensions where K�T while, for
example, WVD is of dimension TNf.

III. HOUGH TRANSFORM

Hough transform is a feature extraction technique
essentially used in image processing for detecting
geometric curves (lines, circles . . . ) in binary point
images such as object detection [26] and texture analysis.
Note that since the Cartesian representation y = ax + b of
a line becomes clumsy [26] as a line approaches the
vertical, alternative polar representation can be preferred
[26]. The key idea of Hough transform is to project pixels
of a given image into a parametric space where the shapes
of interest can be well localized. For example, for line
detection and polar parametrization we have

HT (xi, yi) = {(ρ, θ ); ρ = xi cos θ + yi sin θ} . (12)

This parametrization specifies a straight line by the angle θ

of its normal and its algebraic distance ρ from the origin.
For each point (xi, yi) in an image, Hough transform
associates a sinusoid in the plane (ρ, θ), with amplitude√

x2
i + y2

i and initial phase arctan(yi/xi). In addition, the
pixels of the sinusoid are given an intensity equal to that of
the pixel (xi, yi). If M points are concentrated along a
straight line in time-frequency domain, their transforms
will define M sinusoidal curves that intersect at the same
point in the (ρ, θ) domain (Fig. 2) where curve intensities
add. Thus, maxima location in the Hough transform
domain are directly related to the parameters of the lines
in the initial image and the Hough transform converts a
difficult global detection problem in image domain into a
more easily solved local peak detection problem in the
parameters space.

IV. TH AND HOUGH TRANSFORMS

A. Hough Transform for LFM Signals

Different methods have been proposed for LFM
component tracking using time-frequency representations



Fig. 2. Illustration of Hough transform.

Fig. 3. Block diagram of THH transform.

[9–12, 14, 27–30]. A time-frequency representation is
viewed as an image, where a pixel intensity corresponds to
the energy presents at a particular time and frequency
positions. The combination of WVD and Hough transform
was first presented for chirp identification [10]. WVD
ideally concentrates the chirp signals in time-frequency
plane. FM parameters can be estimated using Hough
transform combined with WVD [10], smoothed
pseudo-WVD (SPWVD) [27], or reallocated SPWVD
(RSPWVD) [28]. The principle of the method has been
introduced by Kay and Boudreaux-Bartles [29], extended
to the multicomponent case by Barbarossa [10], and also
extended to analysis of constant amplitude signals
(cross-terms) added to a spread spectrum plus an additive
white Gaussian noise (AWGN) by Barbarossa and
Scaglione [30]. In general, the detection problem of an
LFM signal, which is not easy in the time-domain (or
frequency domain), is reduced to the detection of a line in
an image. Applying a Hough transform in the
time-frequency representation of a multiple components
LFM signal yields peaks in the Hough space, the
coordinates of which are directly related to the parameters
of the straight lines in time-frequency image. Although the
method is attractive, accurate estimation of FM parameters
is not easy due to the cross-terms of the quadratic
time-frequency representations (WVD, . . .). This leads to
difficulties in practical implementation, and the
computational attractiveness of array accumulators of
Hough transform was not advantageously utilized.
Alternatively, the THH transform that we propose and that
is illustrated in Fig. 3 is a time-frequency representation
free of cross-terms and is used to detect energy-varying
linear chirp. When Hough transform is applied to TH
transform of an LFM signal y(t) it outputs an energy
time-frequency representation. Let y(t) be such a signal:

y(t) = e
2iπ

(
νt+ β

2 t2
)

(13)

where ν is the start frequency of the LFM and β the chirp
rate. The comparison of THH transform to a threshold τ

enables LFM peaks detection. Estimates of the unknown
parameters ν and β are given by the coordinates of the
peak in the space of the parameters (ρ, θ).

THH transform of a signal y(t) is defined as the line
integral through the TKS along the IF model f(t; �) where
� : = (ν, β) is the parameter vector.

h(ν, β) =
∫ −∞

−∞
TK(t, f )δ(f − ν − βt)dt (14)

where TK(t, f ) is the TKS under consideration. When
dealing with LFM signals, each IMF gives rise to energy
concentration along straight lines in the time-frequency
plane of fj(t) ≈ (t, �j) = ν j + β jt, where fj(t) is the IF of
the jth IMF. The integration over all possible lines,
obtained by applying Hough transform to TH transform
gives rise to peaks in the final parameter space. A
monocomponent LFM signal corresponds to one peak in
the parameter space and a multicomponent LFM signal
generates multiple peaks in the parameter space. THH
transform is therefore a mapping from the time-frequency
domain to the parameter space (ν, β). The detection and
parameters estimation is reduced to peaks search in the
parameter space. THH transform algorithm involves the
following steps.

Step 1) Apply TH transform to input signal x(t) to
generate TK(t, f ) (11).

Step 2) Compute h(�) using (14).
Step 3) Search peaks of h(�) which are larger than τ .
Step 4) Extract parameters � of each detected peak.

Values of θ and ρ (12) are given by

θ = arctan(−1/β) and ρ = ν sin(θ).

Note that time-frequency localization of a signal can be
quantified by the percentage of the time-frequency plane
that it occupies. Since TH transform consists of a reduced
number of 1D trajectories it is highly localized. Besides
this sparsity, THH transform is based on two local and
nonlinear approaches, the ESA (which in turn is based on
the instantaneous TKEO) and the EMD. This enables
THH transform to have a good time-frequency resolution
and to perform good LFM localization and estimation.

B. Thresholding Based on Neyman-Pearson Criterion

Different criteria can be used to choose the detection
threshold such as MiniMax, maximum a posteriori
probability or Neyman-Pearson (NP) criterion. As NP
rule does not involve decision costs or prior knowledge
of LFM signals distribution, it is well suited for choosing
a detection threshold τ . Then, the threshold is calculated
for a targeted false alarm probability. The problem is to
decide between the null hypothesis (H0) and the



alternative one (H1):{
H1 : a LFM component is present in TKS

H0 : no LFM is present.

Let τ denote the threshold for LFM component detection.
For the K IMFs under consideration, IMFi(t) has IA ai(t)
for t = 1, . . . , T. For the sake of simplicity, let us assume
an approximate circularly complex Gaussian distribution
for the IMFs. Thus amplitudes ai(t) are Rayleigh
distributed. In addition, to achieve simple in designing the
threshold τ , it will appear more convenient to perform the
Hough transform on the squared TKS where amplitude at
point (t, fi(t)) is a2

i (t) and has a χ2(2) distribution, with
mean E[a2

i (t)] denoted by σ 2.
Let us now consider the all-at-one time-frequency

representation, that is the area of the discretized
time-frequency plane where the Hough transform is
calculated, with all points set to one. Then, we denote by
N0

νβ the integer value of the Hough transform at point (ν =
ρ /sin(θ), β = – cot(θ)) of the corresponding transformed
plane. In other words, N0

νβ represents the number of lines
that pass through (ν, β) for the all-at-one time-frequency
representation.

The support of the TKS is made of KT points, while
the time-frequency representation contains NfT samples.
Then, only a fraction

S = KT

Nf T
= K

Nf

(15)

of the time frequency plane carries the TKS. Note that S
represents the sparsity rate in the TKS. If there is no LFM
(H0 hypothesis) the Hough transform is unstructured and,
on the average, there are SN0

νβ lines passing through (ν,
β). However, letting Nνβ be the number of lines at (ν, β),
it is clear that its value can differ from SN0

νβ . A convenient
modeling for Nνβ is to describe it as a Poisson random
variable with mean SN0

νβ . Indeed, the number of lines
passing through (ν, β) is a binomial distribution B(KT, p)

where p = N0
νβ

Nf T
is the probability that the transform of a

given point of the time-frequency plane generates a line
passing through (ν, β). As KT is quite large, it is well
known that B(KT, p) can be well approximated by a
Poisson P(λ) distribution, with λ = KTp = SN0

νβ . Then,
we get

P (Nνβ = k) =
(
SN0

νβ

)k

k!
e−SN0

νβ . (16)

For hypothesis H0 and conditional to Nνβ , the distribution
of the amplitude aνβ at point (ν, β) is that of the
accumulation of Nνβ independent random amplitudes with
distribution χ2(2), that is, aνβ has a χ2(2Nνβ) distribution.
Note that the normalized χ2(n) distribution has variance
2n and the accumulation of Nνβ points ai(t) has variance
Nνβσ 2. Thus a normalizing factor equal to σ /2 must be
applied to the standard χ2(2Nνβ) random variables to
achieve the desired distribution. Since the transform X ←
αX results in the transform p(x) → α−1p(α−1x) of the

corresponding probability density functions (pdfs), we
finally get

p(aνβ |Nνβ) = 1

2Nνβ−1�(Nνβ)σ

(
2aνβ

σ

)Nνβ−1

e− aνβ

σ (17)

Then, Pfa is given by

Pfa = P (max
νβ

aνβ > τ )

= 1 −
∏
νβ

P (aνβ < τ )

= 1 −
∏
νβ

ENνβ

⎡
⎣ τ∫

0

p(aνβ |Nνβ)daνβ

⎤
⎦

= 1 −
∏
νβ

ENνβ

⎡
⎣ τ∫

0

1

2Nνβ−1�(Nνβ)σ
�e− a

σ da

⎤
⎦

= 1 −
∏
νβ

P
(
Nνβ,

τ

σ

)
(18)

where � =
(

2a

σ

)Nνβ−1

and P(n, x) is the incomplete

gamma function:

P (n, x) =
∫ x

0

1

�(n)
tn−1e−t dt. (19)

And accounting for the distribution of Nνβ we get

Pfa = 1 −
∏
νβ

[ ∞∑
k=0

P
(
k,

τ

σ

) (
SN0

νβ

)k

k!
e−SN0

νβ

]
. (20)

By plotting Pfa as a function τ , one can choose the
threshold τ for a given Pfa. Note that P(n, x) can be found
implemented in many scientific programming libraries,
making thus the practical calculation of Pfa quite easy. As
an example, we have considered a case of a signal without
LFMs and three IMFs (K = 3) is considered. σ is set to 1.
The all-at-one Hough transform and the IMFs are
presented on the first line of Fig. 4. On the second line of
the figure, we observe the corresponding THH transform
output and the false alarm rate as a function of the
threshold. The false alarm rate starts decreasing drastically
for τ >24, which is in good agreement with the fact that
the THH transform output (Fig. 4, bottom left) remains
smaller than about 24 (Pfa = 4.4%).

V. DETECTION IN NOISE-FREE ENVIRONMENT

We first test THH transform on free noise signals. For
LFM detection, we place a bound 5% on the false alarm
probability Pfa to determine the threshold τ (20). THH
transform is illustrated on two multicomponent signals
and detection results are compared with WVD-Hough
transform and SPWVD-Hough transform.

A. Results

The first illustration of LFM detection is a signal x1(t)
with four components (K = 4) and an observation time



Fig. 4. NP thresholding.

Fig. 5. Ideal time-frequency representation of free noise signal x1 (t).

T = 256s (Fig. 5). Using (20) with Pfa = 0.05, K = 4,
T = 256, and Fs = 1Hz we find τ = 67. The associated TH
transform, WVD, and SPWVD are shown, respectively, in
Figs. 6(a), 8(a), and 10(a). The lines are clearly visible on
SPWVD representation and better on TH transform. For
WVD, the detection of all IFs is very hard due to the
cross-terms (Fig. 8(a)). In Fig. 10(a), the time smoothing
carried out by SPWVD considerably reduces these
artifacts, but gives the worst resolutions (in time and in
frequency). Comparing TH transform against WVD and
SPWVD, the four time-frequency components are well
localized with no cross-terms or loss in time-frequency
resolution (Fig. 6(a)). Hough transform has been applied
to these three time-frequency representations. Both THH
transform and WVD-Hough transform show four peaks
(Figs. 7 and 9). However, the peaks are significantly more
prominent in THH transform than in WVD-Hough
transform. The estimation of the IFs by THH transform,

Fig. 6. LFM components tracking in TH transformed plane of x1 (t). (a)
TH transform of x1 (t). (b) Lines of detection on TH transform.

Fig. 7. THH transform applied to x1 (t).

WVD-Hough transform, and SPWVD-Hough transform
are shown, respectively, in Figs. 6(b), 8(b), and 10(b). Due
to oscillating structures of cross-terms, the detection of
peak by Hough transform is difficult for the WVD
(Fig. 8(b)). While SPWVD reduces the cross-terms and
gives a better time-frequency representation, estimation of
the IFs remains difficult (Fig. 10(b)). For THH transform,
the time-frequency components are well separated in the
parameter space (Fig. 7). Unlike WVD-Hough transform,
the four time-frequency components are well detected and
estimated with the THHT (Fig. 6(b)).



Fig. 8. LFM components tracking in WVD plane for x1 (t). (a) WVD of
x1 (t). (b) LFM detection on WVD.

Fig. 9. WVD-Hough transform applied to x1 (t).

Fig. 10. LFM components tracking in SPWVD plane for x1 (t). (a)
SPWVD of x1 (t). (b) LFM detection on SPWVD.

THH transform has also been tested on a
multicomponent signal x2(t) of seven linear chirps and
sinusoidal chirp in the time-frequency domain (Fig. 11).
With K = 8, we obtain τ = 92. Results of SPWVD and
TH transform are shown in Figs. 12 and 13. While the
different components are hardly readable in the time
representation, they clearly appear in SPWVD and are
even better evidenced in TH transform. Again, as in the
first case the cross-terms problem is more important
as the number of signal components increases and this
is well evidenced on the output of SPWVD (Fig. 13(a)).
The sinusoidal FM component in SPWVD is represented
as an LFM signal (Fig. 13(b)). Note that TH transform is
devoid of the cross-terms effect and all IFs are well
localized (Fig. 12(a)). However, SPWVD provides
cross-terms and so the detection and estimation of
IFs are not easy (Fig. 13(b)). Comparing THH transform
against SPWVD-Hough transform, all linear IFs
components are well detected, localized, and estimated
(Fig. 12(b)).



Fig. 11. Ideal time-frequency representation of free noise signal x2 (t).

Fig. 12. LFM components tracking in TH transform plane for x2 (t). (a)
TH transform of x2 (t). (b) Lines of detection on TH transform.

VI. DETECTION IN NOISY ENVIRONMENT

In many applications, signals enhancement or
extraction of signals of interest from noise is necessary.
Signals or their components may overlap either in time or
frequency domain and thus conventional filtering such as
time-domain or frequency-domain windowing is not
efficient. A solution to this problem is to use subband

Fig. 13. LFM components tracking in SPWVD plane for x2 (t). (a)
SPWVD of x2 (t). (b) Lines of detection on SPWVD.

filtering. In this work we use a data-driven time filtering
based on EMD where filtering is applied to each extracted
IMF.

A. EMD-Based Denoising

A denoised version of an input signal can be obtained
by filtering each IMF separately followed by signal
reconstruction. Let fj(t) be a clean deterministic IMF. The
jth IMF, corrupted with additive noise bj(t) is then given by

IMGj (t) = fj (t) + bj (t), where j ∈ {1, . . . , K}. (21)

Let f̃j (t) be an estimation of fj(t) based on the noisy
observation IMFj(t). This estimate is given by

f̃j (t) = �[IMFj (t), ξj ] (22)

where �[., ξ ] denotes a thresholding or filtering function,
with parameters ξ . The denoised signal x̃(t) is given by
[31]

x̃(t) =
K∑

j=1

f̃j (t) + rK (t). (23)



Fig. 14. Block diagram of EMD – SG.

For noise reduction, EMD can be combined with a
filtering method such as Savitzky-Golay (SG) smoothing
(finite impulse response (FIR) filter) [32] or a nonlinear
transformation such as soft-thresholding. If �[IMFj (t), ξj ]
is a filtering method, then ξ j can be the window size of the
filter or its kernel. In this work, we combine EMD with
SG filter, which have been shown to be efficient for noise
removal [31] (Fig. 14). SG filter (also called digital
smoothing polynomial filter) performs time smoothing
based on least squares (LS) polynomial fitting across a
moving window within the data [32]. This filter performs a
local polynomial regression on a distribution of equally
spaced points to determine the smoothed value for each
data point [32]:

f̃j (i) =
m=MR∑

m=−ML

αm.IMFj (i + m) (24)

where i = . . . , –2, –1, 0, 1, 2, . . . . ML and MR is the
number of points used on the left and right sides of i. The
idea of SG filtering is to find filter coefficients αm (24) that
preserve higher moments within the window of analysis.
For each point IMFj(i –ML), . . . , IMFj(i + MR) are
determined by using a polynomial of degree p, α0 + α1i1

+ α2i2 + . . . + αpip. The coefficients αm are given by an
LS fit using a shifted windows [32]. SG filter is optimal in
the sense that it minimizes the LS error in fitting a
polynomial to frames of noisy data. Furthermore, this
smoothing filter performs much better than standard
averaging FIR filter because it tends to preserve features
of the signal such as peak height and high frequency
components, which are usually “flattened” by other
adjacent averaging techniques.

B. Results

The effectiveness of THH transform has also been
tested on noisy LFM signals (13) where the phase function
is given by

φLFM = 2iπ

(
νt + β

2
t2

)
. (25)

An LFM signal with ν = 0.018 Hz, β = 0.328 Hz/s, and N
= 128 samples is used. White Gaussian noise is added to
the LFM signal to obtain noisy signals with
signal-to-noise ratios (SNRs) in the range of 50dB down
to 5dB. A Monte Carlo simulation with 500 trials is run to

Fig. 15. MSEs of β and ν estimates of noisy LFM signal.

Fig. 16. Components tracking in TH transform plane of x1 (t). (b) Lines
of detection on TH transform.

evaluate the effectiveness of THH transform estimator.
The estimations results of β and ν are presented in 15. For
SNR = 5-23dB THH transform provides better β

estimates than WVD-Hough transform (Fig. 15). This
result was expected due to the cross-terms generated by
WVD between free noise signal and noise component. For
SNR≥ 23dB the two estimators perform similarly. For ν

estimates similar conclusions can be drawn for the
estimation (Fig. 15).

THH transform is tested on signal x1(t) (Fig. 5)
corrupted with AWGN with an SNR of 7dB. The four IFs
are evidenced in both time-frequency representations
(Figs. 16(a), 17(a)). The result of line detection with THH
and SPWVD-Hough transforms are given in Figs. 16(b)



Fig. 17. Components tracking in SPWVD plane of x1 (t) (SNR = 7dB).
(a) SPWVD of x 1 (t). (b) Lines of detection on SPWVD.

and 17(b), respectively. As in the first simulations, the
THH transform (Fig. 16(b)) is sharper than
SPWVD-Hough transform (Fig. 17(b)) which makes the
detection easier. Both THH and SPWVD-Hough
transforms detect correctly three out of four LFM
components (Figs. 16(b), 17(b)). The fourth one is not
well identified. For THH transform, this may be due to
estimation of the IF of the IMF by the TKEO, which has a
moderate sensitivity to noise. For the SPWVD-Hough
transform, despite the smoothing used, strong cross-terms
persist and degrade the time-frequency representation.
Consequently both detection and estimation with Hough
transform are biased.

Based on EMD and TKEO, TH transform is able to
extract the energy associated with different intrinsic time
scales of a nonstationary signal such as FM components,
and this makes it attractive for detection purpose. Further,
TH transform produces a sharp and sparse representation.
This is well illustrated on Figs. 6(a), 12(a), and 16(a)
where TH transform generates much cleaner, sharper, and
sparser time-frequency representations than WVD and
SPWVD (Figs. 8(a), 10(a), 13(a), 17(a)). This sparsity and
sharpness of TKS are interesting properties for detecting

or tracking fine structures such as LFM signals. The
detection and localization are also made easy by the
TKEO. However, both EMD and TKEO are sensitive to
sampling rate. TKEO is best suited for signals with
frequency less than one-fourth of the sampling frequency
[33]. Thus, in practice, signals must be sampled with
sampling rate at least four times the Nyquist-Shannon
frequency before applying the ESA. Also, results of the
sifting process (IMFs extraction) are influenced by the
frequency rate. Based on simulations, it was found that
good performances of EMD in terms of IMFs
orthogonality and distribution of energy are obtained for a
sampling limit of five times Nyquist-Shannon frequency.
Thus, prior to applying THH transform the signals must be
“sufficiently oversampled.”

VII. CONCLUSIONS

In this work a novel approach for detection of
multicomponent LFM signals in the time-frequency
domain that we called THH transform is proposed.
Preliminary results show the interest and effectiveness of
THH transform as a tracking method for time-frequency
components. THH transform is cross-terms free and does
not suffer from the trade-off between time-frequency
resolution and cross-terms suppression. No assumptions
are made about the number of components of the signal
nor their amplitude or phase. Numerical examples show
that compared with WVD-Hough and SPWVD-Hough
transforms, THH transform achieves better performance in
terms of time-frequency components tracking of signals in
both noise-free and noisy environments. Furthermore,
THH transform yields much sharper results than
WVD-Hough and SPWVD-Hough transforms. In all
presented examples, LFM components are well identified.
In addition, we have developed an NP approach for THH
transform detection by estimating the threshold that
achieves maximum detection at fixed false alarm rate.
Since the performance of THH transform has only been
evaluated by some simulations, a large class of signals
(extensive simulations) is necessary to confirm the
obtained results. As future work we plan to extend the
analysis to more complicated IF laws such as nonlinear
FM signals or arbitrary time-frequency shapes.
Investigation is in progress to optimize the size of the SG
filter window to each noisy signal in function, for
example, of its SNR.
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