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Abstract

This paper reviews the recent advances in computational methods for nonlinear
normal modes (NNMs). Different algorithms for the computation of undamped and
damped NNMs are presented, and their respective advantages and limitations are
discussed. The methods are illustrated using various applications ranging from low-
dimensional weakly nonlinear systems to strongly nonlinear industrial structures.
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1 Introduction

The goal of modal analysis is to determine, either numerically or experimentally, the
natural frequencies and vibration modes of a structure [1]. It is routinely used in industry
during the design and certification process. For instance, for aircraft structures, modal
parameters identified during ground vibration tests are compared to the modal parameters
predicted by the numerical model in order to validate the model for subsequent flutter
calculations [2].

If they are often ignored or overlooked during the design stage, structural nonlinearities
are commonly encountered during test campaigns (e.g., for the Airbus A400M [3] and
for the F-16 aircraft [4]). On the one hand, the presence of nonlinearity poses important
challenges as novel dynamical phenomena with no linear counterpart may be observed.
On the other hand, a recent body of literature reported that nonlinearity creates new
opportunities for enhancing system performance. Nonlinearity was therefore deployed
deliberately in acoustic switches and rectifiers [5], micromechanical oscillators [6], granular
media [7], vibration absorbers [8] and energy harvesters [9].
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In this context, there is a clear need for extending the linear modal analysis framework
to nonlinear systems. Unlike linear modes, nonlinear normal modes (NNMs) are not
orthogonal to each other, do not decouple the equations of motion and cannot be used for
modal superposition. Their usefulness could therefore be questioned by the practitioner.
However, important dynamical phenomena such as modal interactions between widely-
spaced modes [10] and mode bifurcations [11] cannot be explained by linear theory. Up-to-
date linear experimental modal analysis methods can also be challenged by nonlinearity
and can, in certain cases, identify two linearized modes when only one nonlinear mode
is actually excited [12]. This is why we believe that the NNM theory is an important
addition to the structural dynamicist’s toolbag.

The first attempts to compute NNMs were analytical [11,13–16], and allowed to uncover
the dynamical mechanisms underlying the frequency-energy dependence, interactions and
bifurcations of NNMs. However, analytical methods do not lend themselves to the analysis
of complex high-dimensional structures. With the advances in computing power and
in computer methods (in particular in numerical continuation [17–21]), the last decade
witnessed the development of numerical methods dedicated to NNMs. This research area
has not yet reached maturity, but there now exist algorithms that can be effectively applied
to real engineering structures, providing the kind of in-depth analysis that is required for
a rigorous treatment of nonlinear systems. If reviews of the theory and applications of
NNMs were recently published [22–24], the present paper is the first paper that performs
a detailed and critical assessment of the different families of computational methods both
for undamped and damped NNMs.

The paper is organized as follows. The two main definitions of NNMs together with
their frequency-energy dependence are briefly reviewed in Section 2. Section 3 describes
numerical methods that compute periodic motions of Hamiltonian systems, i.e., undamped
NNMs. Section 4 discusses the computation of damped NNMs defined as two-dimensional
invariant manifolds in phase space. Each section concludes with a critical assessment of
the presented methods. Finally, Section 5 draws the conclusion of the paper and highlights
the open problems and challenges that should drive the development of nonlinear modal
analysis in the years to come.

The subject of numerical computation of periodic solutions and manifolds is extremely
broad, and an extensive literature exists (see, e.g., [25–33]). A great number of methods
used for NNM computation were borrowed from this body of literature. This is, for
instance, the case of shooting and pseudo-arclength continuation described in Section 3
and of the trajectory-based method in Section 4.2.1. We stress that this paper focuses on
the subject of NNMs and their application in mechanical engineering. There is therefore
no attempt to review the developments and other applications of these methods, e.g., for
the computation of forced responses and invariant manifolds of general nonlinear systems.
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2 Definition and Frequency-Energy Dependence of

NNMs

The foundations which served as the cornerstone of the development of the nonlinear
normal mode (NNM) theory were laid down by Lyapunov and Poincaré. In his center
theorem, Lyapunov stated that, under some regularity assumptions and non-resonance
conditions, a finite-dimensional Hamiltonian system possesses different families of peri-
odic solutions around the stable equilibrium point of the system that can be interpreted as
nonlinear extensions of the normal modes of the underlying linear system [34,35]. Based
on this theoretical framework, Rosenberg defined an undamped NNM as a vibration in
unison of the system (i.e., a synchronous periodic oscillation). This definition requires
that all material points of the system reach their extreme values and pass through zero
simultaneously. It allows all displacements to be expressed in terms of a single reference
displacement. Rosenberg was also the first to propose constructive techniques for the
calculation of NNMs [36–38]. However, this definition cannot account for modal interac-
tions during which the periodic motion contains the frequencies of at least two interacting
modes. An extended definition considering NNMs as (non-necessarily synchronous) pe-
riodic motions was therefore proposed in [39]; it is the definition of an undamped NNM
that is considered throughout this review paper.

In view of the frequency-energy dependence of nonlinear oscillations, the frequencies,
modal shapes and periodic motions of NNMs depend on the system’s energy, i.e., the sum
of kinetic and potential energies. For illustration, Figure 1(a) represents the backbone
curve of the in-phase and out-of-phase NNMs of the two-degree-of-freedom (DOF) system

ẍ1 + (2x1 − x2) + 0.5x3
1 = 0

ẍ2 + (2x2 − x1) = 0 (1)

for increasing energies. The NNM motions at low energy resemble those of the correspond-
ing mode of the underlying linear system. The modal shape is a line, and the periodic
motion in phase space is an ellipse. For higher energies, the modal shape becomes a
curve, and the motion in phase space turns into a deformed ellipse. Due to the harden-
ing characteristic of the cubic spring, the period of the motion decreases for increasing
energies.

If the energy is increased further for the in-phase NNM, as in Figure 1(b), other branches
of periodic solutions emanate from the backbone curve. They represent the realization of
n : m interactions between the in-phase and out-of-phase modes. The appearance of these
modal interactions is explained in Figure 2, which depicts the ratio between the frequencies
of the out-of-phase and in-phase NNMs and shows that this ratio increases from

√
3 to

+∞. When the ratio is, e.g., 3, the frequency of the third harmonics of the in-phase mode
is equal to the frequency of the fundamental harmonics of the out-of-phase mode, thereby
realizing the condition for a 3:1 resonance between these modes. From Figure 2, one
realizes that system (1) possesses a countable infinity of modal interaction branches [22].
In view of the engineering relevance of such interactions, the overall objective of NNM
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Figure 1: NNMs of system (1). (a) Frequency-energy dependence of in-phase and out-
of-phase NNMs defined as periodic motions. The insets illustrate the NNM shape in the
configuration space. The horizontal and vertical axes are the displacements of the first
and second DOFs, respectively; (b) backbone of the in-phase NNM and modal interaction
branches.
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computation should therefore be to trace out both the backbone and modal interaction
branches in a frequency-energy plot (FEP).
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Figure 2: Ratio between the frequencies of the out-of-phase and in-phase NNMs.
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Figure 3: In-phase NNM of system (1). (a) Frequency-energy dependence of the NNM
defined as periodic solutions. NNM motions in the phase plane of the first DOF are inset;
(b) the NNM defined as a two-dimensional invariant manifold in phase space is paved by
the collection of periodic orbits.

Even if the damped dynamics of a nonlinear system can often be interpreted based on
the NNMs of the underlying undamped system, as discussed in [22], NNMs can no longer
be defined as periodic motions in the presence of damping. Using geometric arguments,
Shaw and Pierre proposed an elegant extension of the NNM definition to damped systems.
Interpreting linear modes as invariant planes in phase space, they defined NNMs as two-
dimensional surfaces, termed invariant manifolds, that are tangent to the linear planes
at the equilibrium point [40, 41]. Generalizing the property of invariance of LNMs, such
manifolds are invariant under the flow, i.e., trajectories that start out in the manifold
remain in it for all time, and the system behaves as a nonlinear single-degree-of-freedom
system on the manifold. In the undamped case, invariant manifolds can be constructed
by simply gathering the periodic orbits defining undamped NNMs in phase space, as
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in Figure 3. This figure illustrates the direct link that exists between the two NNM
definitions.

Aiming at unifying the notion of periodic motion and invariance in a single definition
of NNMs, Ardeh et al. [42, 43] recently introduced the concept of instantaneous center
manifolds (ICMs). ICMs are defined as two-dimensional invariant manifolds containing
all possible periodic orbits of the system. Essentially similar to the manifold introduced
by Shaw and Pierre for conservative systems, ICMs are however restricted to the periodic
part of the solution in the nonconservative case.

Finally, we remark that NNM motions can undergo bifurcations and stability changes.
The description of these phenomena is beyond the scope of this paper, but the interested
reader can refer to [11,22] for further details.

3 NNMs Defined as Periodic Solutions

Assuming that continuous systems were spatially discretized, the ordinary differential
equations governing the free response of a conservative mechanical system with N DOFs
are

M ẍ(t) + K x(t) + fnl (x(t)) = 0 (2)

where M and K are the linear mass and stiffness matrices, respectively; x and ẍ are the
displacement and acceleration vectors, respectively; fnl is the nonlinear restoring force
vector.

The equations of motion (2) are recast into state space form

ż = g(z) (3)

where z = [x∗ ẋ∗]∗ is the 2N -dimensional state vector, (.)∗ denotes the transpose oper-
ation, and

g(z) =

(

ẋ

−M−1 [Kx + fnl(x)]

)

(4)

is the vector field. The solution to dynamical system (3) for initial conditions z(0) = z0 =
[x∗

0 ẋ∗

0]∗ is written as z(t) = z (t, z0) in order to exhibit the dependence on the initial
conditions (ICs), z (0, z0) = z0.

Defining NNMs as families of periodic oscillations of Eqs. (3) is appealing because there
exists a solid computational framework for tracing out one-dimensional families of periodic
orbits [29]. Algorithms for computing undamped NNMs combine two types of methods
that can be chosen independently from each other, namely (i) methods seeking isolated
periodic motions and (ii) continuation methods following the family of periodic solutions
corresponding to a NNM. The most popular methods are presented in Sections 3.1 and 3.2,
respectively.
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3.1 Computation of Isolated Periodic Solutions

A periodic solution zp(t) of the autonomous system (3) is a solution that satisfies zp(t, zp0) =
zp(t+T, zp0), where T , the minimal period, and zp0, the ICs, are a priori unknown. Such
a solution can be described using an equation H(zp(t), T ) = 0 that accounts for the equa-
tions of motion (3) and expresses the closure of the orbit in state space. To define a unique
solution, an additional condition, termed the phase condition, must be added. Indeed, if
zp(t) is a periodic solution of (3), then zp(t + ∆t) is geometrically the same solution in
state space for any ∆t. Hence, a condition h(zp(t)) = 0 should be specified to remove the
arbitrariness of the initial conditions. Different phase conditions were presented in the
literature [19], but a straightforward approach consists in setting one initial velocity to
zero [19,44].

In summary, an isolated NNM motion is computed by solving the augmented problem

{

H(zp(t), T ) = 0,
h(zp(t)) = 0.

(5)

There exist two main approaches for defining H. The first approach finds the ICs and the
period that define the periodic orbit. This is, for instance, the case of the shooting method
presented in Section 3.1.1. The second approach matches the solution of the equations of
motion with shape functions and discretizes the problem using, e.g., a weighted-residual
approach. The latter method describes mathematically the shape of the entire orbit which
is in contrast with the former method that is only interested in a single point along the
trajectory.

3.1.1 Shooting Methods

The shooting method is a popular numerical technique which iteratively finds the ICs
zp0 and the period T that realize both the periodic motion and the phase condition (see,
e.g., [39]). Specifically, shooting defines H = 0 as a two-point boundary-value problem
using the periodicity condition

H(zp0, T ) ≡ zp(T, zp0) − zp0 = 0 (6)

The shooting function H(z0, T ) = z(T, z0) − z0 represents the difference between the
initial and final states of the system at time T .

Starting from some assumed initial conditions z
(0)
p0 , the motion z(0)

p (t, z
(0)
p0 ) at the assumed

period T (0) is obtained by numerical time integration of the equations of motion. Any
standard technique such as Runge-Kutta algorithms can be exploited. In Ref. [44], Peeters
et al. employed Newmark’s method which is particularly effective for solving large-scale
second-order ordinary differential equations such as those met after the finite element
discretization of mechanical systems. In Ref. [45], the discrete energy-momentum method
introduced by Simo and Tarnow [46] was exploited. The method has the advantage of
rigorously preserving the energy between two successive time steps.

7



In general, the initial guess (z
(0)
p0 , T

(0)) does not satisfy the periodicity condition (6) and

corrections to both z
(0)
p0 and T (0) are sought. In Ref. [47], Slater used a general optimization

algorithm to modify the initial conditions. More recently, Peeters et al. [44] used a
Newton-Raphson iteration scheme to converge to the actual solution. The corrections
∆z

(k)
p0 and ∆T (k) at iteration k are found by expanding the nonlinear function

H
(

z
(k)
p0 + ∆z

(k)
p0 , T

(k) + ∆T (k)
)

= 0 (7)

in a Taylor series

H
(

z
(k)
p0 , T

(k)
)

+
∂H

∂zp0

∣

∣

∣

∣

∣

(z
(k)
p0 ,T (k))

∆z
(k)
p0 +

∂H

∂T

∣

∣

∣

∣

∣

(z
(k)
p0 ,T (k))

∆T (k) + H.O.T. = 0 (8)

and neglecting higher-order terms (H.O.T.). As evidenced in Eqs. (8), the shooting
method requires the partial derivatives of H(z0, T ). The 2N × 1 vector ∂H/∂T is given
by

∂H

∂T
(z0, T ) =

∂z(t, z0)

∂t

∣

∣

∣

∣

∣

t=T

= g(z(T, z0)). (9)

The 2N × 2N matrix ∂H/∂z0 follows

∂H

∂z0

(z0, T ) =
∂z(t, z0)

∂z0

∣

∣

∣

∣

∣

t=T

− I2N×2N (10)

where I is the identity matrix. The monodromy matrix ∂z(t,z0)
∂z0

∣

∣

∣

t=T
represents the variation

of the solution after time T when initial conditions z0 are perturbed. There are basically
two means of computing this matrix:

1. It can be evaluated through a numerical finite difference analysis by perturbing suc-
cessively each initial condition and integrating the equations of motion in time [19,
48]. This approximate method relies on extensive numerical simulations and may
be computationally intensive for large-scale finite element models.

2. An alternative computation is obtained by sensitivity analysis. Differentiating the
equations of motion (3) with respect to initial conditions z0, the monodromy matrix
is governed by the linear matrix differential equation

d

dt

[

∂z(t, z0)

∂z0

]

=
∂g(z)

∂z

∣

∣

∣

∣

∣

z(t,z0)

[

∂z(t, z0)

∂z0

]

. (11)

at t = T . It can therefore be computed by numerical integration of (11) with unit
initial conditions. The reduction of the computational burden with respect to finite
differences is very significant for large-scale models. In Ref. [44], the solution of
equations (11) is computed together with the solution of the nonlinear equations
of motion (3) in a single numerical simulation. As a result, the computation of
the monodromy matrix requires only a single additional iteration at each time step,
which further decreases the computational cost.

The eigenvalues of the monodromy matrix are the Floquet multipliers which dictate the
stability of the NNM motions. Floquet multipliers with an amplitude greater than 1
indicate unstable motion.
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3.1.2 Discretization Methods

As opposed to shooting methods which rely on time integration, discretization approaches
approximate a periodic solution using trial (or, equivalently, shape) functions and trans-
form the problem of finding a periodic orbit into solving a system of nonlinear algebraic
equations. More precisely, a trajectory z(t) on the time interval [0, T ] is approximated
using the series

z(t) =
nρ
∑

i=1

ρi(t)zi (12)

where the ρi’s and the zi’s are trial functions and unknown coefficients, respectively. Using
a weighted residual approach, the equations of motion write

∫ T

0
(ż − g(z))δz dt = 0 (13)

where the variation δz is described as

δz(t) =
nψ
∑

i=1

ψi(t)δzi (14)

where the ψi’s are the so-called test functions. Equations (13) have to be satisfied for
arbitrary δz, leading to a set of nonlinear algebraic equations that has the general form

H(z1, ..., znρ , T ) = 0 (15)

Unlike Eqs. (6), Eqs. (15) only define a trajectory in phase space but do not include the
periodicity conditions which have to be added. Two important examples of such methods
are the so-called harmonic balance and orthogonal collocation methods.

Harmonic Balance The harmonic balance (HB) method is a widely-used approach
whose first applications to mechanical and electrical engineering date back to the 1960s.
Trial and test functions are defined using a Fourier basis

{1, cos(ωt), . . . , cos(nHωt), sin(ωt), . . . , sin(nHωt)} (16)

where ω = 2π/T and nH are the angular frequency of the periodic solution and the
number of harmonic components, respectively. The unknown z(t) is thus represented as
a truncated Fourier series

z(t) = zE +
nH
∑

k=1

(cos(kωt)zCk + sin(kωt)zSk) . (17)

The trajectory z(t) is periodic by definition and is forced to satisfy the condition z(T ) =
z(0). Inserting (17) into the equations of motion, the weighted residual process (13) is
equivalent to collecting and balancing the terms that have the same harmonic index. This
yields an algebraic system of 2N(2nH +1) equations for the 2N(2nH +1) unknown Fourier
coefficients zE, zCk , zSk :

H(z̄, ω) = A(ω)z̄ + b(z̄, ω) = 0 (18)
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where

A(ω) = diag
(

K,K − ω2M,K − ω2M, ...,K − (nHω)2M,K − (nHω)2M
)

, (19)

z̄∗ =
(

z∗

E, z
∗

C1
, z∗

S1
, ..., z∗

CnH
, z∗

SnH

)

, (20)

and b(z̄, ω) is the Fourier approximation of the nonlinear force vector fnl(x).

Although the HB method is simple in essence, the Fourier expansion of the nonlinear
force vector fnl(x) can be cumbersome (or even impractical) to evaluate if nonlinearities
are nontrivial or not differentiable. Several variations of the basic algorithm were proposed
to overcome this shortcoming. For instance, the incremental HB method [49] balances
the harmonics only for the linearized problems that appear in the continuation process.
Another approach is to alternate between time and frequency domains using the Fast
Fourier Transform and its inverse. This method allows one to deal with any kind of
nonlinearity as the force vector fnl(x) is first computed in the time domain and then
transformed back to the frequency domain [50]. Finally, Cochelin and Vergez proposed in
Ref. [51] a high-order frequency-based HB method which recasts system (3) into quadratic
form

d( ˙̂z(t)) = c+ l1(ẑ) + l2(ẑ, ẑ) (21)

where d and l1 are linear operators and l2 is a bilinear operator. To this end, additional
(artificial) variables are often required and gathered with the state space variables z in
the extended vector ẑ. The quadratic recast allows one to rigorously and systematically
derive with simple algebra the truncated Fourier series expansion of fnl(x) for a large class
of nonlinear systems.

An important parameter of the method is the number of harmonics nH that is considered
in the Fourier expansion. This number can be determined prior to the computation
or can evolve along the branch of periodic orbits. We can distinguish between global
methods which impose the same number of harmonics for all DOFs and local methods
which consider an individual number of harmonics for each DOF. The latter methods
are particularly convenient as all DOFs are a priori not submitted to the same level of
nonlinear distortions. We refer to Ref. [52] for further detail about these approaches.

Unlike shooting which is inherently a time-domain approach, the monodromy matrix
is not obtained as a byproduct of the HB method. Stability can however be analyzed
directly in the frequency domain using Hill’s method [53, 54]. An eigenvalue problem
whose solutions provide a direct access to the so-called Floquet exponents (related to the
Floquet multipliers) is solved to determine the stability of a periodic solution.

Orthogonal Collocation Contrary to the HB method, orthogonal collocation is a time
domain method where the time interval is divided into n∆t smaller intervals ∆tj = [tj, tj+1]
(called mesh intervals) and order-p Lagrange polynomials are considered as trial functions.
Equations (3) are collocated at Gauss points for each mesh interval (i.e., using a Dirac
distribution as test function ψi(t)). Grouping the discretized equations of motion together
with the periodicity condition, the resulting algebraic system comprises 2N(pn∆t + 1)
equations that can be solved using a Newton-like approach. The size of this system is
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much larger than for the shooting method (6) since the unknowns are the values of z(t)
at all collocation points. Conversely, no direct numerical integration is needed.

Interestingly, the monodromy matrix can be determined using the components of the
matrix that represents the discretized problem. Similarly to the shooting method, one
can in turn exploit its eigenvalues to analyze the stability of a periodic solution.

3.2 Continuation of Periodic Solutions

The numerical methods presented in Section 3.1 define a periodic solution using a system
of nonlinear equations with the general form H(q, λ) = 0 with H a vector of nq equations,
q a vector of nq unknowns (e.g., zp0 or z̄) and λ a single control parameter. Introducing
the extended vector U = [q∗ λ]∗, the system of equations to solve writes

H(U) = 0 (22)

with U ∈ R
nq+1. For each solution of system (22), and provided it is not a bifurca-

tion point, the implicit function theorem guarantees the existence of a locally unique
one-dimensional continuum of periodic solutions called a solution branch (or solution
family) [18].

Continuation (or path following) is an effective approach for determining these solutions
branches given any starting point. It is based on (i) a predictor step which finds a first
guess Ū to the solution of (22), and (ii) a corrector step that improves this first guess to
obtain an actual solution of Eqs. (22). Existing continuation methods differ in the order
of approximation that is used in the prediction and in the constraints that are imposed
for the correction. There exist numerous techniques (see, for instance, Ref. [19]), but, in
the context of NNM calculation, three methods were mainly exploited, namely sequential,
pseudo-arclength, and asymptotic numeric continuation.

For conservative autonomous systems, the nonlinear system of equations (5) defining
the periodic solutions possesses as many equations as unknowns and does not contain
any extra free control parameter for the continuation. To recast the system under the
form (22), the approach proposed in Ref. [29] adds an artificial damping parameter ν and
searches for the periodic solutions of the dissipative system

ż = g(z) + ν∇E(z). (23)

where E(z) is the total energy in the system. As demonstrated in [29], periodic solutions
of (23) can only exist if ν = 0. As such, the parameter ν will naturally appear equal
to zero in the continuation process. Introducing this artificial parameter has however
the advantage of transforming the continuation problem into a square problem with as
many equations as unknowns. A simplified approach where linear viscous damping is
used instead of ∇E was considered in Ref. [45] to compute NNMs. Alternatively, the
overdetermined system of equations can be solved using the Moore-Penrose pseudo-inverse
as in Peeters et al. [44].

11
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Figure 4: Schematic procedure of the predictor (→) and corrector (◦◦◦) steps followed in
the (a) sequential; (b) pseudo-arclength; (c) asymptotic-numeric continuation methods.
(–) Branch including a turning point.

3.2.1 Sequential Continuation

Choosing a continuation parameter U j, sequential continuation consists of defining a
zeroth-order prediction

Ū j = U j
0 + ∆U j, (24)

Ū i = U i
0 ∀i 6= j, (25)

where U0 is a previously-computed regular solution and ∆U j is the increment applied to
the continuation parameter. The corrector step then solves (22) while keeping Ū j fixed.
The principle of the method is illustrated in Figure 4(a) with the period T playing the
role of the parameter U j, as in [39].

In Ref. [47], Slater combined sequential continuation with shooting in order to increment
a modal amplitude parameter and compute NNMs. Although sequential continuation is
straightforward to implement, the method is limited when the solution branch presents
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a turning point in parameter space. This configuration is illustrated in Figure 4(a). At
T = T ⋆, there is no solution to the problem for increasing values of T . In practice, this
issue frequently occurs as, for instance, in the presence of modal interactions.

3.2.2 Pseudo-Arclength Continuation

Pseudo-arclength continuation is a first-order predictor-corrector algorithm that was first
introduced by Keller [55] to systematically pass through turning points. It is arguably
the most popular method for tracing out solution branches [19, 56]. Let U0 be a regular
solution of Eqs. (22) and U1 the normalized tangent vector at U0 defined as1

∂H

∂U
|U=U0U1 = 0,
U∗

1U1 = 1.
(26)

A prediction point is computed as

Ū = U0 + ∆sU1, (27)

where ∆s is a prescribed pseudo-arclength increment defining the distance between U0

and Ū (see Figure 4(b)). Since Ū is no longer a solution, Newton corrections are applied
so as to satisfy (22) up to the required tolerance. As illustrated in Figure 4(b), impos-
ing the Newton correction vector to be orthogonal to the tangent vector U1 allows the
continuation method to pass through a turning point. This is a crucial requirement for
NNM computation. If ∆s is sufficiently small, the convergence of the Newton process is
guaranteed.

3.2.3 Asymptotic Numerical Continuation

The asymptotic numerical method (ANM) relies on a high-order Taylor series expansion
of the solution branch with respect to the pseudo-arclength parameter s = U∗

1(U −
U0) [58–60]. The series

U(s) = U0 + sU1 + s2U2 + ...+ snoUno , (28)

where no typically ranges between 20 and 30, provides a local representation of the branch
that passes through U0. Introducing (28) into a quadratic recast of the governing equa-
tions (22) as in Refs. [45, 61], the terms with the same power in s can be balanced. This
leads to

order 1:

{

Lt(U1) = 0,
U∗

1U1 = 1,
(29)

order p:

{

Lt(Uo) = Fnl
p ,

U∗

pU1 = 0,
(30)

1Alternatively, in Ref. [57], this tangent vector was approximated using U0 and the previously com-
puted solution on the branch.
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where Lt is a tangent operator and Fnl
p involves the lower-order approximations Uk with

k ∈ [1, no − 1]. Equations (30) can be solved sequentially for increasing orders. One
advantage of this ANM continuation is that Lt is identical at all orders and can be
inverted once for all. The computational cost of the series remains therefore limited.

The validity interval [0, smax] inside which the series satisfies ‖H(U(s))‖ ≤ ǫr with ǫr a
prescribed tolerance can be defined as [62]:

smax =

(

ǫr

‖Fnl
no+1‖

)1/(no+1)

. (31)

It is easily determined a posteriori. The principle of this high-order continuation is to
take the end point U(smax) of the last approximation as a new starting point U0 for the
next series development. The complete solution branch is thus known analytically as a
collection of Taylor series representations. These series contain a great deal of valuable
information on the solution branch which can be exploited to improve the robustness
of the continuation process. For instance, any simple bifurcation point can be easily
detected, and its two tangents can be captured by monitoring the emergence of geometric
series in (28), referring to [63] for details.

3.3 Assessment

Shooting is one of the first methods that was used for computing NNMs numerically [47].
Since then, it was used in various applications including nonlinear beams [44,64], vibration
absorbers [39, 65, 66], structures with cyclic symmetry [67], and granular chains [68].
Quite simple to implement, shooting requires moderate memory resources as the size
of the Jacobian matrix of H is 2N × 2N where N is the number of DOFs. Targeting
further reduction of the computational cost, Peeters et al. [44] exploited the symmetries of
fundamental NNMs. Specifically, thanks to symmetry in time, shooting can be performed
over half the motion period, dividing the computational cost by a factor of two. In
addition, spatial symmetry of NNMs allows for a phase condition that sets all initial
velocities to zero thereby dividing the number of unknowns by two. Combined with
sensitivity analysis, these improvements make shooting a suitable candidate for addressing
large-scale, complex systems.

For instance, the NNMs of the Morane-Saulnier 760 aircraft, a full-scale airframe that
presents softening nonlinearities in the bolted connections between the external fuel tanks
and the wing tips (see Figure 5), were computed from a reduced-order model comprising
548 DOFs in [69]. Figure 6 represents the FEP of the first symmetric wing torsional
mode. The oscillation frequency along the backbone undergoes a substantial decrease
for increasing energies because torsion induces important deformations in the bolted con-
nections. As for the 2DOF system presented in Section 2, the FEP of the aircraft also
features branches of modal interactions. Specifically, three branches realizing 3:1, 5:1 and
9:1 internal resonances with higher-frequency modes can be observed in Figure 6. The
evolution of the modal shapes along the 3:1 branch in Figures 6(a – c) depicts a smooth
transition from symmetric wing torsion to a higher-frequency tail torsional mode. Both
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modes are present in the linear modal basis, but their mixing shown in Figure 6(b) is not.
It is therefore a mode with no linear counterpart.

(a) (b)

Figure 5: Morane-Saulnier 760 aircraft. (a) Photograph; (b) close-up of the bolted con-
nections between the wing tip and an external fuel tank. Figure reproduced from [69].

The shooting technique was also applied to another real-life engineering application, i.e.,
the SmallSat spacecraft developed by EADS-Astrium. This satellite is equipped with
a vibration isolation device possessing multiple lateral and axial mechanical stops [70].
Figure 7(a) presents a photograph of the structure at EADS Astrium testing facilities in
Stevenage (UK). Time series recorded during a test campaign are presented in Figure 7(b).
For a swept-sine base excitation of 0.1 g, the satellite response at the instrument panel
presents a single resonance peak around 60 Hz. For a forcing amplitude of 1 g, another
resonance peak characterized by a larger amplitude appears before 30 Hz. This is the
clear manifestation of an inherently nonlinear resonance, as there is no linear mode in-
volving instrument panel deformation in this frequency range. This finding was confirmed
numerically through the computation of the sixth NNM of the spacecraft in Ref. [70]. The
FEP of this mode in Figure 7(c) depicts a 2:1 modal interaction during which the second
harmonics of a mode of the vibration isolation device excites a mode of the instrument
panel. The modal shapes on the branch are inset in Figure 7(c). As for the aircraft,
mixing between modes of the linear basis can be observed. In view of the important ac-
celerations measured at the instrument panel, this modal interaction is of great practical
relevance.

Thanks to the nonlinear phase lag quadrature criterion [71], an original computation of
undamped NNMs in forced and damped systems was presented in Ref. [72]. To this end, an
additional equation imposing quadrature between the applied force and the response was
added to the standard shooting function (6). In Refs. [73,74], the NNMs were computed
in configuration space using a shooting function that constraints the end points of the
trajectory to reach the same equipotential surface.

Shooting is per se limited by the capabilities of time integration algorithms. It can fail for
strongly unstable systems, as reported in [19], and it hardly deals with piecewise linear
or nonsmooth systems, unless specific time integration techniques or regularization are
considered. An additional difficulty with shooting is that the small step sizes that are
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Figure 6: FEP of the first symmetric wing torsional NNM of the Paris aircraft. NNM
motions (a) on the backbone (in the vicinity of the branch); (b) in the middle of the
branch of 3:1 internal resonance between the first wing torsional mode and a higher tail
mode; and (c) at the extremity of the branch. Figure reproduced from [69].

required for accurate time integration increase the sensitivity to high-order harmonics
present in the response. As a result, numerous modal interactions, whose computations
are demanding, can be encountered along a NNM branch. An illustration of this issue
is presented for the fifth NNM of the satellite in Figure 8(a). The 15:1 and 120:1 modal
interactions were found to be very sensitive to small perturbations, and their practical
significance is therefore questionable.

Thanks to its inherent filtering properties, the HB method offers an interesting alter-
native to the shooting method. For linear problems, the HB method rigorously solves
the equations of motion using a single harmonic (nH = 1). For problems with smooth
nonlinearities, experience shows that the number of harmonics required for an accurate
approximation of the solution is often limited. The size of the algebraic system (18), i.e.,
2N(2nH + 1), remains moderate, and the method outperforms the time integration algo-
rithms used in the shooting approach. The HB method was successfully applied to a wide
variety of problems including rotor dynamic applications with mistuned bladed disks [76],
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Figure 7: The SmallSat spacecraft. (a) Photograph; (b) accelerations measured at the
instrument panel (black dot in Fig. 7(a)) for 0.1 g (red) and 1 g (black) swept sine base
excitations; (c) sixth NNM computed using a method combining shooting and pseudo-
arclength continuation. Modal shapes are inset. Figure reproduced from [70].
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Figure 8: Fifth NNM of the SmallSat spacecraft. (a) Method combining shooting and
pseudo-arclength continuation; (b-d) HB method with one, three, and five harmon-
ics, respectively, and combined with pseudo-arclength continuation. Figure reproduced
from [75].

structures with cyclic symmetry [77, 78], and vibration absorbers [79], but this is prob-
ably in the study of geometrically nonlinear systems that HB was the most extensively
used [57,80–84].

HB was used in Ref. [75] as an effective solution to the issue posed by the computation of
numerous modal interactions. Figures 8(b-d) present the branch of the fifth NNM of the
SmallSat spacecraft obtained by retaining one, three and five harmonics in the Fourier
series, respectively. The backbone branch computed with one harmonics in the series,
resulting in a very limited computational effort, is already in excellent agreement with the
backbone calculated by the shooting method. The successive inclusion of higher harmonics
adds a sequence of modal interaction branches. The decision of the computation of modal
interactions is therefore left to the user, which is a particularly attractive feature of the
HB method.
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The method can also capture the dynamics of stiff nonlinear systems as, for instance,
systems including regularized nonsmooth nonlinearities. Karkar analyzed the periodic
regimes of a clarinet whose model includes an impact oscillator for the reed, Bernoulli’s
equation for the mouthpiece flow, and damped acoustic linear modes for the resonator [85,
86]. Moussi [87] computed the NNMs of a clamped simply-supported linear elastic beam
connected to a bilateral nonlinear elastic contactor schematized in Figure 9(a). The FEP
of the first mode is displayed in Figure 9(b). An important number of modal interactions
is captured by the algorithm, because a large number of harmonics was required to ac-
curately compute the periodic orbits of this stiff system. Interestingly, the 3:1 resonance
with the second NNM forms a large loop that, unlike the aircraft and satellite exam-
ples, is not localized in a narrow frequency band. The periodic solutions corresponding
to this interaction can probably be excited using larger ranges of initial conditions and
frequencies. The application of the HB method to a simplified model of a steam generator
present in nuclear power plants is presented in Figure 10. The vertical U-pipe transports
high-pressure hot water that is directly in contact with the radioactive material of the
core. The pipe is maintained in its vertical position by a strut plate that introduces gaps.
The natural frequency of the first out-of-plane NNM in Figure 10(b) increases due to
the hardening effect of the impacts between the pipe and the plate. Around 6 Hz, a 8:1
modal interaction couples the out-of-plane and in-plane motions of the structure. Adopt-
ing a linear design standpoint, this coupling would be ignored in view of the frequency
gap between the corresponding linear normal modes. This modal coupling can jeopar-
dize structural integrity as in the San Onofre (USA) power plant where a pipe rupture
occurred after unexpected in-plane motions [88].

Orthogonal collocation is a well-established approach that is implemented in numerous
software (e.g., AUTO [90] and MATCONT [91]). NNMs of a simple 2DOF system and of
geometrically nonlinear plates were computed using AUTO in Refs. [92,93], respectively.
If the collocation method is accurate and can benefit from adaptive meshing strategies for
the time interval [90], the method can become computationally intensive for large finite
element models, due to the size of the algebraic system to solve, 2N(pn∆t+1). In Ref. [89],
the HB and orthogonal collocation methods were compared using the SDOF (regularized)
impact oscillator illustrated in Figure 11(a). The HB method required about 200 harmon-
ics to obtain a periodic orbit with almost no visible difference with the reference solution
and was shown to exhibit the classical Gibbs phenomenon (see Figure 11(b)). The orbit
obtained with orthogonal collocation in Figure 11(c) is smoother and appears to better
capture the reference solution, because the continuity of the trajectory is only imposed
between two successive time intervals. However, without adaptive meshing strategies,
at least 202 intervals were needed to obtain one time interval during the impact time
and properly capture this region. For both smooth and nonsmooth systems, Ref. [89]
concluded in a better convergence of the HB method compared to orthogonal collocation.

Moving now to the assessment of methods for the continuation of periodic solutions, it is
clear that sequential continuation cannot be considered as a robust algorithm. Equipped
with an adaptive step-length selection strategy, the pseudo-arclength method is used in
several continuation software such as, e.g., AUTO [90] or NNMcont [94]. It can trace
out complex backbone and modal interaction branches, as confirmed in Figure 8. We
mention that there exist other alternatives to corrections that are orthogonal to the tan-
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(a)

(b)

Figure 9: Clamped-simply-supported beam with a bilateral contactor. (a) Schematic of
the system; (b) FEP of the first NNM. Figure reproduced from [87].

gent predictions, e.g., the Moore-Penrose scheme used in MATCONT [91]. A comparison
between three correction approaches for the calculation of the NNMs of a 2DOF system
is reported in [95].

The more recent ANM continuation scheme was used in different areas, including struc-
tural dynamics [96] and fluid dynamics [97, 98]. Combined with the HB method in the
MANLAB software [99], ANM was used for obtaining the results presented in Figures 9
and 10. The method does not require any step-control strategy. Furthermore, the cost of
this high-order method remains moderate if the original system is recast into quadratic
form (as in Eqs. (21)). A priori cumbersome, this operation can however be replaced by
automatic differentiation [100] for an automatic generation of the Taylor series. Finally,
a particularly attractive feature of the method is that the resulting Taylor series can be
analyzed to detect and characterize the bifurcations that occur along the branch of so-
lutions. The robustness of the continuation algorithm is thereby preserved even in the
presence of numerous internal resonances.

The present section focused on methods for computing NNMs of autonomous conservative
systems but, clearly, this presentation is by no means exhaustive. For instance, two
different approaches that bear strong resemblance to the methods described in Section 4
were presented in Ref. [101]. For the first method, low-amplitude initial conditions onto
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(a) (b)

Figure 10: Simplified model of a vertical U-pipe of a steam generator. (a) Schematic of
the system; (b) FEP of the first out-of-plane bending mode. Figure reproduced from [87].

(a) (b) (c)

Figure 11: Vibro-impact system. (a) Schematic of the system; (b) phase diagram given
by the HB method (blue NH = 20; green NH = 50, red NH = 100; orange NH = 200); (c)
phase diagram given by orthogonal collocation (blue n = 16; green n = 64; red n = 202;
orange n = 400). Figure reproduced from [89].

a LNM were considered, and small negative damping was artificially introduced into the
conservative equations of motion. A trajectory spiraling out of the equilibrium point was
then obtained using time integration. By virtue of the invariance property of a NNM,
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this trajectory describes the NNM corresponding to the chosen LNM. In comparison with
the shooting technique that also relies on time integration, this method may require very
long simulations, depending on the amount of damping introduced. In addition, as we
shall see in Section 4, the introduction of linear damping may strongly alter the dynamics
of the conservative system. For the second method, a supplementary differential equation
governing a parameter λ(t) was appended to the conservative equations of motion in
order to progressively introduce the nonlinearities into the system. Considering initial
conditions on a LNM and λ(0) = 0, the curved NNM was obtained as time evolved and
λ approached 1. In Ref [102], Laxalde et al. studied the first NNM of a turbomachinery
blade in frictionless contact at its tip. Periodic solutions were sought by minimizing a
Rayleigh quotient together with Lagrange multipliers for the contact constraints. The
unknown displacements were discretized using Fourier series as in the HB method.

4 NNMs Defined as Two-Dimensional Invariant Man-

ifolds

As reported in the literature [11], the damped dynamics of a nonlinear system can often
be interpreted based on the topological structure and bifurcations of the NNMs of the un-
derlying Hamiltonian system. However, complex damping mechanisms can be present in
engineering structures, particularly in interfaces between components, and even “simple”
viscous damping may sometimes drastically alter the dynamics. This is for instance the
case for the 2DOF system presented in Figure 12. Previously studied in Refs. [103–106],
this system contains quadratic and cubic nonlinearities arising from second-order terms
in the strain tensor. Figure 13 presents the system’s frequency response to harmonic
excitation for different forcing amplitudes and damping levels. The forced responses were
computed out using numerical continuation. For low modal damping, a hardening behav-
ior is observed for the first resonance. As nonlinear resonances occur in the neighborhood
of NNMs [11], the first NNM of the underlying conservative system provides an accu-
rate representation of the resonance locus of the weakly damped system, as shown in
Figure 13(a). However, when the modal damping ξ2 of the second mode is increased,
the hardening behavior turns unexpectedly into softening behavior. Such a fundamental
change in the dynamics cannot obviously predicted by undamped NNMs. The recourse
to damped NNMs is then necessary, as confirmed in Figure 13(b).

We now consider more general nonlinear autonomous equations of motion

M ẍ(t) + C ẋ(t) + K x(t) + fnl (x(t), ẋ(t)) = 0 (32)

where M and K are the linear mass and stiffness matrices, respectively; x, ẋ, and ẍ

are the displacement, velocity, and acceleration vectors, respectively; fnl is the nonlinear
restoring force vector. There is no specific assumption on the matrix C which can have
both symmetric (nonconservative) and skew-symmetric (conservative) contributions. The
linear damping needs not be proportional. The system of equation (32) is transformed
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Figure 13: Harmonic response of the 2DOF damped system presented in Figure 12. (a)
Low modal damping (ξ1 = 0.001, ξ2 = 0.005); solid line: numerical continuation; dashed
line; backbone curve computed from the undamped NNM; (b) higher modal damping
(ξ1 = 0.001, ξ2 = 0.2); solid line: numerical continuation; dashed line; backbone curve
computed from the damped NNM.

into its first-order form

ż = g(z) =

(

ẋ

−M−1 [C ẋ + Kx + fnl(x, ẋ)]

)

=

(

y

f(z)

)

, (33)

where the term f represents all the inertia-normalized (linear and nonlinear) elastic and
dissipative forces in the equations of motion.

Several methods for computing NNMs of the general system (33) were proposed in the
technical literature. These methods differ in the interpretation of the definition of a NNM
as a two-dimensional invariant manifold and are divided into three categories according
to the mathematical problem in hand. The first methods presented in Section 4.1 solve
partial differential equations (PDEs) in order to directly compute the two-dimensional
surface of the manifold. Section 4.2 discusses two methods that obtain NNMs using
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boundary value problems (BVPs). Finally, in Section 4.3, NNM calculation takes the form
of a nonlinear eigenvalue problem and results in the computation of trajectory portions
on the manifold.

4.1 The Manifold-Governing PDEs

In the general damping case, the linear theory resorts to complex LNMs to account for
the phase lag between the DOFs of a system. Shaw and Pierre demonstrated that the
description of a mode using a displacement-velocity pair of coordinates is, in essence,
similar to this complex-valued approach. Hence, they proposed to parametrize the two-
dimensional invariant manifold, or equivalently the NNM, using a single master pair
of state-space variables, a displacement xk and a velocity yk, the other variables being
functionally related to this master pair. The constructive approach for calculating NNMs
was then inspired by the center manifold theory [107].

Writing the master coordinates as (u, v), the remaining variables follow the constraint
equations

xi = Xi(u, v), yi = Yi(u, v), i = 1, ..., N ; i 6= k. (34)

Similarly to the center manifold approach, the time dependence in the equations of motion
is eliminated by asserting that the motion occurs on the invariant manifold. Doing so,
the time derivative of Equations (34) gives

ẋi =
∂Xi

∂u
u̇+

∂Xi

∂v
v̇, ẏi =

∂Yi

∂u
u̇+

∂Yi

∂v
v̇, (35)

where u̇ = v and v̇ = fk. Substituting these equations into (33) leads to a set of 2N − 2
PDEs that have to be solved for the Xis and Yis

Yi(u, v) =
∂Xi(u, v)

∂u
v +

∂Xi(u, v)

∂v
fk,

fi =
∂Yi(u, v)

∂u
v +

∂Yi(u, v)

∂v
fk, (36)

where i = 1, ..., N ; i 6= k, fi = fi(u,X(u, v), v,Y(u, v)) are the components of f in
Eq. (33) with X = {Xj : j = 1, ..., N ; j 6= k} and Y = {Yj : j = 1, ..., N ; j 6= k}.

Around the system’s equilibrium point, the manifold-governing PDEs (36) admit N so-
lutions which are the nonlinear extension of the N underlying LNMs [41]. Originally, a
solution of Eqs. (36) was approximated using Taylor series expansions in (u, v). Balancing
the like-power terms, a set of algebraic equations was obtained and recursively solved in
order to obtain the constraint equations (34) which describe the geometry of the NNM in
phase space [41].

Eventually, substituting the Xis and Yis in the ordinary differential equations governing
the master coordinates xk and yk, the dynamics on the NNM reduces to a SDOF oscillator
governed by:

u̇ = v,

v̇ = fk(u,X(u, v), v,Y(u, v)). (37)
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4.1.1 A Galerkin-Based Approach

The first attempt to solve the PDEs (36) numerically is that of Pesheck et al. [108].
Equations of motion were first written in modal space as

η̈̈η̈η + ΞΞΞη̇̇η̇η + Ωηηη = f̂(ηηη, η̇̇η̇η) (38)

with ηηη the vector of normalized modal coordinates, ΞΞΞ the modal damping matrix, and Ω

the modal stiffness matrix. f̂(ηηη, η̇̇η̇η) is the nonlinear force vector projected onto the linear
modal basis. Following the same two-dimensional parametrization of the invariant surface
as the previous section, a pair of master variables (ηk, η̇k) is chosen and the remaining
coordinates are described in terms of this pair. An additional transformation into polar
coordinates is used to change the master pair into an amplitude a and a phase φ:

ηk = a cosφ, η̇k = −aωk sinφ. (39)

The constraint relations are

ηi = Pi(a, φ), η̇i = Qi(a, φ), i = 1, ..., N ; i 6= k. (40)

The manifold-governing PDEs are

Qi =
∂Pi

∂a
af̃k sinφ+

∂Pi

∂φ

(

ωk + f̃k cosφ
)

,

−2ζiωiQi − ω2
i Pi + f̂i =

∂Qi

∂a
af̃k sinφ+

∂Qi

∂φ

(

ωk + f̃k cosφ
)

, (41)

where f̃k = −
(

f̂k
aωk

+ 2ζkωk sinφ
)

and i = 1, ..., N ; i 6= k. Equations (41) can be solved in

the domain (a, φ) = [0, A] × [0, 2π]. The phase-amplitude formulation allows to approxi-
mate the functionals Pi and Qi with double series expansions

Pi(a, φ) =
na
∑

l=1

nφ
∑

m=1

cl,m
i ρP

l,m(a, φ), Qi(a, φ) =
na
∑

l=1

nφ
∑

m=1

dl,m
i ρQ

l,m(a, φ), (42)

where the functions ρP
l,m and ρQ

l,m are global shape functions. They can be split into
polynomial (for the amplitude) and harmonic (for the phase) contributions as

ρP
l,m(a, φ) = Rl(a) cos((m− 1)φ), ρQ

l,m(a, φ) = Rl(a) sin(mφ) (43)

where Rl(a) are orthogonal polynomial functions [108]. Introducing Equations (42) into
the PDEs (41) and using a Galerkin projection based on the individual shape functions
gives a set of 2(N−1)nanφ highly-coupled and highly-nonlinear algebraic equations that is
eventually solved using a Newton-like method. To improve the computational efficiency of
the method, the computational domain was divided into small strips in amplitude where
linear shape functions (in amplitude) were considered to simplify the formulation [109].
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4.1.2 A Transport Method

More recently, Blanc et al. [104] proposed a new method for solving (41). The PDEs were
written as a transport problem:

V · ∇Pi = Qi,

V · ∇Qi = f̂i − ω2
i Pi, i = 1, ..., N ; i 6= k, (44)

where ∇ is the gradient operator and V = (ȧ, φ̇) is a velocity vector whose components
are

ȧ = − f̂k sinφ

ωk

, φ̇ = ωk − f̂k cosφ

aωk

. (45)

To solve the transport PDEs in a domain (a, φ) =]0, A[×]0, 2π[ (see Figure 14), boundary
conditions (BCs) are required at inflow, i.e., where the velocity vector V points inward the
computational domain. Consequently, BCs were imposed along the zero-phase boundary
and iteratively modified to obtain the continuity of the manifold, i.e., Pi(a, 0) = Pi(a, 2π)
and Qi(a, 0) = Qi(a, 2π) ∀i 6= k. The problem of finding these suitable BCs at φ = 0 was
written as a minimization problem. Additional BCs were also specified along the a = A
boundary where inflow was present.

The transport problem was solved using an off-centered finite difference (FD) scheme on
a regular grid. The scheme starts at φ = 0 and follows the flow of the PDEs to progress
toward increasing values of φ. At a phase line n, the partial derivative of P (similarly of
Q) in the amplitude direction was:

(

∂P

∂a

)

(am, φn) ≈ Pm
n − Pm−1

n

δa
if V n,m

a > 0, (46)

(

∂P

∂a

)

(am, φn) ≈ Pm+1
n − Pm

n

δa
if V n,m

a < 0, (47)

at point (am, φn). The choice of the discretization according to the direction of the velocity
is classical for transport problems. We refer to Ref. [104] for additional details about the
discretization scheme.

Eventually, the Jacobian matrix of the optimization problem was obtained by the method
of the adjoint state [104,110] and the problem was solved using a Newton-like method.

4.1.3 A Finite-Element-Based Approach

Following the simplification of the shape functions initiated in [109], Renson et al. used
the finite element (FE) method to solve Equations (36) [106]. Recasting the PDEs into a
form similar to the transport equations (44) but using physical coordinates, the equations
read

{

V · ∇Xi(u, v) − Yi(u, v) = 0, V∗ = {V1 V2} = {v fk(u, v)} ,
V · ∇Yi(u, v) − fi(u, v) = 0, i = 1, ..., N ; i 6= k.

(48)
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Figure 14: Velocity field of the manifold-governing PDEs in the amplitude-phase domain
used by the FDM. Figure reproduced from [104].

These PDEs are quasilinear first-order hyperbolic PDEs bearing strong resemblance to
flow equations. Standard Galerkin FE formulations are known to exhibit poor perfor-
mance in the case of hyperbolic PDEs [111]. The remedy was to employ the streamline
upwind Petrov-Galerkin (SUPG) method which proved effective for such problems [112].

Applying a weighted residual approach to Eqs. (48) where the variations δỸi and δX̃i are
considered to preserve consistent units yields

∫

S
[V · ∇Xi(u, v) − Yi(u, v)] δỸi dS = 0,

∫

S
[V · ∇Yi(u, v) − fi(u, v,X,Y)] δX̃i dS = 0, (49)

with i = 1, ..., N ; i 6= k, and S is the computational domain in the plane (u, v). Within
each mesh element e that discretizes S, unknown and virtual fields are expressed as

Xe
i =

ñ
∑

b=1

N b(u, v)Xe,b
i Y e

i =
ñ
∑

b=1

N b(u, v)Y e,b
i (50)

δX̃e
i =

ñ
∑

b=1

Ñ b(u, v)δX̃e,b
i δỸ e

i =
ñ
∑

b=1

Ñ b(u, v)δỸ e,b
i (51)

where ñ equals to 3 or 4 for linear triangular or linear quadrangular elements, respectively.
The shape functions N b are first-order Lagrange shape functions. The corresponding test
functions are Ñ b = N b + τ eV.∇N b where τ eV.∇N b is an upstream overweighting intro-
duced by the SUPG formulation. Note that this upstream overweighting is, in essence,
similar to the off-centered finite difference formulation used by Blanc et al. (cf. Sec-
tion 4.1.2).

Finally, a resolution strategy that grows the invariant manifold from the equilibrium point
was developed. Eventually, the manifold was obtained as a collection of annular regions,
as illustrated in Figure 15. The successive computational domains were defined using iso-
energy curves of the underlying nonlinear conservative system. The continuity between
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Figure 15: Collection of annular domains forming the invariant manifold in the FE-based
method. Figure reproduced from [106].
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Figure 16: Iso-energy curves (–) and velocity vector V (→) for a 2DOF system with cubic
nonlinearity. (a) A nonconservative system; (b) a conservative system.

two successive annular regions was naturally ensured by the BCs imposed at inflow. Fig-
ure 16 presents in the physical coordinates (u, v) = (x1, y1) the PDE velocity field of a
2DOF system with cubic nonlinearity. In the presence of damping (Figure 16(a)), the
flow spirals down to the equilibrium point of the system (here, the origin). Considering
an annular region defined by two red curves, BCs have to be imposed at the outer bound-
ary, but, for this high-amplitude region, BCs cannot be set before the actual solution
is known. However, the flow can be “reversed” by changing the sign of the test func-
tions. Inflow/outflow boundaries are therefore swapped, and the solution computed for
the previous annular region can be considered for imposing the desired BCs at the inner
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boundary where inflow is now present. Interestingly, for a conservative system, the flow
is tangent to the iso-energy curves meaning that no BCs are required (see Figure 16(b)).
The method was later generalized by replacing the iso-energy curves by general Lyapunov
functions determined using an optimization procedure [113].

4.1.4 Amplitude- and Phase-Dependent Modal Quantities

Another interesting approach was proposed by Bellizzi and Bouc, first for conservative
systems [105] and then for nonconservative systems [114]. Similarly to Shaw and Pierre,
they defined a NNM motion in terms of a single pair of variables, here, an amplitude and
a phase variable (a(t), φ(t)). The other coordinates are functionally related to this pair
using the constraint relations

x(t) = a(t)X(a(t), φ(t)),

ẋ(t) = y(t) = a(t)Y(a(t), φ(t)), (52)

where X and Y are vector functions representing the modal amplitudes. Amplitude and
phase variables are described by a pair of ordinary differential equations governing the
SDOF motion which takes place on a NNM [114]:

φ̇(t) = Ω(a(t), φ(t)),

ȧ(t) = a(t)ξ(a(t), φ(t)). (53)

The scalar functions Ω and ξ govern the motion frequency and damping ratio, respectively.
All together, (X,Y,Ω, ξ) define the modal motion.

Substituting Equations (52)–(53) into the equations of motion and removing any explicit
time dependence yields the set of PDEs

(

X + a
∂X

∂a

)

ξ +
∂X

∂φ
Ω = Y,

(

Y + a
∂Y

∂a

)

ξ +
∂Y

∂φ
Ω − 1

a
f (aX, aY) = 0. (54)

The number of equations in (54) is lower than the number of unknowns by two. Additional
normalization conditions are thus added to the set of PDEs.

Equations were then discretized using a Fourier-Galerkin projection similar in principle
to the one used by Pesheck et al [108]. In Ref. [115], the resolution strategy was improved
to reduce the computational burden associated with this projection. In particular, the
method of lines, where all but one space dimensions are discretized, was considered to
solve equations (54) as an initial value problem.
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4.2 Boundary Value Formulations

4.2.1 A Trajectory-Based Method

In the general context of two-dimensional (un)stable invariant manifold calculation, sev-
eral methods locally grow an invariant surface without assuming any global parametriza-
tion as in Eqs. (34). In particular, the method proposed by Doedel et al. [31, 116] solves
boundary value problems (BVPs) that define a one-parameter family of trajectories cov-
ering the invariant surface. This method was exploited for the computation of damped
NNMs in Ref. [113,117].

Using the general first-order form of the equations of motion, ż = g(z), a trajectory on
the invariant manifold is defined as

z′(τ) = Tg(z(τ)), (55)

z(0) = zE + r0(cos(θ)ζζζ1 + sin(θ)ζζζ2), (56)

where (.)′ denotes the first derivative with respect to the normalized time τ ∈ [0, 1], r0

is a small parameter, and T is the final time. Equations (55)-(56) parametrize using the
variable θ a family of trajectories that start on a small ellipse around the equilibrium
point zE. If the vectors ζζζ1 and ζζζ2 define an eigenplane of the system linearized at zE, the
trajectories describe the corresponding NNM.

zE

θ0

(a) (b)

Figure 17: A first trajectory on the invariant manifold is grown for θ = θ0. (a) Schematic
representation of the continuation step in the plane (x1, y1); (b) complete trajectory in
phase space. The small ellipse of ICs (purple) is defined on the tangent space (blue plane)
of the NNM using Eq. (56).
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zE

θ

(a)

(b)

Figure 18: Second continuation step of the trajectory-based approach. Trajectories are
continued with respect to θ to cover the entire invariant surface. (a) Schematics of the
procedure in the (x1, y1) plane; (b) two trajectories on the invariant manifold.

Numerical continuation grows a first trajectory on the manifold with T as free parameter
and θ arbitrarily fixed at θ = θ0 [118]. Equations (55) are discretized using orthogonal
collocation and solved simultaneously for all the points that define the trajectory. This
step is illustrated in Figure 17 where, although they can be equally distributed in time,
the points along the trajectory are not necessarily equally distributed in space. During
the continuation process, a function measuring the arclength of the trajectory as

L =
∫ 1

0
T ‖g(z(l))‖ dl (57)

is monitored by the algorithm, and the continuation is stopped when the trajectory reaches
a user-defined length L̄. Equation (56) together with the condition L = L̄ define a BVP
that constrains the initial and final conditions of the trajectory. A second continuation
step, during which θ is the parameter and T can freely vary, is then performed, as illus-
trated in Figure 18. All the points that discretize the first trajectory are continuously
varied to compute a second trajectory. The process is repeated for additional trajectories
until the invariant surface is adequately covered. We refer to [118] for additional details
about the original method.

For a stable system, T < 0, and the computation of the first trajectory is similar to
backward time integration. The recourse to the BVP approach has however the advantage
of being compatible with the subsequent continuation steps. This is a crucial feature of
the method because trajectories can be very sensitive with respect to the parameter θ.
In addition, the control of the step size in θ with respect to the variation of the entire
trajectory guarantees a nice covering of the invariant surface.
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4.2.2 The Graph Transform

The graph transform method was used in Ref. [119] in the context of dimension reduction
of dynamical systems. The equations of motion ż = g(z) are split into

{

u̇ = gu(u,w, λ),
ẇ = gw(u,w, λ),

(58)

where u and w are the master and slave coordinates, respectively; gu and gw are the
corresponding vector fields, and λ is an artificial parameter.

The method is based on the concept of overflowing invariant manifold which can be de-
fined as a compact manifold possessing a boundary where the flow points strictly outward
the manifold and for which all trajectories starting inside the manifold remain in it in
backward time. Provided that a manifold M is overflowing invariant, Fenichel’s theo-
rem [120] guarantees, under some additional assumptions, the existence of an overflowing
invariant manifold M∗ in a perturbed vector field. Following this important theoretical
result, the graph transform can be combined with homotopy continuation to turn an ini-
tial manifold M0 into the manifold of the nonlinear system of interest. The computation
can thus be initiated without the nonlinearities (λ = 0), and continuation is used to re-
trieve the nonlinear system (λ = 1). Fenichel’s theorem guarantees the persistence of the
invariant manifold at each continuation step.

The graph transform takes the form

graph(mi+1) =

(

Gt
u

Gt
w

)

graph(mi) (59)

where Gt
u = Gt

u(u,w) and Gt
w = Gt

w(u,w) represent the flow of Equations (58). The
invariant surface is given by

Mi = wi =
{

(u,w) ∈ R
2 × R

2N−2|w = wi(u)
}

, (60)

where wi plays the role of Eqs. (34) and link the slave variables to the master variables.
If Fenishel’s theorem holds, wi → w∞ as i → ∞ where graph (w∞) is the unique compact
overflowing invariant manifold that satisfies

graph(w∞) =

(

Gt
u

Gt
w

)

graph(w∞) (61)

In practice, a uniform grid of points in the set of master coordinates is considered. The idea
is to evolve the manifold using the flow of the equations while maintaining an adequate
representation (covering) of the invariant surface. To this end, a BVP is defined at each
point of the grid. It takes the form of

Gt
u(u,w) − ũj = 0,

Gt
w(u,w) − wi+1(ũj) = 0, (62)

w − wi(u) = 0,
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where ũj is a grid point whose value wi+1 is the quantity of interest and (u,w) are
unknown. The last two equations give explicitly wi+1(ũj) and w. The remaining equation
is

Gt
u(u, wi(u)) − ũj = 0, (63)

where u is unknown. Problem (63) can be solved using classical methods such as shooting
or collocation methods. Since the points u are no longer grid points, the manifold is
represented using a tensor-product of cardinal splines with compact support as basis
functions ρji(ui). The manifold reads

w(u) ≈
n1
∑

j1=0

n2
∑

j2=0

cj1j2ρj1(u1)ρj2(u2) (64)

4.3 Complex Nonlinear Modes

In direct analogy with complex LNMs, complex nonlinear modes were introduced by Lax-
alde and Thouverez in [121]. The method uses generalized Fourier series to approximate
NNM motions and derive a nonlinear eigenvalue problem. More precisely, the complex
eigensolutions are written as [121,122]:

x(t) ≈ x(γ, τ) =
+∞
∑

l=0

+∞
∑

m=−∞

x̂l,me
−lγ+jmτ (65)

where τ = ωt and γ = βt are two new time scales referring to the fast oscillations and the
slow envelope modulations, respectively. Substituting Equation (65) into the equations of
motion and using a Fourier-Galerkin projection, a complex eigenvalue problem is obtained:

∀(l,m) ∈ [0, ..., nl] × [−nm, ..., nm] , (−lβ + jmω)2x̂l,m − 〈f , ρl,m〉
||ρl,m||2 = 0 (66)

where 〈f , ρl,m〉 denotes the inner product between f and the set of basis functions ρl,m(γ, τ) =
e−lγ+jmτ . Similarly to the HB method in Section 3.1.2, the nonlinear force vector f is cal-
culated using an alternating time/frequency approach [50]. f is thus reconstructed in the
time domain using the set {x̂l,m} defining the displacement and velocity vectors. The
nonlinear terms are then projected onto the generalized Fourier basis.

The number of unknowns exceeds the number of equation by two [121]. The system is
complemented by an additional mode normalization. A control coordinate is selected,
and the real and imaginary parts of one of its harmonics are used to define the modal
amplitude q as

q = qRRR + jqIII , (67)

where j2 = −1. This complex modal amplitude q represents the two-dimensional subspace
on which the NNM motion takes place. Each eigenvector is normalized with respect to q,
and the system is solved using Newton-like methods. An alternative normalization based
on the kinetic energy was presented in Ref. [123]. Eventually, a continuation algorithm is
used to evolve the nonlinear eingenvalue solutions for increasing modal amplitudes.
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4.4 Assessment

The first method that was developed for the numerical computation of damped NNMs
solves directly the manifold-governing PDEs [108, 109]. This Galerkin-based approach,
described in Section 4.1.1, eliminates a number of problems associated with analytical
approximations of invariant manifolds. Specifically, it removes the assumption of weakly
nonlinear regimes of motion. The accuracy of the results is also reduced to a computa-
tional effort and can be guaranteed in the selected computational domain. The PDEs
were first discretized using global shape functions resulting in highly-coupled nonlinear
algebraic systems that were demanding to solve. The formulation was then improved by
considering linear shape functions for the amplitude domain and by solving the PDEs
in successive strips. The method was successfully applied to a certain number of con-
servative systems including a nonlinear beam [108], piecewise-linear systems [124], and
rotating systems [125, 126]. Figure 19 depicts the first flapping mode of a rotating beam
represented through the slave coordinate corresponding to the second flapping mode. This
figure clearly reveals the modal coupling inherent to nonlinear systems that appears when
the amplitude increases. The Galerkin-based approach was further generalized to forced
systems in Ref. [127]. To the best of our knowledge, the method was applied to damped
systems only in a single study [126].
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Figure 19: First flapping NNM of a rotating beam. (a) Schematics of the system; (b)
slave modal coordinate c2 corresponding to the second flapping mode. Figure reproduced
from [125].
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More recently, the same manifold-governing PDEs were solved using finite differences
(Section 4.1.2, [104]). Theoretically sound, the transport method rigorously addresses the
hyperbolic nature of the PDEs which was not formally recognized in [108]. The undamped
NNMs of a 2DOF system and of a nonlinear beam were computed and used for building
reduced-order models (ROMs). Due to the absence of shape functions, there is no direct
interpolation basis for computing the dynamics on the invariant manifold, which contrasts
with the Galerkin-based approach. Such a basis was computed a posteriori by fitting the
collection of points of the discretization grid using polynomial functions. We remark that
the method in its present form cannot yet be applied to nonconservative systems [104].

The FE-based method also accounts for the hyperbolicity of the PDEs through the stream-
line upwind Petrov-Galerkin (SUPG) scheme and through the imposition of boundary
conditions where inflow is present [106]. The sparse algebraic systems obtained with the
FE method combined with a strategy which grows the invariant manifold as a collection
of annular regions have further reduced the computational cost compared to the Galerkin-
based approach. Overall, these improvements allowed the computation of the NNMs of a
model of the Morane-Saulnier aircraft possessing 124 DOFs [113]. The FE method was
also applied to several conservative and nonconservative systems with linear and nonlin-
ear damping (including a system of two coupled Van der Pol oscillators [113]) with the
advantage that the dynamics on the invariant manifold can be directly interpolated from
the FE basis. For illustration, the invariant manifold defining the in-phase NNM of a
2DOF system including regularized Coulomb (RC) friction

ẍ1 + (2x1 − x2) + Fmax tanh (κẋ1) = 0,

ẍ2 + (2x2 − x1) = 0. (68)

is shown in Figure 20(a). Fmax = 1.5 N defines the maximum friction force (at high
velocity), and κ = 1 rad.s/m determines the degree of regularization introduced by the
hyperbolic tangent function. We note that the method presented some (still unanswered)
difficulties for high values of κ. The invariant surface is composed of seven annular
regions whose continuity is naturally ensured by the imposed BCs. Figure 20(b) compares
the dynamics on the invariant manifold, computed using equations (34) and (37), and
the dynamics of the full system. The reduced- and full-system dynamics are in perfect
agreement.

In the previous methods, time is eliminated from the manifold-governing PDEs, and
the motion frequency has to be identified from the dynamics on the invariant manifold
using time-frequency analysis (with, e.g., the Hilbert or wavelet transforms). The method
based on amplitude- and phase-dependent modal quantities directly addresses this issue by
introducing two additional scalar functions (Ω, ξ) describing the evolution of the frequency
and of the damping ratio, respectively (cf. Section 4.1.4). The obtained PDEs were
initially solved using a Galerkin method with global shape functions [114], resulting in
a prohibitive complexity for increasing system dimensionality. The method of lines was
found to be a computationally effective alternative and was successfully applied to a
clarinet [115]. The construction of a two-dimensional interpolation for integrating in time
the dynamics on the NNM is, however, needed because this approach does not exploit
shape functions. In particular circumstances, the method presented some divergence
issues arguably due to “some sort of ill-posedness in the equations” [115].
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Figure 20: First NNM of the 2DOF system with regularized Coulomb friction. (a) In-
variant surface computed for Y1 with seven annular domains; (b) comparison between
reduced- and full-system dynamics in black and red, respectively. Figure reproduced
from [113].

One important assumption with the methods in Section 4.1 is that the invariant manifold
can be described using a unique pair of coordinates. However, the invariant manifold defin-
ing the in-phase NNM of the 2DOF conservative system (1), shown in Figure 21, presents
a complex topology with several foldings which invalidate the chosen parametrization.
Even if the selection of appropriate master coordinates plays an important role, it cannot
eliminate such foldings which can appear for a number of reasons including internal reso-
nances, localization, and multiple fixed points [104,128–130]. The concept of multi-modal
NNMs [128] was then introduced to create multi-mode ROMs accounting for the cou-
pling that may exist between the individual NNMs of interest. The approach is therefore
naturally suitable for addressing the presence of internal resonances. The mathematical
description of these NNMs is obtained by following the single-mode approach with the
difference that nm pairs of variables are taken as master pairs leading to 2N − 2nm slave
variables

xi = Xi (um,vm) , yi = Yi (um,vm) , (69)

where um and vm represent the vectors of the nonlinear modal coordinates [128]. After
solving the manifold-governing equations in R

2nm , the constraint functionals (69) reduce
the dynamics to nm coupled nonlinear oscillators. The effectiveness of the obtained ROMs
was demonstrated in [129] using a nonlinear beam example. An extension of the single-
mode method proposed by Pesheck et al. [108] to higher-dimensional PDEs was also
presented by Jiang et al. in [130]. Although elegant, this generalization still relies on an
explicit and global parametrization of the NNM. Since it does not solve completely the
intrinsic parametrization issue, it may therefore fail in other regions of the phase space.

In the trajectory-based method introduced in Section 4.2.1, no parametrization is as-
sumed, which allows to compute NNMs a priori without any restriction as to, e.g., the
presence of nonlinear modal interactions. The approach was implemented in the software
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Figure 21: Invariant manifold constructed by gathering in phase space the periodic orbits
of the in-phase NNM of the 2DOF conservative system (1). Light- and dark-blue surfaces
are built by joining two successive periodic orbits. The surface appears to intersect itself,
but this is because the manifold is embedded in a four-dimensional phase space.

AUTO [90], and the manifolds are represented by constructing a mesh between adjacent
trajectories. The result obtained for the first mode of the 2DOF system (68) is com-
pared in Figure 22(a) with the solution obtained with the FE-based method. For low to
moderate amplitudes, both methods provide manifolds that are in very close agreement.
However, owing to the pronounced deformation and folding of the surface, the FE method
cannot calculate it for higher amplitudes. The projection in Figure 22(b) of three trajec-
tories onto the plane of master coordinates used by the FE-based approach confirms this
observation. The trajectories intersect in two different regions around (u, v) = (−5, 2)
and (u, v) = (2, 5), which leads to the failure of the parametrization of the manifold in
these regions. The trajectory-based approach is also interesting because it gives the dy-
namics on the manifold as a byproduct. This valuable information can be analyzed for
extracting the frequency-amplitude dependence of the oscillations. An inherent limitation
of the method is that it cannot be applied to conservative systems. For lightly-damped
systems, a large number of collocation points is required, which significantly increases
the computation cost of the method. We also note that the absence of parametrization
complicates the construction of a ROM.

The common drawback to the aforementioned methods is that their computational cost
directly scales with the codimension of the invariant manifold, i.e., 2N − 2. Interestingly,
the graph transform method presented in Section 4.2.2 scales with the dimension of the
invariant manifold, i.e., 2, because the unknown in the BVP problem (63) is u. The
method was considered in Ref. [119] to reduce the dynamics of a beam with nonlinear
BCs under harmonic excitation. However, the resolution of a BVP for each grid point
that discretizes the shape of the manifold can result in an important computational cost.
Furthermore, the convergence rate of the method is linear, and it can be influenced by the
spectral gap that exists between the different modes of the system [119]. In this context,
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Figure 22: First NNM of the 2DOF system with regularized Coulomb friction and
Fmax = 1.5 N. (a) Trajectory-based method (blue mesh) and FE method (orange mesh);
(b) projection of three trajectories (black curves) computed with the trajectory-based
approach onto the plane of master coordinates of the FE-based method.
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Figure 23: Complex nonlinear modal analysis of a compressor blade. (a) Finite element
model; (b) first torsion mode; (c) evolution of the frequency and damping ratio of the
first torsion mode as a function of the modal amplitude q. (− ◦ −) one harmonic; (−�−)
three harmonics; (−▽−) five harmonics; (− ⋄ −) seven harmonics; (−.−) no-slip. Figure
reproduced from [121].

the BVP approach can be replaced by an initial value problem. This approach is very
effective, but the evolution of the points that discretize the manifold is difficult to control
and can complicate the interpolation with splines. We note that the method considers a
set of master variables u to describe the invariant surface, as a consequence of which the
computation remains applicable as far as this parametrization remains valid.

Finally, even if some of the manifold-based methods proved to work for piecewise linear
systems, capturing the shape of the invariant surface is increasingly complicated as the
system becomes non-regular. In contrast, the direct computation of a trajectory (or a
curve) on the invariant surface suffers less from this difficulty. The approach in Section 4.3
approximates trajectories on the invariant surface using generalized Fourier series. This
discretization leads to a nonlinear eigenvalue problem that is less expensive to solve than
the manifold-governing PDEs. The approach could tackle strongly nonlinear systems of
important complexity as, for instance, bladed disks with hysteretic [123] or differential
equations [121,131] for modeling the contact interfaces. The compressor blade considered
in Ref. [121] is represented in Figure 23(a-b). Figure 23(c) displays the frequency and
damping ratio of the first torsion mode, which are a direct outcome of the general Fourier
representation. Their evolution as function of the modal amplitude q was captured thanks
to continuation. The method was further generalized to address systems with distinct
states, i.e., systems where nonlinear forces can be defined piecewise [132]. Because the
NNMs are only computed at discrete values of q, linear and piecewise cubic interpolations
between the solutions of (66) were proposed [123]. Eventually, a ROM including a single
NNM and a set of linearized modes can be synthesized. In Ref. [131], the complex modal
quantities were further exploited to derive slow-flow models of the dynamics.
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5 Summary and Future Research Directions

Since their introduction in the 1960s by Rosenberg, NNMs have proved useful for un-
derstanding the complex dynamics exhibited by nonlinear systems. Specifically, one fun-
damental property of NNMs is that structural resonances occur in their neighborhood.
If analytical approaches were mostly used for NNM calculation until the 1990s, effective
computational methods were introduced in the 2000s and were reviewed in the present
paper.

The computation of NNMs of large-scale structures with localized stiffness nonlineari-
ties is now within reach. The developed algorithms will enable the practitioner to reveal
dynamical phenomena that could be missed otherwise. For instance, the study of the
real industrial structures considered in this review supports the claim that interactions
between modes with widely-spaced frequencies are generic in structures possessing high
modal density. These modal interactions may have important consequences for engineer-
ing design, because they can severely increase the response levels endured by the structure.
Energy can also be transferred from modes with low effective mass to modes with great
effective mass or from out-of-plane modes to in-plane modes, thereby leading to dynami-
cal phenomena unexpected from a linear standpoint. The algorithms can also be used as
the first step toward nonlinear model reduction. Even if NNMs cannot be used for modal
superposition, single- or multi-mode reduced-order models can be constructed to capture
the essential behavior of the system in the vicinity of the considered resonances.

Despite the progress observed in recent years, there remain significant challenges for the
computation of NNMs. The following discussion presents some of the key aspects that,
we believe, will drive the development of NNMs in the years to come

• The treatment of complex nonlinearities, e.g., nonsmooth nonlinearities and non-
linear hysteretic damping, is still in its infancy. In addition, most real structures
investigated so far comprised localized nonlinearities. A step in the direction of ge-
ometrically nonlinear structures was presented by Kuether et al. in Ref. [133] where
they computed the NNMs of nonlinear beams and plates modeled in commercial
finite element codes (see Figure 24).

• Further reduction of the computational burden of existing algorithms should be
achieved. The recourse to compiled algorithms adapted to large-scale parallel com-
putation, as in the continuation library LOCA [134], should be attempted. Methods
such as the Newton-Picard continuation technique [135], subspace projections [136]
and modal derivatives [137] have also the potential to accelerate the computations.

• The detection and rigorous treatment of the bifurcations of NNMs has not been
achieved so far. Yet, bifurcations play an important role as they create and eliminate
branches of NNMs.

• A spectral characterization of damped NNMs was recently presented in Ref. [138].
Based on the Koopman operator theory, this new mathematical formulation removes
manifold parametrization issues, offering new perspectives for computing NNMs in
the presence of modal interactions.
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Figure 24: First NNM of a geometrically nonlinear exhaust cover plate. (a) FE model;
(b) FEP. Figure reproduced from [133].

Besides the computational aspects, there are still many open questions regarding the
understanding and exploitation of the computed periodic orbits and invariant manifolds:

• The role played by damping in the dynamics of nonlinear structures is not yet
completely uncovered. For instance, the question of how modal interactions and
invariant manifolds are affected by damping remains largely unanswered.

• Invariant objects play a key role in nonlinear systems and can be seen as attractors
of the dynamics. However, the physical information brought by the computation of
invariant manifolds has not been fully exploited.

• There have been recent attempts at identifying NNMs from experimental data [139,
140] and at performing continuation in physical experiments [141–143]. Coupling
these latter developments with the existing algorithms for NNM computation would
pave the way for effective methods for validation of nonlinear structural models.
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of a full-scale aircraft. Journal of Aircraft, 50(5):1409–1419, 2013.
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