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Time series data mining

PHILIPPE ESLING and CARLOS AGON, Institut de Recherche et Coordination Acoustique / Musique
(IRCAM), Paris

In almost every scientific field, measurements are performed over time. These observations lead to a collection
of organized data called time series. The purpose of time series data mining is to try to extract all meaningful
knowledge from the shape of data. Even if humans have a natural capacity to perform these tasks, it remains
a complex problem for computers. In this paper we intend to provide a survey of the techniques applied
for time series data mining. The first part is devoted to an overview of the tasks that have captured
most of the interest of researchers. Considering that in most cases, time series task relies on the same
components for implementation, we divide the literature depending on these common aspects, namely
representation techniques, distance measures and indexing methods. The study of the relevant literature
has been categorized for each individual aspects. Four types of robustness could then be formalized and any
kind of distance could then be classified. Finally, the study submit various research trends and avenues that
can be explored in the near future. We hope that this paper can provide a broad and deep understanding
of the time series data mining research field.

Categories and Subject Descriptors: G.3 [Probability and Statistics]: Time Series Analysis; H.2.8 [Database Manage-
ment]: Database Applications; H.3.1 [Information storage and retrieval]: Content Analysis and Indexing; H.3.3 [Infor-
mation storage and retrieval]: Information Search and Retrieval

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Distance measures, data indexing, data mining, query by content, sequence matching,
similarity measures, stream analysis, temporal analysis, time series

1. INTRODUCTION
A time series represents a collection of values obtained from sequential measurements over time.
Time series data mining stems from the desire to reify our natural ability to visualize the shape
of data. Humans rely on complex schemes in order to perform such tasks. We can actually avoid
focusing on small fluctuations in order to derive a notion of shape and identify almost instantly si-
milarities between patterns on various time scales. Major time series related tasks include query by
content [Faloutsos et al. 1994], anomaly detection [Weiss 2004], motif discovery [Lin et al. 2004],
prediction [Weigend and Gershenfeld 1994], clustering [Lin and Keogh 2005], classification [Baks-
hi and Stephanopoulos 1994] and segmentation [Keogh et al. 2003]. Despite the vast body of work
devoted to this topic in the early years, [Antunes and Oliveira 2001] noted that ”the research has not
been driven so much by actual problems but by an interest in proposing new approaches”. Howe-
ver, with the ever-growing maturity of time series data mining techniques, this statement seems to
have become obsolete. Nowadays, time series analysis covers a wide range of real-life problems in
various fields of research. Some examples include economic forecasting [Song and Li 2008], intru-
sion detection [Zhong et al. 2007], gene expression analysis [Lin et al. 2008], medical surveillance
[Burkom et al. 2007] and hydrology [Ouyang et al. 2010].

Time series data mining unveils numerous facets of complexity. The most prominent problems
arise from the high dimensionality of time series data and the difficulty of defining a form of simi-
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larity measure based on human perception. With the rapid growth of digital sources of information,
time series mining algorithms will have to match increasingly massive datasets. These constraints
show us that three major issues are involved:

— Data representation: How can the fundamental shape characteristics of a time series be repre-
sented? What invariance properties should the representation satisfy? A representation technique
should derive the notion of shape by reducing the dimensionality of data while retaining its essen-
tial characteristics.

— Similarity measurement: How can any pair of time series be distinguished or matched? How can
an intuitive distance between two series be formalized? This measure should establish a notion
of similarity based on perceptual criteria, thus allowing the recognition of perceptually similar
objects even though they are not mathematically identical.

— Indexing method: How should a massive set of time series be organized to enable fast querying? In
other words, what indexing mechanism should be applied? The indexing technique should provide
minimal space consumption and computational complexity.

These implementation components represent the core aspects of time series data mining systems.
However these are not exhaustive as many tasks will require the use of more specific modules.
Moreover, some of these are useless for some specific tasks. Forecasting (cf. section 3.5) is the
most blatant example of a topic that requires more advanced analysis processes as it is more closely
related to statistical analysis. It may require the use of a time series representation and a notion
of similarity (mostly used to measure prediction accuracy) whereas model selection and statistical
learning are also at the core of forecasting systems. The components that are common to most time
series mining tasks have therefore been analyzed and other components found in related tasks have
been briefly discussed.

The following part of this paper has been organized as follows: first introducing the fundamental
concepts of time series data mining (section 2); then presenting an overview of the tasks to which
most of the research in this field has been devoted (section 3); then reviewing the literature based on
the three core components for implementation (section 4) and finally reviewing the research trends
for future work in this field (section 5).

2. DEFINITIONS
The purpose of this section is to provide a definition for the terms used throughout this paper.

Definition 2.1. A time series T is an ordered sequence of n real-valued variables

T = (t1, . . . , tn) , ti ∈ R
A time series is often the result of the observation of an underlying process in the course of which

values are collected from measurements made at uniformly spaced time instants and according to
a given sampling rate. A time series can thus be defined as a set of contiguous time instants. The
series can be univariate as in definition 2.1 or multivariate when several series simultaneously span
multiple dimensions within the same time range.

Time series can cover the full set of data provided by the observation of a process and may be
of considerable length. In the case of streaming, they are semi-infinite as time instants continuously
feed the series. It thus becomes interesting to consider only the subsequences of a series.

Definition 2.2. Given a time series T = (t1, . . . , tn) of length n, a subsequence S of T is a series
of length m≤ n consisting of contiguous time instants from T

S = (tk, tk+1, . . . , tk+m−1)

with 1≤ k ≤ n−m+1. We denote the set of all subsequences of length m from T as Sm
T .

For easier storage, massive time series sets are usually organized in a database.

Definition 2.3. A time series database DB is an unordered set of time series.
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Fig. 1. Diagram of a typical query by content task represented in a 2-dimensional search space. Each point in this space
represents a series whose coordinates are associated with its features. (a) When a query is entered into the system, it is first
transformed into the same representation as that used for other datapoints. Two types of query can then be computed. (b) A
ε−range query will return the set of series that are within distance ε of the query. (c) A K−Nearest Neighbors query will
return the K points closest to the query.

As one of the major issues with time series data mining is the high dimensionality of data, the
database usually contains only simplified representations of the series.

Definition 2.4. Given a time series T = (t1, ..., tn) of length n, a representation of T is a model
T̄ of reduced dimensionality d̄ (d̄� n) such that T̄ closely approximates T .

Nearly every task of time series data mining relies on a notion of similarity between series. After
defining the general principle of similarity measures between time series, we will see (section 4.3)
how these can be specified.

Definition 2.5. The similarity measure D (T,U) between time series T and U is a function ta-
king two time series as inputs and returning the distance d between these series.

This distance has to be non-negative, i.e. D (T,U) ≥ 0. If this measure satisfies the additional
symmetry property D (T,U) = D (U,T ) and subadditivity D (T,V ) ≤ D (T,U) +D (U,V ) (also
known as the triangle inequality), the distance is said to be a metric. As will be seen below (section
4.4), on the basis of the triangle inequality, metrics are very efficient measures for indexing. We may
also extend this notion of distance to the subsequences.

Definition 2.6. The subsequence similarity measure Dsubseq(T,S) is defined as

Dsubseq (T,S) = min
(
D
(
T,S′

))
for S′ ∈ S|T |S . It represents the distance between T and its best matching location in S.

3. TASKS IN TIME SERIES DATA MINING
This section provides an overview of the tasks that have attracted wide research interest in time
series data mining. These tasks are usually just defined as theoretical objectives though concrete
applications may call for simultaneous use of multiple tasks.

3.1. Query by content
Query by content is the most active area of research in time series analysis. It is based on retrieving
a set of solutions that are most similar to a query provided by the user. Figure 1 depicts a typical
query by content task, represented on a 2-dimensional search space. We can define it formally as

Definition 3.1 (Query by content). Given a query time series Q = (q1, ...,qn) and a similarity
measure D (Q,T ), find the ordered list L = {T1, . . . ,Tn} of time series in the database DB, such
that ∀Tk,Tj ∈L , k > j⇔D (Q,Tk)> D (Q,Tj).

The content of the result set depends on the type of query performed over the database. The
previous definition is in fact a generalized formalization of a query by content. It is possible to
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specify a threshold ε and retrieve all series whose similarity with the query D (Q,T ) is less than ε .
This type of query is called an ε-range query.

Definition 3.2 (ε-range query). Given a query time series Q=(q1, ...,qn), a time series database
DB, a similarity measure D (Q,T ) and a threshold ε , find the set of series S = {Ti | Ti ∈ DB} that
are within distance ε from Q. More precisely, find S = {Ti ∈ DB |D (Q,Ti)≤ ε}

Selecting this threshold is obviously highly data-dependent. Users usually want to retrieve a set of
solutions by constraining the number of series it should contain, without knowing how far they will
be from the query. It is thus possible to query the K most similar series in the database (K−Nearest
Neighbors query).

Definition 3.3 (K-Nearest Neighbors). Given a query time series Q = (q1, ...,qn), a time series
database DB, a similarity measure D (Q,T ) and an integer K, find the set of K series that are the most
similar to Q. More precisely, find S = {Ti | Ti ∈ DB} such that |S |= K and ∀Tj /∈S , D (Q,Ti)≤
D (Q,Tj)

Such queries can be called on complete time series; however, the user may also be interested
in finding every subsequence of the series matching the query, thus making a distinction between
whole series matching and subsequence matching. This distinction between these types of queries
is thus expressed in terms of ε−range query

Definition 3.4 (Whole series matching). Given a query Q, a similarity measure D (Q,T ) and a
time series database DB, find all series Ti ∈ DB such that D (Q,Ti)≤ ε

Definition 3.5 (Subsequence matching). Given a query Q, a similarity measure D (Q,T ) and a
database DB, find all subsequences T

′
i of series Ti ∈ DB such that Dsubseq (Q,T ′i )≤ ε

In former times, time series mining was almost exclusively devoted to this task (cf. seminal work
by [Agrawal et al. 1993]). In this paper, the representation was based on a set of coefficients ob-
tained from a Discrete Fourier Transform (DFT) to reduce the dimensionality of data. These co-
efficients were then indexed with a R*-tree [Beckmann et al. 1990]. False hits were removed in a
post-processing step, applying the Euclidean distance to complete time series. This paper laid the
foundations of a reference framework that many subsequent works just enlarged by using proper-
ties of the DFT [Rafiei and Mendelzon 1998] or similar decompositions such as Discrete Wavelet
Transform (DWT) [Chan and Fu 1999], that has been shown to have similar efficiency depending
on the dataset at hand [Popivanov and Miller 2002]. The Discrete Cosine Transform (DCT) has also
been suggested [Korn et al. 1997] but it appeared later that it did not have any advantage over other
decompositions [Keogh et al. 2004]. Several numeric transformations – such as random projections
[Indyk et al. 2000], Piecewise Linear Approximation (PLA) [Shatkay and Zdonik 1996], Piecewise
Approximate Aggregation (PAA) [Keogh et al. 2001; Yi and Faloutsos 2000] and Adaptive Piece-
wise Constant Approximation (APCA) [Keogh et al. 2001] – have been used as representations.
Symbolic representations have also been widely used. A shape alphabet with fixed resolution was
originally proposed in [Agrawal et al. 1995]. Other symbolic representations have been proposed,
such as the bit level approximation [Ratanamahatana et al. 2005] or the Symbolic Aggregate appro-
Ximation (SAX) [Lin et al. 2003]; the latter one has been shown to outperform most of the other
representations [Stiefmeier et al. 2007]. We will find below a detailed overview of representations
(section 4.2), distance measures (section 4.3) and indexing techniques (section 4.4).

Other important extensions to query by content include the handling of scaling and gaps [Vlachos
et al. 2002], noise [Vlachos et al. 2004], query constraints [Goldin and Kanellakis 1995] and time
warping, either by allowing false dismissals [Yi et al. 1998] or working without constraints [Sakurai
et al. 2005]. Lower bounding distances without false dismissals for DTW were proposed in [Kim
et al. 2001] and [Keogh and Ratanamahatana 2005] which allows exact indexing. The recent trend
of query by content systems seems to be focused on streams. Given the continuously growing band-
width, most of next generation analysis will most likely have to be performed over stream data. The
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Fig. 2. Two possible outputs from the same clustering system obtained by changing the required number of clusters with
(a) N = 3 and (b) N = 8. As we can see, the clustering task is a non trivial problem that highly depends on the way parameters
are initialized and the level of detail targeted. This parameter selection issue is common to every clustering task, even out of
the scope of time series mining.

dynamic nature of streaming time series precludes using the methods proposed for the static case.
In a recent study, [Kontaki et al. 2009] introduced the most important issues concerning similarity
search in static and streaming time series databases. In [Kontaki et al. 2007], the use of an incre-
mental computation of DFT allows to adapt to the stream update frequency. However, maintaining
the indexing tree for the whole streaming series seems to be uselessly costly. [Assent et al. 2009]
proposed a filter-and-refine DTW algorithm called Anticipatory DTW, which allows faster rejecti-
on of false candidates. [Lian et al. 2010] proposed a weighted locality-sensitive hashing (WLSH)
technique applying to approximate queries and working by incremental updating adaptive to the
characteristics of stream data. [Lian and Chen 2007] proposed three approaches, polynomial, DFT
and probabilistic, to predict future unknown values and answer queries based on the predicated data.
This approach is a combination of prediction (cf. section 3.5) and streaming query by content; it is
representative of an effort to obtain a convergence of approaches that seem to be heterogeneous.

3.2. Clustering
Clustering is the process of finding natural groups, called clusters, in a dataset. The objective is to
find the most homogeneous clusters that are as distinct as possible from other clusters. More for-
mally, the grouping should maximize inter-cluster variance while minimizing intra-cluster variance.
The algorithm should thus automatically locate which groups are intrinsically present in the data.
Figure 2 depicts some possible outputs of a clustering algorithm. It can be seen in this figure that
the main difficulty concerning any clustering problem (even out of the scope of time series mining)
usually lies in defining the correct number of clusters. The time series clustering task can be divided
into two sub-tasks.

3.2.1. Whole series clustering. Clustering can be applied to each complete time series in a set.
The goal is thus to regroup entire time series into clusters so that the time series are as similar to
each other as possible within each cluster.

Definition 3.6. Given a time series database DB and a similarity measure D (Q,T ), find the set
of clusters C = {ci} where ci = {Tk | Tk ∈ DB} that maximizes inter-cluster distance and minimi-
zes intra-cluster variance. More formally ∀i1, i2, j such that Ti1 ,Ti2 ∈ ci and Tj ∈ c j D (Ti1 ,Tj)�
D (Ti1 ,Ti2)

There have been numerous approaches for whole series clustering. Typically, after defining an
adequate distance function, it is possible to adapt any algorithm provided by the generic clustering
topic. Clustering is traditionnally performed by using Self Organizing Maps (SOM) [Chappelier
and Grumbach 1996], Hidden Markov Models (HMM) [Smyth 1997] or Support Vector Machines
(SVM) [Yoon et al. 2005]. [Gaffney and Smyth 1999] proposed a variation of the Expectation Ma-
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ximization (EM) algorithm. However, this model-based approach has usually some scalability pro-
blems and implicitly presupposes the existence of an underlying model which is not straightforward
for every dataset. Using Markov chain Monte Carlo (MCMC) methods, [Fröhwirth-Schnatter and
Kaufmann 2008] makes an estimation about the appropriate grouping of time series simultaneous-
ly along with the group-specific model parameters. A good survey of generic clustering algorithms
from a data mining perspective is given in [Berkhin 2006]. This review focuses on methods based on
classical techniques that can further be applied to time series. A classification of clustering methods
for various static data is proposed in [Han and Kamber 2006] following five categories: partitio-
ning, hierarchical, density-based, grid-based and model-based. For the specificities of time series
data, three of these five categories (partitioning, hierarchical and model-based) have been applied
[Liao 2005]. Clustering of time series is especially useful for data streams; it has been implemented
by using clipped data representations [Bagnall and Janacek 2005], Auto-Regressive (AR) models
[Corduas and Piccolo 2008], k−Means [Vlachos et al. 2003] and – with greater efficiency – k-center
clustering [Cormode et al. 2007]. Interested readers may refer to [Liao 2005] who provides a tho-
rough survey of time series clustering issues by discussing the advantages and limitations of existing
works as well as avenues for research and applications.

3.2.2. Subsequence clustering. In this approach, the clusters are created by extracting subse-
quences from a single or multiple longer time series.

Definition 3.7. Given a time series T = (t1, ..., tn) and a similarity measure D (Q,C), find the set
of clusters C = {ci}where ci =

{
T
′
j | T

′
j ∈ Sn

T

}
is a set of subsequences that maximizes inter-cluster

distance and intra-cluster cohesion.

In [Hebrail and Hugueney 2000], the series are sliced into non-overlapping windows. Their width
is chosen by investigating the periodical structure of the time series by means of a DFT analysis.
This approach is limited by the fact that, when no strong periodical structure is present in the se-
ries, non-overlapping slicing may miss important structures. A straightforward way to extend this
approach can therefore be to extract shorter overlapping subsequences and then cluster the resulting
set. However, this overlapping approach has been shown to produce meaningless results [Keogh
et al. 2003]. Despite these deceptive results, the authors pointed out that a meaningful subsequence
clustering system could be constructed on top of a motif mining [Patel et al. 2002] algorithm (cf.
section 3.7). [Denton 2005] was first to suggest an approach to overcome this inconsistency by not
forcing the algorithm to use all subsequences in the clustering process. In the context of intrusion
detection, [Zhong et al. 2007] studied multiple centroid-based unsupervised clustering algorithms,
and proposed a self-labeling heuristic to detect any attack within network traffic data. Clustering is
also one of the major challenges in bioinformatics, especially in DNA analysis. [Kerr et al. 2008]
surveyed state-of-the-art applications of gene expression clustering and provided a framework for
the evaluation of results.

3.3. Classification
The classification task seeks to assign labels to each series of a set. The main difference when
compared to the clustering task is that classes are known in advance and the algorithm is trained on
an example dataset. The goal is first to learn what the distinctive features distinguishing classes from
each others are. Then, when an unlabeled dataset is entered into the system, it can automatically
determine which class each series belongs to. Figure 3 depicts the main steps of a classification
task.

Definition 3.8. Given an unlabeled time series T , assign it to one class ci from a set C = {ci} of
predefined classes.

There are two types of classification. The first one is the time series classification similar to whole
series clustering. Given sets of time series with a label for each set, the task consists in training a
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Fig. 3. The three main steps of a classification task. (a) A training set consisting of two pre-labeled classes C1 and C2 is
entered into the system. The algorithm will first try to learn what the characteristic features distinguishing one class from
another are; they are represented here by the class boundaries. (b) An unlabeled dataset is entered into the system that will
then try to automatically deduce which class each datapoint belongs to. (c) Each point in the set entered has been assigned
to a class. The system can then optionally adapt the classes boundaries.

classifier and labeling new time series. An early approach to time series classification was presented
in [Bakshi and Stephanopoulos 1994]. However, it is based on simple trends whose results are there-
fore hard to interpret. A piecewise representation was later proposed in [Keogh and Pazzani 1998],
it is robust to noise and weighting can be applied in a relevance feedback framework. The same
representation was used in [Geurts 2001]; it is apparently not too robust to outliers. To overcome
the obstacle of high dimensionality, [Jeng and Huang 2008] used Singular Value Decomposition to
select essential frequencies. However, it implies higher computational costs. In a recent study, [Ro-
driguez and Kuncheva 2007] compared three types of classifiers: nearest neighbor, support vector
machines and decision forests. All three methods seems to be valid, though highly depending on the
dataset at hand. 1-NN classification algorithm with DTW seems to be the most widely used clas-
sifier; it was shown to be highly accurate [Xi et al. 2006], though computing speed is significantly
affected by repeated DTW computations. To overcome this limitation [Srisai and Ratanamahatana
2009] proposed a template construction algorithm based on the Accurate Shape Averaging (ASA)
technique. Each training class is represented by only one sequence so that any incoming series is
compared only with one averaged template per class. Several other techniques have been introdu-
ced, such as ARMA models [Deng et al. 1997] or HMM [Zhong and Ghosh 2002]. In the context
of clinical studies, [Lin et al. 2008] enhanced HMM approaches by using discriminative HMMs in
order to maximize inter-classes differences. Using the probabilistic transitions between fewer states
results in the patients being aligned to the model and can account for varying rates of progress.
This approach has been applied in [Lowitz et al. 2009], in order to detect post-myocardial infarct
patients. Several machine learning techniques have also been introduced such as neural networks
[Nanopoulos et al. 2001] or Bayesian classification [Povinelli et al. 2004]. However, many of these
proposals have been shown to be overpowered by a simple 1NN-DTW classifier [Xi et al. 2006].
A double-loop EM algorithm with a Mixture of Experts network structure has been introduced in
[Subasi 2007] for the detection of epileptic seizure based on the EEG signals displayed by normal
and epileptic patients. A well-known problem in classification tasks is the overtraining, i.e. when
too many training data lead to an over-specified and inefficient model. [Ratanamahatana and Wa-
nichsan 2008] suggested a stopping criterion to improve the data selection during a self training
phase. [Zhang et al. 2009] proposed a time series reduction, which extracts patterns that can be used
as inputs to classical machine-learning algorithms. Many interesting applications to this problem
have been investigated such as brain–computer interface based on EEG signals; they have been
reviewed in [Lotte et al. 2007].

3.4. Segmentation
The segmentation (or summarization) task aims at creating an accurate approximation of time series,
by reducing its dimensionality while retaining its essential features. Figure 4 shows the output of a
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(a) (b)

Fig. 4. Example of application of a segmentation system. From (a) usually noisy time series containing a very large number
of datapoints, the goal is to find (b) the closest approximation of the input time series with the maximal dimensionality
reduction factor without loosing any of its essential features.

segmentation system. Section 4.2 will show that most time series representations try to solve this
problem implicitly.

Definition 3.9. Given a time series T = (t1, ..., tn), construct a model T̄ of reduced dimensiona-
lity d̄ (d̄� n) such that T̄ closely approximates T . More formally |R(T̄ )−T |< εr, R(T̄ ) being the
reconstruction function and εr an error threshold.

The objective of this task is thus to minimize the reconstruction error between a reduced repre-
sentation and the original time series. The main approach that have been undertaken over the years
seems to be Piecewise Linear Approximation (PLA) [Shatkay and Zdonik 1996]. The main idea
behind PLA is to split the series into most representative segments, and then fit a polynomial model
for each segment. A good review on the most common segmentation methods in the context of PLA
representation can be found in [Keogh et al. 2003]. Three basic approaches are distinguished. In sli-
ding windows, a segment is grown until it exceeds some error threshold [Shatkay and Zdonik 1996].
This approach has shown poor performance with many real life datasets [Keogh et al. 2003]. The
top-down approach consists in recursively partitioning a time series until some stopping criterion is
met [Li et al. 1998]. This approach has time complexity O

(
n2
)

[Park et al. 1999] and is qualitatively
outperformed by bottom-up. In this approach, starting from the finest approximation, segments are
iteratively merged [Keogh and Pazzani 1998]. [Himberg et al. 2001] present fast greedy algorithms
to improve previous approaches and a statistical method for choosing the number of segments is
described in [Vasko and Toivonen 2002].

Several other methods have been introduced to handle this task. [Palpanas et al. 2008] introduced
a representation of time series that implicitly handles the segmentation of time series. They proposed
user-specified amnesic functions reducing the confidence to older data in order to make room for
newer data. In the context of segmenting hydrological time series, [Kehagias 2004] proposed a
maximum likelihood method using an HMM algorithm. However, this method offers no guarantee
to yield the globally optimal segmentation without long execution times. For dynamic summary
generation, [Ogras and Ferhatosmanoglu 2006] proposed an online transform-based summarization
techniques over data streams that can be updated continuously. The segmentation of time-series
can also be seen as a constrained clustering problem. [Abonyi et al. 2003] proposed to group time
points by their similarity, provided that all points in a cluster come from contiguous time instants.
Therefore, each cluster represents the segments in time whose homogeneity is evaluated with a local
PCA model.

3.5. Prediction
Time series are usually very long and considered smooth, i.e. subsequent values are within predic-
table ranges of one another [Shasha and Zhu 2004]. The task of prediction is aimed at explicitly
modeling such variable dependencies to forecast the next few values of a series. Figure 5 depicts
various forecasting scenarios.
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Fig. 5. A typical example of the time series prediction task. (a) The input time series may exhibit a periodical and thus
predictable structure. (b) The goal is to forecast a maximum number of upcoming datapoints within a prediction window.
(c) The task becomes really hard when it comes to having recursive prediction, i.e. the long term prediction of a time series
implies reusing the earlier forecast values as inputs in order to go on predicting.

Definition 3.10. Given a time series T = (t1, ...tn), predict the k next values (tn+1, ..., tn+k) that
are most likely to occur.

Prediction is a major area in several fields of research. Concerning time series, it is one of the
most extensively applied tasks. Literature about this is so abundant that dozens of reviews can focus
on only a specific field of application or family of learning methods. Even if it can use time series
representations and a notion of similarity to evaluate accuracy, It also relies on several statistical
components that are out of the scope of this article, e.g. model selection and statistical learning.
This task will be mentioned because of its importance but the interested reader willing to have fur-
ther information may consult several references on forecasting [Brockwell and Davis 2002; Harris
and Sollis 2003; Tsay 2005; Brockwell and Davis 2009] Several methods have been applied to this
task. A natural option could be AR models [Box et al. 1976]. These models have been applied
for a long time to prediction tasks involving signal de-noising or dynamic systems modeling. It is
however possible to use more complex approaches such as neural networks [Koskela 2003] or clus-
ters function approximation [Sfetsos and Siriopoulos 2004] to solve this problem. A polynomial
architecture has been developed to improve a multilayer neural network in [Yadav et al. 2007] by
reducing higher-order terms to a simple product of linear functions. Other learning algorithms, such
as SOM, provided efficient supervised architectures. A survey of applications of SOM to time series
prediction is given in [Barreto 2007]. Recent improvements for time series forecasting have been
proposed; [Pesaran et al. 2006] proposed a Bayesian prediction for time series subject to discrete
breaks, handling the size and duration of possible breaks by means of a hierarchical HMM. A dy-
namic genetic programming (GP) model tailored for forecasting streams was proposed in [Wagner
et al. 2007] by adapting incrementally based on retained knowledge. The prediction task seems one
of the most commonly applied in real-life applications, considering that market behavior forecas-
ting relies on a wealth of financial data. [Bai and Ng 2008] proposed to refine the method of factor
forecasting by introducing ‘targeted predictors’ selected by using a hysteresis (hard and soft thres-
holding) mechanism. The prediction task has also a wide scope of applications ranging from tourism
demand forecasting [Song and Li 2008] to medical surveillance [Burkom et al. 2007]. In this paper,
the authors compared the predictive accuracy of three methods, namely, non-adaptive regression,
adaptive regression, and the Holt-Winters method; the latter appeared to be the best method. In a re-
cent study, [Ahmed et al. 2009] carried out a large scale comparison for the major machine-learning
models applied to time series forecasting, following which the best two methods turned out to be
multilayer perceptron and Gaussian process regression. However, learning a model for long-term
prediction seems to be more complicated, as it can use its own outputs as future inputs (recursive
prediction). [Herrera et al. 2007] proposed the use of least-squares SVM, to solve this problem.
[Cao and Tay 2009] further applied saliency analysis to SVM in order to remove irrelevant features
based on the sensitivity of the network output to the derivative of the feature input. [Sorjamaa et al.
2007] proposed to combine direct prediction and an input selection in order to cope with long-term
prediction of time series.
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anomaly

Fig. 6. An idealized example of the anomaly detection task. A long time series which exhibits some kind of periodical
structure can be modeled thanks to a reduced pattern of “standard” behavior. The goal is thus to find subsequences which
does not follow the model and may therefore be considered as anomalies.

3.6. Anomaly detection
The detection of anomalies seeks to find abnormal subsequences in a series. Figure 6 depicts an
example of anomaly detection. It has numerous applications ranging from biosurveillance [Chuah
and Fu 2007] to intrusion detection [Zhong et al. 2007].

Definition 3.11. Given a time series T = (t1, ..., tn) and a model of its normal behavior, find all
subsequences T ′ ∈ Sn

T which contain anomalies, i.e. do not fit the model.

A good discussion on the difficulties of mining rare events is given in [Weiss 2004]. The usual
approach to detect anomalies is to first create a model of a series’ normal behavior and characterize
subsequences that stray too far from the model as anomalies. This approach can be linked to the
prediction task. Indeed, if we can forecast the next values of a time series with a large accuracy,
outliers can be detected in a straightforward manner and flagged as anomalies. This approach was
undertaken first in [Ypma and Duin 1997] using SOM model to represent the expected behavior.
A framework for novelty detection is defined in [Ma and Perkins 2003] and implemented based
on Support Vector Regression (SVR). Machine learning techniques were also introduced to dyna-
mically adapt their modelisation of normal behavior. [Ahmed et al. 2007] investigated the use of
block-based One-Class Neighbor Machine and recursive Kernel-based algorithms and showed their
applicability to anomaly detection. [Chen and Zhan 2008] proposed two algorithms to find anoma-
lies in the Haar wavelet coefficients of the time series. A state-based approach is taken in [Salvador
et al. 2004] using time point clustering so that clusters represents the normal behavior of a series.
Another definition of anomalies, the time series discords, are defined as subsequences that are ma-
ximally different from all the remaining subsequences [Keogh et al. 2007]. This definition is able
to capture the idea of most unusual subsequence within a time series and its unique parameter is
the required length of the subsequences. Thanks to this definition [Yankov et al. 2008] proposed an
exact algorithm that requires only two linear scans, thus allowing for the use of massive datasets.
However, as several proposals, the number of anomalous subsequences must be specified prior to the
search. Several real-life applications have also been outlined in recent research. Anomaly detection
is applied in [Gupta et al. 2007] to detect fatigue damage in polycrystalline alloys, thus preventing
problems in mechanical structures. An anomaly detection scheme for time series is used in [Chuah
and Fu 2007] to determine whether streams coming from sensors contain any abnormal heartbeats.
A recent overview and classification of the research on anomaly detection is presented in [Chandola
et al. 2009], which provides a discussion on the computational complexity of each technique.

3.7. Motif discovery
Motif discovery consists in finding every subsequences (named motif ) that appears recurrently in a
longer time series. This idea was transferred from gene analysis in bioinformatics. Figure 7 depicts
a typical example of motif discovery. Motifs were defined originally in [Patel et al. 2002] as typical
non-overlapping subsequences. More formally
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Fig. 7. The task of motif discovery consists in finding every subsequence that appears recurrently in a longer time series.
These subsequences are named motifs. This task exhibits a high combinatorial complexity as several motifs can exist within
a single series, motifs can be of various lengths and even overlap.

Definition 3.12. Given a time series T = (t1, . . . , tn), find all subsequences T
′ ∈ Sn

T that occurs
repeatedly in the original time series.

A great interest for this research topic has been triggered by the observation that subsequence
clustering produces meaningless results [Keogh et al. 2003]. The authors pointed out that motif
discovery could be used as a subroutine to find meaningful clusters. In order to find motifs more
efficiently, [Chiu et al. 2003] proposed to use the random projection algorithm [Buhler and Tompa
2002] which was successfully used for DNA sequences. However, because of its probabilistic na-
ture, it is not guaranteed to find the exact set of motifs. [Ferreira et al. 2006] proposed an algorithm
that can extract approximate motifs in order to mine time series data from protein folding/unfolding
simulations. In [Liu et al. 2005], motif discovery is formalized as a continuous top-k motif balls
problem in an m-dimensional space. However, the efficiency of this algorithm critically depends
on setting the desired length of the pattern. [Tang and Liao 2008] introduced a k-motif-based al-
gorithm that provides an interesting mechanism to generate summaries of motifs. [Yankov et al.
2007] showed that motif discovery can be severely altered by any slight change of uniform scaling
(linear stretching of the pattern length) and introduced a scaling-invariant algorithm to determine
the motifs. An algorithm for exact discovery of time series motifs has been recently proposed [Mu-
een et al. 2009], which is able to process very large datasets by using early abandoning on a linear
re-ordering of data. [Mohammad and Nishida 2009] studied the constrained motif discovery pro-
blem which provides a way to incorporate prior knowledge into the motif discovery process. They
showed that most unconstrained motif discovery problems can be transformed into constrained ones
and provided two algorithms to solve such problem. The notion of motifs can be applied to many
different tasks. The modeling of normal behavior for anomaly detection (cf. section 3.6) implies
finding the recurrent motif of a series. For time series classification, significant speed-ups can be
achieved by constructing motifs for each class [Zhang et al. 2009].

4. IMPLEMENTATION COMPONENTS
In this section, we review the implementation components common to most of time series mining
tasks. As said earlier, the three key aspects when managing time series data are representation me-
thods, similarity measures and indexing techniques. Because of the high dimensionality of time
series, it is crucial to design low-dimensional representations that preserve the fundamental cha-
racteristics of a series. Given this representation scheme, the distance between time series needs
to be carefully defined in order to exhibit perceptually relevant aspects of the underlying similari-
ty. Finally the indexing scheme must allow to efficiently manage and query evergrowing massive
datasets.

4.1. Preprocessing
In real-life scenarios, time series usually come from live observations [Reeves et al. 2009] or sen-
sors [Stiefmeier et al. 2007] which are particularly subject to noise and outliers. These problems are
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usually handled by preprocessing the data. Noise filtering can be handled by using traditional signal
processing techniques like digital filters or wavelet thresholding. In [Himberg et al. 2001], Indepen-
dent Component Analysis (ICA) is used to extract the main mode of the series. As will be explained
in section 4.2, several representations implicitly handle noise as part of the transformation.

The second issue concerns the scaling differences between time series. This problem can be over-
come by a linear transformation of the amplitudes [Goldin and Kanellakis 1995]. Normalizing to a
fixed range [Agrawal et al. 1995] or first subtracting the mean (known as zero mean / unit variance
[Keogh et al. 2001]) may be applied to both time series, however it does not give the optimal match
of two series under linear transformations [Argyros and Ermopoulos 2003]. In [Goldin et al. 2004]
the transformation is sought with optional bounds on the amount of scaling and shifting. Howe-
ver, normalization should be handled with care. As noted by [Vlachos et al. 2002], normalizing an
essentially flat but noisy series to unit variance will completely modify its nature and normalizing
small enough subsequences can provoke all series to look the same [Lin and Keogh 2005].

Finally, resampling (or uniform time warping [Palpanas et al. 2004]) can be performed in order
to obtain series of the same length [Keogh and Kasetty 2003]. Down-sampling the longer series has
been shown to be fast and robust [Argyros and Ermopoulos 2003].

4.2. Representation
As mentioned earlier, time series are essentially high dimensional data. Defining algorithms that
work directly on the raw time series would therefore be computationally too expensive. The main
motivation of representations is thus to emphasize the essential characteristics of the data in a con-
cise way. Additional benefits gained are efficient storage, speedup of processing as well as implicit
noise removal. These basic properties lead to the following requirements for any representation:

— Significant reduction of the data dimensionality
— Emphasis on fundamental shape characteristics on both local and global scales
— Low computational cost for computing the representation
— Good reconstruction quality from the reduced representation
— Insensitivity to noise or implicit noise handling

Many representation techniques have been investigated, each of them offering different trade-offs
between the properties listed above. It is however possible to classify these approaches according to
the kind of transformations applied. In order to perform such classification, we follow the taxonomy
of [Keogh et al. 2004] by dividing representations into three categories, namely non data-adaptive,
data-adaptive and model-based.

4.2.1. Non Data-Adaptive. In non data-adaptive representations, the parameters of the transfor-
mation remain the same for every time series regardless of its nature.

The first non data-adaptive representations were drawn from spectral decompositions. The DFT
was used in the seminal work of [Agrawal et al. 1993]. It projects the time series on a sine and
cosine functions basis [Faloutsos et al. 1994] in the real domain. The resulting representation is a
set of sinusoidal coefficients. Instead of using a fixed set of basis functions, the DWT uses scaled
and shifted versions of a mother wavelet function [Chan and Fu 1999]. This gives a multi-resolution
decomposition where low frequencies are measured over larger intervals thus providing better ac-
curacy [Popivanov and Miller 2002]. A large number of wavelet functions have been used in the
literature like Haar [Chan et al. 2003], Daubechies [Popivanov and Miller 2002] or Coiflets [Shasha
and Zhu 2004]. The Discrete Cosine Transform (DCT) uses only a cosine basis; it has also been
applied to time series mining [Korn et al. 1997]. However, it has been shown that it does not offer
any advantage over previously cited decompositions [Keogh et al. 2004]. Finally, an approximation
by Chebychev polynomials [Cai and Ng 2004] has also been proposed but the results obtained have
later been withdrawn due to an error in implementation.

Other approaches – more specific to time series – have been proposed. The Piecewise Aggregate
Approximation (PAA) introduced by [Keogh et al. 2001] (submitted independently as Segmen-
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ted Means in [Yi and Faloutsos 2000]) represents a series through the mean values of consecutive
fixed-length segments. An extension of PAA including a multi-resolution property (MPAA) has
been proposed in [Lin and Keogh 2005]. [Aßfalg et al. 2008] suggested to extract a sequence of
amplitude-levelwise local features (ALF) to represent the characteristics of local structures. It was
shown that this proposal provided weak results in [Ding et al. 2008]. Random projections have been
used for representation in [Indyk et al. 2000]; in this case, each time series enters a convolution
product with k random vectors drawn from a multivariate standard. This approach has recently be-
en combined with spectral decompositions by [Reeves et al. 2009] with the purpose of answering
statistical queries over streams.

4.2.2. Data-Adaptive. This approach implies that the parameters of a transformation are modified
depending on the data available. By adding a data-sensitive selection step, almost all non data-
adaptive methods can become data-adaptive. For spectral decompositions, it usually consists in
selecting a subset of the coefficients. This approach has been applied to DFT [Vlachos et al. 2004]
and DWT [Struzik et al. 1999]. A data-adaptive version of PAA has been proposed in [Megalooi-
konomou et al. 2004], with vector quantization being used to create a codebook of recurrent sub-
sequences. This idea has been adapted to allow for multiple resolution levels [Megalooikonomou
et al. 2005]. However, this approach has only been tested on smaller datasets. A similar approach
has been undertaken in [Stiefmeier et al. 2007] with a codebook based on motion vectors being
created to spot gestures. However, it has been shown to be computationally less efficient than SAX.

Several inherently data-adaptive representations have also been used. SVD has been proposed
[Korn et al. 1997] and later been enhanced for streams [Ravi Kanth et al. 1998]. However, SVD
requires computation of eigenvalues for large matrices and is therefore far more expensive than
other mentioned schemes. It has recently been adapted to find multi-scale patterns in time series
streams [Papadimitriou and Yu 2006]. PLA [Shatkay and Zdonik 1996] is a widely used approach
for the segmentation task (cf. section 3.4) The set of polynomial coefficients can be obtained either
by interpolation [Keogh and Pazzani 1998] or regression [Huang and Yu 1999]. Many derivatives of
this technique have been introduced. The Landmarks system [Perng et al. 2000] extends this notion
to include a multi-resolution property. However, the extraction of features relies on several parame-
ters which are highly data-dependent. APCA [Keogh et al. 2001] uses constant approximations per
segment instead of polynomial fitting. Indexable PLA has been proposed by [Chen et al. 2007] to
speed up the indexing process. [Palpanas et al. 2004] put forward an approach based on PLA, to
answer queries about the recent past with greater precision than older data and called such repre-
sentations amnesic. The method consisting in using a segmentation algorithm as a representational
tool has been extensively investigated. The underlying idea is that segmenting a time series can be
equated with the process of representing the most salient features of a series while considerably
reducing its dimensionality. [Xie and Yan 2007] proposed a pattern-based representation of time
series. The input series is approximated by a set of concave and convex patterns to improve the sub-
sequence matching process. [Zhan et al. 2007] proposed a pattern representation of time series to
extract outlier values and noise. The Derivative Segment Approximation (DSA) model [Gullo et al.
2009] is a representation based on time series segmentation through an estimation of derivatives
to which DTW can be applied. The polynomial shape space representation [Fuchs et al. 2010] is a
subspace representation consisting of trend aspects estimators of a time series. [Bandera et al. 2009]
put forward a two-level approach to recognize gestures by describing individual trajectories with
key-points, then characterizing gestures through the global properties of the trajectories.

Instead of producing a numeric output, it is also possible to discretize the data into symbols. This
conversion into a symbolical representation also offers the advantage of implicitly performing noise
removal by complexity reduction. A relational tree representation is used in [Bakshi and Stepha-
nopoulos 1995]. Non-terminal nodes of the tree correspond to valleys and terminal nodes to peaks
in the time series. The Symbolic Aggregate approXimation (SAX) [Lin et al. 2003], based on the
same underlying idea as PAA, calls on equal frequency histograms on sliding windows to create
a sequence of short words. An extension of this approach, called indexable Symbolic Aggregate
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approXimation (iSAX) [Shieh and Keogh 2008], has been proposed to make fast indexing possible
by providing zero overlap at leaf nodes. The grid-based representation [An et al. 2003] places a
two dimensional grid over the time series. The final representation is a bit string describing which
values were kept and which bins they were in. Another possibility is to discretize the series to a
binary string (a technique called clipping) [Ratanamahatana et al. 2005]. Each bit indicates whether
the series is above or below the average. That way, the series can be very efficiently manipulated. In
[Bagnall et al. 2003] this is done using the median as the clipping threshold. Clipped series offer the
advantage of allowing direct comparison with raw series, thus providing a tighter lower bounding
metric. Thanks to a variable run-length encoding, [Bagnall et al. 2006] show that it is also possible
to define an approximation of the Kolmogorov complexity. Recently, a very interesting approach has
been proposed in [Ye and Keogh 2009]; it is based on primitives called shapelets, i.e. subsequences
which are maximally representative of a class and thus fully discriminate classes through the use of
a dictionary. This approach can be considered as a step forward towards bridging the gap between
time series and shape analysis.

4.2.3. Model-based. The model-based approach is based on the assumption that the time series
observed has been produced by an underlying model. The goal is thus to find parameters of such
a model as a representation. Two time series are therefore considered similar if they have been
produced by the same set of parameters driving the underlying model. Several parametric temporal
models may be considered, including statistical modeling by feature extraction [Nanopoulos et al.
2001], ARMA models [Kalpakis et al. 2001] Markov Chains (MCs) [Sebastiani et al. 1999] or
HMM [Panuccio et al. 2002]. MCs are obviously simpler than HMM so they fit well shorter series
but their expressive power is far more limited. The Time Series bitmaps introduced in [Kumar et al.
2005] can also be considered as a model-based representation for time series, even if it mainly aims
at providing a visualization of time series.

4.3. Similarity measure
Almost every time series mining task requires a subtle notion of similarity between series, based
on the more intuitive notion of shape. When observing simultaneously multiple characteristics of a
series, humans can abstract from such problems as amplitude, scaling, temporal warping, noise and
outliers. The Euclidean distance is obviously unable to reach such a level of abstraction. Numerous
authors have pointed out several pitfalls when using Lp norms [Ding et al. 2008; Keogh and Kasetty
2003; Yi and Faloutsos 2000]. However, it should be noted that, in the case of very large datasets,
Euclidean distance has been shown [Shieh and Keogh 2008] to be sufficient as there is a larger
probability that an almost exact match exists in the database. Otherwise, a similarity measure should
be consistent with our intuition and provide the following properties:

(1) It should provide a recognition of perceptually similar objects, even though they are not mathe-
matically identical;

(2) It should be consistent with human intuition;
(3) It should emphasize the most salient features on both local and global scales;
(4) A similarity measure should be universal in the sense that it allows to identify or distinguish

arbitrary objects, i.e. no restrictions on time series are assumed;
(5) It should abstract from distortions and be invariant to a set of transformations.

Many authors have reported about various transformation invariances required for similarity. Given
a time series T = {t1, . . . , tn} of n datapoints, we consider the following transformations:

— Amplitude shifting: The series G= {g1, . . . ,gn} obtained by a linear amplitude shift of the original
series gi = ti + k with k ∈ R a constant.

— Uniform amplification: The series G obtained by multiplying the amplitude of the original series
gi = k.ti with k ∈ R a constant.

— Uniform time scaling: The series G = {g1, . . . ,gm} produced by a uniform change of the time
scale of the original series gi = tdk.ie with k ∈ R a constant.
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— Dynamic amplification: The series G obtained by multiplying the original series by a dynamic
amplification function gi = h(i).ti with h(i) a function such that ∀t ∈ [1 . . .n], h′(t) = 0 if and only
if t ′i = 0.

— Dynamic time scaling: The series G obtained by a dynamic change of the time scale gi = th(i)
with h(i) a positive, strictly increasing function such that h : N→ [1 . . .n]

— Additive Noise: The series G obtained by adding a noisy component to the original series gi =
ti + εi with εi an independent identically distributed white noise.

— Outliers: The series G obtained by adding outliers at random positions. Formally, for a given
set of random time positions P = {k | k ∈ [1 . . .n]}, gk = εk with εk an independent identically
distributed white noise.

The similarity measure D (T,G) should be robust to any combinations of these transformations.
This property lead to our formalization of four general types of robustness. We introduce proper-
ties expressing robustness for scaling (amplitude modifications), warping (temporal modifications),
noise and outliers. Let S be a collection of time series, and let H be the maximal group of ho-
meomorphisms under which S is closed. A similarity measure D on S is called scale robust if it
satisfies

Property. For each T ∈S and α > 0 there is a δ > 0 such that ‖ti−h(ti)‖ < δ for all ti ∈ T
implies D (T,h(T ))< α for all h ∈H .

We call a similarity measure warp robust if the following holds

Property. For each T = {ti} ∈S ,T ′ =
{

th(i)
}

and α > 0 there is a δ > 0 such that ‖i−h(i)‖<
δ for all ti ∈ T implies that D (T,T ′)< α for all h ∈H .

We call a similarity measure noise robust if it satisfies the following property

Property. For each T ∈S and α > 0, there is a δ > 0 such that U = T +ε with p(ε)=N (0,δ )
implies D (T,U)< α for all U ∈S

We call a measure outlier robust if the following holds

Property. For each T ∈S , K = {rand [1...n]} and α > 0, there is a δ > 0 such that if |K |< δ

and Uk∈K = εk and Uk/∈K = Tk implies D (T,U)< α for all U ∈S

Similarity measures can be classified in four categories. Shape-based distances compare the overall
shape of the series. Edit-based distances compare two time series on the basis of the minimum num-
ber of operations needed to transform one series into another one. Feature-based distances extract
features describing aspects of the series that are then compared with any kind of distance function.
Structure-based similarity aims at finding higher-level structures in the series to compare them on a
more global scale. We further subdivide this category into two specific subcategories. Model-based
distances work by fitting a model to the various series and then comparing the parameters of the
underlying models. Compression-based distances analyze how well two series can be compressed
together. Similarity is reflected by higher compression ratios. As defined by [Keogh and Kasetty
2003], we refer to distance measures that compare the i−th point of a series to the i−th point of
another as lock-step and measures that allow flexible (one-to-many / one-to-none) comparison as
elastic.

4.3.1. Shape-based. The Euclidean distance and other Lp norms [Yi and Faloutsos 2000] have
been the most widely used distance measures for time series [Keogh and Kasetty 2003]. However,
these have been shown to be poor similarity measurements [Antunes and Oliveira 2001; Ding et al.
2008]. As a matter of fact, these measures does not match any of the types of robustness. Even if the
problems of scaling and noise can be handled in a preprocessing step [Goldin and Kanellakis 1995],
the warping and outliers issues need to be addressed with more sophisticated techniques. This is
where the use of elastic measures can provide an elegant solution to both problems.
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Handling the local distortions of the time axis is usually addressed using non-uniform time war-
ping [Keogh and Pazzani 1998], more specifically with Dynamic Time Warping (DTW) [Berndt and
Clifford 1994]. This measure is able to match various sections of a time series by allowing warping
of the time axis. The optimal alignment is defined by the shortest warping path in a distance matrix.
A warping path W is a set of contiguous matrix indices defining a mapping between two time series.
Even if there is an exponential number of possible warping paths, the optimal path is the one that
minimizes the global warping cost. DTW can be computed using dynamic programming with time
complexity O(n2) [Ratanamahatana and Keogh 2004a]. However, several lower bounding measures
have been introduced to speed up the computation. [Keogh and Ratanamahatana 2005] introduced
the notion of upper and lower envelope that represents the maximum allowed warping. Using this
technique, the complexity becomes O(n). It is also possible to impose a temporal constraint on the
size of the DTW warping window. It has been shown that these improve not only the speed but also
the level of accuracy as it avoids the pathological matching introduced by extended warping [Ratana-
mahatana and Keogh 2004b]. The two most frequently used global constraints are the Sakoe-Chiba
Band and the Itakura Parallelogram. [Salvador and Chan 2007] introduced the FastDTW algorithm
which makes a linear time computation of DTW possible by recursively projecting a warp path to
a higher resolution and then refining it. A drawback of this algorithm is that it is approximate and
therefore offer no guarantee to finding the optimal solution. In addition to dynamic warping, it may
sometimes be useful to allow a global scaling of time series to achieve meaningful results, a tech-
nique known as uniform scaling (US). [Fu et al. 2008] proposed the scaled and warped matching
(SWM) similarity measure that makes it possible to combine the benefits of DTW with those of US.

Other shape-based measures have been introduced such as the Spatial Assembling Distance (SpA-
De) [Chen et al. 2007]; it is a pattern-based similarity measure. This algorithm identifies matching
patterns by allowing shifting and scaling on both temporal and amplitude axes, thus being scale
robust. The DISSIM [Frentzos et al. 2007] distance has been introduced to handle similarity at va-
rious sampling rates. It is defined as an approximation of the integral of the Euclidean distance. One
of the most interesting recent proposals is based on the concept of elastic matching of time series
[Latecki et al. 2005]. [Latecki et al. 2007] presented an optimal subsequence matching (OSB) tech-
nique that is able to automatically determine the best subsequence and warping factor for distance
computation; it includes a penalty when skipping elements. Optimality is achieved through a high
computational cost; however, it can be reduced by limiting the skipping range.

4.3.2. Edit-based. Edit-based methods (also known as Levenshtein distance) has originally been
applied to characterize the difference between two strings. The underlying idea is that the distance
between strings may be represented by the minimum number of operations needed to transform one
string into another, with insertion, deletion and substitution. The presence of outliers or noisy regi-
ons can thus be compensated by allowing gaps in matching two time series. [Das et al. 1997] use the
Longest Common Subsequence (LCSS) algorithm to tackle this problem. The LCSS distance uses a
threshold parameter ε for point matching and a warping threshold δ . A fast approximate algorithm
to compute LCSS has been described in [Bollobas et al. 1997]. [Vlachos et al. 2002] normalized
the LCSS similarity by the length of the time series and allowed linear transformations. [Vlachos
et al. 2006] introduced lower-bounding measure and indexing techniques for LCSS. DTW requires
the matched time series to be well aligned and its efficiency deteriorates with noisy data as, when
matching all the points, it also matches the outliers distorting the true distance between sequences.
LCSS has been shown to be more robust than DTW under noisy conditions [Vlachos et al. 2002];
this heavily depends on the threshold setting. [Morse and Patel 2007] proposed the Fast Time Series
Evaluation (FTSE) method for computing LCSS. On the basis of this algorithm, they proposed the
Sequence Weighted Alignment model (Swale) that extends the ε threshold-based scoring techniques
to include arbitrary match rewards and gap penalties. The Edit Distance on Real sequence (EDR)
[Chen et al. 2005] is an adaptation of the edit distance to real-valued series. Contrary to LCSS, EDR
assign penalties depending on the length of the gaps between the series. The Edit Distance with
Real Penalty (ERP) [Chen and Ng 2004] attempts to combine the merits of DTW and edit distance
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by using a constant reference point. For the same purpose, [Marteau 2008] submitted an interesting
dynamic programming algorithm called Time Warp Edit Distance (TWED). TWED is slightly dif-
ferent from DTW, LCSS, or ERP algorithms. In particular, it highlights a parameter that controls a
kind of stiffness of the elastic measure along the time axis. Another extension to the edit distance has
been proposed in [Muhammad Fuad and Marteau 2008], it has been called the extended edit distan-
ce (EED). Following the observation that the edit distance penalizes all change operations with the
same cost, it includes an additional term reflecting whether the operation implied characters that are
more frequent, therefore closer in distance. A different approach for constraining the edit operations
has been proposed in [Chhieng and Wong 2010]; it is based on the Constraint Continuous Editing
Distance (CCED) that adjusts the potential energy of each sequence to achieve optimal similarity.
As CCED does not satisfy triangle inequality, a lower bounding distance is provided for efficient
indexing.

4.3.3. Feature-based. These measures rely on the computation of a feature set reflecting various
aspects of the series. Features can be selected by using coefficients from DFT [Shatkay and Zdonik
1996] or DWT decompositions (cf. section 4.2.2) In [Janacek et al. 2005], a likelihood ratio for DFT
coefficients has been shown to outperform Euclidean distance. In [Vlachos et al. 2005], a combina-
tion of periodogram and autocorrelation functions allows to select the most important periods of a
series. This can be extended to carrying out local correlation tracking as proposed in [Papadimitriou
et al. 2006].

Concerning symbolic representations, [Mannila and Seppnen 2001] represent each symbol with
a random vector and a symbolic sequence by the sum of the vectors weighted by the temporal
distance of the symbols. In [Flanagan 2003] weighted histograms of consecutive symbols are used
as features. The similarity search based on Threshold Queries (TQuEST) [Aßfalg et al. 2006] use a
given threshold parameter τ in order to transform a time series into a sequence of threshold-crossing
time intervals. It has however been shown to be highly specialized with mitigated results on classical
datasets [Ding et al. 2008]. [Bartolini et al. 2005] proposed a Fourier-based approach, called WARP
and making the using of the DFT phase possible, this being more accurate for a description of object
boundaries.

An approach using ideas from shape and feature-based representations has been described in [Me-
galooikonomou et al. 2005]. Typical local shapes are extracted with vector quantization and the time
series are represented by histograms counting the occurrences of these shapes at several resolutions.
Multiresolution Vector Quantized (MVQ) approximation keeps both local and global information
about the original time series, so that defining a multi-resolution and hierarchical distance function
is made possible.

4.3.4. Structure-based. Even if the previously cited approaches have been useful for short time
series or subsequences applications, they often fail to produce meaningful results on longer series.
This is mostly due to the fact that these distances are usually defined to find local similarities bet-
ween patterns. However, when handling very long time series, it might be more profitable to find
similarities on a more global scale. Structure-based distances [Lin and Li 2009] are thus designed
to identify higher-level structures in series.

Model-based. Model-based distances offer the additional advantage that prior knowledge about
the generating process can be incorporated in the similarity measurement. The similarity can be
measured by modeling one time series and determining the likelihood that one series was produced
by the underlying model of another. Any type of parametric temporal model may be used. HMM
with continuous output values or ARMA models are common choices [Xiong and Yeung 2004].
However, best results are obtained if the model selected is related to the type of production that
generated the data available. In [Ge and Smyth 2000], HMMs are combined with a piecewise linear
representation. In [Panuccio et al. 2002] the distance between HMM is normalized to take into
account the quality of fit of the series producing the model. [Bicego et al. 2003] use the similarity-
based paradigm where HMM is used to determine the similarity between each object and a pre-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: M YYYY.



A:18 P. Esling and C. Agon

determinate set of other objects. For short time series, it is also possible to use regression models as
proposed by [Gaffney and Smyth 1999].

Among other common choices for symbolic representations, we may cite MC [Reinert et al.
2000], HMM with discrete output distributions [Law and Kwok 2000], and grammar based models
[Antunes and Oliveira 2001]. Alternatively to pairwise likelihood, the Kullback-Leibler divergence
allows to have direct comparison of models [Sebastiani et al. 1999].

Compression-based. [Keogh et al. 2004], inspired by results obtained in bioinformatics, defined
a distance measure based on the Kolmogorov complexity called Compression-Based Dissimilarity
Measure (CDM). The underlying idea is that concatenating and compressing similar series should
produce higher compression ratios than when doing so with very different data. This approach
appears to be particularly efficient for clustering; it has been applied to fetal heart rate tracings
[Costa Santos et al. 2006]. Following the same underlying ideas, [Degli Esposti et al. 2009] recently
proposed a parsing-based similarity distance in order to distinguish healthy patients from hospitali-
zed ones on the basis of various symbolic codings of ECG signals. By comparing the performances
of several data classification methods, this distance is shown to be a good compromise between
accuracy and computational efforts. Similar approaches have been undertaken earlier in bioinfor-
matics [Chen et al. 2000] and several compression techniques – such as the Lempel-Ziv complexity
[Otu and Sayood 2003] – have been successfully applied to compute similarity between biological
sequences.

4.3.5. Comparison of distance measures. The choice of an adequate similarity measure highly
depends on the nature of the data to analyze as well as application-specific properties that could be
required. If the time series are relatively short and visual perception is a meaningful description,
shape-based methods seems to be the appropriate choice. If the application is targeting a very spe-
cific dataset or any kind of prior knowledge about the data is available, model-based methods may
provide a more meaningful abstraction. Feature-based methods seem more appropriate when peri-
odicities is the central subject of interest and causality in the time series is not relevant. Finally, if
the time series are long and little knowledge about the structure is available, the compression-based
and more generally structure-based approaches have the advantage of being a more generic and
parameter-free solution for the evaluation of similarity. Even with these general recommendations
and comparisons for the selection of an appropriate distance measure, the accuracy of the similarity
chosen still has to be evaluated. Ironically, it seems almost equally complex to find a good accu-
racy measure to evaluate the different similarities. However (cf. section 4.4), a crucial result when
indexing is that any distance measure should lower bound the true distance between time series in
order to preclude false dismissals [Faloutsos et al. 1994]. Therefore the tightness of lower bound
[Keogh and Kasetty 2003] appears to be the most appropriate option to evaluate the performance
of distance measures as it is a completely hardware and implementation independent measure and
offers a good prediction concerning the indexing performance. The accuracy of distance measures
are usually evaluated within a 1-NN classifier framework. It has been shown by [Ding et al. 2008]
that, despite all proposals regarding different kinds of robustness, the forty year old DTW usually
performs better. Table I summarizes the properties of every distance measures reviewed in this pa-
per, based on our formalization of four types of robustness. It also determines whether the distance
is a metric and indicates the computational cost and the number of parameters required.

4.4. Indexing
An indexing scheme allows to have an efficient organization of data for quick retrieval in large
databases. Most of the solutions presented involve a dimensionality reduction in order to index this
representation using a spatial access method. Several studies suggest that the various representations
differ but slightly in terms of indexing power [Keogh and Kasetty 2003]. However, wider differences
arise concerning the quality of results and the speed of querying. There are two main issues when

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: M YYYY.



Time series data mining A:19

Table I. Comparison of the distance measures surveyed in this paper with the four properties of robustness.
Each distance measure is thus distinguished as scale (amplitude), warp (time), noise or outliers robust. The
next column shows whether the proposed distance is a metric. The cost is given as a simplified factor of
computational complexity. The last column gives the minimum number of parameters setting required by the
distance measure.

Distance measure Scale Warp Noise Outliers Metric Cost Param
Shape-based
Lp norms

√
O(n) 0

Dynamic Time Warping (DTW)
√

O
(
n2) 1

LB_Keogh (DTW)
√ √ √

O(n) 1
Spatial Assembling (SpADe)

√ √ √
O
(
n2) 4

Optimal Bijection (OSB)
√ √ √

O
(
n2) 2

DISSIM
√ √ √

O
(
n2) 0

Edit-based
Levenshtein

√ √
O
(
n2) 0

Weighted Levenshtein
√ √

O
(
n2) 3

Edit with Real Penalty (ERP)
√ √ √

O
(
n2) 2

Time Warp Edit Distance (TWED)
√ √ √

O
(
n2) 2

Longest Common SubSeq (LCSS)
√ √ √

O(n) 2
Sequence Weighted Align (Swale)

√ √ √
O(n) 3

Edit Distance on Real (EDR)
√ √ √ √

O
(
n2) 2

Extended Edit Distance (EED)
√ √ √ √

O
(
n2) 1

Constraint Continuous Edit (CCED)
√ √ √

O(n) 1
Feature-based
Likelihood

√ √ √
O(n) 0

Autocorrelation
√ √ √

O(nlogn) 0
Vector quantization

√ √ √ √
O
(
n2) 2

Threshold Queries (TQuest)
√ √ √

O
(
n2logn

)
1

Random Vectors
√ √ √

O(n) 1
Histogram

√ √ √
O(n) 0

WARP
√ √ √ √

O
(
n2) 0

Structure-based
Model-based
Markov Chain (MC)

√ √
O(n) 0

Hidden Markov Models (HMM)
√ √ √ √

O
(
n2) 1

Auto-Regressive (ARMA)
√ √

O
(
n2) 2

Kullback-Leibler
√ √ √

O(n) 0
Compression-based
Compression Dissimilarity (CDM)

√ √ √
O(n) 0

Parsing-based
√ √ √

O(n) 0

designing an indexing scheme: completeness (no false dismissals) and soundness (no false alarms).
In an early paper, [Faloutsos et al. 1994] list the properties required for indexing schemes:

(1) It should be much faster than sequential scanning.
(2) The method should require little space overhead.
(3) The method should be able to handle queries of various lengths.
(4) The method should allow insertions and deletions without rebuilding the index.
(5) It should be correct, i.e. there should be no false dismissals.

As noted by [Keogh et al. 2001] there are two additional desirable properties:

(1) It should be possible to build the index within "reasonable time".
(2) The index should be able to handle different distance measures.

A time series X can be considered as a point in an n-dimensional space. This immediately sug-
gests that time series could be indexed by Spatial Access Methods (SAMs). These allow to partition
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space into regions along a hierarchical structure for efficient retrieval. B-trees [Bayer and McCreight
1972] on which most hierarchical indexing structures are based, were originally developed for one-
dimensional data. They use prefix separators, thus no overlap for unique data objects is guaranteed.
Multidimensional indexing structures – such as the R-tree [Beckmann et al. 1990] – use data or-
ganized in minimum bounding rectangles (MBR). However, when summarizing data in minimum
bounding regions, the sequential nature of time series cannot be captured. Their main shortcoming
is that wide MBR produce large overlap with a majority of empty space. Queries therefore intersect
with many of these MBRs.
Typical time series contain over thousand datapoints and most SAM approaches are known to degra-
de quickly at dimensionality greater than 8-12 [Chakrabarti and Mehrotra 1999]. The degeneration
with high dimensions caused by overlapping can result in having to access almost the entire dataset
by random I/O. Therefore, any benefit gained when indexing is lost. As R-trees and their variants
are victims of the phenomenon known as the ’dimensionality curse’ [Bohm et al. 2001], a solu-
tion for their usage is to first perform dimensionality reduction. The X-tree (extended node tree),
for example, uses a different split strategy to reduce overlap [Berchtold et al. 2002]. The A-tree
(approximation tree) uses VA-file-style (vector approximation file) quantization of the data space
to store both MBR and VBR (virtual bounding rectangle) lower and upper bounds [Sakurai et al.
2000]. The TV-tree (telescopic vector tree) is an extension of the R-tree. It uses minimum bounding
regions (spheres, rectangles or diamonds, depending on the type of Lp norm used) restricted to a
subset of active dimensions. However, not all methods rely on SAM to provide efficient indexing.
[Park et al. 2000] proposed the use of suffix trees [Gusfield 1997] to index time series. The idea is
that distance computation relies on comparing prefixes first, so it is possible to store every series
with identical prefixes in the same nodes. The subtrees will therefore only contain the suffixes of the
series. However, this approach seems hardly scalable for longer time series or more subtle notions
of similarity. In [Faloutsos et al. 1994] the authors introduced the GEneric Multimedia INdexIng
method (GEMINI) which can apply any dimensionality reduction method to produce efficient inde-
xing. [Yi and Faloutsos 2000] studied the problem of multi-modal similarity search in which users
can choose between multiple similarity models depending on their needs. They introduced an in-
dexing scheme for time series where the distance function can be any Lp norm. Only one index
structure is needed for all Lp norms. To analyze the efficiency of indexing schemes, [Hellerstein
et al. 1997] considered the general problem of database indexing workloads (combinations of data
sets and sets of potential queries). They defined a framework to measure the efficiency of an inde-
xing scheme based on two characterizations: storage redundancy (how many times each item in the
data set is stored) and access overhead (how many unnecessary blocks are retrieved for a query).
For indexing purposes, envelope-style upper and lower bounds for DTW have been proposed [Keo-
gh and Ratanamahatana 2005]; the indexing procedure of short time series is efficient but similarity
search typically entails more page reads. This framework has been extended [Vlachos et al. 2006]
in order to index multidimensional time series with DTW as well as LCSS. [Assent et al. 2008]
proposed the TS-tree, an indexing method offering efficient similarity search on time series. It avo-
ids overlap and provides compact meta data information on the subtrees, thus reducing the search
space. In [Kontaki et al. 2007], the use of an Incremental DFT Computation index (IDC-Index) has
been proposed to handle streams based on a deferred update policy and an incremental computation
of the DFT at different update speeds. However, the maintenance of the R*-tree for the whole stre-
aming series might cause a constantly growing overhead and the latter could result in performance
loss. It is also possible to use indexing methods to speed up DTW calculation; however, it induces
a tradeoff between efficiency and I/O cost. However, [Shieh and Keogh 2008] recently showed that
for datasets that are large enough, the benefits of using DTW instead of Euclidean distance is almost
null, as the larger the dataset, the higher the probability to find an exact match for any time series.
They proposed an extension of the SAX representation – called indexable SAX (iSAX) – allowing
to index time series with zero overlap at leaf nodes.
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5. RESEARCH TRENDS AND ISSUES
Time series data mining has been an ever growing and stimulating field of study that has conti-
nuously raised challenges and research issues over the past decade. We discuss in the following
open research issues and trends in time series data mining for the next decade.

Stream analysis. The last years of research in hardware and network research has witnessed an
explosion of streaming technologies with the continuous advances of bandwidth capabilities. Stre-
ams are seen as continuously generated measurements which have to be processed in massive and
fluctuating data rates. Analyzing and mining such data flows are computationally extreme tasks.
Several papers review research issues for data streams mining [Gaber et al. 2005] or management
[Golab and Ozsu 2003]. Algorithms designed for static datasets have usually not been sufficiently
optimized to be capable of handling such continuous volumes of data. Many models have already
been extended to control data streams, such as clustering [Domingos and Hulten 2000], classifica-
tion [Hulten et al. 2001], segmentation [Keogh et al. 2003] or anomaly detection [Chuah and Fu
2007]. Novel techniques will be required and they should be designed specifically to cope with the
ever flowing data streams.

Convergence and hybrid approaches. A lot of new tasks can be derived through a relatively easy
combination of the already existing tasks. For instance, [Lian and Chen 2007] proposed three ap-
proaches, polynomial, DFT and probabilistic, to predict the unknown values that have not fed into
the system and answer queries based on forecast data. This approach is a combination of prediction
(cf. section 3.5) and query by content (cf. section 3.1) over data streams. This work shows that fu-
ture research has to rely on the convergence of several tasks. This could potentially lead to powerful
hybrid approaches.

Embedded systems and resource-constrained environments. With the advances in hardware mi-
niaturization, new requirements are imposed on analysis techniques and algorithms. Two main types
of constraints should absolutely be met when hardware is inherently limited. First, embedded sys-
tems have a very limited memory space and cannot have permanent access to it. However, most
method use disk-resident data to analyze any incoming informations. Furthermore, sensor networks
(which are frequently used in embedded systems) usually generate huge amounts of streaming data.
So there is a vital need to design space efficient techniques, in terms of memory consumption as well
as number of accesses. An interesting solution has been recently proposed in [Ye et al. 2009]. The
algorithm is termed autocannibalistic, meaning that it is able to dynamically delete parts of itself
to make room for new data. Second, as these resource-constrained environments are often required
to be autonomous, minimizing energy consumption is another vital requirement. [Bhargava et al.
2003] has shown that sending measurements to a central site in order to process huge amounts of
data is energy inefficient and lack scalability.

Data mining theory and formalization. A formalization of data mining would drastically enhance
potential reasoning on design and development of algorithms through the use of a solid mathemati-
cal foundation. [Faloutsos and Megalooikonomou 2007] examined the possibility of a more general
theory of data mining that could be as useful as relational algebra is for database theory. They stu-
died the link between data mining and Kolmogorov complexity by showing their close relatedness.
They conclude from the undecidability of the latter that data mining will never be automated, and
therefore stating that “data mining will always be an art”. However, a mathematical formalization
could lead to global improvements of both reasoning and the evaluation of future research in this
topic.

Parameter-free data mining. One of the major problems affecting time series systems is the large
numbers of parameters induced by the method. The user is usually forced to “fine-tune” the set-
tings in order to obtain best performances. However, this tuning highly depends on the dataset and
parameters are not likely to be explicit. Thus, parameter-free systems is one of the key issue that
has to be addressed. [Keogh et al. 2004] proposed a first step in this direction by introducing a
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compression-based algorithm which does not require any parameter. As underlined by [Faloutsos
and Megalooikonomou 2007], this approach could lead to elegant solutions free from the parameter
setting problem.

User interaction. Time series data mining is starting to be highly dedicated to application specific
systems. The ultimate goal of such methods is to mine for higher-order knowledge and propose a
set of solutions to the user. It could therefore seem natural to include an user interaction scheme to
allow for dynamic exploration and refinement of the solutions. An early proposal by [Keogh and
Pazzani 1998] allows for relevance feedback in order to improve the querying process. From the best
results of a query, the user is able to assign positive or negative influences to the series. A new query
is then created by merging the series with respect to the user factors on which the system iterates.
Few systems have tried to follow the same direction. However, an interactive mining environment
allowing dynamic user exploration could increase the accessibility and usability of such systems.

Exhaustive benchmarking. A wide range of systems and algorithms has been proposed over the
past few years. Individual proposals are usually submitted together with specific datasets and eva-
luation methods that prove the superiority of the new algorithm. As noted by [Keogh and Kasetty
2002], selecting those datasets may lead to data bias and showed that the performance of time se-
ries systems is highly data-dependent. The superiority of an algorithm should be tested with a whole
range of datasets provided by various fields [Ding et al. 2008]. There is still a need for a common
and exhaustive benchmarking system to perform objective testing. Another highly challenging task
is to develop a procedure for real-time accuracy evaluation procedure. This could provide a mea-
sure of the accuracy achieved, thus allowing to interact with the system in real-time to improve its
performance.

Adaptive mining algorithm dynamics. Users are not always interested in the results of a simple
mining task and prefer to focus on evolution of these results in time. This actually represents the
dynamics of a time series data mining system. This kind of study is of particular relevance in the
context of data streams. [Dong et al. 2003] studied what are the distinctive features of analyzing
streams are, rather than other kinds of data. They argued that one of the core issues is to mine
changes in data streams. As they are of constantly evolving nature, a key aspect of the analysis of
such data is to establish how an algorithm is able to adapt dynamically to such continuous changes.
Furthermore, this could lead to ranking changes on the basis of relevance measures and contribute to
the elaboration of methods to summarize and represent changes in the system. By finding a way to
measure an approximate accuracy in real-time, it should be possible to imagine more “morphable”
algorithms that could adapt dynamically to the nature of the data available on the basis of their own
performances.

Link to shape analysis. Shape analysis has also been matter for discussion over the past few
years. There is an astonishing resemblance between the tasks that have been examined; such as
query by content [Berretti et al. 2000], classification [Kauppinen et al. 1995], clustering [Liew et al.
2000], segmentation [Sebastian et al. 2003] and even motif discovery [Xi et al. 2007]. As a matter
of fact, there is a deeper connection between these two fields as recent work shows the numerous
inherent link existing between these. [Barone et al. 2009] studied the problem of classifying ordered
sequences of digital images. When focusing on a given pixel, it is possible to extract the time series
representing the evolution of the information it contains. As this series is morphologically related to
the series of the neighboring pixels, it is possible to perform a classification and segmentation based
on this information. As presented above, [Ye and Keogh 2009] proposed to extract a time series
from the contour of an image. They introduced the time series shapelets that represents the most
informative part of an image and allows to easily discriminate between image classes. We can see
from these works that both fields could benefit from each other. Even if only modest progress has
been made in that direction, a convergence of both approaches could potentially lead to powerful
systems.
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6. CONCLUSION
After almost two decades of research in time series data mining, an incredible wealth of systems
and algorithms has been proposed. The ubiquitous nature of time series led to an extension of the
scope of applications simultaneously with the development of more mature and efficient solutions
to deal with problems of increasing computational complexity. Time series data mining techniques
are currently applied to an incredible diversity of fields ranging from economy, medical surveillan-
ce, climate forecasting to biology, hydrology, genetics, or musical querying. Numerous facets of
complexity emerge with the analysis of time series, due to the high dimensionality of such data, in
combination with the difficulty to define an adequate similarity measure based on human perception.

We have reviewed throughout this paper the field of time series data mining by first giving an
overview of the tasks that have occupied most of the research devoted to this topic. We then presen-
ted the three core implementation components that constitute most of time series systems, namely
representation techniques, similarity measures and indexing methods. We then proposed a cate-
gorization of each aspect in order to classify the existing literature. By formalizing four types of
robustness, we were able to compare existing similarity measures and provided general guidelines
for choosing the best fit similarity according to the nature of analyzed data as well as the desired
types of robustness.

As for most scientific research, trying to find the solution to a problem often leads to raising
more questions than finding answers. We have thus outlined several trends and research directions
as well as open issues for the near future. The topic of time series data mining still raises a set of
open questions and the interest of such research sometimes lies more in the open questions than the
answers that could be provided.
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