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1. Introduction

Nonlinear normal modes (NNMs) offer a solid theoretical and mathematical tool for interpreting a wide class of
nonlinear dynamical phenomena, yet they have a clear and simple conceptual relation to the classical linear normal modes
(LNMs). The relevance of the NNMs for the structural dynamicist is addressed in Part I of this paper.

However, most structural engineers still view NNMs as a concept that is foreign to them, and they do not yet consider
these nonlinear modes as a practical nonlinear analog of the LNMs. One reason supporting this statement is that most
existing constructive techniques for computing NNMs are based on asymptotic approaches and rely on fairly involved
mathematical developments. In this context, a significant contribution is that of Pesheck who proposed a meaningful
numerical extension of the invariant manifold approach [1].

Algorithms for the numerical continuation of periodic solutions are really quite sophisticated and advanced (see, e.g.,
[2–5], and the AUTO and MATCONT softwares). These algorithms have been extensively used for computing the forced
response and limit cycles of nonlinear dynamical systems [6–11]. Doedel and co-workers used them for the computation of
periodic orbits during the free response of conservative systems [12,13].

Interestingly, there have been very few attempts to compute the periodic solutions of conservative mechanical
structures (i.e., NNM motions) using numerical continuation techniques. One of the first approaches was proposed by
Slater [14] who combined a shooting method with sequential continuation to solve the nonlinear boundary value problem
that defines a family of NNM motions. Similar approaches were considered in Lee et al. [15] and Bajaj et al. [16]. A more
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sophisticated continuation method is the so-called asymptotic-numerical method. It is a semi-analytical technique that is
based on a power series expansion of the unknowns parameterized by a control parameter. It is utilized in [17] to follow the
NNM branches in conjunction with finite difference methods, following a framework similar to that of [12].

In this study, a shooting procedure is combined with the so-called pseudo-arclength continuation method for the
computation of NNM motions. We show that the NNM computation is possible with limited implementation effort, which
holds promise for a practical and accurate method for determining the NNMs of nonlinear vibrating structures.

This paper is organized as follows. In the next section, the two main definitions of an NNM and their fundamental
properties are briefly reviewed. In Section 3, the proposed algorithm for NNM computation is presented. Its theoretical
background is first recalled, and the numerical implementation is then described. Improvements are also presented for the
reduction of the computational burden. The proposed algorithm is then demonstrated using four different nonlinear
vibrating systems in Section 4. In Part I, the relevance of the NNMs for the dynamicist is discussed.

2. Nonlinear normal modes (NNMs)

A detailed description of NNMs is given in the companion paper, Part I. For completeness, the two main definitions of an
NNM and their fundamental properties are briefly reviewed in this section.

2.1. Framework and definitions

In this study, the free response of discrete conservative mechanical systems with n degrees of freedom (DOFs) is
considered, assuming that continuous systems (e.g., beams, shells or plates) have been spatially discretized using the finite
element method. The equations of motion are

M €xðtÞ þ KxðtÞ þ fnlfxðtÞ; _xðtÞg ¼ 0 (1)

where M is the mass matrix; K is the stiffness matrix; x, _x and €x are the displacement, velocity and acceleration vectors,
respectively; fnl is the nonlinear restoring force vector, assumed to be regular. In principle, systems with nonsmooth
nonlinearities can be studied with the proposed method, but they require a special treatment [18].

There exist two main definitions of an NNM in the literature due to Rosenberg [19–21] and Shaw and Pierre [22–25]:
1.
 Targeting a straightforward nonlinear extension of the LNM concept, Rosenberg defined an NNM motion as a vibration in

unison of the system (i.e., a synchronous periodic oscillation).

2.
 To provide an extension of the NNM concept to damped systems, Shaw and Pierre defined an NNM as a two-dimensional

invariant manifold in phase space. Such a manifold is invariant under the flow (i.e., orbits that start out in the manifold
remain in it for all time), which generalizes the invariance property of LNMs to nonlinear systems.

At first glance, Rosenberg’s definition may appear restrictive in two cases. Firstly, it cannot be easily extended to
nonconservative systems. However, as discussed in the companion paper, Part I, and in [15,26], the damped dynamics can
often be interpreted based on the topological structure of the NNMs of the underlying conservative system. Moreover, due
to the lack of knowledge of damping mechanisms, engineering design in industry is often based on the conservative
system, and this even for linear vibrating structures. Secondly, in the presence of internal resonances, the NNM motion is
no longer synchronous, but it is still periodic.

In the present study, an NNM motion is therefore defined as a (nonnecessarily synchronous) periodic motion of the
undamped mechanical system (1). As we will show, this extended definition is particularly attractive when targeting a
numerical computation of the NNMs. It enables the nonlinear modes to be effectively computed using algorithms for the
continuation of periodic solutions, which are really quite sophisticated and advanced.

2.2. Fundamental properties

2.2.1. Frequency-energy dependence

One typical dynamical feature of nonlinear systems is the frequency-energy dependence of their oscillations. As a result,
the modal curves and frequencies of NNMs depend on the total energy in the system. In view of this dependence, the
representation of NNMs in a frequency-energy plot (FEP) is particularly convenient. An NNM motion is represented by a
point in the FEP, which is drawn at a frequency corresponding to the minimal period of the periodic motion and at an
energy corresponding to the conserved total energy during the motion, which is the sum of the potential and kinetic
energies. A branch, represented by a solid line, is a family of NNM motions possessing the same qualitative features.

A two-degree-of-freedom (2DOF) system with a cubic stiffness is chosen. The system is depicted in Fig. 1, and its NNMs
are discussed in more detail in Section 4. The governing equations of motion are

€x1 þ ð2x1 � x2Þ þ 0:5x3
1 ¼ 0

€x2 þ ð2x2 � x1Þ ¼ 0 (2)
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Fig. 1. Schematic representation of the 2DOF system example.
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Fig. 2. Frequency-energy plot of system (2) computed with the proposed numerical method. NNM motions depicted in the configuration space are inset.

The horizontal and vertical axes in these plots are the displacements of the first and second DOFs, respectively; the aspect ratio is set so that increments

on the horizontal and vertical axes are equal in size to indicate whether or not the motion is localized to a particular DOF.
The underlying linear system possesses two (in-phase and out-of-phase) linear modes. The FEP of this nonlinear system,
shown in Fig. 2, was obtained using the NNM computation method proposed in Section 3. The evolution of NNM motions in
the configuration space (i.e., the modal curves) are inset. The backbone of the plot is formed by two branches, which
represent in-phase (S11þ) and out-of-phase (S11�) synchronous NNMs. They are the continuation of the corresponding
LNMs. The letter S refers to symmetric periodic solutions for which the displacements and velocities of the system at half-
period are equal but with an opposite sign to those at time t ¼ 0. The indices in the notations are used to mention that the
two masses vibrate with the same dominant frequency. The FEP clearly shows that the nonlinear modal parameters,
namely the modal curves and the corresponding frequencies of oscillation, have a strong dependence on the total energy in
the system.
2.2.2. Internally resonant NNMs

Another salient feature of NNMs is that they can undergo modal interactions through internal resonances. When
carrying out the NNM computation for system (2) at higher energy levels, Fig. 3 shows that others branches of periodic
solutions, termed tongues, bifurcate from the backbone branch S11þ. For instance, unsymmetric periodic solutions are
encountered and are denoted by a letter U. On these tongues, denoted Snm and Unm, there exist several dominant
frequency components, which results in a n : m internal resonance between the in-phase and out-of-phase NNMs. These
additional branches correspond to internally resonant NNM motions, as opposed to fundamental NNM motions; they have
no counterpart in linear systems.

The time series and modal curves corresponding to different NNM motions of system (2) are represented in Figs. 4
and 5. Fig. 4 shows a fundamental NNM motion on S11þ. Three internally resonant NNM motions, namely a motion
on S31 and two different motions on U21, are illustrated in Fig. 5. The difference between symmetric and unsymmetric
NNM motions, as discussed in the previous section, is evident in this plot. It can also be observed that an NNM
motion may take the form of an open or a closed curve in the configuration space. Closed orbits imply phase
differences between the two oscillators of the system; i.e., their velocities do not vanish at the same time instant.
Interestingly, there exist two different tongues of 2:1 internal resonance in this system, depending on whether the
NNM motion is an open or closed orbit in the configuration space. These tongues are coincident and cannot be
distinguished in Fig. 3.
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Fig. 3. S11þ at higher energy levels and internally resonant NNMs (U21, S31, U41, S51).
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Fig. 4. Fundamental NNM motion on S11þ (Frequency ¼ 0:213 Hz; energy ¼ 102:33 J). Left: time series (——: x1ðtÞ; - - -: x2ðtÞ). Right: modal curve in the

configuration space.
2.2.3. Mode bifurcations

A third fundamental property of NNMs is that their number may exceed the number of DOFs of the system. Due to mode
bifurcations, not all NNMs can be regarded as nonlinear continuation of the underlying LNMs, and these bifurcating NNMs
are essentially nonlinear with no linear counterparts. Modes generated through internal resonances are one example.
Another possible example corresponds to the generation of additional fundamental NNMs. This is discussed at length in
[27–29].

3. Numerical computation of NNMs

The numerical method proposed here for the NNM computation relies on two main techniques, namely a shooting
technique and the pseudo-arclength continuation method. It is summarized in Fig. 6.

3.1. Shooting method

The equations of motion of system (1) can be recast into state space form

_z ¼ gðzÞ (3)

where z ¼ ½x� _x��� is the 2n-dimensional state vector, and star denotes the transpose operation, and

gðzÞ ¼
_x

�M�1
½Kxþ fnlðx; _xÞ�

!
(4)
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Fig. 5. Internally resonant NNMs. From top to bottom: S31, open and closed U21 NNM motions. Left: time series (——: x1ðtÞ; - - -: x2ðtÞ). Right: modal

curve in the configuration space.
is the vector field. It is assumed that the mass matrix is invertible. The solution of this dynamical system for initial
conditions zð0Þ ¼ z0 ¼ ½x�0 _x

�

0�
� is written as zðtÞ ¼ zðt; z0Þ in order to exhibit the dependence on the initial conditions,

zð0; z0Þ ¼ z0. A solution zpðt; zp0Þ is a periodic solution of the autonomous system (3) if zpðt; zp0Þ ¼ zpðt þ T; zp0Þ, where T is
the minimal period.

The NNM computation is carried out by finding the periodic solutions of the governing nonlinear equations of motion
(3). In this context, the shooting method is probably the most popular numerical technique [2,4,5,30]. It solves numerically
the two-point boundary-value problem defined by the periodicity condition

Hðzp0; TÞ � zpðT; zp0Þ � zp0 ¼ 0 (5)

Hðz0; TÞ ¼ zðT ; z0Þ � z0 is called the shooting function and represents the difference between the initial conditions and the
system response at time T . Unlike forced motion, the period T of the free response is not known a priori.

The shooting method consists in finding, in an iterative way, the initial conditions zp0 and the period T that realized a
periodic motion. To this end, the method relies on direct numerical time integration and on the Newton–Raphson algorithm.

Starting from some assumed initial conditions zð0Þp0 , the motion zð0Þp ðt; z
ð0Þ
p0 Þ at the assumed period Tð0Þ can be obtained by

numerical time integration methods (e.g., Runge–Kutta or Newmark schemes). In general, the initial guess ðzð0Þp0 ; T
ð0Þ
Þ does

not satisfy the periodicity condition (5). This is illustrated in Fig. 7 for a Duffing oscillator

€xþ xþ 0:5x3 ¼ 0 (6)
5



Fig. 6. Algorithm for NNM computation.
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Fig. 7. Solutions of the Duffing oscillator for different initial conditions. Left plot: time series; right plot: phase space. ——: periodic solution for

½xð0Þ _xð0Þ� ¼ ½4:9009 0� and T ¼ 2:0215 s; - - - : solution for ½xð0Þ _xð0Þ� ¼ 1:1� ½4:9009 0�; � � � � �: solution for ½xð0Þ _xð0Þ� ¼ 0:9� ½4:9009 0�. Markers

represent different initial conditions of the periodic solution; �: ½x _x� ¼ ½4:9009 0�; &: ½x _x� ¼ ½�1:0313 � 12:9188�; B: ½x _x� ¼ ½�2:9259 11:8894�.
Two pairs of initial conditions, ½xð0Þ _xð0Þ� ¼ 0:9� ½4:9009 0� and ½xð0Þ _xð0Þ� ¼ 1:1� ½4:9009 0�, are two approximations to the
actual solution, ½xð0Þ _xð0Þ� ¼ ½4:9009 0�, for the current period T ¼ 2:0215 s. The former (latter) approximation yields a
motion with a too large (small) period.
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A Newton–Raphson iteration scheme is therefore to be used to correct an initial guess and to converge to the actual
solution. The corrections Dzð0Þp0 and DT ð0Þ are found by expanding the nonlinear function

Hðzð0Þp0 þ Dzð0Þp0 ; T
ð0Þ
þ DT ð0ÞÞ ¼ 0 (7)

in Taylor series

Hðzð0Þp0 ; T
ð0Þ
Þ þ

qH

qzp0

����
ðzð0Þ

p0
;T ð0ÞÞ

Dzð0Þp0 þ
qH

qT

����
ðzð0Þ

p0
;T ð0ÞÞ

DT ð0Þ þH:O:T: ¼ 0 (8)

and neglecting higher-order terms (H.O.T.).
The initial conditions zp0 and the period T characterizing the periodic solution are computed through the iterative

procedure

zðkþ1Þ
p0 ¼ zðkÞp0 þ DzðkÞp0 and Tðkþ1Þ

¼ T ðkÞ þ DT ðkÞ (9)

with

qH

qzp0

����
ðzðkÞ

p0
;T ðkÞÞ

DzðkÞp0 þ
qH

qT

����
ðzðkÞ

p0
;TðkÞÞ

DT ðkÞ ¼ �HðzðkÞp0 ; T
ðkÞ
Þ (10)

where k is the shooting iteration index. Convergence is achieved when Hðzp0; TÞ 	 0 to the desired accuracy. In the
neighborhood of the solution, the convergence is fast (i.e., quadratic convergence for an exact evaluation of the Jacobian
matrix). However, it should be kept in mind that the Newton–Raphson method is a local algorithm; the convergence is
guaranteed only when the initial guess is sufficiently close to the solution.

Each shooting iteration involves the time integration of the equations of motion to evaluate the current shooting residue
HðzðkÞp0 ; T

ðkÞ
Þ ¼ zðkÞp ðT

ðkÞ; zðkÞp0 Þ � zðkÞp0 . As evidenced by Eq. (10), the shooting method also requires the evaluation of the partial
derivatives of Hðz0; TÞ ¼ zðT; z0Þ � z0. The 2n� 1 vector qH=qT is given by

qH

qT
ðz0; TÞ ¼

qzðt; z0Þ

qt

����
t¼T

¼ gðzðT ; z0ÞÞ (11)

The 2n� 2n Jacobian matrix qH=qz0 is provided by

qH

qz0
ðz0; TÞ ¼

qzðt; z0Þ

qz0

����
t¼T

� I (12)

where I is the 2n� 2n identity matrix. There are basically two means of computing the Jacobian matrix qzðt; z0Þ=qz0.
1.
 This matrix represents the variation of the solution zðt; z0Þ at time t when the initial conditions z0 are perturbed. It can,
therefore, be evaluated through a numerical finite-difference analysis by perturbing successively each of the initial
conditions and integrating the equations of motion [5].
2.
 An alternative computation is obtained by differentiating the equations of motion (3) with respect to the initial
conditions z0

q
qz0
½_zðt; z0Þ� ¼

q
qz0
½gðzðt; z0ÞÞ� (13)

It follows

d

dt

qzðt; z0Þ

qz0

� �
¼

qgðzÞ

qz

����
zðt;z0Þ

qzðt; z0Þ

qz0

� �
(14)

with

qzð0; z0Þ

qz0
¼ I (15)

since zð0; z0Þ ¼ z0. Hence, the matrix qzðt; z0Þ=qz0 at t ¼ T can be obtained by numerically integrating over T the initial-
value problem defined by the ordinary differential equations (ODEs) (14) with the initial conditions (15).

In addition to the integration of the current solution zðt;x0Þ of (3), these two methods for computing qzðt; z0Þ=qz0 require
2n numerical integrations of 2n-dimensional dynamical systems, which may be computationally intensive for large
systems. However, equations (14) are linear ODEs, and their numerical integration is thus less expensive. The numerical
cost can be further reduced if the solution of Eq. (14) is computed together with the solution of the nonlinear equations of
motion in a single simulation [31]. We note that the finite-difference procedure is required when g is nondifferentiable, i.e.,
when the nonlinearities are nonsmooth [5,32].
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In the present case, the phase of the periodic solutions is not fixed. If zðtÞ is a solution of the autonomous system (3),
then zðt þ DtÞ is geometrically the same solution in phase space for any Dt. The initial conditions zp0 can be arbitrarily
chosen anywhere on the periodic solution. This is illustrated in Fig. 7 for the Duffing oscillator (6) where different initial
conditions corresponding to the same periodic solution are shown. Hence, an additional condition has to be specified in
order to remove the arbitrariness of the initial conditions. Mathematically, the system (10) of 2n equations with 2nþ 1
unknowns needs a supplementary equation, termed the phase condition.

Different phase conditions have been proposed in the literature [4,5]. For instance, the simplest one consists in setting
one component of the initial conditions vector to zero, as in [17]. This is illustrated in Fig. 7 where the depicted periodic
solution of the Duffing oscillator is characterized by a zero initial velocity. A phase condition particularly suitable for the
NNM computation is utilized in the present study and is discussed in Section 3.3.2.

In summary, the NNM computation is carried out by solving the augmented two-point boundary-value problem defined
by

Fðzp0; TÞ �
Hðzp0; TÞ ¼ 0

hðzp0Þ ¼ 0

(
(16)

where hðzp0Þ ¼ 0 is the phase condition.
An important characteristic of NNMs is that they can be stable or unstable, which is in contrast to linear theory where

all modes are neutrally stable. In this context, instability means that small perturbations of the initial conditions that
generate the NNM motion lead to the elimination of the mode oscillation. Nonetheless, the unstable NNMs can be
computed using the shooting procedure.

The stability analysis can be performed when an NNM motion has been computed by the shooting algorithm. The
monodromy matrix FT of a periodic orbit zpðt; zp0Þ of period T is defined by its 2n� 2n Jacobian matrix evaluated at t ¼ T

FT ðzp0Þ ¼
qzp t; zp0

� �
qzp0

����
t¼T

(17)

Perturbing the initial conditions with the vector Dz0 and expanding the perturbed solution zðT; zp0 þ Dz0Þ in Taylor series
yields

DzðTÞ ¼ FT ðzp0ÞDz0 þ Oð Dz0k k
2
Þ (18)

where DzðTÞ ¼ zðT ; zp0 þ Dz0Þ � zpðT; zp0Þ.
Eq. (18) shows that the monodromy matrix provides the first-order variation of the periodic solution after one period.

After m periods, one obtains

DzðmTÞ ¼ ½FT ðzp0Þ�
mDz0 þ OðkDz0k

2Þ (19)

The linear stability of the periodic solution calculated by the shooting algorithm is studied by computing the eigenvalues
of its monodromy matrix FT . The 2n eigenvalues, termed Floquet multipliers, provide the exponential variations of the
perturbations along the eigendirections of the monodromy matrix. If a Floquet multiplier has a magnitude larger than one,
then the periodic solution is unstable; otherwise, it is stable in the linear sense.

3.2. Continuation of periodic solutions

The conservative system (3) comprises at least n different families of periodic orbits (i.e., NNMs), which can be regarded
as nonlinear extensions of the LNMs of the underlying linear system. Due to the frequency-energy dependence, the modal
parameters of an NNM vary with the total energy. An NNM family, governed by Eq. (16), therefore traces a curve, termed an
NNM branch, in the ð2nþ 1Þ-dimensional space of initial conditions and period ðzp0; TÞ. As stated before, there may also
exist additional NNMs (i.e., bifurcating NNMs) that are essentially nonlinear with no linear counterparts.

In this study, the NNMs are determined using methods for the numerical continuation of periodic motions (also called
path-following methods) [4,5,33]. Starting from the corresponding LNM at low energy, the computation is carried out by
finding successive points ðzp0; TÞ of the NNM branch. The space ðzp0; TÞ is termed the continuation space.

Different methods for numerical continuation have been proposed in the literature. The so-called pseudo-arclength
continuation method is used herein.

3.2.1. Sequential continuation

The simplest and most intuitive continuation technique is the sequential continuation method. This procedure is first
explained due to its straightforward implementation. Moreover, it provides the fundamental concepts of continuation
methods.

The sequential continuation of the periodic solutions governed by Eq. (16) is carried out in three steps:
1.
 A periodic solution ðzp0;ð1Þ; T ð1ÞÞ at sufficiently low energy (i.e., in the neighborhood of one LNM) is first computed using
the shooting method. The period and initial conditions of the selected LNM are chosen as an initial guess.
8



2.
 The period is incremented, Tðjþ1Þ ¼ T ðjÞ þ DT.

3.
 From the current solution ðzp0;ðjÞ; T ðjÞÞ, the next solution ðzp0;ðjþ1Þ; Tðjþ1ÞÞ is determined by solving Eq. (16) using the

shooting method with the period fixed:

zðkþ1Þ
p0;ðjþ1Þ ¼ zðkÞp0;ðjþ1Þ þ DzðkÞp0;ðjþ1Þ (20)

where

qF

qzp0

����
ðzðkÞ

p0;ðjþ1Þ
;T ðjþ1ÞÞ

DzðkÞp0;ðjþ1Þ ¼ �FðzðkÞp0;ðjþ1Þ; T ðjþ1ÞÞ (21)

The initial conditions of the previous periodic solution are used as a prediction zð0Þp0;ðjþ1Þ ¼ zp0;ðjÞ. Superscript k is the
iteration index of the shooting procedure, whereas subscript j is the index along the NNM branch.

Eventually, one NNM branch is computed.

3.2.2. Pseudo-arclength continuation

The sequential continuation method parameterizes an NNM branch using the period T. It has two main drawbacks:
1.
 Because the convergence of the Newton–Raphson procedure depends critically on the closeness of the initial guess to
the actual solution, the sequential continuation requires fairly small increments DT.
2.
 Because the value of the period is fixed during the Newton–Raphson corrections, it is unable as such to deal with
turning points. This is illustrated in Fig. 8 where no solution exists for a period larger than the period at the turning
point.

For better performance, a continuation algorithm uses a better prediction than the last computed solution. In addition,
corrections of the period are also considered during the shooting process. The pseudo-arclength continuation method relies
on these two improvements in order to optimize the path following of the branch.

Starting from a known solution ðzp0;ðjÞ; T ðjÞÞ, the next periodic solution ðzp0;ðjþ1Þ; T ðjþ1ÞÞ on the branch is computed using a
predictor step and a corrector step.

Predictor step: At step j, a prediction ð~zp0;ðjþ1Þ; ~T ðjþ1ÞÞ of the next solution ðzp0;ðjþ1Þ; T ðjþ1ÞÞ is generated along the tangent
vector to the branch at the current point zp0;ðjÞ

~zp0;ðjþ1Þ

~T ðjþ1Þ

" #
¼

zp0;ðjÞ

T ðjÞ

" #
þ sðjÞ

pz;ðjÞ

pT;ðjÞ

" #
(22)
Fig. 8. Turning point ðT� ; z%

p0Þ in the continuation space. Failure of the sequential continuation for TXT%.
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where sðjÞ is the predictor stepsize. The tangent vector pðjÞ ¼ ½p
�
z;ðjÞ pT ;ðjÞ�

� to the branch defined by (16) is solution of the
system

qH

qzp0

����
ðzp0;ðjÞ ;T ðjÞÞ

qH

qT

����
ðzp0;ðjÞ ;T ðjÞÞ

qh

qzp0

�����
ðzp0;ðjÞÞ

0

2
66664

3
77775

pz;ðjÞ

pT ;ðjÞ

" #
¼

0

0

� �
(23)

with the condition kpðjÞk ¼ 1. The star denotes the transpose operator. This normalization can be taken into account by
fixing one component of the tangent vector and solving the resulting overdetermined system using the Moore–Penrose
matrix inverse; the tangent vector is then normalized to 1. For illustration, the predictor step is shown schematically
in Fig. 9.

Corrector step: The prediction is corrected by a shooting procedure in order to solve Eq. (16) in which the variations of
the initial conditions, and the period are forced to be orthogonal to the predictor step. At iteration k, the corrections

zðkþ1Þ
p0;ðjþ1Þ ¼ zðkÞp0;ðjþ1Þ þ DzðkÞp0;ðjþ1Þ

T ðkþ1Þ
ðjþ1Þ ¼ TðkÞ

ðjþ1Þ þ DTðkÞ
ðjþ1Þ (24)

are computed by solving the overdetermined linear system using the Moore–Penrose matrix inverse

qH

qzp0

����
ðzðkÞ

p0;ðjþ1Þ
;TðkÞ
ðjþ1Þ
Þ

qH

qT

����
ðzðkÞ

p0;ðjþ1Þ
;T ðkÞ
ðjþ1Þ
Þ

qh

qzp0

�����
ðzðkÞ

p0;ðjþ1Þ
Þ

0

p�z;ðjÞ pT;ðjÞ

2
66666664

3
77777775

DzðkÞp0;ðjþ1Þ

DT ðkÞ
ðjþ1Þ

2
4

3
5 ¼

�HðzðkÞp0;ðjþ1Þ; T
ðkÞ
ðjþ1ÞÞ

�hðzðkÞp0;ðjþ1ÞÞ

0

2
664

3
775 (25)

where the prediction is used as initial guess, i.e, zð0Þp0;ðjþ1Þ ¼
~zp0;ðjþ1Þ and T ð0Þ

ðjþ1Þ ¼
~T ðjþ1Þ.

The last equation in (25) corresponds to the orthogonality condition for the corrector step. We note that the partial
derivatives in Eq. (25) are evaluated numerically, as explained previously.

This iterative process is carried out until convergence is achieved. The convergence test is based on the relative error of
the periodicity condition:

kHðzp0; TÞk

kzp0k
¼
kzpðT; zp0Þ � zp0k

kzp0k
o� (26)

where � is the prescribed relative precision.
For illustration, the corrector step is shown schematically in Fig. 9.
Fig. 9. Pseudo-arclength continuation method: branch (——) with a turning point; predictor step ð!Þ tangent to the branch; corrector steps (� � �)

perpendicular to the predictor step.
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3.3. An integrated approach for the NNM computation

3.3.1. Basic algorithm

The algorithm proposed for the computation of NNM motions is a combination of shooting and pseudo-arclength
continuation methods, as shown in Fig. 6. Starting from the LNM motion at low energy, there are two steps within the
algorithm:
1.
Fig
and

pre

per
The predictor step is global and goes from one NNM motion at a specific energy level to another NNM motion at a
somewhat different energy level. For an efficient and robust NNM continuation, the stepsize sðjÞ is to be carefully
controlled. A small stepsize leads to a small number of corrector iterations, but it requires a large number of continuation
steps to follow an NNM branch. For a large stepsize, the number of corrector iterations is high, and the convergence is
slow. The Newton–Raphson procedure may even break down if the prediction is not close enough to the actual solution.
Continuation may, therefore, be computationally intensive in both cases. The stepsize has to be adjusted, possibly in an
automatic and flexible manner. Various adaptive stepsize control procedures are discussed in [4,33].
2.
 The corrector step is local and refines the prediction to obtain the actual solution at a specific energy level. The size of
the corrections during the corrector step is determined by the solutions of the overdetermined system (25).

This algorithm is applied to the Duffing oscillator (6) in Fig. 10. The phase condition used in this example consists in
enforcing the initial velocity _xp0 to be zero. The continuation space is, therefore, composed of the initial displacement xp0

and the period T . The initial guess used to start the procedure is obtained at low energy where the system responds
practically as the underlying linear system, which has an eigenfrequency of 1 rad=s (i.e., a period of T ¼ 6:28 s).

NNM representation: So far, the NNMs have been considered as branches in the continuation space ðzp0; TÞ. As explained
in Section 2.2.1, an appropriate graphical depiction of the NNMs is to represent them in a FEP. This FEP can be computed in
a straightforward manner: (i) the conserved total energy is computed from the initial conditions realizing the NNM motion
and (ii) the frequency of the NNM motion is calculated directly from the period.

Numerical time integration: A widely used method for solving first-order equations such as Eq. (3) is the Runge–Kutta
scheme. In structural dynamics where second-order systems are encountered, Newmark’s family of methods is probably
the most widespread technique for solving linear and nonlinear large-scale stiff structural systems [34]. This family of
numerical time integration methods is considered in this study.

The precision of the integration scheme, which is chosen by the end-user, directly influences the accuracy of the NNM
computation. In fact, the computed solution can be regarded as an exact solution if the sampling frequency used to
integrate the equations is sufficiently high. This is practically the only approximation in the proposed algorithm.

Step control: Unlike sequential continuation, the evolution path of this predictor–corrector method is parameterized by
the distance sðjÞ along the tangent predictor, also referred to as arclength continuation parameter in the literature. As
mentioned previously, the stepsize has to be carefully controlled for a robust and efficient NNM computation.

The stepsize control used herein relies on the evaluation of the convergence quality by the number of iterations of the
corrector step. The stepsize is controlled so that the corrector step requires on average the desirable number of iterations
N%. At each step, the stepsize is updated according to the ratio between the desirable number N� and the previous number
Nðj�1Þ of iterations:

sðjÞ ¼
N�

Nðj�1Þ

� �
sðj�1Þ (27)
. 10. Continuation of periodic solutions for the Duffing oscillator (phase condition: the initial velocity _xp0 ¼ 0; initial guess point: ½xp0 _xp0� ¼ ½0:01 0�

T ¼ 2p s). Left plot: initial displacement xp0 as function of the period of motion (continuation space); exact branch (——) and computed points ð
Þ;

dictor steps ð&Þ and corrector steps ð�Þ. Right plot: family of periodic motions in the phase space; corresponding path following (- - -) and related

iodic solutions (——).
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In practice, the ratio r ¼ N�=Nðj�1Þ is often bounded to make the adaptation stepsize more robust and to prevent the
continuation from jumping between different branches.1 The stepsize can also be bounded (sðjÞosmax) to obtain enough
discretized points on the branch during the continuation. In case of no convergence (i.e., when the residue increases or
when the process requires more correction iterations than the prescribed maximum Nmax), the stepsize is halved until
convergence is achieved.

As a final remark, we note that the sign of the stepsize is chosen in order to follow the branch in the same direction, i.e.,

½sðjÞpðjÞ�
�½sðj�1Þpðj�1Þ�40 (28)

According to the previous predictor step and the current tangent vector, the sign of sðjÞ is therefore given by

signðsðjÞÞ ¼ signðsðj�1Þp
�
ðjÞpðj�1ÞÞ (29)

3.3.2. Reduction of the computational burden

As discussed in Section 2, a seemingly simple system such as system (2) can exhibit complicated NNM motions. This
2DOF system possesses branches of fundamental NNM motions, termed backbone branches, which are the nonlinear
extension of the LNM motions. These branches coexist with a countable infinity of branches of internally resonant NNMs,
termed tongues, with no counterpart in linear theory. In view of the infinite number of tongues and their sensitivity to
small perturbations with increasing orders of internal resonance, an extensive computation of the tongues is certainly
debatable. Although interesting, this discussion is beyond the scope of this paper.

The algorithm described so far may become computationally intensive when dealing with large-scale systems (i.e.,
systems with many DOFs). As a practical and computationally tractable calculation of the NNM motions is targeted, two
properties of some NNM families can be exploited to speed up the computation:
1.
 All symmetric NNM branches Snm (see, e.g., Fig. 4 and the top plot in Fig. 5) obey the symmetry condition

zp
T

2
; zp0

� �
þ zp0 ¼ 0 (30)

For these branches, the shooting procedure can be performed over the half-period T=2 by searching the initial
conditions and the period T that solve this modified periodicity condition. As the time integrations represent the main
computational cost of the algorithm, this modified periodicity condition reduces the computational burden by a factor
close to 2.
2.
 For branches of NNMs represented by an open loop in the configuration space (see, e.g., the first two NNM motions in
Fig. 5), a suitable phase condition is to set all the velocities to zero. The initial velocities are eliminated from the
unknowns of the linear systems to solve at each Newton–Raphson iteration. These systems have, therefore, 2nþ 1
equations with nþ 1 unknowns xp0 and T .

One advantage is that these modifications can be very naturally integrated in the basic algorithm in Fig. 6.
In summary, two variants of the basic algorithm described in the previous section have been developed:
1.
 The general strategy consists in (i) carrying out the shooting over the period T and (ii) setting only one velocity to zero.
This strategy can compute all possible NNM motions.
2.
 The practical strategy exploits the modified periodicity and phase conditions. The fundamental NNM motions of
nonlinear structures often obey these conditions (e.g., the fundamental NNMs of nonlinear systems with odd
nonlinearities are necessarily symmetric, because the loss of symmetry requires the so-called symmetry-breaking
bifurcation).

Targeting a reduction of the computational burden, but without lack of generality, an approach that integrates the two
variants is used. Starting from the LNMs, the fundamental NNM motions are first computed using the practical strategy; a
subset of tongues can also be computed using this methodology. We note that the application of this strategy should often
suffice for most engineering structures.

When a detailed analysis of the unsymmetric NNMs and those represented by a closed curve in the configuration space
is required, the general strategy can then be utilized for computing these NNMs.

4. Numerical experimentations

In what follows, the proposed NNM computation method is demonstrated using four different nonlinear vibrating
systems, namely a weakly nonlinear 2DOF system, a 2DOF system with an essential nonlinearity, a discrete model of a
nonlinear bladed disk and a nonlinear cantilever beam discretized by the finite element method.
1 Another possibility to avoid branch jumping phenomena is to limit the angle between consecutive predictor steps.
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4.1. Weakly nonlinear 2DOF system

The system is illustrated in Fig. 1. The governing equations of motion are

€x1 þ ð2x1 � x2Þ þ 0:5x3
1 ¼ 0

€x2 þ ð2x2 � x1Þ ¼ 0 (31)

The two LNMs of the underlying linear system are in-phase and out-of-phase modes for which the two DOFs vibrate with
the same amplitude. The natural eigenfrequencies are f 1 ¼ 1=2p ’ 0:159 Hz and f 2 ¼

ffiffiffi
3
p

=2p ’ 0:276 Hz.
The integrated approach described in Section 3.3 is applied to this system. The computation of the fundamental NNMs is

first performed using the modified phase and periodicity conditions. The in-phase backbone S11þ is depicted in Fig. 11(a),
whereas the out-of-phase backbone S11� is given in Fig. 12. Though a large energy range is investigated, these figures show
that the continuation method discretizes the two branches using very few points. Large stepsizes are, therefore, employed,
and only a few seconds are required to computed each branch for 100 integration time steps per half-period using a 2 GHz
processor. This is an important feature when targeting a computationally tractable calculation of the NNMs. The two
backbones are depicted together in the FEP in Fig. 2. The family of in-phase NNM motions is also represented in a three-
dimensional projection of the phase space in Fig. 11(b) and in the configuration space in Fig. 11(c).

The NNM continuation can now be carried out at higher energy levels. The FEP for the in-phase mode is depicted in
Fig. 13. It can be observed that a recurrent series of tongues of internally resonant NNMs (i.e., S31, S51, S71, etc.) continue
the backbone branch S11þ through turning points (fold bifurcations). Due to these turning points, smaller stepsizes are
necessary, which renders the tongue calculation more demanding computationally. By contrast, at higher energy on S11�,
the 1:1 out-of-phase motion persists, and S11� extends to infinity. The complete FEP calculated using the practical strategy
is shown in Fig. 14.

We now move to the general strategy for the computation of unsymmetric NNMs and NNMs represented by a closed
curve in the configuration space. These NNMs are generally generated through bifurcations (e.g., symmetry-breaking
bifurcations for unsymmetrical NNMs). As the tangent is not uniquely defined at the bifurcation point, they require
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Fig. 11. In-phase NNM motions on S11þ for the 2DOF system (31). (a) Frequency-energy plot; the computed points with N%
¼ 4 are represented by �.

(b) NNM periodic motions represented in a three-dimensional projection of the phase space. (c) NNM modal curves in the configuration space.
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Fig. 13. NNMs at high energy for the 2DOF system (31). Left plot: in-phase backbone S11þ and tongues branches (internally resonant NNMs). Right plot:

close-up of the recurrent series of tongues (S31, S51 and S71) at high energy. The computed points are represented by �.
a branching strategy to be effectively computed [4]. In this study, a perturbation technique is used to carry out branch
switching, once the bifurcation point is located using the Floquet multipliers. The resulting FEP is displayed in Fig. 3 and
shows two unsymmetrical tongues (U21 and U41).

The NNM stability is also briefly discussed. As the monodromy matrix is computed during the continuation procedure,
its eigenvalues, the Floquet multipliers, are obtained as a by-product. The stability of the fundamental in-phase and
internally resonant NNMs is presented in Fig. 15. Clearly, the bifurcation points, which include fold and symmetry-breaking
bifurcations, are characterized by a change of stability. The evolution of the Floquet multipliers along S31 is shown in the
complex plane in Fig. 16. This figure shows the mechanism of loss of stability; a pair of Floquet multipliers leaves the unit
circle through 1.
4.2. Strongly nonlinear 2DOF system

The method can also deal with strongly nonlinear systems. To this end, a 2DOF system with an essential nonlinearity is
considered. The system is depicted in Fig. 17, and its motion is governed by the equations

m1 €x1 þ k1 x1 þ knl1 x3
1 þ knl2 ðx1 � x2Þ

3
¼ 0

m2 €x2 þ knl2 ðx2 � x1Þ
3
¼ 0 (32)

with m1 ¼ k1 ¼ knl2 ¼ 1, knl1 ¼ 0:5 and m2 ¼ 0:05.
The dynamics of such systems have been extensively studied by Vakakis and co-workers [15,26,35,36] using the NNM

concept. The motivation for using an essential nonlinearity is that the nonlinear attachment possesses no preferential
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Fig. 17. The 2DOF system with an essential nonlinearity.
resonant frequency; it can, therefore, interact with an SDOF structure in a frequency-independent fashion or with any
mode of an MDOF structure.

For this example and the next two ones, only the practical strategy is utilized. Fig. 18 represents the computed branches,
which include S11þ, S11�, and several tongues (S13, S31, S15, S17, S19). For clarity, stability is not indicated in this plot. A
particular characteristic of this system is that S11þ is not bounded in frequency unlike the previous system.

4.3. Nonlinear bladed disk system

The NNMs of a more complex structure, a nonlinear bladed disk, are now investigated. The bladed disk is composed of
20 sectors assembled with cyclic periodicity; a single sector is represented in Fig. 19. Each sector is modeled using disk ðMÞ
and blade ðmÞ lumped masses, coupled by linear ðkÞ and cubic ðknlÞ springs. The nonlinear springs can be representative of
geometrically nonlinear effects in the blades. The disk masses are connected together by linear springs K . The equations of
motion of this 40-DOF system are

m €xi þ kðxi � XiÞ þ knlðxi � XiÞ
3
¼ 0

M €Xi þ KðXi � Xiþ1Þ þ KðXi � Xi�1Þ þ kðXi � xiÞ þ knlðXi � xiÞ
3
¼ 0 (33)

for i ¼ 1; . . . ;20; X21 ¼ X1, X0 ¼ X20 (conditions of cyclic periodicity) and M ¼ 1, m ¼ 0:3, K ¼ 1, kl ¼ 1, knl ¼ 0:5. Xi and xi

are the displacements of the disk and blade masses of the ith sector, respectively.
As the structure is not fixed, the first mode is a rigid-body mode, which is obviously not affected by the nonlinearities.

Due to periodicity of the structure, several elastic modes of the underlying linear system appear in pair at the same
frequencies, with only a spatial shift between them. It is the case of the first two LNMs that possess one nodal diameter.
Their nonlinear extensions are represented in the FEP of Fig. 20. The nonlinearities have a slight, but identical (i.e., the
backbones cannot be distinguished in the FEP), influence on these two NNMs. Therefore, the continuation can be performed
by means of large stepsizes, and only a few seconds are necessary to obtain the backbones for 100 time steps over the half-
period.

Nonlinear systems with spatial symmetries can possess similar NNMs. This is illustrated in Figs. 21 and 22 for the 21st
NNM of the structure. While its frequency is altered by the nonlinearities in the system, the distribution of the modal shape
remains unchanged, which characterizes similar modes.
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Fig. 19. One sector of the nonlinear bladed disk assembly. (a) Continuous structure; and (b) discrete model.
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Fig. 20. Frequency-energy plot of the 1st and 2nd modes of the bladed disk. The two backbones coincide. The maximum amplitudes of the NNM motions

represented by bar graphs are inset; the horizontal axis represents the sector number, and the vertical axis represents the maximum displacements of

blade and disk masses (shown in black and grey, respectively).
Finally, a higher mode (i.e., the 38th) for which the corresponding LNM possesses one nodal circle and nine nodal
diameters is investigated (see Figs. 23 and 24). Due to the presence of a nodal circle, the blade and disk masses vibrate in an
out-of-phase fashion, which enhances the nonlinear effects. As a result, the frequency and the shape of the NNM are
strongly affected by the nonlinearities. Furthermore, for increasing energy, there is a clear spatial confinement of
vibrational energy to two sectors of the system. Interestingly, this occurs in a perfectly symmetric bladed disk assembly,
which has no counterpart in linear theory. We note that the computation of this branch needs approximately 1 min for 100
time steps over the half period.
4.4. Nonlinear cantilever beam

As a final example, a planar cantilever beam discretized by 20 finite elements and with a cubic spring at the free end is
considered. The geometrical and mechanical properties of the beam are listed in Table 1. This model is a real nonlinear
beam that was used as a benchmark for nonlinear system identification during the European Action COST F3 [37].

The FEP of the first mode and the related NNM motions are plotted in Figs. 25 and 26. The frequency of the NNM
motions on the backbone increases with increasing energy levels, which highlights the hardening characteristic of the
cubic nonlinearity. The FEP also highlights the presence of one tongue, revealing the existence of a 5:1 internal resonance
between the first two modes. When the energy gradually increases along the tongue, a smooth transition from the first to
the second mode occurs (see (e) and (f) in Fig. 26). The computation of the backbone branch up to the tongue needs 5 min
with 200 time steps over the half-period. Due to the presence of turning points, the computation of the tongue is more
expensive and demands 10 min.
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Table 1
Geometrical and mechanical properties of the planar cantilever beam

Length (m) Width (m) Thickness (m) Young’s modulus (N/m2) Density (kg/m3) Nonlinear coeff. (N/m3)

0.7 0.014 0.014 2.05e11 7800 6� 109
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Fig. 25. Frequency-energy plot of the first NNM of the nonlinear cantilever beam.
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Fig. 26. Maximum amplitudes of the first NNM of the nonlinear beam at different energy levels represented in Fig. 25. (a)–(d): Fundamental (1:1) NNM

motions; (e) and (f): internally resonant NNM motions between mode 1 and mode 2.
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Fig. 27. Frequency-energy plot of the second NNM of the nonlinear cantilever beam.
The second NNM is plotted in the FEP of Fig. 27. Besides the NNM backbone, three tongues are present. The first tongue
corresponds to a 5:1 internal resonance between the second and fourth nonlinear modes of the beam. Similarly, a 7:1
internal resonance between the second and fifth modes, and a 9:1 internal resonance between the second and sixth modes
are observed.

Similar dynamics were observed for the higher modes and are not further described herein.
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5. Conclusion and future work

In this paper, a numerical method for the computation of nonlinear normal modes (NNMs) of nonlinear mechanical
structures is introduced. The approach targets the computation of the undamped modes of structures discretized by finite
elements and relies on the continuation of periodic solutions. The proposed procedure was demonstrated using different
nonlinear structures, and the NNMs were computed accurately in a fairly automatic manner. Complicated NNM motions
were also observed, including a countable infinity of internal resonances and strong motion localization.

This method represents a first step toward a practical NNM computation with limited implementation effort. However,
two important issues must be addressed adequately to develop a robust method capable of dealing with large, three-
dimensional structures:


 Fundamental NNMs with no linear counterparts (i.e., those that are not the direct extension of the LNMs) have not been
discussed herein. These additional NNMs bifurcate from other modes, and a robust branch switching strategy will be
developed for their computation.



 The method relies on extensive numerical simulations and may be computationally intensive for large-scale finite

element models. As a result, a further reduction of the computational cost is the next objective. To this end, a significant
improvement is to use sensitivity analysis to obtain the Jacobian matrix as a by-product of the time integration of the
current motion. An automatic time step control, which selects the most appropriate time step in view of the current
dynamics, will also be considered to speed up the computations.

The final objective of this research is to implement the method into an industrial finite element code.
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