
HAL Id: hal-02373934
https://hal.science/hal-02373934v1

Submitted on 22 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep latent factor model for collaborative filtering
Aanchal Mongia, Neha Jhamb, Emilie Chouzenoux, Angshul Majumdar

To cite this version:
Aanchal Mongia, Neha Jhamb, Emilie Chouzenoux, Angshul Majumdar. Deep latent factor model
for collaborative filtering. Signal Processing, 2020, 169, pp.107366. �10.1016/j.sigpro.2019.107366�.
�hal-02373934�

https://hal.science/hal-02373934v1
https://hal.archives-ouvertes.fr

Deep Latent Factor Model for Collaborative Filtering

Aanchal Mongia1, Neha Jhamb1, Emilie Chouzenoux2 and Angshul Majumdar1

1Indraprastha Institute of Information Technology, New Delhi, India 110020

2Université Paris-Saclay, CentraleSupélec, Inria, CVN, 91190, Gif-sur-Yvette, France

aanchalm@iiitd.ac.in, neha16037@iiitd.ac.in, emilie.chouzenoux@centralesupelec.fr and

angshul@iiitd.ac.in

Abstract— Latent factor models have been used widely in collaborative filtering based recommender

systems. In recent years, deep learning has been successful in solving a wide variety of machine learning

problems. Motivated by the success of deep learning, we propose a deeper version of latent factor model.

Experiments on benchmark datasets shows that our proposed technique significantly outperforms all state-

of-the-art collaborative filtering techniques.

Index Terms—Deep learning, latent semantic analysis, collaborative filtering, recommender systems.

1. Introduction
Today much of retail business is online. Retail ecommerce is having such an impact on economy that

economists are dubbing it as the ‘Amazon effect’. Ecommerce is generating more jobs and checking

inflation rates (at least in the USA). Most of its success is owing to recommender systems.

Unlike physical stores, ecommerce portals deal with literally millions of products. It is not possible for the

customer / user to sift through all the products in a finite amount of time to find out what he / she needs.

The users rely on the suggestions from the recommender system to zero-in on products they like.

The benefit of recommender system goes in both ways. If the recommendations are not good, the user may

stop relying on its suggestions and stop using the ecommerce portal. This harms the user – as he / she does

not get what is required; it is also detrimental to the portal – as it loses out on revenue. To improve customer

satisfaction, goodwill and revenue, it is thus mandatory for the ecommerce portals to have a very accurate

recommendation system.

In the initial days of recommender systems, classical information retrieval based approaches such as content

based filtering were used. However, such techniques relied on expert opinions and were very sector specific

(fashion and books would be treated completely differently) and hard to generalize as algorithms. This led

to its early demise. For the last two decades collaborative filtering has been the de facto approach behind

recommender systems.

Collaborative filtering can be categorized into several branches. The initial approach was based on

neighbourhood based models. They were intuitive, easy to understand and implement but lacked in

accuracy. The second approach was based on classification. This yields slightly better results but is very

hard to explain. The third, and the most prominent approach today is based on latent factor models. This

class of techniques is more abstract and requires good understanding of mathematics for interpretation, but

are nevertheless more accurate.

mailto:angshul@iiitd.ac.in
mailto:angshul@iiitd.ac.in

In the last half a decade deep learning has made inroads into almost all aspects of applied computer science

– speech processing, computer vision, NLP etc. It has also seen some applications in information retrieval.

Motivated by the success of deep learning, we propose a deep latent factor model. This would be a new

deep learning tool, specifically tailored for collaborative filtering problems.

The shallow / standard latent factor model was based on the matrix factorization approach. The advent of

deep learning, generalized matrix factorization to deeper versions. In this work, we follow the same idea

and extend the latent factor model to a deeper version. However, it must be noted that the extension from

deep matrix factorization techniques to our deep latent factor model is non-trivial. In the former, all the

observations are known but, in our case, only a partial set of observations are known – this makes the

problem more challenging.

2. Literature Review

2.1 Neighborhood / Similarity Based Models

Neighborhood based models try mimicking the nature of human interaction. It finds out users having similar

taste as that of the active user. Among these similar users, weight is given according to the similarity; i.e.

more the similarity more the weight. The rating on a particular item from the similar users is multiplied by

these weights to estimate the rating from the active user.

To find out the active user’s rating on a particular item, the ratings of the similar users are interpolated. This

is given by,

, ,
()

a j i i j
i neighbours a

v w v

= (1)

Here a is the active user; we want to predict the missing rating of user a for the item j. For this, we look at

all the neighbours of a, indexed by i and interpolate their rating by multiplying it by the linear interpolation

weights wi. Such a technique is called user-user recommendation [1, 2].

The way we have looked at collaborative filtering from the user’s perspective, we can also look at it from

the items perspective. The two are exactly similar. This leads to the item-item collaborative filtering [3, 4].

Here instead of trying to find similar users one has to find similar items. The score of a user on the active

item is found by interpolating the ratings given the same user on similar items. The interpolation weights,

as previously are usually based on normalized similarity measure.

There are many variants to these basic approaches. Some studies combine the item and the user-based

models [5]. Other studies have posed such similarity based collaborative filtering as a graph signal

processing problem [6]; however the basic approach remains the same there in. Such techniques are simple

to understand and analyze. They cannot compete with more recent abstract mathematical models but may

be preferred by practitioners for the ease of implementation and understanding. Since neighborhood based

models is not the topic of our interest, we do not discuss it any further. The interested reader can peruse [7].

2.2 Latent Factor Models

In content based filtering, one had to exclusively specify the factors that were thought responsible for user’s

choice on a particular class of items. As a result, the algorithms were not generalizable; the factors

responsible for footwear were different from the ones responsible for selecting for instance movies. That is

the primary reason for its failure.

Latent factor model [8-10] is a generalization of content based filtering. It is based on the assumption that

the factors responsible for the user’s choice on an item need not to be explicitly known. A user i can be

defined by its affinity towards these latent factors, represented by ui and an item j can be defined by its

corresponding latent factor vj. The rating is high when the two latent factors match (same as content based

filtering). This is best modeled by the inner product between the user’s and item’s latent factors. The rating

of the ith user on the jth item is modeled as:

, , ,i j i jx u v i j= (2)

Considering the entire ratings matrix for M users and N items, (2) can be represented as:

 1 1 where | ... | and | ... |T

M NX UV U u u V v v= = =

Had the full ratings matrix be known, the problem would be trivial. What makes it challenging is the fact

that the matrix is only partially observed; the goal is to infer the missing ratings. Once this is done, one can

suggest items to users with high predicted ratings. Mathematically we can express it as:

()Y R X R UV= = (3)

Here R is a binary sampling mask consisting of 0s where ratings are missing and 1s where they are present;

symbol ' ' indicates element-wise product.

 One can estimate the latent factor matrices for the users and the items by solving the following problem.

()2 2 2

,
min ()

F F FU V
Y R UV U V− + + (4)

where ∥. ∥𝐹 denotes the Frobenius norm. The ridge regression type penalties are used to overcome over-

fitting. There are many algorithms for solving (4) starting from simple alternative least squares to

multiplicative updates or block conjugate gradients. For all practical purposes, the simple alternating least

squares usually yields good results.

The cost function involved in the factorization problem (4) is bi-linear in the variables U and V. Therefore,

there is usually no guarantee of convergence of iterative solvers to a global minimum; guarantees typically

hold only for convergence to local minima. This issue can be overcome by directly solving for the ratings

themselves instead of the latent factors.

The assumption here is that the ratings matrix is of low-rank. This follows directly from the latent factor

model; the rank of the matrix is the same as the number of factors. The most direct way to solve for the

ratings would be to find an X explaining optimally the data Y, and with a minimal rank. But the rank

minimization is known to be NP hard and hence there is no tractable solution (every algorithm is as good

as brute force search). To alleviate this problem, theoretical studies [11-13] have shown that one can

guarantee a low rank solution (under certain assumptions) by relaxing the NP hard rank minimization

problem to its closest convex surrogate – relying on the nuclear norm. Mathematically this is expressed as,

2
min

F NNX
Y R X X− + (5)

Here║.║NN denotes the nuclear norm; defined as the sum of singular values. Problem (5) is a convex

problem that can be solved, for instance, by semi-definite programming solvers. Today more efficient

algorithms exist [14].

The number of entries in Y are actually far fewer than the number of entries in X; for academic problems,

only 5% of the data is available and in practical scenarios, less than 1% of the data is available. This makes

collaborative filtering a highly under-determined problem. In such a context, any secondary information is

likely to improve the results. For example, studies like [15, 16] have shown that using the associated

metadata (user’s demographic and item’s metadata) can indeed improve recommendation accuracy. Other

studies [17, 18] showed that harnessing the power of neighborhood based models into the latent factor based

method can also improve the results. In this work, we are not concerned about using associated information,

and hence these techniques will not be discussed any further.

2.3 Representation Learning

Fig. 1. Restricted Boltzmann Machine

Restricted Boltzmann machine (RBM) [19, 20] (Fig. 1) is popular today as a building block for deep belief

network; but it was originally introduced for solving the collaborative filtering problem. However, owing

to its inherent restrictions, foremost among them being the constraint on the input to be 1 or 0, RBMs never

became popular in the context of collaborative filtering. Neither are the modified Gaussian Bernoulli

RBMs, which expect continuous valued inputs in the range between 0 to 1, suitable for such inputs. Drawing

similarity with the latent factor models, one can see that the network weights can be seen as users’ latent

factors and the representation as items’ latent factors. The RBM is learnt by contrastive divergence. This is

a cumbersome technique not amenable to mathematical manipulations.

Fig. 2. Autoencoder

In recent times, autoencoder based collaborative filtering techniques have shown promising results [21-26].

They rely on a typical neural network where the output is the same as the input. The schematic diagram is

shown in Fig. 2. When used for collaborative filtering, the input (and output) has missing values. When

there are such missing entries in the data, the corresponding network weights are not updated. Once the

W

X H

In
p
u
t

Representation

O
u
tp
u
t=
In
p
u
t

Encoder Decoder

training is finished, the representation from the encoder is multiplied by the decoder to get the full ratings

matrix.

Deep / stacked autoencoders have also been used for collaborative filtering. Conceptually, the input and the

outputs remain the same. The only difference between the shallow (Fig. 2) and deep autoencoder is that the

later has multiple layers of encoders and decoders. However, there is no significant gain in going deeper as

was shown in [23, 24].

In recent years, with the success of deep learning in almost all areas of applied machine learning, such

techniques have been leveraged for collaborative filtering as well; see for instance [23 – 25].

Most other studies in deep learning based collaborative filtering are somewhat heuristic. For example, in

[26], the inputs to the deep neural network are simply the IDs of the user and the item and the output is the

corresponding rating. Such a model is likely to be arbitrary since the ID of the user and the item do not

carry information about each other. Therefore, it makes limited sense to predict rating from such inputs.

The work [27] is worthy to be mentioned. Instead of using user’s and item’s IDs as inputs, it characterizes

each user by his/her ratings on all items and characterizes each item by all its available ratings. This too

uses a classification based framework where the output is the corresponding rating of the user on the item.

Though a more meaningful approach than [26], using ratings for both inputs (user and item) and as the

output (class) appears difficult to justify. Unsurprisingly, neither [26] nor [27] provides any justification

for their model.

The most thorough and logical approach to deep learning based collaborative filtering has been proposed

in [28]. It relies on a deep neural network based regression framework. It uses user’s past history (of item

ratings) as input and the top recommended new item as output. Note that this approach does not perform

collaborative filtering in the conventional sense since it does not predict ratings.

There are two studies that proposed deep matrix factorization [29, 30]. These studies factor a fully observed

matrix into multiple matrices. They do not pertain to collaborative filtering where the task is to recover a

partially observed matrix. Nevertheless, we mention these studies owing to their relationship with matrix

factorization.

3. Proposed Deep Latent Factor Model

3.1 Latent Factor Model as Neural Network

Fig. 3. Latent Factor Model

Fig. 3 depicts the standard latent factor model. We have assumed users to be along the rows and items along

the columns. The entire ratings matrix is expressed as a product of user latent factor matrix and item latent

factor matrix. Being a product of two matrices it is expressed mathematically in the form of matrix

factorization. For the convenience of the reader, we repeat (2).

X UV=

where U denotes the user latent factors and V the item latent factors.

In this work we look at the latent factor model as a neural network. Instead of looking at the user latent

factors as vectors, we can think of them as connections from the item latent factors to the ratings. This is

shown in Fig. 4.

Fig. 4. Neural Network Interpretation

The input to this neural network are all the users’ ratings on the jth item denoted by xj (black nodes) in Fig.

4. Their corresponding representation is the latent factors for the corresponding item vj (grey nodes).

Following (2), the relationship between both is expressed as
j jx Uv= - this is same as the equation of a

neural network, albeit in an opposite direction from the representation to the input. Each row ui of U is the

user latent factor for the ith user.

Once we have the neural network type interpretation of collaborative filtering, it is easy to conceptualize

deeper extensions. In deep learning architectures, the latent representation from one layer acts as an input

to the subsequent layer. We follow the same principle in proposing the deep latent factor model.

3.2 Deep Latent Factor Model

Fig. 5. Deep Latent Factor Model

A deeper (2-level) latent factor model is shown in Figure 5. This can be extended to deeper layers. Like all

other deep learning tools, we suffer from the limitations of mathematical interpretability. Intuitively

speaking, as one goes deeper, more abstract representations are observed. For example, the latent factor

model stems from the assumption that there are only a few factors that guide or decision in choosing a book

or a movie. For a book, it may be just the name of the author, or the genre or the publisher. For movies the

number of factors may be slightly more – it can be the star cast, the director, the main technical crew. It is

not possible to capture all the factors objectively, which justifies the latent factor model. In a deeper latent

factor model, instead of capturing the superficial factors (author, actor etc.) it is likely that deeper

personality traits are captured. For example, the deeper nodes may refer to five classic personality traits

[31] – introversion, extroversion, neuroticism, openness and conscience. Expressing the models based on

such abstract fundamental traits is likely to make it more robust and accurate.

The neural network type interpretation is not mandatory, but it is easier to align with other deep learning

methods. One can express the deep latent factor model in the more usual matrix factorization form (Fig. 6).

Fig. 6. Factorization Type Interpretation

Mathematical Formulation

In the standard latent factor model the ratings matrix is expressed as a product of user and item latent factors.

X UV= (6)

Usually non-negativity is enforced on the latent factors, in a similar manner than in the rectified linear unit

(ReLU) type activation function in neural network.

In our deeper model, we will have multiple levels of user latent factors and one final level of item latent

factors. In the case of 2 layers, this can be expressed as,

1 2X U U V= (7)

Here U1 and U2 are the two levels of item latent factors and V consists of the deep user latent factors. Such

a deep factorization model has been proposed before [29, 30]. In each level, a ReLU type activation was

imposed by non-negativity constraints. The formulation (7) can be easily extended to N layers:

1 2... NX U U U V= (8)

Techniques for solving deep matrix factorization have already been developed [29, 30] when the data is

fully observed. Unfortunately, in collaborative filtering, the ratings matrix is only partially observed, i.e.:

Y R X= (9)

where X is the full ratings matrix, R the binary matrix of 1’s and 0’s and Y the acquired ratings matrix.

We incorporate the deep matrix factorization framework (7) into the partially observed model (8) to yield

our deep latent factor model.

()1 2... NY R X R U U U V= = (10)

Solution

We will show the algorithm for three layers; it will be generic enough for more or fewer layers. The

formulation for three layers is –

()
1 2 3

2
1

1 2 32
, , ,

1 2 3 1 2 3

min such that

0, 0, 0, 0, 0

FU U U V
Y R U U U V

U U U V U U U V

−

 (11)

This is equivalent to the following,

()
1 2 3

2
1

1 2 32
, , , ,
min

FU U U V X
Y R U U U V− (12)

1 2 3 1 2 3such that and 0, 0, 0, 0, 0U U U V X X U U U V= .

We propose a projected gradient method [32], with inner loop based on alternating projection [33] to solve

(12). The general form of our algorithm is as follows:

()()

()

1 2 3

0 0 0 0 0

1 2 3

1 1 1 1 1

1 2 3

2

1 2 3
, , , ,

1 2 3

Initialize: , , , ,

For 1,2,...

1)

2) , , , , solution of

 min s.t.

 and 0, 0, 0, 0, 0

k k T k

k k k k k

k

FX U U U V

X U U U V

k

X X R R X Y

X U U U V

X X U U U V X

X U U U V

+ + + + +

=

= − −

− =

The second sub-problem corresponds to projecting Xk on the constrained domains U1U2U3V=X and X ≥0,

U1 ≥0, U2 ≥0, U3 ≥0, V ≥0. This projection problem is complex, as the equality constraint defines a non-

convex set. Moreover, it has no closed form. We thus propose to perform alternating projections on the

constraints, to derive an approximate solution to this subproblem. Each variable will be treated sequentially,

in a Gauss-Seidel fashion, and then projected on its associated constraint set. For variables Ui and V, we

propose to approximate the projection of the intersection of positive and equality constraint, by the

composition of the respective projectors, in order to avoid inner iterations.

Step 2 will read as follows,

()

 ()

 ()

 ()

 ()

1
1 2 3

1 1
2 31

1 1 1
2 31

1 1 1 1
2 31

1

1

1 1

1

2 2

1

3 3

1

k k k k

k k k k

k k k k

k k k k

k k

k k

U U U V X

k k

U U U V X

k k

U U U V X

k k

U U U V X

X P X

U P P U

U P P U

U P P U

V P P V

+

+ +

+ + +

+ + + +

+

+

+

+ =

+

+ =

+

+ =

+

+ =

=

 =

 =

 =

 =

Hereabove, P+ denotes the projector onto the positive orthant, i.e. capping the negative entries of an input

matrix to 0. We can then apply the general property that the projection of a matrix U on a linear constraint

X=AUB is given by

()† †Û U A AUB X B= − − (13)

with † the pseudo-inverse operation, so that step 2 finally reads:

()

()()()
() ()()()
() ()()()
() ()()

1

†
1 1

1 1 1 2 3 2 3

† †
1 1 1 1

2 2 1 1 2 3 3

† †
1 1 1 1 1 1

3 3 1 2 1 2 3

†
1 1 1 1 1 1 1 1

1 2 3 1 2 3

k k

k k k k k k k k k k

k k k k k k k k k k

k k k k k k k k k k

k k k k k k k k k k

X P X

U P U U U U V X U U V

U P U U U U U V X U V

U P U U U U U U V X V

V P V U U U U U U V X

+

+

+ +

+

+ + + +

+

+ + + + + +

+

+ + + + + + + +

+

=

= − −

= − −

= − −

= − −

Steps 1 and 2 can be understood as a gradient projection method. The complicated form of the constraint

requires the use of an inner step for approximating the projection step. The convergence of the whole

scheme cannot be established easily, because of the presence of the coupling in the equality constraint

1 2 3U U U V X= . However, in our experimental results, we will show that the algorithm converges

empirically. Here we have shown the algorithm for three layers. This can be generalized to any number of

layers. The general algorithm is given in the appendix.

A recent work [34], proposes a hierarchical latent factor model. Unlike ours, which just goes deep, [34]

bifurcates in each layer. The resulting model increases complexity since there are more variables to solve

now and extra constraints to impose the tree structure. This is likely to make the model more vulnerable to

over-fitting. The work claims convergence, but they provide no insights into this claim.

Computational Complexity

The computational cost of the proposed method is governed by the pseudo-inverse operations that must be

performed in Step 2. The complexity of it is given by O(nw) where w<2.37 and is conjectured to be 2. Note

however that one can play with the size of the latent factor matrices, in order to control the memory and

computational burden of these inversions. An alternative for very large datasets is to use conjugate gradient

solver, but in our practical experiments, it appears not necessary.

4. Experimental Evaluation

4.1 Datasets

We carry our evaluation on movie recommendations. Experiments are carried out on three standard datasets

– Movielens 100K, Movielens 1M, Movielens and 10M. All of them are from

https://grouplens.org/datasets/movielens/.

(1) movie-100K: 100,000 ratings for 1682 movies by 943 users;

(2) movie-1M: 1 million ratings for 3900 movies by 6040 users;

(3) movie-10M: 10 million ratings for 10681 movies by 71567 users.

For these datasets the splits between training and test sets are already pre-defined. The protocol is to carry

out 5 fold cross-validation on these sets.

4.2 Convergence

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/

We show the empirical convergence of our algorithm on the 100K. One can see that our algorithm decreases

the cost function monotonically. The results from the other two datasets are similar and are not shown here.

Fig. 6. Empirical Convergence plot.

4.3 Comparative Results

Fig. 7. MAE vs Number of Factors for Matrix Factorization.

We have compared our technique with some state-of-the-art deep methods – collaborative deep learning

(CDL) [25], marginalized deep autoencoder (MDA) [24] and deep matrix factorization (DMF) [28]. We

also compare with a recent shallow yet robust approach called robust matrix factorization (RMF) [35];

although it has never been used for collaborative filtering, it surpasses standard matrix factorization for

other tasks. We have finally compared with the hierarchical latent factor model (HLFM) [34].

For our proposed method we need to specify three parameters – 1. The number of layers, the number of

basis in each layer and the value of γ. Usually the number of layers is determined by the number of samples

in the database. Since our datasets have less than 10,000 samples (users / items) it is unlikely that our

architecture can go beyond 3 layers and produce good results; this is usually a rule of thumb.

Following deep learning literature, we can fix the number of factors in each layer by halving in subsequent

layers. However, we need to find the number of factors in the first layer. This, we do empirically by using

a single layer matrix factorization. The number of latent factors are varied from 10 to 80 in steps of 10. The

results are shown in Figure 7. We can see that the best results are obtained for 40 latent factors. This

determines the number of latent factors for the two and three layer model. The two levels architecture is

40-20 and the three levels architecture is 40-20-10. We have also shown results for a 4 layer architecture

(40-20-10-5); this was mainly done to show that the results deteriorate after the third layer.

Finally, we need to specify γ, that is the stepsize in our projected gradient method; we have used γ=0.1

throughout. This value was obtained by 4 fold cross-validation on the training set. We also found that our

algorithm is robust to the choice of parameter between 0.01 to 0.8. Outside the said range, the performance

degrades gracefully.

For initialization, we make use of the following deterministic SVD based strategy, that appears to lead to

stable and accurate results. The missing entries are first filled by the row and column averages. SVD is

performed on the thus filled matrix. The left singular vectors are used for initializing the U1. Then SVD is

performed on the remaining portion, i.e. the product of singular values and the right singular vectors. The

left singular vectors of the second SVD is used to initialize U2. This process is continued. For the final

layer, the product of the singular values and the right singular vectors is used to initialize V.

One must note that the methods compared against (MDA, CDL, DMF, RMF and HLFM) have not been

used on standard protocols defined on all these datasets. Therefore, we have followed the approach

presented in the corresponding papers to tune the parameters for our datasets.

As the evaluation metric, we show results on all the standard ones – mean absolute error (MAE), root mean

squared error (RMSE), precision and recall. The results are shown in the following tables (1 to 3). The

results from our method are shown in bold. We see that, the results improve from 2 to 3 layers; but it

degrades from 3 to 4 layers. This is because in deep learning it is believed that going deeper improves

abstraction capacity which in turn boosts results. But one cannot go on going deeper, as it requires learning

more parameters. In such limited data scenario, the need to learn more parameters leads to overfitting; this

reduces the performance if one goes too deep.

One can see that we improve upon the rest in terms of every possible metric; the improvements are

considerably large. To put the results in perspective, one must remember that the Netflix prize of 1 million

was given to the winners who reduced the RMSE on the Netflix dataset from 0.95 to 0.85. We do not give

results on the Netflix dataset owing to concerns over a pending lawsuit on the usage of the dataset.

TABLE 1. Results on 100K Movielens

Method MAE RMSE Precision Recall

@10 @20 @10 @20

RMF .732 .938 .515 .380 .641 .767

DMF .735 .940 .513 .380 .641 .775

CDL .742 .953 .510 .377 .642 .765

MDA .758 .981 .513 .372 .641 .767

HLFM .750 .962 .512 .376 .640 .769

40-20 .726 .939 .522 .380 .649 .782

40-20-10 .717 .901 .536 .399 .658 .792

40-20-10-5 .732 .941 .520 .376 .642 .778

TABLE 2. Results on 1M Movielens

Method MAE RMSE Precision Recall

@10 @20 @10 @20

RMF .689 .876 .669 .526 .625 .792

DMF .691 .878 .671 .523 .625 .799

CDL .689 .871 .671 .531 .630 .802

MDA .686 .879 .669 .526 .625 .791

HLFM .698 .880 .661 .517 .619 .785

40-20 .681 .864 .673 .531 .636 .799

40-20-10 .678 .854 .691 .543 .641 .809

40-20-10-5 .682 .866 .670 .528 .635 .796

TABLE 3. Results on 10M Movielens

Method MAE RMSE Precision Recall

@10 @20 @10 @20

RMF .630 .810 .682 .559 .629 .803

DMF .618 .805 .671 .569 .631 .810

CDL .616 .802 .672 .568 .633 .810

MDA .621 .816 .680 .555 .620 .802

HLFM Does not run at this scale

40-20 .613 .802 .689 .569 .632 .813

40-20-10 .600 .794 .696 .579 .640 .820

40-20-10-5 .608 .798 .693 .572 .638 .815

5. Conclusion

This work introduces the deep latent factor model (deepLFM). We have compared with other deep and

shallow techniques and shown that the proposed method outperforms all; at least on the benchmark

databases compared on.

At a later stage we would like to incorporate neighborhood information from the users and items in a graph

based deep latent factor framework. This will borrow ideas from graph signal processing [36, 37]. The basic

idea would be to regularize the proposed model with trace of graph Laplacians in a fashion like graph

regularized matrix factorization [37]. These graph Laplacians will be defined from the similarities of the

users and the items.

In recent years, tensor decomposition / factorization strategies have been gaining importance in signal

processing and machine learning [38, 39]. The way we do multi-level factorizations in this work, it would

be interesting to introduce multi-level tensor factorization in the future.

Collaborative filtering / recommender systems have benefited from the use of additional user-item metadata

that has been incorporated into the matrix completion framework via graph regularization [40, 41]. In the

future, we would like to improve our method in a similar fashion using graph regularization.

Acknowledgement

This work is supported by the Infosys Center for Artificial Intelligence @ IIIT Delhi and by the Indo-French

CEFIPRA grant DST-CNRS-2016-02.

References

[1] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, "An algorithmic framework for performing

collaborative filtering," in ACM SIGIR Forum, vol. 51, no. 2. ACM, 2017, pp. 227-234.

[2] J. S. Breese, D. Heckerman, and C. Kadie, "Empirical analysis of predictive algorithms for

collaborative filtering," in Proceedings of the Fourteenth conference on Uncertainty in artificial

intelligence. Morgan Kaufmann Publishers Inc., 1998, pp. 43-52.

[3] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, "Item-based collabo-rative filtering recommendation

algorithms," in Proceedings of the 10th international conference on World Wide Web. ACM, 2001, pp.

285- 295.

[4] G. Linden, B. Smith, and J. York, "Amazon. com recommendations: Item-to-item collaborative

filtering," IEEE Internet computing, no. 1,76-80, 2003.

[5] J. Wang, A. P. De Vries, and M. J. Reinders, "Unifying user-based and item-based collaborative

filtering approaches by similarity fusion," in Proceedings of the 29th annual international ACM SIGIR

conference on Research and development in information retrieval. ACM, 2006,501-508.

[6] W. Huang, A. G. Marques and A. R. Ribeiro, "Rating Prediction via Graph Signal Processing," in IEEE

Transactions on Signal Processing, vol. 66, no. 19, pp. 5066-5081, 2018.

[7] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutierrez,´ "Recommender systems survey," Knowledge-

based systems, vol. 46, pp. 109-132, 2013.

[8] T. Hofmann, "Latent semantic models for collaborative filtering," ACM Transactions on Information

Systems (TOIS), vol. 22, no. 1, pp. 89-115, 2004.

[9] T. Hofmann and J. Puzicha, "Latent class models for collaborative filtering," in IJCAI, vol. 99, no.

1999, 1999.

[10] Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems,"

Computer, no. 8, pp. 30-37, 2009.

[11] E. J. Candes` and T. Tao, "The power of convex relaxation: Near-optimal matrix completion," IEEE

Transactions on Information Theory, vol. 56, no. 5, pp. 2053-2080, 2010.

[12] B. Recht, "A simpler approach to matrix completion," Journal of Machine Learning Research, vol.

12, no. Dec, pp. 3413-3430, 2011.

[13] X. Peng, C. Lu, Z. Yi, and H. Tang, "Connections between nuclear-norm and frobenius-norm-based

representations," IEEE transactions on neural networks and learning systems, vol. 29, no. 1, pp. 218-

224, 2018.

[14] A. Majumdar, R. K. Ward , “Some empirical advances in matrix completion,” Signal Processing,

vol. 91, no. 5, pp. 1334-1338, 2011.

[15] A. Gogna and A. Majumdar, "Matrix completion incorporating auxiliary information for

recommender system design," Expert Systems with Applications, vol. 42, no. 14, pp. 5789-5799, 2015.

[16] F. Zhao, M. Xiao, and Y. Guo, "Predictive collaborative filtering with side information." in IJCAI,

2016, pp. 2385-2391.

[17] Q. Gu, J. Zhou, and C. Ding, "Collaborative filtering: Weighted non-negative matrix factorization

incorporating user and item graphs," in Proceedings of the 2010 SIAM international conference on data

mining. SIAM, 2010, pp. 199-210.

[18] N. Rao, H.-F. Yu, P. K. Ravikumar, and I. S. Dhillon, "Collaborative filtering with graph

information: Consistency and scalable methods," in Advances in neural information processing

systems, 2015, pp. 2107- 2115.

[19] R. Salakhutdinov, A. Mnih, and G. Hinton, "Restricted boltzmann machines for collaborative

filtering," in Proceedings of the 24th inter-national conference on Machine learning. ACM, 2007, pp.

791-798.

[20] K. Georgiev and P. Nakov, "A non-iid framework for collaborative filtering with restricted

boltzmann machines," in International conference on machine learning, 2013, pp. 1148-1156.

[21] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, "Autorec: Autoencoders meet collaborative

filtering," in Proceedings of the 24th International Conference on World Wide Web. ACM, 2015, pp.

111- 112.

[22] Y. Ouyang, W. Liu, W. Rong, and Z. Xiong, "Autoencoder-based collaborative filtering," in

International Conference on Neural Information Processing. Springer, 2014, pp. 284-291.

[23] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, "Collaborative denoising auto-encoders for top-n

recommender systems," in Proceedings of the Ninth ACM International Conference on Web Search

and Data Mining. ACM, 2016, pp. 153-162.

[24] S. Li, J. Kawale, and Y. Fu, "Deep collaborative filtering via marginal-ized denoising auto-

encoder," in Proceedings of the 24th ACM Inter-national on Conference on Information and

Knowledge Management. ACM, 2015, pp. 811-820.

[25] H. Wang, N. Wang, and D.-Y. Yeung, "Collaborative deep learning for recommender systems," in

Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. ACM, 2015, pp. 1235-1244.

[26] X. Dong, L. Yu, Z. Wu, Y. Sun, L. Yuan, and F. Zhang, "A hybrid collaborative filtering model

with deep structure for recommender systems." in AAAI, 2017, pp. 1309-1315.

[27] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, "Neural collaborative filtering," in

Proceedings of the 26th International Conference on World Wide Web. International World Wide Web

Conferences Steering Committee, 2017, pp. 173-182.

[28] H.-J. Xue, X. Dai, J. Zhang, S. Huang, and J. Chen, "Deep matrix factorization models for

recommender systems." in IJCAI, 2017, pp. 3203-3209.

[29] G. Trigeorgis, K. Bousmalis, S. Zafeiriou, and B. W. Schuller, "A deep matrix factorization method

for learning attribute representations," IEEE transactions on pattern analysis and machine intelligence,

vol. 39, no. 3, pp. 417-429, 2017.

[30] Z. Li and J. Tang, "Weakly Supervised Deep Matrix Factorization for Social Image

Understanding," IEEE Transactions on Image Processing, vol. 26, no. 1, pp. 276-288, 2017.

[31] L. A. Pervin, “A critical analysis of current trait theory,” Psychological Inquiry, vol. 5, issue. 2,

103-113, 1994.

[32] W. W. Hager and H. Zhang, "Recent Advances in Bound Constrained Optimization". In: Ceragioli

F., Dontchev A., Futura H., Marti K., Pandolfi L. (eds) System Modeling and Optimization. CSMO

2005. IFIP International Federation for Information Processing, vol 199. Springer, Boston, MA, 2006.

[33] H. H. Bauschke and P. L. Combettes, "Convex Analysis and Monotone Operator Theory in Hilbert

Spaces" (2nd Edition). Springer, New York, 2017.

[34] S. Wang, J. Tang, Y. Wang and H. Liu, "Exploring Hierarchical Structures for Recommender

Systems," IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 6, pp. 1022-1035, 1

June 2018.

[35] T. Liu and D. Tao, "On the Performance of Manhattan Nonnegative Matrix Factorization," in IEEE

Transactions on Neural Networks and Learning Systems, vol. 27, no. 9, pp. 1851-1863, Sept. 2016.

[36] V. Borodin, H. Snoussi, F. Hnaien and N. Labadie, “Signal processing on graphs: Case of sampling

in Paley–Wiener spaces,” in Signal Processing, vol. 152, pp. 130-140, 2018.

[37] Q. Liao and Q. Zhang, “Local coordinate based graph-regularized NMF for image representation,”

in Signal Processing, vol. 124, pp. 103-114, 2016.

[38] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis and C. Faloutsos, "Tensor

Decomposition for Signal Processing and Machine Learning," in IEEE Transactions on Signal

Processing, vol. 65, no. 13, pp. 3551-3582, 1 July1, 2017.

[39] T. Yokota, R. Zdunek, A. Cichocki and Y. Yamashita, “Smooth nonnegative matrix and tensor

factorizations for robust multi-way data analysis,” in Signal Processing, vol. 113, pp. 234-249, 2015.

[40] K. Benzi, V. Kalofolias, X. Bresson and P. Vandergheynst, "Song recommendation with non-

negative matrix factorization and graph total variation," IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 2439-2443, 2016.

[41] F. Monti, M. M. Bronstein and X. Bresson, "Deep Geometric Matrix Completion: A New Way for

Recommender Systems," IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 6852-6856, 2018.

[42] P. L. Combettes, “Monotone Operator Theory in Convex Optimization”, in Mathematical

Programming Series A, vol. 170, no. 1, pages 177-206, 2018.

[43] L. Condat, “Fast Projection onto the Simplex and the ℓ1 Ball”, in Mathematical Programming

Series A, vol. 158, no. 1-2, pp. 575-585, 2016.

Appendix

Incorporating arbitrary constraints
Although we are unaware of any other constraint / that is applied for latent factor model other than simple

positivity constraints, the reader may have an interest to modify our proposed model to other problems. We

show that it would actually be easy to incorporate any type of constraint into our proposed framework. The

complete mathematical formulation is given in (11). If one wants to add some regularization, one simply

needs to add them to (11).

𝑚𝑖𝑛
𝑈1,𝑈2,𝑈3,𝑉

1

2
‖𝑌 − 𝑅 ⋅ (𝑈1𝑈2𝑈3𝑉)‖𝐹

2 such that

𝑈1𝑈2𝑈3𝑉 ≥ 0, 𝑈1 ∈ 𝐶1, 𝑈2 ∈ 𝐶2, 𝑈3 ∈ 𝐶3, 𝑉 ∈ 𝑆

with C1, C2, C3 and S some closed convex sets incorporating both positivity and regularity constraints on

the factors U1, U2, U3 and V, respectively. The alternating projection algorithm would remain almost

unchanged. The only difference is that the projection steps must now be performed on the sets C1, C2, C3

and S, instead of on the positive orthant.

𝑋𝑘+1 = 𝑃+(�̄�𝑘)

𝑈1
𝑘+1 = 𝑃𝐶1

(𝑈1
𝑘 − (𝑈1

𝑘𝑈2
𝑘𝑈3

𝑘𝑉𝑘 − 𝑋𝑘+1)(𝑈2
𝑘𝑈3

𝑘𝑉𝑘)
†

)

𝑈2
𝑘+1 = 𝑃𝐶2

(𝑈2
𝑘 − (𝑈1

𝑘+1)
†

(𝑈1
𝑘+1𝑈2

𝑘𝑈3
𝑘𝑉𝑘 − 𝑋𝑘+1)(𝑈3

𝑘𝑉𝑘)
†

)

𝑈3
𝑘+1 = 𝑃𝐶3

(𝑈3
𝑘 − (𝑈1

𝑘+1𝑈2
𝑘+1)

†
(𝑈1

𝑘+1𝑈2
𝑘+1𝑈3

𝑘𝑉𝑘 − 𝑋𝑘+1)(𝑉𝑘)
†

)

𝑉𝑘+1 = 𝑃𝑆 (𝑉𝑘 − (𝑈1
𝑘+1𝑈2

𝑘+1𝑈3
𝑘+1)

†
(𝑈1

𝑘+1𝑈2
𝑘+1𝑈3

𝑘+1𝑉𝑘 − 𝑋𝑘+1))

For example, consider, for i = 1, 2, 3,

C𝑖 = {𝑈𝑖 ≥ 0 and ||𝑈𝑖||𝐹 ≤ θ𝑖}

with θi positive regularization factors constraining the l2-norms on Ui, and

𝑆 = {𝑉 ≥ 0 and ||𝑉||1 ≤ 𝜇}

with μ a positive bound on the sought l1-norm on V. It is worth pointing out that in that case, the projectors

remain with a closed form. First, for every i we have, as a consequence of [42] (Remark 3.15):

PCi
(Ui)  = {

𝜃𝑖

||𝑃+(𝑈𝑖)||𝐹
𝑃+(𝑈𝑖) if ||𝑃+(𝑈𝑖)||𝐹 > 𝜃𝑖

𝑃+(𝑈𝑖) elsewhere

Moreover,

𝑃𝑆(𝑉)  = {
𝑃+(𝑉) if ||𝑉||1 ≤ µ
𝑃𝑠𝑖𝑚𝑝𝑙𝑒𝑥(𝑉) elsewhere

with 𝑃𝑠𝑖𝑚𝑝𝑙𝑒𝑥(𝑉) the projection on simplex ball with radius µ, calculated for instance using the fast

algorithm from [43].

Extension for n-layer latent factor model
For an n-layer deep latent factor model, we need to solve the following generalized version of (11),

()
1 2

2
1

1 2 1 22
, ,..., ,
min ... such that ... 0, 0 1... , 0

N
N N iFU U U V

Y R U U U V U U U V U i N V− =

One can see that the outer loop is independent of the depth of the model. When going from three to a higher

number of layers, the main change lies in adding steps in the alternating projection inner loop, in order to

take into account the update of the layers. The updates for each variable would read:

𝑋𝑘+1 = 𝑃+(�̄�𝑘)

𝑈1
𝑘+1 = 𝑃+ (𝑈1

𝑘 − (𝑈1
𝑘𝑈2

𝑘𝑈3
𝑘. . 𝑈𝑁

𝑘𝑉𝑘 − 𝑋𝑘+1)(𝑈2
𝑘𝑈3

𝑘. . 𝑈𝑁
𝑘𝑉𝑘)

†
)

𝑈2
𝑘+1 = 𝑃+ (𝑈2

𝑘 − (𝑈1
𝑘+1)

†
(𝑈1

𝑘+1𝑈2
𝑘𝑈3

𝑘. . 𝑈𝑁
𝑘𝑉𝑘 − 𝑋𝑘+1)(𝑈3

𝑘. . 𝑈𝑁
𝑘𝑉𝑘)

†
)

𝑈3
𝑘+1 = 𝑃+ (𝑈3

𝑘 − (𝑈1
𝑘+1𝑈2

𝑘+1)
†

(𝑈1
𝑘+1𝑈2

𝑘+1𝑈3
𝑘. . 𝑈𝑁

𝑘𝑉𝑘 − 𝑋𝑘+1)(𝑈4
𝑘. . 𝑈𝑁

𝑘𝑉𝑘)
†

)

…

𝑈𝑁
𝑘+1 = 𝑃+ (𝑈𝑁

𝑘 − (𝑈1
𝑘+1𝑈2

𝑘+1. . 𝑈𝑁−1
𝑘+1)

†
(𝑈1

𝑘+1𝑈2
𝑘+1. . 𝑈𝑁−1

𝑘+1𝑈𝑁
𝑘𝑉𝑘 − 𝑋𝑘+1)(𝑉𝑘)

†
)

𝑉𝑘+1 = 𝑃+ (𝑉𝑘 − (𝑈1
𝑘+1𝑈2

𝑘+1𝑈3
𝑘+1 … 𝑈𝑁

𝑘+1)
†

(𝑈1
𝑘+1𝑈2

𝑘+1𝑈3
𝑘+1 … 𝑈𝑁

𝑘+1𝑉𝑘 − 𝑋𝑘+1))

