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Figure 1: Two examples of imitation-based simulation with two different styles. Top: boxing scenario trained with single-actor
and multiple-actors motion capture boxing datasets. Bottom: Qwankido (martial art) scenario based on the same approach,
simply replacing the boxing datasets by Qwankido datasets. In these examples, the sequences show the ability of the characters
to avoid attacks and then to counter-attack.

ABSTRACT
Simulating realistic interaction and motions for physics-based char-
acters is of great interest for interactive applications, and automatic
secondary character animation in the movie and video game in-
dustries. Recent works in reinforcement learning have proposed
impressive results for single character simulation, especially the
ones that use imitation learning based techniques. However, imitat-
ing multiple characters interactions and motions requires to also
model their interactions. In this paper, we propose a novel Multi-
Agent Generative Adversarial Imitation Learning based approach
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that generalizes the idea of motion imitation for one character to
deal with both the interaction and the motions of the multiple
physics-based characters. Two unstructured datasets are given as
inputs: 1) a single-actor dataset containing motions of a single actor
performing a set of motions linked to a specific application, and 2)
an interaction dataset containing a few examples of interactions
between multiple actors. Based on these datasets, our system trains
control policies allowing each character to imitate the interactive
skills associated with each actor, while preserving the intrinsic style.
This approach has been tested on two different fighting styles, box-
ing and full-body martial art, to demonstrate the ability of the
method to imitate different styles.
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1 INTRODUCTION
Physics-based character control is an active field of research, as
it enables to generate physically valid animations in complex in-
teractive environments. In applications with multiple characters
(simulated, or real-time avatars of users), these physics-based char-
acters have to realistically interact with others in a large variety
of situations. In Virtual Reality fighting training, for example, the
user is not expecting an optimal behavior for the virtual opponent,
but may prefer to prepare fighting against an opponent that imi-
tates the behavior and the motions of a particular real boxer. Such
simulation should take the current state of the interaction into ac-
count, select the most relevant action to perform and compute the
physically-valid corresponding motion, as a specific human would
do, by imitating a small set of examples.

Multiple physics-based character interactions can be simulated
using spacetime constraints and optimal control [18, 44]. These
approaches can find an optimal solution given a set of manually
edited constraints, but may fail to imitate the style given in a small
set of examples. Data-driven approaches select the optimal actions
available in a database of examples, using game tree based methods
[37, 38]. However, due to the simplicity of the rules and the high
computational complexity, the intelligence of rule-based simulated
characters is too limited to handle stylized interactions [16].

Reinforcement learning has been explored for designing physics-
based controllers capable of imitating motions given a small un-
structured database of examples while achieving different tasks [33].
This Adversarial Motion Priors (AMP) approach is based on the
Generative Adversarial Imitation Learning (GAIL) [11] framework.
It mainly uses an adversarial discriminator output as a reward in-
stead of manually designing an imitation reward. However, it has
only been applied to single character control.

In this paper, we propose Multi-Agents Adversarial Interaction
Priors (MAAIP), a method for imitating interactions and motions of
multiple physics-based characters from unstructured motion clips.
Our method is based on the Multi-Agent Generative Adversarial
Imitation Learning (MAGAIL) [39] framework, and aims at extend-
ing AMP to deal with both the interaction and the motion of the
controlled physics-based characters. Two unstructured datasets are
used by the system: 1) a single-actor dataset containing motions
of single actors performing a set of motions linked to a specific
application, and 2) an interaction dataset containing few examples
of interactions between multiple actors. Our system trains control
policies allowing each character to imitate the interactive skills
associated with each actor from the demonstrations, while preserv-
ing the intrinsic style. Similarly to AMP, the single-actor dataset

is used to train a single motion prior, while the interaction dataset
offers a novel complementary interaction prior to train each agent
on how to behave in different interactive situations, with other
agents. The interaction prior is therefore acting as a measure of
similarity between the motions of the characters when interacting
with each other, and the interaction examples in the datasets. The
single motion prior offers a complementary repertoire of individ-
ual possible motions that may not appear, or not sufficiently, in
the multiple-actors dataset. To the best of our knowledge, MAAIP
is one of the first adversarial learning system for physics-based
multiple-character animation that combines adversarial motion
prior and interaction prior, allowing different characters to imitate
interaction from a set of unstructured motion clips performed by
multiple actors.

We evaluate our method by simulating competitive interactions
between two physics-based characters, with different styles: boxing
(hands only) and a Qwankido (a Sino-Vietnamese martial art with
full body interactions). We use a few minutes of single-actor motion
clip examples, and short sequences of interaction motion clips. We
show the ability of our method to simulate interactions between
two fighters, while imitating the style of each fighter contained in
the datasets, without the need of designing specific constraints or
rewards. We then explore the limits of the generalization ability
of the method, when dealing with situations that have not been
captured in the interaction dataset used for training. We also show
how to control the interaction, by simply adding new rewards, such
as interactively controlling the direction of the simulated fight,
making the fighter be more aggressive, or more defensive.

2 RELATEDWORK
Physics-based simulation relies on the dynamic equation of mo-
tion to generate joint angles trajectories for a character. However,
the main challenge with these methods is to design a controller
that generates realistic motions, with a desired style, and given a
set of goals to achieve. In the two next sections, we review rele-
vant physics-based simulation methods for a single (section 2.1)
and multiple (section 2.2) characters. We then introduce Imitation
Learning techniques used for physics-based character simulation
in section 2.3.

2.1 Single physics-based character control
Physics-based character simulation has a long history in computer
animation. Early efforts focused on developing locomotion control
using motion analysis and hand-crafted controllers [12], abstract
models [3], optimal control [27], model predictive control [7, 26]
and reinforcement learning [48, 50]. These approaches typically
require prior knowledge and hand-tuned parameters, which can
make them difficult to apply to complex motions and scenarios. To
address these difficulties, several physics-based controllers have
been supplemented with the motion capture data, using trajectory
tracking to follow motion clips and a balance controller to keep
the character upright [53]. More recent works tracked reference
motions by learning policies that get feedback from the physics
simulation [15, 19]. With the development of deep reinforcement
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learning techniques, it became possible to robustly track agile hu-
man motions [30] and to generalize to various morphologies [47]
and environments [48].

2.2 Multiple characters animation
Simulation of multiple characters interacting with each other in-
volves defining properly the interaction between characters: relative
positions between body parts of the characters [10], but also more
complex parameters, such as gaze, orientations or time coordina-
tion. Optimal control with spacetime optimization has been used
to solve complex interaction problems involving multiple physics-
based characters [18, 44]. It requires careful design and tuning of
the cost functions to obtain realistic simulations. Other works pro-
posed an offline game tree expansion to explore all the possible
interactions between characters to simulate multiple characters
competing or collaborating in a given scenario [37, 38]. All these
approaches have been designed to find an optimal solution, but can-
not easily imitate realistic behaviors contained in example motion
capture clips.

When a few examples of interactions are available, reinforcement
learning is a promising way to control physics-based characters.
[9] proposed a hierarchical policy that incorporates navigation,
footstep planning, and bipedal walking skills, for controlling nav-
igation of pedestrians. Unlike previous approaches, this method
learns control policies that can handle interactions between multi-
ple simulated humanoids. [46] proposed a two-steps approach that
first learns an imitation policy from single-actor motion capture
data, then transfers it into competitive policies. [21] trained football
teams of physically simulated humanoids in a sequence of training
stages using a combination of imitation learning, single/multi-agent
reinforcement learning and population-based methods. However,
these approaches have not been designed to leverage available
interaction data of a few examples.

2.3 Imitation Learning for physics-based
character simulation

Imitation learning in physics-based animation uses reference mo-
tion data to improve the quality of the simulated motions. This is
typically done by implementing a tracking objective, where the goal
is to minimize the error between the simulated poses and example
poses. This can be achieved through the use of a phase variable
provided as an additional input to the controller for synchroniza-
tion, or by providing target poses from the reference motion as
inputs to the controller. [4, 14, 15, 19, 20, 30]. However, using a
single phase variable may not allow scaling to datasets containing
multiple disparate motions, and using a reference pose as a target
for the controller requires a high level controller to select the mo-
tions to imitate from as well as the manual definition of the pose
error metrics [31].

Adversarial imitation learning [11, 52] is an alternative approach
to avoid manually designing and tuning specific pose error metrics.
It showed promising results to imitate motions, given a database
of examples [25, 45, 49]. This approach relies on an adversarial
discriminator, aiming to distinguish simulated motions from those
depicted in the demonstration data. The discriminator is then used
as a reward function to train a control policy to imitate the type of

Figure 2: Overview of the system. Multiple-actors motion
capture clips are used to train an interaction discriminator
assigned to each agent, aiming at returning an interaction
reward 𝑟 𝐼 . Single-actormotion clips are used to train amotion
discriminator that returns a motion reward 𝑟𝑀 . The rewards
learned by the two discriminators are combined to train each
agent’s policy in order to imitate the interactive behavior
depicted in the datasets.

motion observed in the demonstration data. However, adversarial
learning algorithms can be unstable during training, and the quality
of the resulting motion can still be low compared to tracking-based
methods. Adversarial Motion Priors (AMP) [33] proposed a number
of tweaks to address those issues, such as using gradient penalty,
but did not handle interaction imitation of multiple characters.

Multi-Agent Generative Adversarial Imitation Learning (MA-
GAIL) [39] is a promising framework to design controllers that
imitate the interaction behavior of multiple characters, given a
small set of unstructured motion capture examples. However, this
framework has never been developed to control multiple physics-
based characters. This raises the question of how to define the state
representation to model the interaction of multiple characters, and
how to build a discriminator based on interactions instead of just
the motion of a single character.

3 SYSTEM OVERVIEW
To produce realistic motions and interaction behaviors between
multiple characters, we use two main databases (also denoted
demonstrations):

• a Multiple-actors motion capture datasetM𝐼 that includes
interaction between multiple actors. For our application, we
use a dataset of fighting motions between two fighters of
two different styles: Boxing (only the upper-body attacks)
and QwanKiDo (full-body movements)
• a Single-actor motion capture datasetM𝑆 that includes basic
skills of the same activity. It enables simulated physics-based
characters to have access to a larger repertoire of realistic
motions than those included in the Multiple-actors dataset.
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Figure 2 illustrates the overview of our approach. Each dataset
M𝐼 and M𝑆 contains motion clips {𝑚𝑖

𝑆
∈ M𝑆 } and {𝑚𝑖

𝐼
∈ M𝐼 }.

The goal of the method is to simulate interaction behaviors and
motions that imitate the style contained in the Multiple-actors
interaction datasetM𝐼 . The Single Actor datasetM𝑆 is used to 1)
offer a wide variety of possible motions to the simulated characters,
and 2) make the physics controller be more robust. Each motion
clip can be seen as a sequence of character poses𝑚𝑖

𝑆
= {𝑞𝑖𝑡 } for the

motion datasetM𝑆 , and as a sequence of two interacting characters
poses 𝑚𝑖

𝐼
= {𝑞𝑖,0𝑡 , 𝑞

𝑖,1
𝑡 } for the interaction dataset M𝐼 , with two

fighters denoted 0 and 1 respectively. Based on these poses 𝑚𝑖
𝐼
,

we propose to build an observation at time 𝑡 , 𝑜𝑡=[𝑜
𝑠𝑒𝑙 𝑓
𝑡 , 𝑜𝑜𝑝𝑝𝑡 ], for

each character (𝑠𝑒𝑙 𝑓 for the agent, and 𝑜𝑝𝑝 for the opponent). In
section 4.2, we give more details about the agent’s observations.

We define the controller for each character using a policy:

𝜋 (𝑎𝑡 |𝑜𝑠𝑒𝑙 𝑓𝑡 , 𝑜
𝑜𝑝𝑝
𝑡 ) (1)

where 𝑎𝑡 is the action that specifies the set of target joint angles
(target poses) used by a Proportional Derivative (PD) controller [41].
Based on the physical model, the contact forces are computed dur-
ing the simulation, both during the training and simulation phases.
Thus, they can be used to simulate impacts, or design specific re-
wards minimizing self-damages or maximizing damages on the
opponent.

An adversarial discriminator is trained to compute a reward
𝑟 𝐼 ( [𝑜𝑠𝑒𝑙 𝑓𝑡 , 𝑜

𝑜𝑝𝑝
𝑡 ], 𝑜𝑠𝑒𝑙 𝑓

𝑡+1 ). For each character, this discriminator is
trained to distinguish between interactions simulated by the sim-
ulated agent from those shown in the demonstrations (Multiple-
actors motion capture dataset). Hence, it is possible to train specific
discriminators for each character, with his specific style. This is a
key idea here, as we expect to be able to generate individual style
for each character in the final multiple-characters simulation.

The observation’s transition (𝑜𝑠𝑒𝑙 𝑓𝑡 , 𝑜
𝑠𝑒𝑙 𝑓

𝑡+1 ) is also used to com-
pute a motion reward 𝑟𝑀 (𝑜𝑠𝑒𝑙 𝑓𝑡 , 𝑜

𝑠𝑒𝑙 𝑓

𝑡+1 ) that measures the natural-
ness of the simulated motion. Similarly, 𝑟𝑀 is the output of an
adversarial discriminator trained to differentiate between gener-
ated motions and demonstrations stored in the Single-actor motion
capture dataset.

The two learned rewards could be combined with other rewards
𝑟𝐶𝑡 , to offer control facilities, such as maximizing physical contact
on a specific body part of the opponent, or driving the interaction
to a given direction.

4 METHOD
We formulate the interaction imitation problem as a Partially Ob-
servable Markov Game, where the goal is to learn optimal policies
of multiple agents interacting with each other in the same environ-
ment [1, 17]. In the following, we detail our architecture adapted
from Multi-Agent Generative Adversarial Imitation Learning [39],
with two major contributions: modeling the interaction with an
opponent, and new objectives for training the system.

4.1 Multi-Agent Generative Adversarial
Imitation Learning

Multi-Agent Generative Adversarial Imitation Learning (MAGAIL)
[39] is a variant of the Generative Adversarial Imitation Learning
(GAIL) [11] that is used to deal with multi-agent interactions. In
MAGAIL, multiple agents 𝑖 (each with their own policy 𝜋\𝑖 ) are
trained to imitate the behavior of one or many expert policies 𝜋𝐸𝑖 ,
using a Generative Adversarial Network framework [5].

For each agent 𝑖 , a parametrized discriminator 𝐷𝜔𝑖
maps state

action-pairs (𝑠𝑡 , 𝑎𝑡 )𝑖 to scores that are optimized to discriminate ex-
pert demonstrations generated by unknown expert policy 𝜋𝐸𝑖 from
behaviors produced by the agent’s policy 𝜋\𝑖 . 𝐷𝜔𝑖

plays the role
of a reward function for the generator 𝜋\𝑖 , which in turn attempts
to train the agent to maximize its reward, therefore fooling the
discriminator [39]. The objective to be optimized is the following:

min
\

max
𝜔
E𝜋𝐸 [

𝑁∑︁
𝑖=1

log𝐷𝜔𝑖
(𝑠, 𝑎𝑖 )]+E𝜋\ [

𝑁∑︁
𝑖=1

log(1−𝐷𝜔𝑖
(𝑠, 𝑎𝑖 ))] (2)

where 𝜋\ denotes the joint policy for 𝑁 agents 𝜋\ =
∏𝑁

𝑖=1 𝜋\𝑖
and 𝜋𝐸 =

∏𝑁
𝑖=1 𝜋𝐸𝑖 denotes the joint policy for 𝑁 experts. The

policies 𝜋\𝑖 are updated through reinforcement learning by using
as a reward function for each agent 𝑖:

𝑟 𝑖𝑡 = − log(1 − 𝐷𝜔𝑖
(𝑠𝑡 , 𝑎𝑡 )𝑖 ) (3)

4.2 Self and opponent observations
The observation of each agent 𝑜𝑡 = [𝑜𝑠𝑒𝑙 𝑓𝑡 , 𝑜𝑜𝑝𝑝𝑡 ] consists of a set
of features describing the proprioceptive configuration of its own
body 𝑜𝑠𝑒𝑙 𝑓𝑡 at the current time 𝑡 , as well as features describing the
current observation about the opponent 𝑜𝑜𝑝𝑝𝑡 . The features used to
model 𝑜𝑠𝑒𝑙 𝑓𝑡 are:
• Root’s height from the ground ∈ R
• All body parts’ positions in the character’s local coordinate frame
∈ R42
• All body parts’ local rotations ∈ R90
• All body parts’ local linear and angular velocities ∈ R45

We used a reduced set of features for observations about the oppo-
nent compared to the one used in [46]. Each agent’s features about
the opponent 𝑜𝑜𝑝𝑝𝑡 include:
• Opponent’s root position ∈ R3, orientation ∈ R6, linear and
angular velocities ∈ R3 in the current character’s local coordinate
frame
• Opponent’s head, torso, hands and feet positions and velocities
in the current character’s local coordinate frame ∈ R18

We use the linear and angular velocities as relevant information for
deciding the appropriate reaction to the opponent. In the context
of physical interaction between two characters, we assume that the
controller should benefit from potential anticipation skills thanks to
this type of information. Indeed, in real competitive or collaborative
interactions between people, this anticipation skill is important.

Similarly to previous works [32, 33], the pelvis segment is as-
sumed to be the root of the character. The local coordinates are
then expressed in this reference frame, with the x-axis oriented
along the root facing direction, and the y is up. The body parts’
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rotations are encoded using two 3D vectors corresponding to the
tangent and normal of its link local coordinate frame, expressed
in the link parent’s coordinate frame. The observation space ob-
tained from these features has a dimension of 274. The actions 𝑎𝑡
correspond to target poses used by the PD controller to compute
joint torques for the character’s joints. The target pose for spherical
joints is represented by 3D exponential map 𝑞 ∈ R3 [6] such that
the rotation axis 𝑣 is computed by 𝑣 =

𝑞

| |𝑞 | |2 and the rotation angle
\ = | |𝑞 | |2. This representation is more compact than 4D axis-angle
or quaternion representations, and also avoids the gimbal lock is-
sue in Euler angles [33]. The target rotations for revolute joints are
specified as 1D rotation angles 𝑞 = \ . The resulting action space
has 28 dimensions.

4.3 Adversarial Motion and Interaction Priors
In order to imitate close interaction frommotion capture demonstra-
tions, we use a learned reward function 𝑟𝑀 that takes into account
the motions generated by each simulated character 𝑖 . We also use a
learned interaction reward 𝑟 𝐼 that takes into account its behavior
with respect to the opponent. We use a combination of these two
rewards to train each agent with RL:

𝑟 (𝑜𝑡 , 𝑎𝑡 , 𝑜𝑡+1) = 𝑤𝑀𝑟𝑀 (𝑜𝑠𝑒𝑙 𝑓𝑡 , 𝑜
𝑠𝑒𝑙 𝑓

𝑡+1 ) +𝑤
𝐼 𝑟 𝐼 (𝑜𝑡 , 𝑜𝑠𝑒𝑙 𝑓𝑡+1 ) (4)

where 𝑤𝑀 and 𝑤 𝐼 are weights associated with the two rewards
functions 𝑟𝑀 and 𝑟 𝐼 respectively.

Following [33], the single motion prior 𝐷𝑀 is modeled by a
learned discriminator trained to predict whether an observation
transition (𝑜𝑠𝑒𝑙 𝑓𝑡 , 𝑜

𝑠𝑒𝑙 𝑓

𝑡+1 ) is a real sample from the dataset, or a sample
simulated by the agent. We model the interaction reward by learned
discriminators, each one assigned to an agent. Given the interaction
datasetM𝐼 of multiple actors, each discriminator 𝐷𝐼 is trained to
predict if the transition (𝑜𝑡 , 𝑜𝑠𝑒𝑙 𝑓𝑡+1 ), i.e. the reaction of the agent
with respect to the other one, is within the distribution of the
demonstrations.

Since we use demonstrations from unlabeled and unstructured
motion capture clips, we do not have access to actions needed by
MAGAIL, as introduced in section 4.1. Therefore, we train the mo-
tion discriminator𝐷𝑀 with the observation transitions (𝑜𝑠𝑒𝑙 𝑓𝑡 , 𝑜

𝑠𝑒𝑙 𝑓

𝑡+1 ),
and the interaction discriminators 𝐷𝐼 with transitions (𝑜𝑡 , 𝑜𝑠𝑒𝑙 𝑓𝑡+1 ) as
inputs, as suggested in previous works [43]. In this case, the reward
function based on the motion discriminator is given by:

𝑟𝑀𝑡 = − log(1 − 𝐷𝑀 (𝑜𝑠𝑒𝑙 𝑓𝑡 , 𝑜
𝑠𝑒𝑙 𝑓

𝑡+1 )) (5)

while the reward based on the interaction discriminators is:

𝑟 𝐼𝑡 = − log(1 − 𝐷𝐼 (𝑜𝑡 , 𝑜𝑠𝑒𝑙 𝑓𝑡+1 )) (6)

We also use the gradient penalty regularization [33] in order to
stabilize the training of the discriminators and improve the quality
of generated behaviors. Therefore, with 𝜙 = (𝑜𝑠𝑒𝑙 𝑓𝑡 , 𝑜

𝑠𝑒𝑙 𝑓

𝑡+1 ), the
objective for training the single motion prior 𝐷𝑀 is formulated by:

min
𝐷𝑀
−E𝜋𝐸 [log𝐷𝑀 (𝜙)] − E𝜋𝑖 [log(1 − 𝐷𝑀 (𝜙))]

+𝑤𝑔𝑝E𝜋𝐸

[������∇𝜙𝐷𝑀 (𝜙) |𝜙
������2] (7)

where 𝜋𝐸 denotes an unknown expert policy that generated the
demonstration transitions,𝑤𝑔𝑝 is a manually specified coefficient.
On the other hand, with𝜓 = (𝑜𝑡 , 𝑜𝑠𝑒𝑙 𝑓𝑡+1 ), the objective for training
each interaction prior 𝐷𝐼 is:

min
𝐷𝐼
−E𝜋𝐸 [log𝐷𝐼 (𝜓 )] − E𝜋𝑖 [log(1 − 𝐷𝐼 (𝜓 ))]

+𝑤𝑔𝑝E𝜋𝐸

[������∇𝜓𝐷𝐼 (𝜓 ) |𝜓
������2] (8)

4.4 Network Architecture
Since the agents are homogeneous (i.e. they have the same observa-
tion and action spaces), we use parameter sharing for their policies,
so that all agents share the same network. Previous works have
shown that this makes the learning be more efficient [2, 42, 51].
Therefore, the policies 𝜋 are modeled by a neural network for which
the inputs are the full observation 𝑜𝑡 of each agent 𝑖 as well as an
indicator of the identity of the agent 𝑖 , and outputs the mean ` (𝑜𝑡 ,i)
of a Gaussian distribution over actions 𝜋 (𝑎𝑡 |𝑜𝑡 ,i) = 𝑁 (` (𝑜𝑡 ,i); Σ)
where the covariance matrix Σ is fixed during training. It is a fully-
connected network consisting of 3 hidden layers of 1024, 1024,
512 units with ReLU activations [28], followed by a linear output
layer. We also use centralized training and decentralized execution
(CTDE) for training the agents [22]. Therefore, we use a centralized
value function 𝑉 (𝑠𝑡 = (𝑜0𝑡 , 𝑜1𝑡 )) shared by the two agents during
training that takes as input the concatenation of all agents’ local
observations to build a global state 𝑠𝑡 [22]. The value function𝑉 (𝑠𝑡 ),
the interaction discriminators 𝐷𝐼 and motion discriminator 𝐷𝑀 ,
are modeled as networks with similar architecture.

4.5 Training
We use the framework of MAGAIL [39] with the multi-agent proxi-
mal policy optimization algorithm MAPPO [36, 51]: at each time
step 𝑡 , each agent receives a local observation 𝑜𝑡 = [𝑜𝑠𝑒𝑙 𝑓𝑡 , 𝑜

𝑜𝑝𝑝
𝑡 ]

from the environment and decides an action 𝑎𝑡 . Then, it receives
an interaction reward 𝑟 𝐼𝑡 and a motion reward 𝑟𝑀𝑡 , computed from
their respective discriminators, and possibly a control reward 𝑟𝐶𝑡
specified by the user, to add a level of control to the interaction
of the characters. Similar to [33], we use a combination of these
rewards to get the final imitation reward 𝑟𝑡 at time 𝑡 according
to Equation (4).To stabilize the training in tasks where additional
control rewards are used, we use reward scheduling so that at the
beginning of the training, agents learn first to imitate motions from
the single motion datasets then we introduce later the rewards for
interaction and then the control reward. We find that by using this
strategy, the resulting interaction is more convincing and does not
collapse to unwanted behavior because of opposing rewards.

After collecting a batch of trajectories with the policies, we
record them in buffers to update the policy networks, the central-
ized value function𝑉 , and the discriminators 𝐷𝐼 and 𝐷𝑀 , similarly
to [33]. We also add replay buffers 𝐵𝐼

𝑖
for each interaction discrimi-

nator 𝐷𝐼 associated with each agent 𝑖 .
We use Generalized Advantage Estimation GAE(_) [35] to com-

pute advantages for updating the policies. The centralized value
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function is updated using TD(_) [40]. We follow the recommenda-
tions from [51] to choose the hyperparameters of the multi-agent
PPO algorithm. The training process is described in algorithm 1.

ALGORITHM 1: Training Algorithm for Multi-Agent In-
teraction policies

Require: Initialized policies 𝜋 , interaction discriminators 𝐷𝐼 ,
motion discriminator 𝐷𝑀 and value function 𝑉 ; Single-Actor
motion datasetM𝑆 ; Multi-Actor interaction datasetM𝐼

Ensure: Learned policies 𝜋 and reward functions 𝐷𝐼 and 𝐷𝑀

1: while learning is not done do
2: B𝜋 , B𝑀 , B𝐼 ← ∅ initialize data buffers for each agent.
3: for trajectory 𝑘 = 1, ...,𝑚 of length 𝑇 do
4: 𝜏𝑘 ← (𝑜𝑡 , 𝑎𝑡 )𝑇−1𝑡=0 collect trajectory rolled out with

policies 𝜋 for all agents
5: for timestep 𝑡 = 0, ...,𝑇 − 1 do
6: 𝑑𝑀𝑡 ← 𝐷𝑀 (𝑜𝑠𝑒𝑙 𝑓𝑡 , 𝑜

𝑠𝑒𝑙 𝑓

𝑡+1 ) get score from the single
motion prior for all agents

7: 𝑑𝐼𝑡 ← 𝐷𝐼 (𝑜𝑡 , 𝑜𝑠𝑒𝑙 𝑓𝑡+1 ) get scores from interaction priors
for all agents

8: 𝑟𝑀𝑡 ← calculate motion reward according to formula 4.
for all agents

9: 𝑟 𝐼𝑡 ← calculate interaction reward according to formula
5. for all agents

10: 𝑟𝑡 ← combine 𝑟𝑀𝑡 and 𝑟 𝐼𝑡 according to formula 2.
11: record 𝑟𝑡 in the trajectory 𝜏𝑘 for each agent.
12: store transitions (𝑜𝑠𝑒𝑙 𝑓𝑡 , 𝑜

𝑠𝑒𝑙 𝑓

𝑡+1 ) in B
𝑀 for all agents.

13: store transitions (𝑜𝑡 , 𝑜𝑠𝑒𝑙 𝑓𝑡+1 ) in B
𝐼 for each agent.

14: end for
15: store trajectory 𝜏𝑘 in B𝜋 for each agent.
16: end for
17: for update steps 𝑖 = 1, ..., 𝑛 do
18: update 𝐷𝑀 using K transitions sampled fromM𝑆 and

from B𝑀 according to formula 6.
19: update each 𝐷𝐼 using K transitions sampled fromM𝐼 and

from B𝐼 according to formula 7.
20: end for
21: update 𝜋 and 𝑉 using samples from B𝜋 for all agents using

MAPPO.
22: end while

5 EXPERIMENTS AND RESULTS
We carried out experiments on two scenarios: boxing, where the
agents only used displacements and upper-body actions, andQwanKiDo,
a Sino-Vietnamese martial art involving full-body actions.

We first evaluated the standard case, using the imitation reward
only (4), in an application where the two characters had to imitate
interactions of the demonstrations. Then, we showed that adding a
task-specific reward for minimizing (resp. maximizing) the damage
received by (resp. given to) each character leaded to simulate more
defensive (resp. aggressive) behaviors. We also demonstrated an
example of controlling the moving direction while keeping the in-
teraction. Finally, we pushed the system to the limits by simulating

interaction between characters that were trained on different sets
of demonstrations.

5.1 Experimental setup
The unstructured dataset used for training agents on fighting in-
teractions contains motions of two different fighting styles: boxing
and QwanKiDo. We used a Qualisys opto-electronic motion capture
system, composed of 22 Oqus 200Hz cameras, to track 46 anatomi-
cal landmarks placed according to the Qualisys animation marker
set guidelines. When contact occurred, some markers may fly away,
so that the corresponding samples were eliminated. The data were
downsampled to 30Hz and retargeted to the character’s skeleton
used in the simulation. Some examples of motion capture sessions
in boxing and QwanKiDo are given in the supplementary video. We
plan to share our datasets upon acceptance of this work to support
future research in filling the gap between individual motor skills for
single characters and interactive skills between multiple characters.

Isaac Gym [23] was used for the physics-based simulation engine
for GPU-based accelerated training. We simulated 2048 environ-
ments in parallel on a single NVIDIA A6000 GPU, each with 2
agents. We ran the simulations at a frequency of 60Hz with 2 sub-
steps, while the policies were queried at 30Hz. All policies were
trained for 2 billion steps, which takes approximately 15 hours of
training time. The algorithm’s hyperparameters are available in
supplementary material.

Boxing Scenario. The boxing scenario involves two characters
who can displace and use their upper-body to attack (with jabs,
crosses, hooks and uppercuts), or defend (using guard, slipping,
swaying, parrying, blocking and clinching). For the Single-actor
motion dataset, 4 high-level volunteer boxers (1 professional and 3
regional-level competitors) participated in a single full-body mo-
tion capture session. The resulting single-boxer dataset contained
approximately 15 minutes of boxing. For the Multiple-characters
dataset, we asked pairs of the above boxers to perform 30s to 90s
rounds. For each trial, the opponents started far away from each
other, to capture some displacement toward a real opponent. Two
pairs of boxers participated in this experiment, with different per-
sonalized "specials" (considered as styles). The total duration of
multiple-actors dataset was 3 minutes.

QwanKiDo scenario. The QwanKiDo scenario also involves
two characters, but the repertoire of possible motions is larger, in-
cluding kicks, elbow or knee strikes, and sweeping. The protocol
was similar to the one used for boxing, with 2 participants, single
actor and two-actors sessions. The total usable motion capture du-
ration for the single-actor dataset was 10 minutes. This scenario
raises more challenges for the imitation approach, as the quantity
of available demonstrations is smaller, whereas the number of pos-
sible actions is larger. Moreover, the "specials" for each fighter are
visually more different than those observed for the boxing scenario.
The total duration for the multiple-actors dataset was 3 minutes.

5.2 Fighting simulation using the priors only
In this first application, we only used the rewards computed from
the discriminators’ outputs. We used the weighting values of𝑤𝑀 =

0.2 for the motion reward and𝑤 𝐼 = 0.8 for the interaction reward in
Equation (4). For the interaction, each agent was associated with the
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same opponent in all the demonstrations, assuming that it should
enable to provide this specific opponent style of interaction to this
agent.

Visual results are depicted in Figures 3 and 4. In the resulting
sequences, one can see that the fighters learned basic fighting skills,
such as getting closer to the opponent, staying in guard stance
when approaching, anticipating openings for attacks and evading
incoming attacks. They also learned footwork skills for fighting
as they move around the opponent and remain at a safe distance
before switching to attack. The experts who participated in the
motion capture sessions were able to recognize the participant who
served as a demonstration for each avatar, in all the simulations.
This result should of course be confirmed by a scientific perceptual
study.

We ran numerous simulations, with random initialization states
(global position and orientation) and obtained very convincing
results, as shown in the supplementary video. In very few cases,
we could obtain clearly unrealistic results, which demonstrates one
of the fundamental limits of imitation-based approaches: too few
examples in the demonstrations may lead to simulate unrealistic
behaviors. These unrealistic behaviors could be strange following
behaviors, or repeating the same motion many times (due to mode
collapse of the discriminators). To partly mitigate this risk, the
system could be trained with more examples, and could also use
additional rewards, such as minimizing or maximizing impacts,
which should provide a wider set of potential solutions.

5.3 Fighting simulation using additional
task-dependent control rewards

To control the generated interaction and guide the selection of
the motions the agents should imitate from the dataset, we tested
additional task rewards 𝑟𝐶 . Firstly, we introduced a reward that
encourages the agents to minimize the damage dealt by the op-
ponent to specific body parts. Secondly, we designed another re-
ward that encourages maximizing damages on the opponent. These
task-specific rewards are reasonable choices for both boxing and
QwanKiDo.

The additional rewards could enable the system to find acceptable
solutions when facing a new situation that was not captured in the
single motion and interaction priors. Compared to previous works,
the new behaviors are generated automatically, without the need
of designing a specific motion planner for motion selection.

Let |𝑓𝑜𝑝𝑝→𝑠𝑒𝑙 𝑓 | be the magnitude of external contact normal
forces applied by an opponent (considered as "damages") to the
head, torso and pelvis of a character. The damage minimization
reward is then given by:

𝑟𝐶 = 𝑒𝑥𝑝 (−𝑤 · |𝑓𝑜𝑝𝑝→𝑠𝑒𝑙 𝑓 |) . (9)

Similarly, the damage maximization reward is expressed by:

𝑟𝐶 = 1 − 𝑒𝑥𝑝 (−𝑤 · |𝑓𝑠𝑒𝑙 𝑓→𝑜𝑝𝑝 |) (10)

The weighting for the different rewards becomes:𝑤𝑀 = 0.1,𝑤 𝐼 =

0.4 and𝑤𝐶 = 0.5. We computed the "damages" applied to each char-
acter by averaging the total damage received over 32 trials, with
an episode length of 1200 frames, with and without using these

task rewards. The quantitative results (see Table 1) showed a sig-
nificant decrease of the "damages" with the damage minimization
reward compared to using the imitation reward only. Reversely, we
noticed an increase in the received damage when using the damage
maximization reward. The top part of Figure 6 depicts a QwanKiDo

Scenario Imitation only Damage min. Damage max.
Boxing Duo 1 2210 3261 820 862 6759 6143
Boxing Duo 2 1135 2010 957 1393 9861 8146
Qwankido 4038 2216 123 215 8623 9435

Table 1: Mean damage values (in Newton) for 32 randomly
initialized episodes of length 1200 each, with imitation re-
ward only, minimizing or maximizing damage additional
reward. The damages are cumulative contact forces applied
to the head, the torso and the pelvis, either of the controlled
character (to minimize damages) or of the opponent (to max-
imize damages).

sequence simulated without the damage minimization reward, lead-
ing to a series of attacks. The bottom part of Figure 6 depicts the
resulting sequence when adding the damage minimization reward,
which shows more defensive and less engaging behavior.

5.4 Target Heading Task
In this task, the objective for the characters is to move along an
imposed target heading direction 𝑑∗, while still fighting one against
each other. We conditioned the policies of the agents on the given
target direction in the local coordinate frame for each character 𝑑∗𝑡
at time t, and we used a reward function similar to the one used
in [33]:

𝑟𝐶 = 𝑒𝑥𝑝 (−𝑤 · (𝑑∗ · 𝑣𝑟𝑜𝑜𝑡 )) (11)
where 𝑣𝑟𝑜𝑜𝑡 is the root velocity for each character. The weighting
used for this task is 𝑤𝑀 = 0.1, 𝑤 𝐼 = 0.4 and 𝑤𝐶 = 0.5. Figure 5
shows the interaction of two QwanKiDo fighters moving towards
a given direction. The resulting task return of the heading control
task for QwanKiDo and Boxing is reported in Table 2. The resulting
animation is shown in the supplementary video.

This task in particular illustrates the interest of the single motion
prior. The results show that characters trained with the single mo-
tion prior slightly better follow the heading direction, with slightly
better task return 𝑟𝐶 . Although the agents trained without the sin-
gle motion prior might obtain a good task return, they only can
imitate the motions included in the interaction dataset, which can
lead to unnatural behavior. Indeed, some selected displacements
may exhibit hits or avoidance to satisfy the heading constraints,
while these actions are not appropriate in the current situation:
avoidance without opponent attack, or punches while the oppo-
nent is too far. This type of artifacts was not observed when also
using the single motion prior.

Let us notice that the training for this task is very sensitive to the
weights associated with each component. Indeed, when givingmore
importance to the single motion prior with a high𝑤𝑀 weight, the
simulated agents follow the given directionwithout interactingwith
each other, as some displacement without interaction are available
in the single motion prior. Reversely, when giving more importance
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to the interaction prior 𝑤 𝐼 , the agents mainly use displacements
based on hits and avoidance, as interaction-free displacements are
rare in the interaction prior (see the supplementary video for some
examples).

Scenario With Single MP Without Single MP
Boxing Duo1 0.86 0.82
Boxing Duo2 0.80 0.76
QwanKiDo 0.90 0.89

Table 2: Performance of the trained agents in the heading
control task when using or not the single motion prior (MP).
The performance is quantified by the average normalized
task return 𝑟𝐶 for 32 episodes of 500 length each.

5.5 Transfer to unseen fighting situations
In our approach, the main idea is to imitate an interaction given
in a multiple-characters motion capture dataset. To evaluate if
our method could handle novel and unseen fighting situations,
we trained two agents with different interaction datasets. Let us
consider for example that the agent 0 is trained with the boxing
dataset, and another agent 1with the QwanKiDo dataset. The agent
1 had seen some examples of attacks performed with the arms,
such as jabs or uppercuts, although they may have been performed
with a different style. However, agent 0 had never seen any kick
or sweeping attacks. Again, it is hard to quantify the ability of the
system to generalize, as there are no real metrics to quantify the
realism of the resulting simulation.

We found that the agents were able to keep the basic interactive
skills, such as getting closer to the opponent, facing him and staying
on guard, even though they were not trained against those specific
opponents. However, we also noticed that they performed fewer
attacks and are less engaging, as attacks are conditioned by a given
observation of the opponent, and there is no such an attack signal
for observations that have never been seen during training. We
believe that enhancing the datasets used for training and using
policy architectures that account for past observations should help
to handle a larger variety of fighting situations, but it may still
suffer from distributional shift [34].

6 ABLATION STUDY
In this section, we study the importance of the components of our
method by ablating the sensitivity to the weighting between the
interaction prior and the single motion prior, as well as the impact
of the losses used for training the discriminators.

6.1 Single Motion Prior Impact
The single motion prior in our framework aims at providing single
actor motion examples to generate natural behavior and account for
unseen situations in the interaction prior. We show the importance
of using it in the heading control task, introduced previously. In
this task, we found that using only the interaction prior may lead
to similar task returns (see Table 2), but the resulting motions were
less natural. Indeed, the agents seem to exploit the motion included
in the interaction to achieve high reward at the cost of motion

naturalness, especially when the given direction changes. As the
single motion prior is trained with a larger variety of displacement
motions compared to the interaction prior, it enables to generate
more natural foot work and displacements. Therefore, it enables to
create seamless transitions between interaction and displacement
motions (see supplementary video). However, the weighting be-
tween the interaction prior, the single motion prior and the task
reward needs to be tuned so that the agents achieve the desirable
behavior as a high weighting for the single motion prior might
lead to agents that completely ignore the interaction and focus on
maximizing the heading task relying only on the single motion
prior.

For the transfer to unseen fight situations introduced in 5.3, we
found that adding the single motion prior helps to generate behav-
iors in fighting situations which are not present in the interaction
dataset, and yields more plausible results in general, compared to
when using only the interaction prior. Indeed, the agents trained
with only the interaction prior struggle more to keep natural be-
havior in out-of-distribution states. However, we found that the
generated behavior is sensitive to the weighting assigned to the sin-
gle motion prior. By assigning more importance to the motion prior,
the characters are less interactive and focus more on maximizing
the motion reward. Consequently, they start punching/kicking far
from each other (see the example of such case in the supplementary
video). We believe that better strategies for varying the weights
assigned to each term depending on the task could be beneficial to
improve the quality of the resulting interaction rather than having
constant weights.

6.2 Discriminators Training Loss Impact
The objective used for training the single motion prior and each
interaction prior in our framework is the same one defined in the
original GAIL [11] which uses a sigmoid cross-entropy loss function.
This loss function is known for training instability because of satu-
ration of the sigmoid function, leading to vanishing gradients. To
counter this, the authors of AMP proposed to use the loss function
for least-squares GAN (LSGAN) [24] that showed more training
stability and better overall quality. The objective for optimizing the
discriminator is defined as:

min
𝐷𝑀
E𝜋𝐸

[(
𝐷𝑀 (𝜙) − 1

)2]
+ E𝜋

[(
𝐷𝑀 (𝜙) + 1

)2]
(12)

with 𝜙 = (𝑜𝑡 , 𝑜𝑡+1). The policy 𝜋 is then optimized using the fol-
lowing reward function:

𝑟 (𝜙) = max
[
0, 𝑢 − 𝑣 ·

(
𝐷𝑀 (𝜙) − 1

)2]
(13)

𝑢 and 𝑣 are offset and scale to bound the reward between [0, 1].
We experimented with this objective for training both the single

motion prior and the interaction priors in the imitation task. We
found that the quality of the generated interactive behavior is worse
compared to what we get with the standard GAIL objective, and
that it is more prone to mode collapse by repeatedly generating
the same subset of motion sequences. Although the agents were
able to perform the basic fighting motions included in the single
motion dataset, their interactive capabilities were limited even
when assigning more importance to the interaction priors in the
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total reward. We think that this degradation in interaction quality
is due to the difficulty of solving the least-squares regression by
the interaction priors when the environment is non-stationary in
the setting of multiple characters’ interaction. We show examples
of these behaviors in the supplementary video.

7 DISCUSSION AND LIMITATIONS
We presented a novel adversarial system for imitating interactions
between multiple physics-based characters, using unstructured
motion clips. This approach is adapted from the MAGAIL frame-
work, and we introduced important adaptations to handle multiple
physics-based characters’ simulation: 1) modeling of reactive be-
havior as a transition from the current full observation to the next
self observation, and 2) training both single motion and interac-
tions priors by leveraging reference motions of a single actor and
motions of interaction between multiple actors.

It enabled us to obtain convincing simulation of two fighting
characters, using only small datasets of motions and interactions
examples. The resulting sequence does not simply imitate the ref-
erence motions with the same frame order, but exhibits similar
interactive behaviors to the interaction dataset by maximizing the
rewards assigned by each prior. Hence, our approach enabled us to
imitate the personalized reaction of fighters with specific styles. We
can also provide the users with some control of the simulation, by
adding task-specific rewards: following a given direction, minimiz-
ing the received impacts or maximizing damages to the opponents
when searching for the next action, while still imitating the style
of the interaction dataset. We could imagine other rewards, such as
aiming specific parts on the opponent’s body. The results show that
although the interaction dataset could be enough to learn motion
and interaction imitation policies, associating a complementary sin-
gle motion prior helps to generalize to a wider range of situations
with realistic motions. This is a key contribution of this work.

However, like other Generative Adversarial Networks (GAN)-
based methods, our approach can suffer from mode collapse: re-
peating the same interaction behavior and generating only a small
subset of the interactions contained in the demonstrations, espe-
cially because of the multi-modality of the interaction dataset. Re-
cent work [13] tried to mitigate this problem by conditioning the
motion prior on latents that encode each motion clip. Some other
work [8, 29] propose to use multiple discriminators to handle the
multi-modality of the training distribution. Although these meth-
ods introduce new challenges such as predefining the number of
discriminators to be used, increasing the number of trained pa-
rameters or the assumption of having a labeled reference motion
dataset, we believe that they can serve in reducing the effect of
mode collapse and improving the quality of the generated behavior.
For example, if the motion clips are segmented and labelled, we
could imagine using a discriminator for attacks, another for defense,
etc.

Using this approach to simulate new individual styles, or new
multi-characters activities (fencing, dancing, collaborative work,
etc.), only requires the user to retrain the same system but with
new single-character and multiple-characters datasets. However,
this can also be a limitation, as it requires providing enough ex-
amples to make the physics-based character correctly imitate the

activity. Instead of fully retraining the policies, it should be pos-
sible to use transfer learning: pretraining the system with basic
skills, such as moving around while maintaining balance, and then
fine-tuning the resulting policies with a few new specific examples.
This is specifically true for simulating different individual styles
for the same activity, where the basic actions should be very simi-
lar. For some activities, the effort required to capture interaction
datasets of multiple actors would be an important obstacle. For
applications in the movie industry, we could also imagine using
animation sequences designed by animators to convey a specific
style for imaginary characters.

While the motion generated by our framework is qualitatively
similar to the motion of the motion clips examples, the resulting
motion of some sequences may still appear unnatural; Since the
method’s goal is to imitate the style of the interactions given as
examples, for safety reasons, it was difficult to ask the subjects to
exert high impacts on the opponent, given that they were equipped
with hard markers that could injure them. Hence, we asked them to
perform shadow style combat with low impacts, which is actually
imitated by the system. We have shown that the same framework
works for (shadow) boxing and Qwankido by simply changing the
input databases of examples, and in some cases the additional attack
reward can lead to combat engagement that was not present in the
original motions. We could expect that fighting motions with higher
impacts would help to imitate real fights.

In this work, we only tested activities involving two fighters.
Future investigations and tests are needed to check the capability
of the system to scale to more characters and to adapt to different
types of interaction such as dancing, where the choreography, syn-
chronization and long duration contacts of multiple dancers are
important for generating plausible results. Moreover, with the cur-
rent policies’ architecture, our system can only imitate short term
reactions, such as parrying a strike, or counter-attacking with one
strike. It cannot handle middle or long-term strategies involving
a sequence of actions. We would like to explore techniques that
incorporate high-level long term planning in the imitation learning
process so that fighters are equipped with strategic play that they
can learn from demonstrations, and so that they are able to use the
same strategic reasoning in new fighting situations. Learning basic
fighting skills with a low level controller, then learning strategic
play from demonstrations by a high level controller equipped with
a long term memory component would be an interesting future
direction for this work.
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Figure 3: Simulation of boxing interaction between two agents. The boxers show agility in the movements, interactive skills
such as getting closer to the opponent, dodging and blocking attacks as well as finding attack openings.

Figure 4: Simulation of QwanKiDo interaction between two agents. The agents show highly-dynamic motions, such as using
full body for attacks, unique fighting styles similar to the actor motions used for training them.

Figure 5: An example of interaction simulation with heading controls. The fighters are constrained to move towards a given
target direction, represented by the red line.
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Figure 6: An example of fighting simulation using additional control rewards, that encourages the agents to minimize the
damage dealt by the opponent to specific body parts: head, torso and pelvis. Top: without control reward ; Bottom: with control
reward. The reward drives the agents into simulating interactive behavior where they act more defensively, and they block
attacks more often.
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