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Abstract
User authentication remains a critical building block for trust online. Despite their
widely-known shortcomings, knowledge-based authenticators (KBAs) including pass-
words and Personal Identification Numbers (PINs) are in daily use for access control,
and they appear to still be relevant for years to come. This dissertation examines
several aspects of their shortcomings, along with concrete suggestions on how to
improve them. Most of these shortcomings stem from a simple fact: users are com-
monly relied upon to select, recall, and enter their own KBAs, resulting in systems
with poor usability that also poorly protect their users. Such KBAs are often drawn
from a narrow probability distribution making them easy for an attacker to guess.
Moreover, this distribution is affected not only by users, but also a number of factors
under the control of service providers and system designers.

We will return to these themes throughout this dissertation: we will characterize
the probability distributions for several classes of KBAs (PINs/passwords) in various
settings and we will explore system and service design factors that broaden (harder to
guess) or narrow (easier to guess) the distributions. Put simply, in this dissertation
we show how systems may enable the selection of KBAs that better protect the
user. For example, we show the influence of account type on this distribution and
we characterize the PINs used in situations of mobile device and app unlock.

Our attacker model crucially focuses on online guessers that are limited in the
number of allowed attempts. After all, given unlimited time and guesses, an attacker
would easily guess practically all human-chosen and human-memorable PINs and
passwords. As the purpose of a KBA in the end is to provide security against an
adversary, we will necessarily characterize adversary capabilities in detail. Results
in this dissertation optimize guessing attacks for various situations, but especially in
the context of mobile device unlocking.

Given the sheer number of KBAs managed by a user and their difficulties in select-
ing and remembering them, it is interesting for system designers to see how KBAs
are reused across accounts and services. Where the previous work would rely on self-
reports to estimate the prevalence of password reuse, we use a novel methodology
to directly measure both resistance to password guessing and the incidence of reuse,
using the first dataset of its kind in the literature. Our results show that users select
more-secure passwords for their financial accounts, but critically, are more likely to
reuse these passwords, perhaps as a means of coping with the added complexity.

Continuing with this theme, we study 4- and 6-digit PINs in detail. We gather
a collection of new datasets in user studies: first from participants primed for the
scenario of smartphone unlocking, then investigating how user understanding of the
PIN feature in the Signal encrypted messaging app correlates with PIN complexity,
then finally by priming participants to guess the PINs of others. Through these new
datasets, we show that 6-digit PINs are in many cases not more secure than 4-digit,
that participants can guess the 4-digit PINs of roughly 1 in 8 smartphones, and that
those who understand PINs are more likely to select more-complex PINs. Taken
together, these PIN datasets are the largest ever assembled in formal user studies.

Through this observation that user comprehension can lead to increased PIN com-
plexity, we suggest user education as a means to increase PIN security, among other
potential interventions by system designers.





Kurzfassung
Die Authentifizierung von Personen ist ein entscheidender Baustein für Vertrauen
im Internet. Trotz ihrer allgemein bekannten Schwächen, werden wissensbasierte
Authentifizierungsmethoden (Englisch: knowledge-based authenticators, KBAs), wie
Passwörter und Persönliche Identifikationsnummern (PINs), täglich zur Zugangskon-
trolle eingesetzt und scheinen auch in den kommenden Jahren relevant zu bleiben.
Diese Dissertation untersucht verschiedene Aspekte ihrer Schwächen und erarbeitet
konkrete Verbesserungsvorschläge. Ein Großteil der Schwächen ergibt sich aus einer
einfachen Tatsache: Zumeist müssen die Nutzenden von Systemen ihre KBAs selbst
auswählen, erinnern und erneut eingeben. Dies führt nicht nur zu einem Mangel an
Benutzerfreundlichkeit, sondern auch dazu, dass die Nutzenden nur unzureichend
geschützt sind. Das grundlegende Problem solcher selbstgewählten KBAs liegt dar-
in, dass diese oft aus einer eingeschränkten Wahrscheinlichkeitsverteilung stammen,
welche sie für Angreifende leicht erratbar machen. Darüber hinaus wird diese Vertei-
lung nicht nur von Benutzenden, sondern auch von verschiedenen anderen Faktoren
beeinflusst, die von Dienstanbietern und Systemdesignenden festgelegt werden.

Im Verlauf dieser Dissertation werden die folgenden Themen im Detail behan-
delt: Neben den Wahrscheinlichkeitsverteilungen verschiedener Klassen von KBAs
(PINs/Passwörtern) in unterschiedlichen Situationen charakterisieren wir auch die
Faktoren im System- und Dienst-Design die die Verteilungen vergrößern (schwerer
zu erraten) oder verkleinern (leichter zu erraten). Einfach ausgedrückt zeigen wir in
dieser Arbeit, wie Systeme die Auswahl von KBAs beeinflussen können, um Nutzen-
de besser zu schützen. Zum Beispiel zeigen wir, wie die Art des Kontos die Verteilung
beeinflusst und charakterisieren die PINs, die typischerweise beim Entsperren von
Mobilgeräten und Apps verwendet werden.

Unser Angriffsmodell konzentriert sich auf online Rateangriffe, die in der Anzahl
der erlaubten Versuche eingeschränkt sind. Schließlich würden Angreifende bei un-
begrenzter Zeit und unbegrenzten Versuchen praktisch alle von Menschen wähl- und
merkbaren PINs und Passwörter erraten. Da das Ziel einer KBA letztendlich dar-
in besteht, Sicherheit gegenüber bestimmten Angreifenden zu bieten, werden wir
zwangsläufig die Fähigkeiten von Angreifenden detailliert charakterisieren.

Angesichts der schieren Anzahl von KBAs, die von Benutzenden verwaltet wer-
den und der Schwierigkeiten, sie auszuwählen und sich an sie zu erinnern, ist es
für Systemdesignende interessant zu verstehen, wie KBAs über Konten und Dienste
hinweg wiederverwendet werden. Während frühere Arbeiten sich hauptsächlich auf
Eigenangaben aus Umfragen stützen, um die Häufigkeit der Wiederverwendung von
Passwörtern abzuschätzen, verwenden wir eine neuartige Methodik, um sowohl die
Erratbarkeit von Passwörtern als auch die Häufigkeit der Wiederverwendung direkt
zu messen, und zwar anhand des ersten Datensatzes dieser Art in der Literatur. Un-
sere Ergebnisse zeigen, dass Benutzende sicherere Passwörter für ihre Finanzkonten
auswählen, aber leider auch dazu tendieren diese Passwörter eher wiederzuverwen-
den, vielleicht um mit der zusätzlichen Komplexität besser zurechtzukommen.

In diesem Zusammenhang untersuchen wir auch 4- und 6-stellige PINs im Detail.
Hierfür sammeln wir eine Reihe neuer Datensätze in Benutzerstudien: zunächst von
Teilnehmenden, die auf das Szenario des Entsperrens von Smartphones vorberei-
tet sind, dann untersuchen wir, wie das Verständnis der Benutzenden für die PIN-
Funktion in der verschlüsselten Messaging-App „Signal“ mit der PIN-Komplexität
korreliert, und schließlich indem wir Teilnehmende darauf vorbereiten, die PINs an-
derer zu erraten. Durch diese neuen Datensätze zeigen wir, dass 6-stellige PINs in
vielen Fällen nicht sicherer sind als 4-stellige, dass Teilnehmende die 4-stelligen PINs
von etwa 1 aus 8 Smartphones erraten können und dass diejenigen, die PINs ver-
stehen, eher komplexere PINs auswählen. Insgesamt sind diese PIN-Datensätze die
größten, die jemals in formalen Benutzerstudien gesammelt wurden.

Aufgrund der Beobachtung, dass ein besseres Verständnis der Benutzenden zu
stärkeren PINs führen können, schlagen wir Schulungen für Benutzende, neben an-
deren möglichen Interventionen durch Systemdesignende, als Mittel zur Erhöhung
der PIN-Sicherheit vor.
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2 Chapter 1 Introduction

1.1. Challenges in Knowledge-Based Authentication

Decades of research in computer security have delivered ever-greater cryptographic
algorithms, protocols, and deployments. At the same time, the increase in processing
and communication performance has enabled new and more personal devices that
gather more sensitive personal data. As of 2022, Google reports that about 95% of
the traffic across its products and services is now encrypted [1]. Despite this massive
technological advancement, in which extraordinary amounts of data are communi-
cated and stored each day, encrypted and decrypted on demand, controlling access
remains a challenge. To be useful, the data must be available to legitimate parties
for legitimate purposes while protected from attackers. Unfortunately, despite all
our technological prowess, the steady stream of data breaches continues, in which
some form of access control has failed.

User authentication is a necessary building block to limit access to legitimate
parties. For human users, authentication often relies on Knowledge-Based Authen-
tication (KBA), colloquially referred to as “something you know.” Although other
factors like tokens (“something you have”) and biometrics (“something you are”) are
also important, our focus here is on KBA due to its extremely widespread use, as it
is often combined with biometrics. We further focus on situations of mobile device
unlocking again due to their widespread nature. Observe that even if a user adopts
a biometric to unlock their iOS or Android phone, a PIN is still required especially
when the device restarts — and obviously can be attempted by any adversary with
access to the device.

In this familiar arrangement, to prove their identity to a system (website, PC, or
smartphone), the human user provides some piece of presumably secret information
like a password or Personal Identification Number (PIN). It is of course possible
that a human user creates and flawlessly remembers a long, random password or
uses a password manager. But overall, in this simple interaction, we must contend
with many very human limitations and we aim to study and improve upon real-
world security. In particular, this research is concerned with understanding — and
potentially improving — the PINs and passwords chosen by users and used to access
websites and devices. Moreover, we make concrete suggestions for service providers
to enhance the security of their use of KBA. In so doing, we contribute to the state
of knowledge in this area by studying user and attacker behaviors. Our results can
lead to improved system designs, user education, and user communication.
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1.2. Human Factors and Conflicting Advice

Here the challenge is not entirely technological: human factors impose very real limits
on what can be achieved in KBA. Specifically, a large body of literature has shown
that humans have a hard time choosing and remembering secrets.

However secure it might be, if a solution is too hard to use, it will remain mostly
unused, as previously demonstrated in a classic usability study by Whitten et al. [2]
on the difficulties non-expert users faced trying to secure their email with PGP 5.0.

It is not only users who are frustrated by this state of affairs. Service providers
and system/design engineers also face challenges since they must deal with customers
who have difficulties accessing systems, such as forgotten passwords and passwords
guessed or stolen by attackers. Just like a user, a service provider is usually not
primarily concerned with authentication, but rather providing some useful service.

By way of example, consider some difficulties faced by a service provider in the
adoption of a KBA regime. Some services require users to change their PIN/password
periodically, say every 90 days. We observe here that government and industry
regulations often provide incomplete and contradictory advice. For example, the
U.S. National Institute for Standards and Technology (NIST) Special Publication
800-63B [3] provides this guidance to service providers it frames as “verifiers:”

Verifiers SHOULD NOT impose other composition rules (e.g., requir-
ing mixtures of different character types or prohibiting consecutively re-
peated characters) for memorized secrets. Verifiers SHOULD NOT re-
quire memorized secrets to be changed arbitrarily (e.g., periodically).

Although this guidance was issued more than five years ago, based on research
published in 2010 and even earlier from Inglesant et al., Komanduri et al., Chiasson et
al., [4–6] and others, many service providers still require these “password complexity
rules” and “password rotation.”

On the other hand, it’s not difficult to see why this is the case. For one thing,
older editions of the NIST 800-63B standard from 2004 required composition rules
and password rotation [7]. The changes between password composition rules in 2010
and 2016 are studied by Mayer et al. [8]. For another, the Payment Card Industry
Data Security Standard (PCI-DSS) sets the rules for service providers that process
credit, debit, and other payment card transactions worldwide. Service providers must
be audited against these rules annually. PCI-DSS version 3.2.1, section 8.2.3-8.2.4,
published September 2022 [9] contains the following excerpt:

Customer passwords/passphrases are required to meet at least the fol-
lowing strength/complexity: require a minimum length of at least seven
characters, contain both numeric and alphabetic characters ... [and] re-
quire users to change passwords at least once every 90 days.
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Though PCI 4.0 was published in March 2022 [10], service providers may still
choose to be validated against PCI 3.2.1. For its part, PCI 4.0 requires passwords
to increase in length to 12 characters, but also says:

Passwords/passphrases are changed at least once every 90 days, or the
security posture of accounts is dynamically analyzed, and real-time access
to resources is automatically determined accordingly.... [Passwords must]
contain both numeric and alphabetic characters.

We focus on the issue of conflicting regulation only to draw attention to our broader
point: if even regulators provide conflicting advice to service providers, it is unsur-
prising that users continue to face challenges. Users, after all, are fundamentally
trying to complete some task: sending email, conducting business, or recreation.
Their fundamental goal is not necessarily security. So users have a tendency to skip
extra security-oriented steps if possible. Moreover, if it is easier for a user to misuse
a mechanism, it will be misused — not by every user, but by a large population of
users. This dissertation, therefore, focuses on ways in which commonly-used KBA
mechanisms are selected in various scenarios, and proposes concrete, tangible steps
to increase the protections afforded to large populations of users in practice.

Our work lies at this intersection of security and usability, gathering direct evi-
dence that currently-deployed systems fail to adequately address the human factors
involved. We present new datasets comprising passwords and PINs. Taken together,
to our knowledge this is the largest collection of PINs gathered in formal user stud-
ies. By their nature, passwords and PINs are difficult to study due to a general lack
of data. System designers strongly discourage users from revealing their passwords
or PINs. Over time the research community has accumulated more passwords than
PINs: while the study of the probability distribution of alphanumeric passwords is
aided by periodic large-scale password leaks from websites [11], such leaks do not
exist for PINs as they are locally stored and validated on user devices. Observe also
that these website leaks expose user credentials from a website, but do not expose
all of a given user’s credentials used elsewhere. We provide one of the first datasets
with this focus, gathered from password-stealing malware.

Studies suggest more than 60% of users secure their smartphone with a PIN [12].
Since there are billions of smartphone subscribers worldwide, weaknesses in this
scheme would affect many millions of users. Understanding and improving upon this
situation is vital to understand and improve upon the security of KBA, which is the
focus of the present work.

As in many areas of security, we face a careful balance between security and
usability on top of an endless progression of attacks, countermeasures, and attackers
with their counter-countermeasures. It is well-known that users commonly practice
poor PIN and password hygiene.
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As noted above, passwords created for financial-services accounts commonly re-
quire a mixture of numbers, mixed-case letters, and symbols. Unfortunately, as we
show below with a unique dataset, these higher-complexity passwords tend to be
reused more often. Users appear to cope with higher-complexity passwords by re-
membering fewer of them and reusing them. Though the resulting passwords might
be harder for an attacker to outright guess, attackers have also taken advantage
of this situation by replaying lists of stolen credentials from one site across other
websites. These lists are traded among groups of attackers or sold through websites
focusing on cybercrime.

One suggested approach for service providers to increase the cost of attack is to
specifically ban the use of PINs/passwords that are frequently used. Indeed, advice
from the U.S. National Institute for Standards and Technology has recommended
that users should be prevented from choosing one of these [3]. As before, there is
much more data available about these overused passwords than there are for PINs.
Previous researchers along with our own work, due to this lack of data, often used
data of uncertain provenance. One of our contributions is the collection and analysis
of new PIN and password datasets, with an emphasis on mobile unlock for PINs and
an emphasis on desktop website login for passwords.

Afterward, we focus on the specific case of PINs on mobile devices. We explore
a variety of blocklisting approaches and make specific recommendations to improve
blocklists. Following this, we study a particular case of user comprehension of PIN
usage in the Signal mobile app. Finally, we conclude by evaluating the ability of
untrained users to guess the mobile-unlock PINs of others.

1.3. About this Dissertation

In this thesis, we make several contributions to the state of the art in knowledge-
based user authentication. This dissertation compiles research previously published
and to appear. These collaborative works appear in summarized and annotated form
below and would not have been possible without the contributions of the co-authors.

1.3.1. Thesis Statement

This dissertation examines pressing issues faced by users, designers, and administra-
tors of secure websites and mobile devices. The central thesis of this dissertation is:
The widespread use of knowledge-based authentication means a shared responsibility
for security in the face of usability challenges. Adapting authentication to the way
users comprehend, select, use, and re-use their passwords and PINs along with study-
ing the way attackers guess online can lead to improved outcomes for all stakeholders.
From our work, future knowledge-based authentication systems can provide a better
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user experience and improved attack resistance. Our data show that increased user
comprehension of the purpose of the PIN and enhanced user understanding of the
value of their accounts can lead to more diverse PIN composition.

1.3.2. Password Re-Use for Financial Accounts on the Web

We compiled and analyzed a unique corpus of data: actual user passwords inter-
cepted by the Zeus banking malware. Although researchers commonly ask study
participants about their password re-use habits and draw conclusions, we were able
to directly measure this behavior. This analysis is made possible by the fact that the
gathered dataset includes multiple leaked passwords per user. We find that in our
sample, financial-account passwords are stronger than others, such as social-media
passwords. Nevertheless, these stronger passwords are more prone to re-use: valu-
able passwords are identical to 21% of the remaining passwords of a user. This fact
suggests a need for user education around password re-use. Before the publication
of our study, little was known about password re-use for different account values.

1.3.3. Analyzing the Security of Smartphone Unlock PINs

In this paper, we provide the first comprehensive study of user-chosen 4- and 6-
digit PINs (n = 1705) collected on smartphones with participants being explicitly
primed for device unlocking. We find that against a throttled attacker (with 10, 30,
or 100 guesses, matching the smartphone unlock setting), using 6-digit PINs instead
of 4-digit PINs provides little to no increase in security, and surprisingly may even
decrease security. We also study the effects of blocklists, where a set of “easy to guess”
PINs is disallowed during selection. Two such blocklists are in use today by iOS,
for 4-digits (274 PINs) as well as 6-digits (2910 PINs). We extracted both blocklists
and compared them with six other blocklists, three for each PIN length. In each
case we had a small (4-digit: 27 PINs, 6-digit: 29 PINs), a large (4-digit: 2740 PINs,
6-digit: 291 000 PINs), and a placebo blocklist that always excluded the first-choice
PIN. For 4-digit PINs, we find that the relatively small blocklist in use today by iOS
offers little to no benefit against a throttled guessing attack. Security gains are only
observed when the blocklist is much larger. In the 6-digit case, we were able to reach
a similar security level with a smaller blocklist. As the user frustration increases with
the blocklists size, developers should employ a blocklist which is as small as possible
while ensuring the desired security. Based on our analysis, we recommend that for
4-digit PINs a blocklist should contain the 1000 most popular PINs to provide the
best balance between usability and security, for 6-digit PINs the 2000 most popular
PINs should be blocked.
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1.3.4. User Understanding of Signal PINs on Mobile Devices

We conducted an online study with (n = 235) Signal users on their understanding
and usage of PINs in Signal. In our study, we observe a split in PIN management
and composition strategies between users who can explain the purpose of the Signal
PINs (56 %; enthusiasts) and users who cannot (44%; casual users). Encouraging
adoption of PINs by Signal appears quite successful: only 14 % opted-out of setting
a PIN entirely. Among those who did set a PIN, most enthusiasts had long, complex
alphanumeric PINs generated by and saved in a password manager. Meanwhile more
casual Signal users mostly relied on short numeric-only PINs. Our results suggest
that better communication about the purpose of the Signal PIN could help more
casual users understand the features PINs enable (such as that it is not simply a
personal identification number). This communication could encourage a stronger
security posture.

1.3.5. How Novice Attackers Guess Smartphone Unlock PINs

This chapter provides experimental justification for the attacker models studied
above. Previous studies on smartphone unlock PINs including earlier chapters of
this thesis primarily consider very well-informed attackers that guess PINs in fre-
quency order using PINs collected through experiments or extracted from password
leaks. In this study, we consider a more commonplace, untrained attacker who simply
tries to guess a PIN on another person’s smartphone. To simulate such a scenario, we
adapt a methodology used by Uellenbeck et al. [13] that directs participants to select
a 4- or 6-digit (secret) PIN, and then enter 5 PIN guesses that they believe others in
the study selected as their secret PIN. In an online survey (n = 210), we find that
10% of participants’ secret PINs are guessed, with 85% of participants successfully
guessing at least one other participant’s PIN.

1.4. Summary of Contributions

In short, this dissertation carefully gathers and analyzes new data on KBAs: pass-
words and especially 4- and 6-digit PINs. The analysis shows precise circumstances
when particular measures like blocklisting are of benefit when applied to smartphone
unlocking. In addition, we study the success rate of novice PIN guessers and show
that improved user comprehension of PIN usage leads to more-diverse PIN compo-
sition, suggesting a means to improve PIN security. In summary:

• We gather, analyze, and report on several new datasets: one focused on pass-
words that directly shows higher strength, but also a higher incidence of re-use
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among online financial passwords. Each of our datasets is the largest of its
kind presented and analyzed in the literature.

• Our data suggest users choose financial-account passwords that are stronger
than others, such as social-media passwords. Nevertheless, these stronger pass-
words are more prone to re-use: valuable passwords are identical to 21% of the
remaining passwords of a user.

• We report on the security and composition of user-chosen four- and six-digit
PINs applied to smartphone unlocking. In this throttled setting, the benefit of
six-digit PINs is marginal at best.

• We show how different blocklisting approaches influence the PIN selection pro-
cess for both security and usability, finding that blocklists in use today offer
little to no added security.

• We explore users’ perception of security, memorability, and ease-of-use of PIN-
based authentication, finding that participants perceive that blocklisting will
improve their PINs without impacting usability, except for very large blocklists.

• We provide guidance for developers on choosing an appropriately-sized PIN
blocklist that can influence users to select better PINs. An effective blocklist
for 4-digit PINs should consist of about one thousand PINs, while an effective
blocklist for 6-digit PINs should contain about two thousand PINs.

• Our data show that 31% of participants in our study have attempted to access
someone else’s smartphone in the previous year. Through an online simulated-
attack study (n = 210) where participants try to guess the PINs set by other
participants, we find that 85% of participants successfully guess the PIN of a
stranger, suggesting the need for more design interventions and user education
to encourage users to select more secure PINs.

• We provide experimental justification for the data-driven attackers studied
above. To our knowledge, our study is the first to gather and analyze PINs
chosen by participants primed to guess smartphone PINs. Our earlier studies
speculated that their guessing proxies were representative of real guessers. We
can now answer that question in the affirmative. At least in the aggregate, we
show that novice attackers perform similarly to our earlier data-driven attack-
ers. This fact suggests that in our setting focused on the first few attempted
guesses, data-driven attackers model a real-world threat.

• We explore novice attackers for PINs, as this category represents attackers with
the most opportunities to attempt PIN guessing. In our experiment, 85% of
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participants successfully guess the PIN of another participant. In addition,
37% of participants admit trying to access the smartphone of another person
in the previous year. Since 14% of 4-digit PINs were guessed, our data suggests
a novice can unlock 1 in 8 smartphones locked with a 4-digit PIN. Our results
indicate the need for more design interventions and user education to nudge
users towards more secure PINs, and emphasize risks from “insider” novices
with temporary access to unattended devices.

• We highlight the threat models that users are most concerned about with access
to their smartphones, showing that most participants feel their close social
connections are the ones most likely to attempt to access their smartphone.
Further, users indicate a need to delegate access to their devices, suggesting
the need for system designers to deploy and further educate users about device
sharing options.

• We further surveyed Signal users (n = 235), asking about their understanding,
usage of the Signal PIN feature, and response to Signal PIN verification. For
example, we asked participants to explain the purpose of Signal PINs, in their
own words. We additionally asked participants about the composition of their
PIN (e.g., length, character set), if they reuse the PIN in other contexts (e.g.,
phone lock, in another messenger app), if they have opted out of selecting a
PIN, and their response to periodic PIN verification.

• We find that only 14% (n = 33) of respondents opted out of setting a Signal
PIN, and also we find a large disparity between the practices of participants
who can explain the purpose of the in-app PIN authentication (who we term
Signal enthusiasts; n = 132; 56 %) and those who cannot (dubbed casual Signal
users; n = 103; 44%).

1.5. List of Publications

The content of this thesis is drawn in part from peer-reviewed publications. The
research described in those publications was carried out in collaboration with stu-
dents, colleagues, and other members of the respective research projects. Except as
described below, I was lead author on these publications. The author’s contribution
to each publication is described in detail in the respective chapters. As an editorial
note, this dissertation makes use of the academic “we” throughout.
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The interested reader may find these publications as shown:

• Chapter 3: Password Reuse in Financial Accounts
D. V. Bailey, M. Dürmuth, and C. Paar, “Statistics on Password Re-use and
Adaptive Strength for Financial Accounts,” in Security and Cryptography for Net-
works (SCN ’14). Amalfi, Italy, September 2014.

• Chapter 4: Analyzing the Security of Smartphone Unlock PINs
P. Markert, D. V. Bailey, M. Golla, M. Dürmuth, A. J. Aviv, “On the Security of
Smartphone Unlock PINs,” in ACM Transactions on Privacy and Security,
Volume 24, Issue 4, November 2021.

• Chapter 5: Users’ Understanding of Signal PINs
D. V. Bailey, P. Markert, A. J. Aviv, “‘I have no idea what they’re trying
to accomplish:’ Enthusiastic and Casual Signal Users’ Understanding of Signal
PINs,” in Symposium on Usable Privacy and Security (SOUPS ’21). Virtual,
August 2021.

• Chapter 6: Analyzing How Untrained Attackers Guess PINs
D. V. Bailey, C. W. Munyendo, H. Dyer, P. Markert, M. Grant, A. J. Aviv,
“‘Someone Definitely Used 0000’: Analyzing How Novice Attackers Guess Unlock
PINs,” to appear at European Symposium on Usable Security, Oct. 2023.



The men of Gilead said vnto him,
Art thou an Ephraimite?
If he said, Nay; then said they vnto him,
“Say now Shibboleth:” and he said “Sibboleth:”
For hee could not frame to pronounce it right.

— The Book of Judges (KJV)
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2.1. Knowledge-Based User Authentication

This section reviews the most basic concepts of user authentication. It can come as
something of a surprise that such a seemingly familiar topic can be the subject of
so much current research. After all, if humans could readily generate and enter long
cryptographic keys, this problem would be seemingly solved.

It is well-known that users generally pick passwords and PINs poorly. Exactly how
poorly — and the advantage conferred to the attacker —depends on the particular
situation, or the human factors considered in the system design. It depends also on
the objective of the attacker. This section reviews some perspectives on knowledge-
based user authentication, especially arising from the literature. Throughout this
section, we will note that a wide variety of attacker models has been considered
in the literature. The chapters of this dissertation examine particular settings for
this problem. While this section gives a general overview necessarily including a
number of different attacker models, the chapters of this dissertation will explain the
particular attacker model under study.

2.1.1. Physical Setting: Historical Perspective

Problems of human authentication have been known for recorded human history.
Here we focus on their mechanical realization: a physical lock that latches to keep
some people out of important boxes, doors, or structures. Combination locks that
open after the entry of a secret have appeared from antiquity. Recovered artifacts
like the Antikythera Mechnism [14] show the ability to design and manufacture
complex geared machines by the second century BCE. Hoepfner described an example
surviving from ancient Kerameikos [15], which opens when two knobs are rotated to
the correct position. It contained a provision for the owner who may have forgotten
the combination: a hidden additional means of pressing the latch, besides entering
the unlock code.

Considerably more sophisticated combination locks with longer combinations were
available from at least the 12th century. A notable example is dated 1197 and at-
tributed to Muhammad al-Asturlabi. This device is held today in the Museum of
Fine Arts in Boston [16] and notably requires the entry of a secret code of length
8 drawn from an alphabet of 16. The Arabic letters are laid out in their Abjadi
numerically ascending order, so these locks easily accommodate PINs or passwords.
Two later examples of al-Asturlabi’s locks keeping the same basic layout survive to-
day in museums. In a widely-distributed manuscript attributed to Ismail al-Jazari
published in 1206 [17], a diagram is reproduced that depicts the same internal lock
mechanism used by al-Asturlabi’s locks along with the alphabet of 16, but the dia-
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gram shows a secret code of length 12 instead of 8 in the artifacts. Neither of these
designs accommodate an owner who has forgotten the PIN/password.

Although the manuscript’s author is silent on this point, one can only imagine
that no 12-character locks survive today from ca. 1200 since they were destroyed by
owners who could not remember the secret codes. In truth, we cannot know today
if the artifacts influenced the design in the manuscript or perhaps the manuscript
describes a type of lock that was widely used, but we do know that al-Jazari’s diagram
influenced generations of system designers including in Europe [17]. Moreover, we
can see that while lock designs have long since improved, discussions on PIN and
password lengths, including the challenges around memorability, continue to the
present day, some 800 years later.

Military use of PINs and passwords for authentication has also been handed down
from antiquity [18]. In the twentieth century, U.S. atomic weapons used literal
mechanical combination locks to prevent explosive or fissile materials from com-
ing together. Bellovin reports that this practice continued into the 1980s and that
in 1981, more than half of the so-called “Permissive Action Links” (PALs) in use
were still mechanical combination locks with various configurations and combination
lengths [19].

It has been reported that the code to enable at least part of a U.S. Minuteman
atomic missile launch sequence was set to 00000000 [19] to aid usability by Air Force
crews facing an emergency. This characterization has been disputed by U.S. Air
Force officials and we cannot be sure of the veracity or practical impact of this claim
as of this writing [20]. What is clear from an examination of the available sources
is that there is at least some evidence for this claim in field service manuals, and
military commanders had concerns about on the security-usability tradeoff.

KBAs necessarily represent a usability tradeoff, and these difficulties have long
been observed in Information Technology. In a classic study from 1999, Adams and
Sasse identified issues including a basic lack of awareness on the part of users as
to what constitutes a “good” password along with the sheer number of passwords
users must remember [21]. Although many systems and proposals exist to incorpo-
rate software and hardware into authentication protocols, system designers are still
left with a need to verify the “right” person and not a thief intends to use the soft-
ware/hardware. Even though a modern protocol like WebAuthN aims to improve
upon the problems of passwords on the scale of the Web, it still relies on a “User
Verification” [22] step involving a PIN, password, or biometric.

Proposals to eliminate KBAs have come and gone, and yet PINs and passwords
are still very much in use. The difficulty of migrating away from KBAs has been
studied in 2012 by Bonneau et al. [23], who presented a framework of requirements
that a Web authentication scheme must satisfy. After evaluating twenty years’ worth
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of alternative schemes from the literature and industry, passwords still provided an
unmatched set of benefits.

2.1.2. Online Setting

Since at least the 1970s, computer systems have required a KBA before use. That
is, a piece of software is responsible for controlling access with the (presumed) user
tasked with creating and recalling the KBA. This piece of software is obviously
responsible for taking KBAs as input and producing an output of True or False. To
do this, it must also be able to check against a known-good version of the user’s
password.

In this thesis, we are focused on how hard it is for attackers to guess passwords
and PINs: our attackers are online or UI-bound and have an objective to correctly
guess a PIN or password to log into a device or service provider. The attacker makes
a guess: a tuple (u, p) sent to a verifier as part of a protocol. Unless otherwise noted,
our attackers are also trawling in the sense of being satisfied to gain access to any
account(s) on the system. Contrast this situation with a targeted attacker who wants
access to one particular user’s account.

In this situation, our attacker has an obvious winning strategy: simply try all
possible passwords. To offer some protection, the system must also implement a
limitation on guessing. Online, this is often done by either a throttling mechanism
to slow an attacker trying all possible KBAs, or simply locking an account after a
certain number of bad guesses.

If users chose truly-random long unique passwords, this arrangement would make
UI-bound attacks infeasible. Instead, as early as 1979 it has been observed [24]
that users tend to choose weak passwords that are susceptible to so-called dictionary
attacks where the attacker knows that certain passwords are more likely to be chosen
by users. By making use of such a dictionary, the attacker increases their chance of
success before the system slows or stops the acceptance of new guesses.

Especially with PINs, this lockout or throttling behavior is directly responsible
for any security provided. Without the throttling safeguards, an attacker can very
easily run through all possible 4- or 6-digit PINs. These basic facts about the need
to limit KBA guessing have long been known from the realm of payment cards. An
excellent survey and history of PINs used in payment cards appears in the work of
Bonneau et al [25]. Systems obviously vary, but generally less than 10-100 guesses
are accepted before the online service/mobile device either slows or locks out further
guesses. As memorably observed by Florencio et al. [26] beyond this point lies a
large “online-offline chasm” for guess counts out of reach for an online guesser, but
still less than the 1015 guesses available to a moderately capable offline attacker not
bound by the UI, who can independently make a guess and check its validity.
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2.1.3. The Mobile Device Setting

Mobile devices bear some similarities to our situation in the online setting. Here, the
attacker makes a guess: a value p sent to a verifier as part of a protocol. In the mobile
device setting, the username is generally omitted. But otherwise we again have a
verifier that can accept guesses, and will respond by either slowing the acceptance
of new guesses or locking the device completely.

Given their ubiquity, we will also treat the special case of 4- and 6-digit PINs
on mobile devices. Obviously, research on PIN authentication for mobile devices is
related to the larger area of mobile authentication. User preferences for different
unlock methods for Android devices were studied by Harbach et al. [27] in 2014. It
would be possible for users to select and enter alphanumeric passphrases as their
KBA, but very few do so as reported by Harbach et al. and our own work. It is
not difficult to see why: given the number of situations in which a mobile KBA is
entered, usability suffers with longer or more-diverse PINs.

Biometrics are quite popular for mobile-device unlock, but their use still requires
a KBA on the device. For one thing, the biometric might not be read properly, so
devices allow a user or attacker the option of using the biometric or presenting the
KBA. Moreover, KBAs have found new uses in encrypting data held on mobile de-
vices [28–30]. This usage means devices require a PIN as part of the keying material
used when a device reboots. Even beyond these uses, as of this writing Apple for
example just implemented Advanced Data Protection (iOS 16.3, 13 Dec 2022) world-
wide which relies on the device passcode (PIN or password) to encrypt data backed
up to iCloud [31].

The fact that users are aware of their insecure behavior when asked about it
was shown in a study by Harbach et al. [27] where most participants reported that
unwanted access to their smartphone would have been possible. Similarly, Mahfouz
et al. [32] observed an average auto-lock timeout of 65 s in their study, enabling an
attacker to access a smartphone if the owner leaves it unattended and does not lock
it manually. To mitigate such risks, Kraus et al. [33] recommended offering simple
mechanisms which are secure by default. This could also prevent potential social
pressure toward bad security behaviors.

Matthews et al. [34] presented a taxonomy of device-sharing scenarios while Al-
abayram et al. [35] highlighted risk awareness as a driving aspect for insecure behavior
rather than inconvenience, suggesting the need to effectively communicate risks. A
follow-up study with users in Saudi Arabia by Al Qahtani et al. [36] confirmed these
results. We will continue this theme by showing that users of the Signal app with
increased comprehension of the PINs’ purpose selected more diverse PINs.

Shi et al. [37] presented a two-fold threat model for mobile authentication based
on an informed and uninformed stranger. Muslukhov et al. [38] extended Shi et
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al.’s model with capabilities such as physical access and shoulder surfing. They con-
ducted a survey of threats perceived by smartphone users and find that participants
were equally concerned about strangers and “insider” threat actors such as friends.
Moreover, 12% of the participants in their study had experienced someone accessing
sensitive data without their permission; 9% had “sneaked into the smartphone” of
someone else in the previous year.

Levy et al. [39] further explored privacy threats in intimate relationships like fam-
ilies or partnerships. They categorized attackers and victims based on their relation-
ship and identify features of threats across these relations. At this point, Levy et al.
noted that the attacker’s motivation may be based on multiple factors, and they are
not inevitably intended to cause harm.

Marques et al. [40] quantified the prevalence of snooping on mobile devices in
a survey designed to minimize social-desirability bias. The survey defined snoop-
ing as “looking through someone’s phone without their permission,” finding 31% of
participants had done so in the previous 12 months.

In subsequent work, Marques et al. [41] explicitly recruited participants who have
past experience with unauthorized mobile device access. They found that distilling
stories of unauthorized access into identifying the familiar who, what, and why cate-
gories led to interesting insights. Participants felt that making themselves vulnerable
to unauthorized access was necessary to sustain relationships with friends, partners,
co-workers, and others. In explaining their past experience with unauthorized access,
participants rarely blamed themselves, instead blaming circumstances or the other
person’s shortcomings.

In this thesis, when we consider mobile attackers, we are primarily interested in
attackers who:

• Gain brief physical access to an unattended smartphone locked with a 4- or
6-digit PIN.

• Have no hints to rely upon, such as smudges on the screen, shoulder surfing or
targeted personal knowledge about the victim.

• Have no malware or vulnerability that would allow them to bypass the lock
screen without the PIN.

• Have a limited number of guesses before the device slows or stops its acceptance
of PIN guesses.

• Know the PIN length, because devices like iOS provide a visual hint on the
lock screen.
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2.1.4. Measuring Guessability

Because this thesis focuses on guessability, it is helpful to review some basic defi-
nitions [42]. Likely the most influential notion of information entropy is Shannon
entropy, introduced in seminal work by Claude Shannon in 1948 [43]. For a discrete
random variable X with finite domain D = {d1, . . . , dn} and pi := Pr(X = di),
Shannon entropy is defined as

H1(X) := −
n∑

i=1

pi log(pi).

In general, Shannon entropy is most relevant in the context of compressability of
data, as it can be misleading when it comes to the specific case of PIN/password
guessability. Massey [44] showed that there are (artificial) distributions with low
Shannon entropy and high guessing entropy. In addition, he also proved that high
Shannon entropy implies high guessing entropy, see [45] for more bounds.

Another useful notion of entropy is min-entropy. which is a measure for security
under a specific subcategory of online guessing attacks called “one-guess attacks” [46].
Applied to our application, min-entropy identifies the most-common PIN/password.
For a random variable X and monotonically decreasing probabilities p1 ≥ p2 ≥ · · · ≥
pN , min-entropy is defined as

H∞(X) = − log2(p1).

Min-entropy only takes into account the most frequent event, so it is not a good esti-
mation for most password distributions. For an idealized version of an online website
attack, min-entropy turns out to be the right notion: In an online website attack,
the adversary has a virtually unlimited number of accounts at hand, assuming that
they can easily guess new usernames. Then, the most efficient strategy to maximize
their success is to guess the most likely password for each account, and this is ex-
actly what is addressed by min-entropy. Observe that in the case of mobile devices,
which we will study in some detail, the attacker generally can only guess against one
account. Additionally, in reality the attacker gets a small number of guesses before
the device throttles (delays) additional guesses or locks entirely. Therefore, we stress
again that these notions of entropy can be highly misleading: despite their theoreti-
cal foundations, they only apply to an unthrottled, perfect knowledge attacker that
will exhaustively guess the PIN/password space.

Both Shannon entropy and min-entropy are special cases of Rènyi entropy [47],
which is defined as

Hn(X) =
1

1− n
log

∑
i=1

pni
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for n ≥ 0, n ̸= 1. For n → 1 this converges to Shannon entropy, for n → ∞ this
converges to min-entropy.

Guessing entropy [44,47] measures the expected number of guesses that the optimal
attack needs in order to find the correct password. For a random variable X with
countable domain D and P (X = di) = pi, ordered with decreasing probabilities
pi < pj for i < j, guessing entropy G(X) is defined as

G(X) =

|D|∑
i=1

i · pi (2.1)

which is the expected number of guesses to guess a password. However, a practical
attacker is generally satisfied with breaking into a certain fraction of accounts, which
guessing entropy does not take into account. For this usage we turn to partial guessing
entropy [48] (or α-guesswork) takes this into account.

For 0 ≤ α ≤ 1 let

µα = min{i0 |
i0∑
i=1

pi ≥ α}, (2.2)

be the minimal number so that the guesses cover at least a fraction α of the passwords,
and let

λα = λµα =

µα∑
i=1

pi (2.3)

be the actual sum (which is greater or equal to α). With these, partial guessing
entropy is defined as

Gα(X) = (1− λα) · µα +

µα∑
i=1

i · pi (2.4)

Intuitively, the first term is contributed by those passwords that weren’t guessed in
the allotted number of guesses, and the second term is contributed by those passwords
that were. We want to express this in “bits of information” to be able to compare it
with other measures more easily. This is done as follows:

G̃α(X) = log

(
2 ·Gα(X)

λα
− 1

)
+ log

1

2− λα
(2.5)

where the “correction term” log 1
2−λα

is used to make the metric constant for the
uniform distribution (see [48] for a more detailed explanation).
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2.2. Attacker Models

No practical system resists all attacks. Instead, we focus on attackers with specific
capabilities. Doing so means adopting a specific set of assumptions about the system
and the attacker. Fundamentally, in our work we explore the ability for attackers
who try to guess KBAs. Moreover, this guessing is limited by the system under
examination to prevent trivial exhaustive search. Of course, system designers may
need to consider other threat models to adequately protect their real-world systems.
In later sections, we will make this general theme much more concrete; we found
for example, that an attacker who is limited to only 10 guesses is more effective at
guessing 6-digit PINs than 4-digit PINs, while a guesser with 100 guesses is more
effective at 4-digit PIN-guessing. See Section 4.4.1 for more details; this finding
underscores the importance of careful threat modeling.

2.2.1. Online Trawling Guessing Attackers

Figure 2.1.: iOS lock screen shows the number of digits in a user’s PIN

Our attack model is trawling. This model means the attacker has no personal
knowledge, “hints” about the account owner, or physical side-channel measurements
that might make guessing easier. One advantage of this model is simplicity, allow-
ing it to act as something of a lower bound on guessability. Another advantage is
its conceptual accessibility: that an attacker could try to guess someone’s PIN or
password is understood by practically all users. That a phone could be snatched
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out of someone’s hands in public, or left behind in a taxicab is also well-known.
Moreover, systems have long employed measures like blocklists in an attempt to get
users to pick better PINs; one of our main contributions is to analyze how effective
these countermeasures are. Obviously, any personal hints can only serve to help the
attacker. Our advice to system designers can therefore represent a minimum viable
security objective — a real-world attacker will do no worse at the task of guessing.

Another setting optimized to resist online guessing attackers can be found in the
context of Chip-and-PIN systems. Bonneau et al. [25] considered 4-digit PIN creation
strategies for banking customers for use with ATMs/credit cards. Bonneau et al.
identified techniques adopted by users for selecting PINs, where choosing (birth)
dates/years was the most popular strategy—also true in our setting. An attacker can
leverage the skewed distribution of PIN choices to improve their guessing strategy,
and precisely quantifying this advantage in certain circumstances is one of our main
contributions.

The distribution of PINs has received previous study. As noted, PINs are effective
only in the case of an online guessing attacker, since an offline attacker can easily
attempt all possible PINs. This means the distribution of PINs is of vital importance.
Wang et al. [49] have also analyzed the distribution of PINs – in this case without
any specific usage context. They report on comparing 4- and 6-digit PINs created
by English and Chinese users. One counter-intuitive finding is that 6-digit PINs are
less resistant to online attacks, despite the key space expansion from 4- to 6-digit
PINs. Our results support the observation that in a rate-limited guessing scenario
there may actually be no benefit of using 6-digit PINs at all and in certain cases
security even decreases. Wang et al. used PINs extracted from leaked, text-based
password datasets whereas we tend to increase the ecological validity of our results by
collecting new PINs specifically primed for mobile authentication and the smartphone
form-factor with its standard PIN layout.

Blocklists have been considered in the context of PINs by Kim et al [50]. They
tested blocklists for both 4-digit as well as 6-digit PINs, and concluded that a
reasonably-sized blocklist could indeed increase the security. Kim et al. used Shannon
entropy and guessing entropy as the strength metric and thus only consider an un-
throttled, perfect knowledge attacker that will exhaustively guess the PIN space [45].
This is a questionable attacker model especially given the sparsity of their dataset.
Kim et al. compared blocklists representing 2 % and 32 % of the possible PIN space
and found the large blocklist led to lower Shannon-entropy and lower offline guessing-
entropy PINs, perhaps due to the composition of Kim et al.ś large blocklist.

In contrast, we show in our analysis of 4-digit PINs that with a more realistic
rate-limited, online attacker, a larger blocklist containing 27.4 % of all possible PINs
provides a benefit over a smaller one that blocks only 2.7%, differing from the sug-
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gestion of Kim et al. regarding the effect of the size of the blocklist. We also make
similar observations in our analysis of 6-digit PINs.

Bonneau et al. [25] also proposed the use of a blocklist containing the 100 most
popular PINs. From our analysis, it seems that their suggestion may have formed
the basis for Apple iOS’s 4-digit blocklist.

Our work differs from Bonneau et al. in two significant ways. Foremost, Bonneau
et al. were primarily concerned with payment cards, not smartphone unlock authen-
tication. Second, Bonneau et al. did not collect new PINs but instead relied on digit
sequences found in leaked passwords along with PINs collected without the benefit of
a controlled experiment [51]. Our work aims for greater ecological validity by specif-
ically priming users for this task. Our data suggests that using password leaks may
be an imperfect approximation for how users choose PINs for unlock authentication.

2.2.2. Attacks Beyond Our Scope

We emphasize that many other attack types besides guessing are possible that are
beyond the scope of the present work. We will summarize some of these briefly in
order to draw out the contrast. An attacker could simply intercept a tuple (u, p)

over the network (if unencrypted) and steal it that way, or convince the user to
hand it over as in a phishing attack. Of course, an attacker might conduct an attack
using a software vulnerability in an online service and therefore not need to submit
any guesses. Naturally, the compromise of a user’s account with an online service
like iCloud that stores unencrypted data, would have many of the same deleterious
effects as guessing a smartphone’s PIN.

Closer to our area of inquiry is the fact that smartphone lockscreens may have
software vulnerabilities allowing them to be bypassed. One of these appeared in
June, 2022 as Schültz discovered a peculiar set of steps involving swapping SIM
cards on an Android phone that exposed a flaw in the state machine controlling
the lockscreen [52]. Using this flaw and any SIM card owned by the attacker, the
attacker could unlock the smartphone — no guessing needed.

Obviously the flaw found by Schültz requires physical access to the smartphone.
An attacker who has physical access has other options as well. Complex systems
have physical characteristics that can be measured, as in a side-channel attack, and
we stress that any additional information the attacker has is virtually certain to help
their guessing performance.

For instance, Abdelrahman et al. [53] employ thermal imaging attacks on PINs
and Android patterns. After entering a PIN or pattern, the portions of the screen
touched by the user are slightly warmer. Abdelrahman et al. found that thermal
attacks are indeed viable on mobile devices, with PINs being significantly more
susceptible than patterns that contain overlaps. For another example of a side-
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channel attack Zarandy et al. [54] showed that voice assistants can be used to extract
a PIN by collecting acoustic signals of the user typing. A hardware power-analysis
side channel was discovered in iPhone 4 (and possibly up to iPhone X) by Lisovets
et al. [55] that allows an attacker to conduct an offline search for the PIN that can
be run in parallel. A timing side channel was discovered by Haas et al. in the Apple
A10 Fusion chip first introduced in 2016 with the release of the iPhone 7 and iPhone
7 Plus [56]. There are many more side channels possible but these are out of scope
for the present work. One can readily see that additional signals serve only to help
the attacker. Any of these attacks could be combined with our work on guessing.

We focus on passwords for online services and PINs for mobile devices. Beyond
PINs, another common knowledge-based mobile authentication mechanism is the
Android unlock pattern, whereby a user selects a secret pattern that connects points
on a 3x3 grid. Uellenbeck et al. [13] showed that user selection of unlock patterns
is highly biased: most patterns start in the upper left corner giving a resulting
construction that is weaker than a PIN. These results have been confirmed by other
works [57–60]. We will compare the security of mobile unlock PINs to that of patterns
and have obtained datasets from the related work [13,57–59].

As noted above, we focus in this thesis on trawling attacks. Of course, there are also
scenarios where the attacker has information about the victim, like if their birthday or
anniversary is known [61,62]. In other cases, the attacker obtains information about
the victim’s PIN via shoulder surfing [63–69], or smudges on the screen [70,71].

In contrast to our attack model, an offline attacker is limited only by available
computation. In this attack setting, typically as the result of a SQL injection attack
on an online service, an attacker has a list of hashed passwords. Assuming the
cryptographic hash algorithm is one-way, it is infeasible for an attacker to directly
invert the function. Since passwords are selected in a highly non-uniform manner,
the attacker can prioritize guessing higher probability passwords. This problem has
been studied extensively and led to development of automated tools such as John the
Ripper [72] and Hashcat [73] which combine password dictionaries with “mangling
rules” to guess passwords in a heuristic priority order. More advanced password
guessers based on Markov models have also been presented [74,75] to list only a few.
These approaches could be used to generate guesses in an online attack, but observe
that because smartphones and services can either slow or stop accepting guesses,
the first few guesses are crucial. In this dissertation, we are primarily concerned
with understanding the attacker’s success rate in these first few guesses, before the
mangling rules are applied.

For our purposes, the crucial distinction is that in an online attack the attacker
cannot independently check if a guess is correct: they need to rely on a device or
online service. In an offline attack, the attacker has a leaked password file with
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hashed passwords or other means to check if a guess is correct. An online device or
service can decide to stop or delay accepting any new guesses. Especially with PINs,
this lockout or throttling behavior is directly responsible for any security provided.
Without these safeguards, an attacker can very easily run through all possible 4- or
6-digit PINs. While it is possible to optimize the guessing order for an attacker who
has thousands of guesses available, we are unaware of a practical setting where this
would matter.

2.3. Re-Using Authentication Secrets

We will also investigate PIN/password reuse as a recurring theme throughout this
dissertation, both through direct observation and survey questions.

2.3.1. Users’ Tendency to Re-Use

Several previous studies have examined password reuse. Ives et al. give an interesting
high-level overview of password reuse [76], including some examples of actual damage
done by password reuse. Florencio and Herley [77] present a large-scale user study on
passwords including password reuse, where they collected their data from browsers
running the Windows Live toolbar (from consenting participants). They find that
each user has, on average, 25 accounts and 6.5 passwords. In other words, each
password is used for 3.9 accounts. This study has some limitations: First, as they
hash the stored passwords for security reasons, they can only detect exact password
reuse, not reuse of very similar passwords. Based on the design of the study, it is
difficult to detect if a password was entered at the same site under two different
URLs.

In a lab study, Gaw and Felten ask participants to conclude when groups of pass-
words are similar [78]. This approach is adopted to preserve confidentiality of par-
ticipant passwords, but the resulting similarity measure is vague. They find between
2.2 and 3.2 accounts per password.

Bonneau [79] used two password lists that both included usernames, allowing reuse
measurement between these two sets. Both lists were hashed, so the hashes first
needed to be cracked. From those accounts cracked in at least one list, 49% of users
used the same password for accounts on both sites, however, this does not take into
account those accounts that weren’t cracked, and thus we cannot say what the actual
reuse rate is. It may be that those passwords that weren’t cracked belong to more
security-savvy users and that those have a lower rate of password reuse, so 49%

most likely constitutes an upper bound. Furthermore, in the same text Bonneau
recognizes the need for a study on password reuse based on account value.



24 Chapter 2 Preliminaries

Of the 456 common users, 161 had their password cracked in both datasets,
46 only had their rootkit.com password cracked and 77 only had their
Gawker password cracked, leaving 172 with neither password cracked.
Of the accounts for which passwords were cracked at both sites, 76%
used the exact same password. A further 6% used passwords differing by
only capitalisation or a small suffix (e.g. password and password1?).

An industry advisory [80] considers password reuse by utilizing a browser plug-
in intended to warn about phishing attempts against banking passwords that also
detects reuse. They report that “73% of users share the online banking password
with at least one nonfinancial website” [80]. However, not many details are given
about the exact setup and distribution of the plug-in. In addition, to compare the
results with other work we would require at least the average number of accounts
per user they recorded.

Perhaps as a result of its inclusion in PCI-DSS [9], forcing users to periodically
change their passwords remains a common technique to prevent attackers from using
leaked passwords. Besides conflicting standards, it should be clear from this dis-
cussion that many factors go into a given website’s password policy. Sahin et al.
identify others including usability, requirements from auditors, and organizational
inertia [81].

Zhang et al. use a database of 7700 accounts to examine the difficulty in guessing
the replacement password given the expired one [82]. They found in this attack
model that 41% of replacement passwords could be guessed in a few seconds. More
recently in a similar attack model applied to PINs, Munyendo et al. [83] found that
mostly, if an attacker knows a user’s 4-digit PIN, a replacement 6-digit PIN is easily
guessed.

Our study on password reuse first appeared in print in 2014. In the intervening
years, this topic has seen a great deal of additional attention. For example, the service
called haveibeenpwned.com (HIBP), started by Troy Hunt in 2013 [84] has matured
into a resource on the web for users to find if their account has been part of a breach.
Leaked password lists from Adobe, LinkedIn, and others contain username (typically
email address) and password hash. HIBP stores username-site name pairs so that
users can check if their account data was leaked. Separately from the username-site
name pairs, leaked passwords are stored so that, using an online challenge-response
protocol, users can check if a given password has been previously leaked [85]. HIBP
stores the hashed password separately to partially insulate from being an unwitting
accomplice in further attacks. Though HIBP cannot be said to be completely privacy
preserving, it serves a useful purpose in notifying users of breaches. Otherwise,
the only users of this data would be criminals trading or selling this data. The
security community generally appears to have accepted the trade-off. To see this,
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one needs only to observe the number of tools including password managers and
browser extensions that make use of HIBP or similar functionality. Thomas, et
al. [86] report on one such system implemented as “Google Password Checkup” that
is now available to anyone with a Google Account.

Since the first publication of our work, several studies have appeared in this vein.
Wash, et al. [87] in 2016 combined survey methods with a browser plug-in that 122
participants used for six weeks. Their study also found that more-complex passwords
were more likely to be re-used, but were additionally able to show that the frequency
of a given password’s entry was a stronger predictor of re-use likelihood.

A study from Wang et al. [88] examined the patterns of password re-use and
modification among a large dataset of millions of users across 107 services. Fully
52% of the users engaged in password re-use. Interestingly, even after a data breach,
users continue to use the same leaked passwords for other online services. The
study further showed that more than 16 million password pairs, including 30% of
the modified passwords, can be easily cracked with just 10 guesses.

On the topic of PIN re-use, recently, Khan et al. [89] and Casimiro et al. [90]
studied PIN re-use across different contexts. Both find that re-use is rampant, and
that users tend to have a small set of PINs they use regularly. In our work we also find
that certain kinds of PIN re-use are common, such as for an ATM/Credit/Payment
card.

2.3.2. Responses to Re-Use

Understanding the exact motives that lead to the observable differences both in
password strength and password re-use is important. A reasonable method seems to
be user interviews, which also might inform efforts to influence users towards better
behavior, i.e., choosing strong passwords for those accounts that have high value,
and to re-use only those passwords that have low value or are sufficiently protected
on the server.

Many large services now offer some form of message to the user about re-use. In
particular, it is common for the largest sites to monitor underground forums and
the like for appearances of their users’ passwords. If found, the site will send a
password-reuse notification. A 2018 study by Golla et al. [91] studies the approach
of providers notifying users that their KBA has been compromised elsewhere. The
notifications themselves are troublesome. The study found that only about 20% of
participants understood what is something of a complex situation: that the breach
of this password took place on another service. Only 18.8% mentioned password
re-use as a contributing factor. It therefore remains an active area of research to find
interventions to reduce re-use.
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An important tool to prevent password re-use is the password manager. This
type of software tool does not require changes to how servers prompt for and accept
KBAs. In addition, they are now available in most Web browsers by default as well
as a host of third-party add-ins. These use a master password to encrypt a database
(called a “vault”) of actual site passwords, decrypting them and replaying them to
sites as needed. Many studies have appeared on this topic. For example, Lyastani
et al. [92] report on an online study with 170 participants using a browser plugin to
examine usage patterns. In early 2018, the publication date of that study, Chrome
did not yet create new passwords for users as needed, but merely auto-filled existing
choices. That approach tended to exacerbate the problem of re-use with more than
80% of passwords auto-filled by Chrome re-used. This situation was addressed in
Fall of 2018 when Chrome 69 implemented the ability to create new passwords [93].

Password managers are certainly a welcome development as they can generate
and store into a “password vault” KBAs that are difficult to guess. Given that most
users access the Internet on multiple devices, most password managers additionally
offer a cloud service that can synchronize a user’s password vault across all their
devices. The appeal for a user is clear: they need to select and recall only one
“master password” to decrypt the vault, rather than a password for each site they
access. On the downside, attackers now have a new target: a cloud service that holds
all of a user’s passwords. A successful attack on the cloud service would have very
grave consequences, as they could now start an offline guessing attack to find the
master password.

Unsurprisingly, we have seen a string of exactly these attacks online targeting the
LastPass service. In 2015, hackers gained access to user email addresses, password
reminders, and encrypted master passwords. The breach affected all users of the
LastPass service, and the company recommended that all users change their master
password in response, and enable two-factor authentication. LastPass took steps to
enhance its security measures, including increasing its infrastructure security and
implementing scrypt to hash master passwords [94]. More recently in 2022, a sim-
ilar incident transpired in which attackers once again gained access to encrypted
vaults [95]. It bears repeating that the “last line of defense” in this setup remains a
KBA. If a user’s site password leaks, and they re-use that password for their vault,
the attacker can easily compromise all of the user’s online accounts. Research into
KBAs and re-use is therefore of vital importance to the overall online economy.

2.4. Ethics in Knowledge-Based Authenticator Research

A central theme in KBA research is: “what do users pick for passwords/PINs in
various situations?” Research in this area raises a few obvious ethical issues. As



2.4. Ethics in Knowledge-Based Authenticator Research 27

researchers we aspire to discover information that is of benefit to the computing
community. From previous work we know that the probability distributions of pass-
words and PINs are skewed. Humans are simply not well-equipped to generate,
retain, and recall truly-random numbers. Understanding this problem is crucial to
devising advice for system designers. Among other objectives, KBA research aims to
quantify the ground truth under various conditions. This goal is in natural tension
with the constant exhortations to users not to reveal their KBAs to anyone.

We stress here that this is for good reason: though we intend to not cause harm,
collections of KBAs are a bit like lockpicking tools: having dual uses in understanding
the limitations of locks, but also facilitation of theft. Cybercriminals already have
sophisticated tools, value chains, and networks to distribute credentials all on their
own, without needing the help of researchers. Still, it’s possible that a researcher
would violate that trust and use the KBAs themselves or resell them for profit.
Similarly, it’s possible that an attacker would steal credentials from where researchers
have stored them. As we have seen in Section 2.3.2, even well-funded security vendors
in industry have difficulty keeping hackers at bay.

Each of the main chapters of this thesis grapples with these questions in their
respective Ethical Considerations section. We examine three main types of leaked
credential sets used in this thesis, each with unique characteristics.

2.4.1. Taxonomy of Password Lists

We refer in this section to “password lists,” as no comparable PIN lists have surfaced
as of this writing, save, of course, any numeric entries appearing in an otherwise
alphanumeric list. Password leaks tend to arise from a single service with many user
passwords revealed, sometimes with usernames. It is not hard to see that these pairs
would be valuable to criminals, as they can test these not only on the indicated
site, but also on other sites in what’s known as a credential-stuffing attack. PINs,
meanwhile, belong to a different threat model. Since they are validated locally on
devices instead of by a remote service, no large-scale databases of PINs have leaked.
In addition, these are less immediately valuable to criminals, as even knowing the
PIN will not allow access to any data without the device.

Quasi-public sets These have been in wide circulation and have been extensively
studied in the literature. In particular, the password leaks from RockYou (2009),
LinkedIn (2012), and Amitay’s 2011 PIN list [51] and others in no small measure were
responsible for kickstarting the ability of researchers to study user password choices
at all, and we have made extensive use of them. Most distributions of RockYou
contain some personally-identifiable information (PII). As the file itself is of uncertain
provenance with no canonical distribution, we cannot know why it contains bits of
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what appear to be HTML. Worse still, we cannot be sure that these passwords
actually came from RockYou given the uncertain chain of custody. Given the length
of time since 2009, we can hope that any affected users would have changed their
passwords by now. On top of this, RockYou lacks usernames/email addresses. For
those lists that have these, it would be possible, of course to actually mount a
credential stuffing attack whereby we automate the testing of username/password
combinations on various sites, but this is beyond the pale from an ethical and legal
standpoint. This state of affairs brings us to a crucial point: even though these
sets are commonly available online, the affected users did not consent to this use of
their passwords/PINs. This is true even though the resulting password research has
undoubtedly made services safer in general. A major advantage of these quasi-public
sets is that they allow other researchers to independently reproduce claimed results,
without the need to trust the researchers involved.

Private sets Many research articles, including our own Chapter 3 were made pos-
sible by controlled access to a unique and revealing data set. This approach is not
uncommon in the literature. For instance, Bonneau et al. [45] used a list of 70 mil-
lion passwords from Yahoo users, carefully documenting the steps taken to prevent
such a list from leaking. Contrasting this approach with for example RockYou and
LinkedIn, that were made possible by a SQL injection attack on those particular
sites, we can have more confidence that the Yahoo passwords are genuine than those
from the RockYou and LinkedIn attacks. These private sets offer an improved chain
of custody compared with the quasi-public sets. Most sets will not have multiple
entries per username. As of its first publication, the material in Chapter 3 was to
our knowledge the first report in the literature on a dataset including multiple pass-
words per user. That fact allowed that study to directly examine the re-use patterns
of users. We were able to use this data only by special circumstances that preclude
independent validation by others. This dataset was captured only incidentally by
a honeypot operated by my then-employer, RSA Security, examining the behavior
of the Zeus trojan in an attempt to possibly develop specific countermeasures for
its two-factor authentication (2FA) tokens. Access was tightly restricted and the
dataset was destroyed shortly after. RSA Security’s Legal department approved this
experiment. Although efforts were made to prevent further leakage of this data by
sanitizing it and accessing it only through scripts, the affected individuals did not
consent to this use of their data. Due to its sensitivity, there was no possibility of
sharing this data with other researchers, which harms the reproducibility of these
results.

User surveys The third category of dataset we use in this dissertation comes from
recruiting participants for online surveys. In this case, participants explicitly gave
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consent for this use of their data. Moreover, we have made these datasets available
so other researchers may examine them and draw their own conclusions. User study
data, though, is not without its own drawbacks. In particular, it is always possible
that participants’ responses do not reflect their real-world choices suggesting possible
difficulty with ecological validity. Here again we face a challenge: we explicitly do
not want participants to enter their actual PINs since we do not want to serve as a
secondary vector for data leakage. Despite this, substantial numbers (up to 25%) of
participants indicate that they use their actual device PIN.

2.4.2. Discussion

Our aim is to discover the ground truth of KBA selection, but much of our data has
an uncertain chain of custody. Of course, this is a deep topic for which we can merely
scratch the surface. As we have seen, user surveys excel in their careful gathering
of participant consent. But even here, participants say they reveal their actual PIN,
which in turn is likely to correspond to a birthdate, anniversary, or other important
milestone. We used only a random identifier to identify a participant wherever
possible.

In our case, private sets can offer unique insights that other datasets do not offer.
Because the sets are tightly controlled, they are unlikely to assist attackers. On the
downside, because they are secret, reproducibility by others in the community is
practically impossible. Others in the community have weighed in on using datasets
of illicit origin. Thomas et al. [96] evaluate a number of papers from the KBA
literature and find that ethical statements and practices vary widely. To define
what constitutes “illicit,” Thomas et al. gave the following criteria: an unintended
disclosure by the data owner; an unauthorized leak by someone with access to the
data or the exploitation of a vulnerability in a computer system. From these criteria
we can see immediately that illicit data is not limited to only that obtained through
breaking specific laws, but expands further to unintended disclosure, as when data
is de-anonymized.

The Menlo Report [97] provides a basic framework balancing benefits and risks to
human subjects and society as a whole. It sets forth four ethical principles: respect
for persons, beneficence, justice, and respect for law and public interest.

Respect for persons certainly includes protecting the privacy and confidentiality of
subjects. Beneficence maximizes the benefits of research while minimizing any harm
to participants. Justice is concerned with issues of equity: ensuring that the benefits
and risks of research are distributed fairly. Respect for law and public interest
involves ensuring that research is conducted legally and following regulations.
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Ienca and Vayena specifically treat the question of how to do research on hacked
data sets [98] in the context of machine learning. Bringing this framework to bear
on future KBA research yields the following guidelines to consider.

1. Uniqueness: We know that KBA selection depends on many design fac-
tors [99], so researchers should show that the research question under con-
sideration could not be studied using data obtained any other way.

2. Risk–Benefit Assessment: Researchers should provide a candid assessment
of the benefits of the research as well the risks to data subjects and steps taken
to address the threats.

3. Consent: In the context of password leaks, informed consent cannot be ob-
tained. This fact simply means the benefits must be compelling and the threats
of additional harm minimized.

4. Traceability: The chain of custody for password leaks is often obscured. Re-
searchers should provide a thorough account of how the data was obtained.
Of course, if doing so would itself cause secondary harm, such as in the case
of revealing someone to be part of a vulnerable population, these competing
interests must be carefully addressed.

5. Data Loss Prevention: The specific technology and process controls that
govern the use of data should be documented, with a particular focus on min-
imizing the data required to answer a given research question, and confiden-
tiality for the rest of the data.

6. IRB Approval: An IRB can help formalize and record the results of this
process. It can certainly help to overcome bias on the part of the researcher.

These come with some important caveats: IRBs may not understand the technical
details of a proposal to protect data, or might not understand the current best
practices in data-loss prevention.

Although we have sought and received IRB approval where it was possible, software-
development companies in industry rarely have IRBs. Since RUB had no IRB at the
time of their publication, our research on password re-use was reviewed by RSA Se-
curity’s Legal department instead, while our research on Signal PINs aimed to follow
the procedures typical of IRB-approved research. As valuable as IRBs are, they are
not necessarily available to all researchers.

In general, the research community needs to improve its ethical approaches. Many
research disciplines involving human subjects have existing codes of conduct and
perhaps it is time for one treating KBAs.
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3.1. Introduction

In this chapter, we focus on the classic setting of authentication to an online service
using a username/password combination, and the widespread problem of password
re-use. This study was first published in 2014. This version expands on the original
by presenting additional explanatory text, tables, and results that were cut due to
space considerations. We will conclude with a discussion of the subsequent work.

Most online services rely on users to choose passwords for authentication. Conven-
tional wisdom holds that users generally do not choose passwords that are difficult
to guess. Several alternatives to passwords have been proposed, but none has found
widespread use, as passwords are easy/“free” to deploy, scale to an Internet-wide
user-base, and are easy to understand for the users. Alternative technologies have
a number of drawbacks: hardware like smart cards and security tokens can be ex-
pensive to procure and manage for Website operators and can be perceived as an
impediment to usability. Biometric identification systems also require extra hard-
ware, can raise privacy issues, and many biometrics are not secret (e.g., we leave
fingerprints on many surfaces we touch).

One important aspect is password re-use: As user accounts proliferate, users are
forced to remember more and more passwords that must also remain confidential and
hard to guess. In response, users often re-use the same password for multiple logins
to keep the number of passwords they have to remember low [100]. When a re-used
password leaks, then the security of all accounts using the same password is at risk.
Even worse, a rogue service could collect login credentials (typically usernames and
corresponding passwords) and test those at other sites, which is hard to detect for
the user.

While it is known from leaked password lists that users choose weak passwords on
average, there is some hope in the community that users choose stronger passwords
for those accounts that are valuable. The question of which accounts have high value
is another topic which is out of the scope of this text. We will use financial-related
sites as high-value sites, which we believe reflects the intuition of most users. While
from a security point of view, email accounts might be at least as valuable, as they are
often used as fall-back security mechanism for other sites, it is unknown how many
users take this into consideration. (see, e.g., [101]). However, this belief has never
been justified with real-world data. Actually, there is very little data available on
high-value passwords at all, which is most likely the reason why so little research has
been conducted on the topic. However, this question is of importance, as a number
of studies in the literature use low-value passwords as input. Arguably, research on
password security is most interesting for high-value passwords, as these are most
likely the target of actual attackers.
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The lack of available data is one of the main problems in password research as,
by their nature, passwords are meant to be confidential. For password re-use, most
available studies use data collected in user surveys, where great care has to be taken
to ensure ecological validity, see Section 3.1.1 for more details. Our data show the
type of site influences the password strength chosen by a user – at least, for users of
malware-infected PCs. As explained later, we feel our data provides insight into the
behavior of average users as well. This work is the first, to our knowledge, studying
real-world password data collected by malware. As our dataset consists of passwords
“in the clear” and unhashed, we can make certain unique measurements, finding for
example, empirical evidence that among people that re-use their password, most
re-use it in exactly the same form — without site-specific modifications.

The contribution of this work is the result of a publication in Security and Cryptog-
raphy for Networks (SCN ’14) in collaboration with Markus Dürmuth and Christof
Paar.

3.1.1. Related Work

A good overview on password guessing can be found in Bonneau’s thesis [48]. With
very few exceptions in the older literature, relevant research was conducted on pass-
words for low-value sites, and it is not known if users choose stronger passwords for
more valuable sites.

3.1.2. Chapter Outline

In Section 3.2 we describe our datasets and the preprocessing steps we used. Sec-
tion 3.3 studies the relation between password strength and account value. In Sec-
tion 3.4 we study password re-use, concluding with some final remarks in Section 3.5.

3.2. The Datasets

This section describes our dataset along with discussing some important limitations.
The dataset has multiple password-account combinations per user and allows us to
study password re-use and the relation between account value and password strength.

3.2.1. The Malware Dataset

A username-password combination allows a thief to log into an online-banking ac-
count and, depending on further security measures, drain it of funds. Malware such
as Trojans specifically target Web browsers and aim to capture the data entered in
HTML forms. In its simplest form, an unsuspecting user enters her username and
password in a browser, and the malware silently relays the data. Once obtained, the
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Table 3.1.: Overview of the password lists

Abbrev. Size Users PWs/User Avg. Length

Malware-List
– total MW 3,531 1,721 2.05 9.01
– financial MW-Fin 177 134 1.3 9.1
– rest MW-Btm 3,354 1,686 2.09 9.01

Mt. Gox (Bitcoin) BITC 61,020 61,020 1 –
RockYou RY 32 M 32 M 1 7.89
Carders.cc CC 5,062 5,062 1 7.59

criminal can redistribute these assets at a profit. Many organizations attempt to
monitor this situation, working with law enforcement, alerting affected banks, and
publishing reports on emerging threats. To do so, they obtain some of this data for
forensic purposes. As the malware captures all of the HTTP POST data, IP address,
operating system version and so on can prove to be valuable clues on infection rates
and locations. One of these organizations (RSA Security) allowed us limited access
to this data. No additional malware output was collected to enable the present
work. The dataset contains thousands of passwords captured by the Zeus Trojan
in late 2012. Our main result in this chapter compares data about these passwords
to previously-leaked lists of passwords. While those lists contain many passwords
for a particular site, the malware list contains several passwords for a given user.
This aspect of the dataset allows us to additionally measure the number of times a
particular password is re-used by a user. We partition the Malware list (MW) into
two (disjoint) subsets according to the perceived value to a user.

• High-value accounts: Financial passwords (MW-Fin) The first sample
includes passwords for accounts at banks, insurers, brokers, and related finan-
cial services. An attacker takeover of one of these accounts has obvious financial
consequences and therefore heightened risk perception on the part of the user.
We selected the accounts by searching the domain names for financial-services
related keywords in a variety of languages, as well as a number of known banks.
In addition, we manually inspected the domain names to ensure accuracy. This
yielded a set of 177 passwords from 95 different domains, however, the num-
ber of distinct entities/sites/... is smaller as a single bank may service several
domains.

• Lower-value accounts: Remaining passwords (MW-Btm) This group
includes all other passwords. This sample includes well-known email providers
and social networks. This yielded a set of 3354 passwords from 1134 different
sites; Facebook is the largest subset with 1163 passwords.
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Perceived value of accounts The perception of security risk is known to be sub-
jective and based on several factors including dread of consequences [102]. The com-
promise of a user’s financial account obviously carries real financial consequences
for a user. Malware-promulgating attackers generally aim to take over an online
account and drain it of funds – or perhaps to gather enough sensitive personal infor-
mation to fraudulently apply for a credit card or loan (often called identity theft).
We therefore group these financial-site passwords together (similar to [103]). This
classification includes sites likely to directly enable transfer of funds including banks,
credit-card issuers, stock brokers, and insurers. In addition, we include those housing
sensitive information that would enable identity theft such as payroll processors and
tax collectors. In fact, other accounts can be quite valuable to attackers as well:
email accounts can be used for password recovery, for example. However, for the
overwhelming majority of users (except maybe politicians, celebrities, bloggers, and
corporations) the compromise of a user email or social-networking account leads to
practically no direct financial consequences. A common sentiment seems to be that
“Nobody wants to read my private email.”

A potential objection to this approach is that intuitively, restricting the category of
high-value passwords to only financial passwords leaves out other valuable passwords.
However, we show in Section 3.3.2 that the passwords in MW-Fin are significantly
stronger than those in MW-Btm. Even if some high-value passwords (not from
financial sites) are still contained in MW-Btm, this means that the real difference is
even stronger than we measured. So the error incorporated from this rather narrow
interpretation would lead us to underestimate the disparity, reinforcing our main
point.

Bias in the dataset There are two potential sources of bias in the dataset: First,
we have a subset of the total set of passwords collected by the Zeus trojan, and
second, this bigger set could be biased as it is collected by malware and infections
are not necessarily uniform across all users. The sub-sample contains a wide variety
of sites in many countries and languages, and represents a snapshot of the actual data
available to criminals. The passwords in our case were captured by malware, rather
than reported in response to a user survey, eliminating a common source of bias in
studies. Second, only those users infected by malware are included in our dataset.
We feel the results will likely hold true for many other users given the widespread
nature and infection methods of Zeus. According to industry reports around 2014,
Zeus variants have been observed in the wild on Windows (IE, Firefox, and Chrome
browsers), and Android, including one of every 3000 computers worldwide [104].
Most Zeus infections occurred on PCs with up-to-date antivirus software. Zeus
spread through email attachments as well as “drive-by infection,” where a user need
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only visit a website to become infected, thanks to a malicious JavaScript redirection.
These properties to a certain extent dispel the misconception that malware afflicts
only unsophisticated or careless users.

Once a PC is infected and a user is browsing the web, Zeus injects HTML that
causes usernames and passwords to be silently sent to command and control servers
(C & C), see for example Grammatikakis et al. [105] which details exactly the format
of the malware strings we analyzed. The malware dataset does not include any cap-
tures from MacOS or Linux, which induces some amount of bias. However, Windows
represents more than 85% of desktops accessing the Internet in both 2014 and 2022,
so the bias due to operating system choice is expected to be small [106,107].

Furthermore, we expect the comparison of the strength of passwords in MW-Fin
and MW-Btm (see Section 3.3.2) to be largely unaffected by these biases, as both
lists are sampled with the same bias, and there is no indication that the bias is such
that it affects both subsets in a different way.

3.2.2. More Password Sets

To relate our findings to previous work, we compare against several other sets.

• RockYou (RY) One of the largest lists publicly available is the RockYou list
(RY), consisting of 32.6 million passwords that were obtained by an SQL injec-
tion attack in 2009. The passwords were leaked in plaintext, but all metadata
like username was stripped from the list before it was leaked to the public.
This list has two advantages: First, its large size yields precise information
even about less-common passwords; second, it was collected via an SQL injec-
tion attack therefore affecting all the users of the compromised service, basi-
cally removing sample bias due to user selection. These advantages have made
RockYou studies quite popular in the literature, so we use it to compare our
findings with previous work.

• MtGox/Bitcoin (BITC) Bitcoin is a digital asset/currency. It was created
in 2009 and has gained widespread recognition and adoption as a means of
exchange and a store of value. Bitcoins can also be exchanged for other cur-
rencies. One of the biggest websites (at the time) providing this service was
Mt.Gox. The password file containing over 61 000 hashed passwords leaked
online in 2011 [108].

• Carders.cc (CC) Carders.cc is an online forum where hackers would nego-
tiate stolen assets like passwords and credit-card account numbers. In 2010,
Carders.cc was itself subject to a hacking attack that exposed its database of
5,062 passwords [109]. Most interesting about this list for our purposes is the
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user population. Unlike general social-networking sites, this one catered to
users who are (on average) both technology-savvy and security aware.

3.2.3. Ethical Considerations

All passwords analyzed in this paper were leaked by attacks in 2012 and collected as
a side effect of industry efforts on risk-based authentication. The collected dataset
included the HTTP POST data for username/password logins from malware-infected
PCs. No additional data was collected specifically to enable the present work. This
fact means that practical attackers already had independent access to our datasets
for more than two years as of the first publication of this work in 2014. It is not
expected that the present work aids actual attackers, though the data was retained
about two months longer than it would otherwise have been.

Nevertheless, special care was taken to avoid our work leading to a new consol-
idated source of passwords for actual attackers. The malware passwords (and the
rest of the HTTP POST data) themselves were stored in a private enclave segmented
away from typical corporate or academic networks. They were only available to re-
searchers through a chain of proxies (jump hosts) with a full complement of firewalls,
network monitoring, and data-loss prevention tools meant to stop data exfiltration.
Then, direct access was eschewed in favor of scripts that returned only statistics to
the researchers. On completion of the original paper, all of the data collected by
malware was deleted. Given the sensitivity of this data set, prompt deletion is the
better option, but it limits the ability to reproduce the results with, say, a later
version of John the Ripper, see Section 3.3.1.

There was no Institutional Review Board (IRB) at Ruhr University Bochum at
that time. The author was employed by RSA Security at the time, whose Legal
department reviewed and approved this additional use of the data, subject to the
limitations set out in this section. Further studies I performed below were all con-
ducted in conjunction with a university that has an IRB. Each of these has its own
Ethical Considerations section to speak to its unique issues.

3.3. Correlation of Password Strength and Account Value

One unique aspect of the Malware password list is that it contains passwords for
multiple accounts per user, and those are sampled in the same way and with the
same bias. A closer inspection reveals that it often contains passwords for accounts
that are more valuable than others, which allows us to compare the strength of those
passwords. These findings are relevant for several reasons: First, it allows us to
test if “users choose more secure passwords for accounts of value,” which is often
expressed in the literature when weak passwords are discovered. Second, password
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studies are by their nature limited to the available data: collections of passwords
from social networks or portals like Yahoo! [45]. By contrast, our study includes
passwords directly used to protect financial transactions.

3.3.1. Measures for Password Strength

At a high level, we can distinguish measures that evaluate resistance against a spe-
cific password cracker (either by directly attacking them, or by using mathematical
models to estimate their effectiveness), and approaches that consider the distribu-
tion of passwords. While the former are motivated by practice and model common
attacks pretty well, they depend on the specific software tool and do not necessarily
generalize well. The latter are based on mathematical models and thus have a clearly
defined meaning and are (in some sense) optimal, but not necessarily relevant for
practice.

Entropy measures A number of different entropy measures have been used to mea-
sure the security of passwords. For an overview, as well as more details about the
one presented here, see Bonneau et al. [45, 48] as well as Section 2.1.4.

We have two reasons to deviate from classical definitions of entropy. First, to
approximate the distribution of passwords X (the probabilities pi) requires a large
sample set size which is much larger than the Malware dataset; second, one can be
interested in getting a more comparable metric for a specific attack. Typically the
success of actual attacks is measured in “x passwords were guessed after y guesses.”

Intuitively, we can re-use Equation 2.1, provided we do not assume the probabilities
pi to be sorted according to their numerical value, but sorted according to the order
in which a specific password guesser outputs the guess.

John the Ripper A well-known and wide-spread tool for password cracking is John
the Ripper (JtR) [73]. JtR uses a number of heuristics that show good performance
in practice. It can be configured in a wide range, but in the standard mode of
operation it performs the following steps. (i) Single crack mode. In the first step,
JtR tries items like username and home-directory name both as-is and after simple
“mangling” modifications like appending digits or reordering letters. (ii) Wordlist
mode. JtR comes with a dictionary of 3557 common passwords to try, along a set
of mangling rules that are applied. (iii) Incremental mode. A mode that can try all
possible combinations, sometimes called “odometer mode” to provide some intuition.

We used John the Ripper 1.7.8-jumbo-5, instrumented with an additional patch
that logs the number of passwords tried. The Jumbo version supports counting of
plaintext guesses as well as hashed passwords. The number of guesses by JtR is
often seen as a good approximation for the practical strength of a password. As we



3.3. Correlation of Password Strength and Account Value 39

are only interested in comparing the strength of different password lists, the specific
choice does not make a substantial difference. As of this writing, the latest version
of JtR is 1.9.0. It is not possible to re-run this experiment with the latest release,
since the malware list passwords were deleted in 2014. We measured the number of
guesses needed for passwords in each of our lists. JtR can run for a very long time
generating every possible password of a given length, so for practical considerations,
we aborted JtR after a given amount of time.

For the Malware datasets, we ran JtR against every password. As the other lists
contained substantially more passwords, we randomly sampled 1024 from each. The
BITC list consists of salted, hashed passwords and so required substantially more
computation time to check the validity of a guess. The plaintext lists required only
the generation of a guess and not the hash. Experimentally, approximately the same
number of hashed guesses can be checked in 10 hours of CPU time vs. one minute
of CPU time for plaintext.

Experimental entropies We combine the theoretical entropy measure with real-
world password-guessing tools to yield what we will call experimental guessing en-
tropy. As discussed before, there are two main reasons why we do not use the above
measures directly, namely that entropy measures require substantial knowledge about
the distribution and thus a large number of samples to approximate it with sufficient
precision, and second that the output of guessing tools is specific to that tool and
hard to compare with other results.

To calculate the experimental partial guessing entropy (EPGE), we use JtR to de-
termine the proportion of passwords cracked for a given number of guesses (see, e.g.,
Figure 3.1). We then use these probabilities in Equations 2.4 and 2.5 instead of the
optimal attack considered originally. That is, we replace the optimally ordered pi’s
with probabilities from a realistic attack with JtR. Note that the resulting entropy
values depend on the guessing tool used, and are in general higher than the true
partial guessing entropy, which assumes an optimal guesser. As our main objective
is to compare different distributions, the EPGE suffices.

Statistical significance One potential concern about the Malware dataset is that
the set is rather small (at least when compared with password lists such as the
RockYou list with 32.6 million passwords), which can lead to a higher variance of
the results. We used an approach similar to that by Bonneau [45] to determine
bounds on these effects. We sampled more than 80 uniformly chosen subsets of
the RockYou password list of the appropriate size (3354 and 177, respectively), ran
password guessing and entropy estimation (for both α = 0.05 and α = 0.2) just as
for the Malware dataset, and measured the confidence interval for the level 95%. We
find that the confidence intervals for a sample size of 177 passwords (as in MW-Fin)
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α = 5% 20%

MW-Btm (n=3,354) ±0.35 ±1.18
Malware-Btm-rest (n=2,186) ±1.4 ±2.8
Malware-Fin (n=177) ±0.7 ±4.4

Table 3.2.: Accuracy of the experimental partial guessing entropy for several success
probabilities
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Figure 3.1.: Fraction of passwords successfully guessed when running JtR against
various password lists

is ±0.7 for α = 0.05 and ±4.4 for α = 0.2, and for a sample size of 3354 samples (as
in MW-Btm) is ±0.35 for α = 0.05 and ±1.18 for α = 0.2.

These (empirical) confidence intervals are determined from another list of pass-
words that might have different characteristics compared to the Malware list, and
thus have to be considered carefully. However, as the differences in entropy that we
will encounter later are substantially larger then these confidence intervals, they give
us a reasonable level of trust.

3.3.2. Malware Dataset Password Strength

In the first experiment, we compare the strength of the financial passwords (MW-Fin)
compared to the others (MW-Btm).
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Figure 3.2.: Fraction of passwords successfully guessed when running JtR against
various password lists (zoomed in)

Running the experiments We run JtR as described in Section 3.3.1 against the two
Malware sub-lists (see Section 3.2), i.e., the Malware list filtered for financial pass-
words (MW-Fin) and the remaining (MW-Btm), the most interesting and directly
comparable set of passwords. All passwords in these lists are available in plaintext,
so no hash operations need to be performed and running time is no concern. Note
that John the Ripper is highly customizable, with the potential for dictionaries and
rules tailored for particular lists. This approach clearly gives the best performance
in practice. As our purpose here is simply to compare guessing success among the
various lists, the default settings will suffice. Our presented results do not reflect
JtR’s performance potential in absolute terms, especially considering these reflect
JtR’s behavior in 2014.

Figure 3.1 shows the resulting graphs, plotting the number of password guesses on
the x-axis and the fraction of accounts guessed successfully on the y-axis, Figure 3.2
shows a more detailed view for fewer guesses. Table 3.3 gives the experimental guess-
ing entropy for α ∈ {5%, 10%, 15%, 20%} (along with the entropy values for other
password lists we will evaluate in the following). From Figure 3.1 one can already see
quite clearly that the different lists have different strengths. This is substantiated by
the entropy values in Table 3.3, where we see that, e.g., for α = 5% we get entropies
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Table 3.3.: Experimental partial guessing entropy for several success probabilities,
using John the Ripper as baseline as explained in Section 3.3.1. A dash
means that fewer passwords have been cracked for the respective list, so
the respective value cannot be computed from the data at hand.

α = 5% 10% 15% 20%

RockYou 15.1 15.0 17.4 22.2
Malware-Btm 16.2 25.0 28.8 –
Malware-Fin 23.3 28.6 – –
MtGox 26.1 – – –
Carders 14.4 13.6 13.8 14.0

of 16.2 and 23.3, respectively. From the measurements in Section 3.3.1 we conclude
that this difference is significant.

While this result is not surprising, prior to the present work limitations in the
lists available to researchers served as a hindrance. This is because the differences
may be more due to userbase, differing password policies, or other causes than a
specific behavior on the part of a user population. With the Malware dataset and the
two subsets MW-Fin and MW-Btm, we are finally in the situation to have several
passwords sampled under comparable situations. In addition, we believe that the
dataset has less bias than lists obtained by phishing. But even though the data is
somewhat biased, both sublists MW-Fin and MW-Btm are biased in the same way,
so the results for both are comparable.

One explanation for the difference in password strength could be that different
password rules were deployed. This is hard to verify, as the passwords are from a wide
variety of different accounts, and there is no efficient method to obtain the password
rules that were in place at the time a password was changed. However, we are
convinced that password rules do not explain the differences for a few reasons: First,
in general password rules are known to be a bad indicator for password strength [110,
111], so we would not expect such a strong impact on password security. Other
studies in the literature [103] find password rules are determined more by a site’s
need to be usable than the extractable financial value. As we additionally note in
Section 2.3, financial sites may be subject to regulation like PCI-DSS [10].

At first glance, we can see substantial differences among the guessing success for
different lists: At 20 million guesses, the success rate varies between less than 6%

for the BITC list and more than 30% for RY and CC, which is reflected in the
experimental guessing entropies.
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3.3.3. Comparing with Other Datasets

More interesting insights come from comparing the results for the Malware lists MW-
Fin and MW-Btm with other lists of passwords that are publicly available; this also
allows us to relate our results to previous research. With the same parameters as in
the previous section, we run the experiments again for other password lists: (i) the
RockYou (RY) list as examples for a list of weak passwords that is regularly used
in the literature that allow us to compare our results with other work, and (ii) the
carders.cc (CC) list which represents a list of low-value passwords for a technology-
savvy userbase (on average). Again, these lists are available in plaintext, so no
hashing is required.

We see that even the weaker passwords in MW-Btm are significantly harder to
guess than those in the lists RY and CC (and MW-Fin is even more secure). For
α = 0.1 the entropy of MW-Btm is 25.0, whereas entropies for RY and CC are below
15.0, and similarly for α = 0.15. (For α = 0.5 the entropy values are still somewhat
similar, which means that the weakest passwords are similarly weak in those lists.)
This can also be seen in the graphs in Figures 3.1 and 3.2. (Our estimates from
Section 3.3.1 suggest that most differences are significant.)

An additional difference between those lists of weak passwords and the MW-Btm
list is that the former contain passwords from a single low-value site only, whereas
MW-Btm contains a mix of low- and medium-value (and potentially even some high-
value) sites. Another factor that needs to be taken into account is that the Malware
list contains data that was collected in 2012, while the RockYou list leaked in 2009.
The enforced password rules as well as user’s perception of password security have
improved over those years, which explains the difference at least in part.

The list RY is regularly used in the literature both as example for weak passwords
and as benchmark for work on password security, which might not be an optimal
choice in light of our results.

3.3.4. Comparing with MtGox

In a third experiment, we compare our results with the only other list of high-value
passwords that was available in 2014, the MtGox list, which is a representative for
a list of high-value passwords for another technology-savvy userbase (on average).
This list is, however, not available in plaintext, but in hashed form, which is a likely
explanation why it has only rarely been studied in the literature. As only some
passwords can be guessed in a reasonable amount of time, this results in a sample
bias towards weaker passwords. In fact, this is one of the reasons why we use JtR,
as we can directly compare results without additional bias. Running time for these
tests is substantial. As we need to compute a hash to check the validity of a guess,
it takes about ten hours of CPU time to check the same number of guesses as in one
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minute of CPU time when passwords are in plaintext. For this reason we only make
345,000,000 guesses per password hash, which limits the resulting graphs.

We can see that the passwords in the BITC list are substantially more secure than
those from any other list we consider. For α = 0.05, we estimate an entropy of 26.1
for BITC, which is only moderately harder than the estimate of 23.3 for MW-Fin,
but substantially harder than all other estimates which fall in the range from 14.4
bits to 16.2 bits. There are two potential explanations for these differences: First,
these passwords (often) protect direct monetary value, so users could be inclined to
protect that money and choose strong passwords, and second, the userbase of the
Bitcoin system and thus MtGox in 2014, were more technology-savvy, and were likely
to choose stronger passwords. When additionally considering the CC list, which is
the least secure one we tested, the following explanation seems likely: Technology-
savvy users might differentiate between high-value accounts (BITC, 26.1 bits for
α = 0.05) and low-value accounts (CC, 14.4 bits for α = 0.05), whereas the average
user differentiates less between high-value (MW-Fin, 23.3 bits for α = 0.05) and
low-value accounts and low-value passwords (MW-Btm, 16.2 bits for α = 0.05).

3.4. Password Re-use

Several studies show that users often re-use passwords for several accounts, to de-
crease the amount of information they need to memorize, recall, and enter. However,
re-use can be problematic, because single passwords leak quite frequently, which then
puts a number of accounts at risk given the prevalence of re-use attacks in the wild.
Even worse, malicious website operators have direct access to a user’s login creden-
tials, and misuse will go unnoticed.

However, the studies available so far suffer from two problems: Most work uses
surveys to answer such questions about re-use, which requires great care to avoid
biased data caused by the observer-expectancy effect. Moreover, people might not
recall every site where they have registered (see Section 3.1.1 and Table 3.4). As
of 2014, we are aware of two studies not using surveys: one [77] uses data that was
collected for another purpose and was available only hashed (so similarity or edit
distance could not be measured). The other [79] used two leaked password lists
that both contained usernames, however, both were hashed and only those could be
compared that were broken by a brute-force attack. This fact leads to a bias towards
weak passwords, which might also have higher re-use.

A crucial aspect that has not been considered prior to the present work is that the
security implications of re-using a password depend on the value of an account/pass-
word. (The only exception being an industry advisory [80] with unclear methodology
and little explanation.) Re-using a low-value password at another low-value site can
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Table 3.4.: Comparing our results on password re-use with previous work. (A dash
means that the values are not given/cannot be computed from the data.)

Source #accts #pwds #accts
#pwds re-use rate (RR)

Previous work
Florencio/Herley [77] 25 6.5 3.9 12%
Gaw/Felten [78] – – 2.3–3.2 –
Komanduri [110] – – – 27% to 52%
Dhamija/Perrig [112] 10–50 1–7 – –
Brown et al. [113] 8.18 4.45 1.84 12%
Trusteer Inc. [80] – – – (73%)1

Our work
RRall

0 – – – 14%
RRall

0.2 – – – 19%
RRfin

0 – – – 21%
RRfin

0.2 – – – 26%

often be seen as a rational choice by the user, as creating, remembering, and recalling
a unique password for a large number of low-security sites is practically infeasible.
What really constitutes a problem is re-using a password from a high-value site (such
as a bank) on a low-value site, as the low-value site is often easier to compromise.
Attackers will obtain lists of username/password pairs from low-value sites, and then
indiscriminately try to use them on other sites in an attack dubbed “credential stuff-
ing.” We will study this form of re-use in the remainder of this section.

3.4.1. Measuring Re-Use from Random Samples

Previous work on password re-use often gives results as average number of passwords
per user and average number of accounts per password. This is less than ideal, as
it does not differentiate between the case where each cluster has the same size, or
where the size of clusters is heavily skewed, which can make a big difference in
practice. In addition, to make such a statement one needs complete knowledge of
the participant’s accounts and passwords. This is problematic because offhand, a
participant probably won’t know the exact number of accounts they have. This fact
seems to play out depending on survey design and exactly how many aids to recall
are given to the participant. In the end, when working with randomly sampled data
there is no way to compare the results with confidence.

1This number is not directly comparable to the other numbers, as they only measured any other
password matched, which yields (much) higher percentages than the re-use rate.
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Therefore, we introduce a new measure for password re-use that we call re-use
rate. The re-use rate gives the following probability: Choosing a user at random,
and choosing two of their accounts at random, what is the probability that the two
passwords for the two accounts are identical? As one would expect, a re-use rate of
0 means that no passwords are re-used, and a re-use rate of 1 means that for each
user, all passwords are identical. Note that this measure can handle very well the
situation when one has access to a subset of a user’s passwords, provided that this
sample is randomly chosen: Choosing a random password from all passwords or from
a randomly sampled subset does not make a difference. Hence the re-use rate is a
suitable measure for our dataset, where only a random sample of passwords for each
user is available.

We are not only interested in exact re-use of passwords, but also in re-use of similar
passwords. In practice, tools like JtR implement established concepts like (normal-
ized) edit distance. The edit distance of two strings s1 and s2 is the minimal number
of weighted edit operations required to transform s1 to s2. Typical edit operations
are delete/insert/substitute character (weight 1); we add prepend/append character
(weight 0.5) to approximate JtR’s mangling rules. We normalize the resulting value
by dividing by the length of the longer string.

To compare our results with previous work, we convert the numbers from previous
work to re-use rate. Here, we have to make assumptions on the sizes of the clusters,
which we assume to be of the same size. Writing A for the number of accounts and
B for the number of accounts per password, the probability that we get the same
password is RR = B−1

A−1 . The results are shown in Table 3.4.

In addition, the expected value for the number of passwords is

E2 = (1−R) + 2 ·R = 1 +R
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3.4.2. Re-Use Rates Across Accounts
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Figure 3.3.: Measuring the re-use of passwords for variable levels of similarity, given
by their edit distance

• First, we measured re-use across all passwords of a user, regardless their as-
signment to MW-Fin or MW-Btm. These measurements allow us to compare
the results with previous work.

• Second, we measured re-use of financial passwords on other sites, i.e., the re-
use rate when, for a fixed user, we select one password randomly from MW-Fin
and one from MW-Btm. Such results have never been obtained before and are
enabled by the specifics of our dataset.

For both scenarios, we considered both exact re-use as well as approximate re-use
(such as “password” and “password1” for instance). For exact re-use across all pass-
words we got 14%, for a (normalized) edit distance of 0.2 we have 19%, and for
re-use of financial passwords we got 21% and 26% percent, respectively. The results
are summarized in Table 3.4, which also gives figures from previous work for com-
parison. The detailed graphs are given in Figure 3.3, where we plot the normalized
edit distance on the x-axis, and the fraction of password pairs with normalized edit
distance up to that bound on the y-axis.
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3.4.3. Discussion

We can see that the re-use rates only increase slightly between the distance 0 and
50%, which is already larger than what is usually considered “similar”. For example,
the strings “password ” and “password-123 ” have edit distance 20% while the strings
“use” and “re-use” have edit distance 50%. This means that among people that
re-use their password, most re-use it in the exactly same form. (Re-using with even
small modifications would be a much wiser choice than exact re-use, as this would
already prevent credential stuffing.)

Surprisingly, we find that re-use is more common for financial passwords than for
the set of all passwords, 21% vs. 14% for exact re-use and 26% vs. 19% for approx-
imate re-use. We speculate that financial passwords are re-used more frequently
because their increased strength represents a cognitive burden on the user, and this
is something of a maladaptive coping strategy.

When we compare these results with the work of Florencio and Herley [77], we
see that our results are very similar; because they determined a re-use rate of 12%
compared with our 14%, we feel confident that these results are correct. Comparison
with the study by Trusteer Inc. [80] is not easy, as they do not describe their method-
ology. They state that “73% of users share the online banking password with at least
one nonfinancial site.” How this relates to our results depends on the number of
accounts they observed per user, and it is not clear how they handle the case where
one user has multiple banking passwords.

3.5. Conclusion

In this work we studied two important aspects of password security that have re-
ceived little attention previously. We used a dataset obtained by malware, which has
passwords for multiple accounts for most users. This allowed us to compute mean-
ingful statistics on two aspects of password security: first if users choose stronger
passwords for accounts that are more valuable, and second on the re-use of passwords
from high-value accounts on low-value accounts.

We found that password strength indeed does correlate with account value, a result
we also were able to confirm with other lists of leaked passwords. This means that
high-value real-life passwords are stronger than widely suspected, even though more
work is required to see if they are actually strong enough. We were also able to show
that users do re-use their high-value password on low-value accounts, a practice
which must be considered unsafe, and we were able to confirm previous results on
password re-use.

Our work also hints at further interesting research topics, which have in fact been
explored in the intervening years. First, it is interesting to find other meaningful
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sources for passwords that have multiple passwords for the same user, that are ei-
ther larger or have a different/less bias than our present dataset. Evaluating these
datasets would further increase the trust and the understanding of our results.

Our focus in this study was on alphanumeric passwords, but the re-use of PINs
should be treated in future work. Innovative methodologies could lead to better
understanding of re-use as it applies in new settings such as local authentication, [114]
also called app unlock, or in-app authentication. For example, we will explore below
how often do people re-use their mobile device unlock KBA as their Signal PIN? What
exactly is the unaddressed risk and what could be done about it? We also explored
the impact of password policies on re-use, finding that financial-site passwords were
more likely to be re-used. Since that initial experiment, prevailing guidance on
password composition rules in NIST SP 800-63B [3] has changed. Password rotation
and complexity rules involving specific characters, such as requiring a number or
symbol, are no longer recommended. As the research community delves deeper into
this area, guidance is certain to change again. What effect do these new rules have
on re-use for accounts of different value? Are there targeted interventions that could
assist users in selecting better passwords? KBA re-use is clearly a ripe area for future
work.

3.6. Author Contribution

In this paper appearing in Security and Privacy for Networks, I was the first au-
thor and I personally contributed most elements. I was first told by a colleague at
RSA Security of the inadvertent collection of these usernames and passwords, and I
suggested the idea of performing a study. I alone had access to the data and there-
fore contributed the analysis plan and implemented all of the data analysis tools
we needed. That included developing a patch for the open-source John the Ripper
package that would give us the guess number we needed to estimate the strength of
each password, as well as producing the figures and tables in the final manuscript.
In addition, I wrote the code that performed the edit-distance calculations found in
the paper. I took the lead drafting the paper as well as our presentation and talk
based on our work which appeared at the conference.
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4.1. Introduction

We provide the first study focused on the selection of Personal Identification Num-
bers (PINs) based on data collected from users specifically primed for the smart-
phone setting. While authentication on mobile devices has been studied in several
contexts, including patterns [13] and passwords [115], little is known about PINs used
for mobile authentication. Despite the rise of biometrics, such as fingerprint or facial
recognition, devices still require PINs, e.g., after a restart or when the biometric
fails. That is because the biometric does not replace knowledge-based authentica-
tion; access to a device is still possible with a PIN even when using a biometric.
Moreover, the presence of a biometric may actually lead to a false sense of security
when selecting knowledge-based authenticators [116].

Our study focuses on the PINs users choose to unlock their mobile devices. Pre-
vious work on PINs was primarily focused on the context of banking, e.g., as part
of the Chip-and-PIN system [25] and also mainly relied on the analysis of digit se-
quences found in leaked text-based password datasets since this data is more readily
available [49]. Given the sparsity of information about PINs in the context of mobile
authentication, we sought to fill this vital knowledge gap by conducting the first
study (n = 1705) on the topic where participants either selected a 4- or 6-digit PIN,
the two predominant PIN lengths used for device unlock. In addition to only al-
lowing participants to complete the study on a smartphone, we also primed them
specifically for the mobile unlock authentication setting, reminding participants that
the selected “PIN protects [their] data and is used to unlock [their] smartphone.”
While our study cannot speak to the memorability of the selected PINs due to the
short time duration, our qualitative feedback suggests that participants took this
prompt seriously and selected relevant PINs.

PINs of 4 and 6 digits only provide security when paired with system controls
like lockouts and delays that limit offline (or unthrottled) guessing. An unthrottled
attacker who can bypass these controls can quickly guess all PIN combinations. We
instead consider a throttled attacker model to empirically analyze the security of PINs
when the system limits the guessing rate. This is usual in the smartphone-unlocking
setting where pauses are enforced after a certain number of wrong guesses in order
to slow attacks down. Guessing is then limited (or throttled) to, e.g., just 10, 30, or
100 attempts in a reasonable time window, such as a few hours. In such a model, it
is essential to prioritize guessing resistance in the first few guesses. Our study found
little benefit to longer 6-digit PINs compared to 4-digits. In fact, our participants
tend to select more-easily guessed 6-digit PINs when considering the first 40 guesses
of an attacker.

As a mechanism for improving PIN selection, we also studied how PINs are affected
by blocklisting. A blocklist is a set of “easy to guess” PINs, which triggers a warning
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to the user. Apple iOS devices show the warning “This PIN Can Be Easily Guessed”
with a choice to “Use Anyway” or “Change PIN.” Previous work in text-based pass-
words has shown that users choose stronger passwords due to a blocklist [117, 118],
and recent guidance from NIST [3] concurs. To understand selection strategies in the
presence of a blocklist, we conducted a between-subjects comparison of PIN selec-
tion using a number of different blocklists. This included two small (27 4-digit PINs
and 29 6-digit PINs), two large (2740 4-digit PINs and 291 000 6-digit PINs), and
two blocklists (274 4-digit PINs and 2910 6-digit PINs) in use today on iOS devices,
which we extracted for this purpose. To determine if the experience of hitting a
blocklist or the content of the blocklist itself drives the result, we included placebo
blocklists that always excluded the participants’ first choice. Finally, we included
both enforcing and non-enforcing blocklists, where participants were able to “click
through” and ignore the blocklist, the approach taken by iOS. Despite the popu-
larity of blocklists and the positive impact on textual passwords, our results show
that currently employed PIN blocklists are ineffective against a throttled attacker,
in both the enforcing and non-enforcing setting. This attacker performs nearly as
well at guessing PINs as if there were no blocklist in use. To be effective, the block-
list would need to be much larger, leading to higher user frustration. Our results
show that for 4-digit PINs a blocklist of about 10 % of the PIN space may be able
to balance the security and usability needs, for 6-digit PINs the same effect can be
achieved by blocking 0.2 % of the keyspace.

Finally, we collected both quantitative and qualitative feedback from our partici-
pants about their PIN selection strategies, perceptions of their PINs in the context
of blocklists, and their thoughts about blocklisting generally. Overall, we find that
despite having mostly negative sentiments about blocklist warnings, participants do
perceive the PINs they select under a blocklist as more secure without impacting the
memorability and convenience, except in situations of a very large blocklist.

To summarize, we make the following contributions:

1. We report on the security of 4- and 6-digit PINs as measured for smartphone
unlocking, finding that in the throttled setting, the benefit of 6-digit PINs is
marginal and sometimes worse than that of 4-digit PINs.

2. Considering a realistic, throttled attacker model, we show how different block-
listing approaches influence PIN selection process for both security and usabil-
ity, finding that blocklists in use today offer little to no added security.

3. Through quantitative and qualitative feedback, we explore users’ perception
of security, memorability, and ease-of-use of PIN-based authentication, finding
that participants perceive that blocklisting will improve their PINs without
impacting usability, except for very large blocklists.
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4. We provide guidance for developers on choosing an appropriately-sized PIN
blocklist that can influence the security in the throttled scenario, finding that
a blocklist for 4-digit PINs should consist of ∼1000 PINs to have a noticeable
impact while minimizing the negative effects. To achieve the same results in
the 6-digit case, ∼2000 PINs should be blocked.

The contribution of this work is the result of a publication in ACM Transactions
on Privacy and Security, Volume 24, Issue 4, November 2021 in collaboration with
Philipp Markert, Maximilian Golla, Markus Dürmuth, and Adam J. Aviv. This
version is based on that publication and additionally edited to remove some results
that were not my work.

An earlier version of this work appeared as “This PIN Can Be Easily Guessed:
Analyzing the Security of Smartphone Unlock PINs” published at the IEEE Sympo-
sium on Security and Privacy in May, 2020. Compared to that version, we collected
and analyzed new data (6-digit PINs) to get a better understanding of the security
of user-chosen smartphone unlock PINs. Combined with other changes such as addi-
tional investigation on the impact of biometrics and use of additional external PIN
data sets, our analysis of 6-digit PINs is now as comprehensive as our analysis of
their 4-digit counterparts. Note: We responsibly disclosed all our findings to Apple
Inc.

4.2. Background

In this section, we define our attacker model, describe the used datasets, and outline
the extraction of the two iOS PIN blocklists which we evaluate in our user study.

4.2.1. Attacker Model

When studying guessing attackers, there are two primary threat models. An unthrot-
tled attacker can guess offline, indefinitely, until all the secrets are correctly guessed,
while a throttled attacker is limited in the number of guesses, sometimes called an
online attack. Google’s Android and Apple’s iOS, the two most popular mobile op-
erating systems, implement real-world rate limiting mechanisms to throttle attackers
because otherwise, it would be possible to simply guess all PIN combinations. In
our attacker model, we assume the rate limiting works as designed, and as such, it
is appropriate to consider a throttled attacker when evaluating security as this best
matches the reality of the attacks PINs must sustain for the mobile unlock setting.

The choice of the throttled attack model is further justified when considering
mobile devices’ trusted execution environments (TEE), where the key for device en-
cryption is stored in “tamper resistant” hardware and is “entangled” with the user’s
unlock secret [119]. This forces the attacker to perform decryption (unlock) attempts
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Table 4.1.: Rate limiting on mobile operating systems

To Make n Accumulated Waiting Time
Guesses Android 7, 8, 9, 10, 11 iOS 9, 10, 11, 12, 13, 14

1-5 guesses 0 s 0 s
6 guesses 30 s 1m 0 s
7 guesses 30 s 6m 0 s
8 guesses 30 s 21m 0 s
9 guesses 30 s 36m 0 s

10 guesses 30 s 1 h 36 m 0 s
30 guesses 10 m 30 s -

100 guesses 10 h 45 m 30 s -
200 guesses 67 d 2 h 45m 30 s -

on the device itself in an online way. Moreover, the TEE is used to throttle the num-
ber of decryption attempts tremendously by enforcing rate limiting delays which also
survive reboots.

An overview of the currently enforced limits is given in Table 4.1. Apple’s iOS is
very restrictive and only allows up to 10 guesses [119] before the iPhone disables itself
and requires a reset. Google’s Android version 7 or newer are less restrictive with a
first notable barrier at 30 guesses where the waiting time increases by 10 minutes. We
define the upper bound for a reasonably invested throttled attacker at 100 guesses
when the waiting starts to exceed a time span of 10 hours on Android [120], but we
also report results for less determined attackers at 10 guesses (30 s) and 30 guesses
(10.5 m) for Android. The iOS limit is 10 guesses (90 m) [119].

In our attacker model, we assume that the adversary has no background infor-
mation about the owner of the device or access to other side-channels. In such a
scenario, the best approach for an attacker is to guess the user’s PIN in decreasing
probability order. To derive this order, we rely on the best available PIN datasets,
which are the Amitay-4-digit and RockYou-6-digit datasets as defined below. Again,
we only consider an un-targeted attacker who does not have additional information
about the victim. If the attacker is targeted, and is able to use other information
and context about the victim, e.g., via shoulder-surfing attack [63,66,121] or screen
smudges [70], the attacker would have significant advantages, particularly in guessing
4- vs. 6-digit PINs [66].

In other parts of this work, we make use of blocklists. In those cases, we consider
an attacker that is aware and in possession of the blocklist. This is because the
attacker can crawl the system’s blocklist on a sample device, as we have done for
this work. Hence, with knowledge of the blocklist, an informed attacker can improve
the guessing strategy by not guessing known-blocked PINs and instead focusing on
common PINs not on the blocklist.



56 Chapter 4 Security of Smartphone Unlock PINs with Blocklists

Table 4.2.: Datasets for strength estimations and comparisons

Kind Dataset Samples

4-digit PINs Amitay-4-digit [51] 204 432
4-digit PINs RockYou-4-digit [49] 1 780 587
6-digit PINs RockYou-6-digit [49] 2 758 490

3x3 Patterns “All” unlock patterns [122] 4 637
Passwords LinkedIn [123] 10 000
Passwords Pwned Passwords v7 [124] Top 10 000

4.2.2. Datasets

Perhaps the most realistic 4-digit PIN data is from 2011 where Daniel Amitay de-
veloped the iOS application “Big Brother Camera Security” [51]. The app mimicked
a lock screen allowing users to set a 4-digit PIN. Amitay anonymously and surrep-
titiously collected 204 432 4-digit PINs and released them publicly [51]. While col-
lected in an uncontrolled experiment, we apply the dataset (Amitay-4-digit) when
guessing 4-digit PINs, as well as to inform the selection of our “data-driven” block-
lists. As there is no similar 6-digit PIN data available to inform the attacker, we
rely on 6-digit PINs extracted from password leaks, similar to Bonneau et al.’s [25]
and Wang et al.’s [49] method. PINs are extracted from consecutive sequences of
exactly n-digits in leaked password data. For example, if a password contains a
sequence of digits of the desired length, this sequence is considered as a PIN (e.g.,
PW: ab3c123456d → PIN: 123456, but no 6-digit PINs would be extracted from the
sequence ab3c1234567d). By following this method, we extracted 6-digit PINs from
the RockYou password leak, which we refer to as RockYou-6-digit (2 758 490 PINs).
We also considered 6-digit PINs extracted from other password leaks, such as the
LinkedIn [123] dataset, but found no marked differences between the datasets.

To provide more comparison points, we consider a number of other authentication
datasets listed in Table 4.2. For example, we use a 3x3 Android unlock pattern
dataset described by Golla et al. [122], combining four different datasets [13,57–59].
It consists of 4637 patterns with 1635 of those being unique. In addition, we use a
text-password dataset. Melicher et al. [115] found no difference in strength between
passwords created on mobile and traditional devices considering a throttled guessing
attacker. Thus, we use a random sample of 10 000 passwords from the LinkedIn [123]
leak and use the Pwned Passwords v7 [124] list to simulate a throttled guessing
attacker to estimate the guessing resistance for the sampled LinkedIn passwords as
a proxy for mobile text passwords.

As part of our set of blocklists, we also consider a blocklist of “easily guessed” 4/6-
digit PINs as used in the wild by Apple, which we obtained via brute-force extraction
from an iPhone running iOS 12. We were able to verify that blocklisting of PINs
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is present on iOS 9 through the latest version iOS 16, and we also discovered that
Apple updated their blocklist with the deployment of iOS 10 (for example, the PIN
101471 is blocked on iOS 10.3.3, but is not on iOS 9.3.5). In theory, it is possible
to extract the blocklist by reverse engineering iOS, yet, we found a more direct way
to determine the blocklist via brute-force: During device setup, when a PIN is first
chosen, there is no throttling. To test the membership of a PIN, one only needs
to enter all the PINs and observe the presence of the blocklist warning, and then
intentionally fail to re-enter the PIN to be able to start over.

The extraction of all 10 000 4-digit PINs took ∼ 9 hours. Testing all 1 million 6-
digit PINs took about 30 days using two setups. We repeated the process for 4-digit
PINs multiple times, tested lists of frequent 6-digit PINs, and verified the patterns
found in the PINs. Moreover, we validated all blocked PINs multiple times. We refer
to these two lists as the iOS-4 and iOS-6 blocklists.2 In total, the 4-digit blocklist
contains 274 PINs and includes common PINs as well as years from 1956 to 2015,
but its composition is mostly driven by repetitions such as aaaa, abab, or aabb. The
6-digit blocklist contains 2910 PINs and includes common PINs as well as ascending
and descending digits (e.g., 543210), but its composition is, again, mostly driven by
repetitions such as aaaaaa, abcabc, or abccba. The common PINs blocked by Apple
overlap with a 4-digit blocklist suggested by Bonneau et al. [25] in 2012 and the top
6-digit PINs reported by Wang et al. [49] in 2017.

4.3. User Study

In this section, we outline the treatment conditions, the user study, and the collected
data. We also discuss limitations and our ethical considerations. Appendix A.1
outlines the entire questionnaire.

4.3.1. Study Protocol and Design

We conducted a user study of 4- and 6-digit PINs using Amazon Mechanical Turk (MTurk)
with n = 1705 participants. To mimic the PIN creation process in our browser-
based study, participants were restricted to mobile devices by checking the user-
agent string. We applied a 12-treatment, between-subjects study protocol for the
PIN selection criteria, e.g., 4- vs. 6-digit with or without blocklisting. The specifics
of the treatments are discussed in detail in Section 4.3.2. At the end of the study,
we collected 851 and 854 PINs, 4- and 6-digits respectively, for a total of 1705 PINs
as our core dataset. These PINs were all selected, confirmed, and recalled. We ad-
ditionally recorded all intermediate PIN selections, such as what would happen if a

2To foster future research on this topic, we share the described blocklists and the PIN datasets at:
https://this-pin-can-be-easily-guessed.github.io.

https://this-pin-can-be-easily-guessed.github.io
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selected PIN was not blocked and the participant did not have to select a different
PIN. For more details of different kinds of PINs collected and analyzed, refer to
Table 4.7. All participants were exposed to a set of questions and feedback prompts
that gauged the security, memorability, and usability of their selected PINs, as well
as their attitudes towards blocklisting events during PIN selection.

The survey itself consists of 10 parts. Within each part, to avoid ordering effects,
we applied randomization to the order of the questions that may inform later ones;
this information is also available in Appendix A.1. The parts of the survey are:

1. Informed Consent: All participants were informed of the procedures of the
survey and had to provide consent to continue. The informed consent notified
participants that they would be required to select PINs in different treatments,
but did not inform them of any details about blocklisting that might be involved
in that selection.

2. Agenda: After being informed, participants were provided additional instruc-
tions and details in the form of an agenda. It stated the following: “You will be
asked to complete a short survey that requires you to select a numeric PIN and
then answer some questions about it afterwards. You contribute to research so
please answer correctly and as detailed as possible.”

3. Practice: Next, participants practiced with the PIN entry screen, which mimics
typical PIN selection on mobile devices, including the “phoneword” alphabet
on the virtual PIN pad. The purpose of the practice round was to ensure that
participants were familiar with the interface prior to selecting a PIN. There
was clear indication during the practice round that this was practice and that
participants would begin the primary survey afterwards.

4. Priming: After familiarization and before selection, participants were further
primed about mobile unlock authentication and PINs using language similar
to what iOS and Android use during PIN selection. A visual of the priming is
in Figure 4.1. A lock icon was used to prime notions of security, and users were
reminded that they will need to remember their PIN for the duration of the
study without writing it down. Participants must click “I understand” in order
to continue. The qualitative feedback shows that the priming was understood
and followed with some participants stating that they reused their actual PIN.

5. Creation: The participants then performed the PIN creation on the page shown
in Figure 4.2. The PIN was entered by touching the digits on the virtual PIN
pad. As usual, participants had to enter the PIN a second time to confirm it was
entered correctly. Depending on the treatment (see Section 4.3.2), the users
either selected a 4- or 6-digit PIN and did or did not experience a blocklist
event. In Figure 4.3 and Figure 4.4 we depicted the two blocklist warnings
which either allowed participants to “click through” the warning (or not). This
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Figure 4.1.: Priming information provided before the participants were asked
to create a PIN

Figure 4.2.: The design of the page on which we asked the participants to
create a PIN
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Figure 4.3.: Blocklist warning with the ability to “click through”

Figure 4.4.: Blocklist warning without the ability to “click through”

feedback was copied to directly mimic the wording and layout of a blocklist
warning used by Apple since iOS 12.

6. Blocklisting Followup: After creation, we asked participants about their atti-
tudes and strategies with blocklisting. If the participants experienced a block-
list event, we referred back to that event in asking followup questions. Other-
wise, we asked participants to “imagine” such an experience. These questions
form the heart of our qualitative analysis (see Section 4.5.7).

7. PIN Selection Followup: We asked a series of questions to gauge participants’
attitudes towards the PIN they selected with respect to its security and us-
ability, where usability was appraised based on ease of entry and memorability
(see Section 4.5.6). As part of this questionnaire, we also asked an attention
check question. We excluded the data of 19 participants because we could not
guarantee that they followed our instructions completely.

8. Recall: On this page, participants were asked to recall their earlier selected
PIN. Although the two prior parts formed distractor tasks we do not expect
that the recall rates measured here speak broadly for the memorability of these
PINs. As expected, nearly all participants could recall their selected PIN.
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Table 4.3.: Overview of studied treatments

Treatment Short Name Blocklist Size Click-thr.

4
d
ig

it
s

Control-4-digit Con-4 − − −
Placebo-4-digit Pla-4 First choice 1 ✗
iOS-4-digit-wCt iOS-4-wC iOS 4-digit 274 ✓
iOS-4-digit-nCt iOS-4-nC iOS 4-digit 274 ✗
DD-4-digit-27 DD-4-27 Top Amitay 27 ✗
DD-4-digit-2740 DD-4-2740 Top Amitay 2740 ✗

6
d
ig

it
s

Control-6-digit Con-6 − − −
Placebo-6-digit Pla-6 First choice 1 ✗
iOS-6-digit-wCt iOS-6-wC iOS 6-digit 2910 ✓
iOS-6-digit-nCt iOS-6-nC iOS 6-digit 2910 ✗
DD-6-digit-29 DD-6-29 Top RockYou 29 ✗
DD-6-digit-291000 DD-6-291000 Top RockYou 291000 ✗

9. Demographics: In line with best practice [125], we collected the demograph-
ics at the end, including participants’ age, gender, IT background, and their
current mobile unlock scheme.

10. Honesty/Submission: Finally, we asked if the participants provided “honest”
answers to the best of their ability. We informed them that they would be paid
even if they indicated dishonesty. Using this information in combination with
the attention check described above, we excluded the data of 19 participants
to ensure the integrity of our data. After affirming honesty (or dishonesty),
the survey concluded and was submitted.

4.3.2. Treatments

We used 12 different treatments: 6 treatments for 4-digit PINs and 6 treatments for
6-digit PINs. The details for each treatment can be found in Table 4.3.

Control Treatments

For each PIN length, we had a control treatment, Control-4-digit and Control-6-
digit, that primed participants for mobile unlock authentication and asked them to
select a PIN without any blocklist interaction. These PINs form the basis of our 4-
and 6-digit mobile-authentication primed PIN dataset. In total, we have 231 control
4-digit PINs and 236 control 6-digit PINs. We also created two additional datasets,
First-Choice-4-digit (851 PINs) and First-Choice-6-digit (854 PINs), by com-
bining the control PINs with those chosen by participants from other treatments in
their “first attempt” before having been subjected to any blocklist.
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Blocklist Treatments

The remaining treatments considered PIN selection in the presence of a blocklist.
There are two types of blocklist implementations: enforcing and non-enforcing. An
enforcing blocklist does not allow to continue as long as the selected PIN is blocked;
the user must select an unblocked PIN. A non-enforcing blocklist warns the user
that the selection is blocked, but the user can choose to ignore the feedback and
proceed anyway. We describe this treatment as providing the participant an option
to click through. Otherwise, the treatment uses an enforcing blocklist. Visuals of the
non-enforcing and enforcing feedback can be found in Figure 4.3 and 4.4.

Placebo blocklist As we wanted to determine if the experience of hitting a blocklist
or the content of the blocklist itself influenced the results, we included a placebo
treatment for both 4- and 6-digit PINs (Placebo-4-digit and Placebo-6-digit).
In this treatment, the user’s first choice PIN was blocked, forcing a second choice.
As long as the second choice differed from the first, it was accepted.

iOS blocklist For this treatment, we included the blocklists used on Apple’s iOS 13.
The 4-digit iOS blocklist contains 274 PINs (2.74 % of the available 4-digit PINs), and
the 6-digit iOS blocklist contains 2910 PINs (0.291 % of the available 6-digit PINs).
These blocklists provide measurements of real scenarios for users selecting PINs on
iOS devices. As iOS allows users to “click through” the blocklist warning and use
their blocked PIN anyway, we implemented our blocklisting for the iOS condition
in the same way (i.e., conditions iOS-4-digit-wCt and iOS-6-digit-wCt). To
understand the effect of non-enforcing blocklists, we also tested enforcing versions of
the iOS blocklists (iOS-4-digit-nCt and iOS-6-digit-nCt).

Data-driven blocklists We considered two blocklists for each PIN length that are
significantly smaller and larger than the iOS blocklist. The blocklists were con-
structed using the most frequently occurring PINs in the Amitay-4-digit and RockYou-
6-digit dataset. We refer to the 4-digit treatments as DD-4-digit-27 and DD-4-
digit-2740 because the blocklists contain 27 and 2740 PINs respectively. Following
this, we blocked the 29 most frequent PINs in the treatment DD-6-digit-29 while
291 000 were blocked in DD-6-digit-291000.

When comparing the two data-driven 4-digit blocklists and the one used in iOS,
it can be seen that they are differently composed. While 22, or 82 % of the PINs
contained in DD-4-digit-27 are blocked in iOS, there are also 5 PINs which are not.
Surprisingly, these PINs correspond to simple patterns like 0852 which is a bottom-
up pattern across the PIN pad or 1379, the four corners of the pad chosen in a
left-to-right manner. Now, when extending the comparison to the DD-4-digit-2740
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blocklist we see that 258 of the 274 PINs from the iOS blocklist, or 92 %, are also
blocked by our large data-driven blocklist. The remaining 16 PINs all follow the
same repetitive aabb scheme, e.g., 0033, 4433, or 9955. Interestingly, only one of
those PINs, 9933, was selected in our study which shows that double repetitions are
presumably not as common as Apple expects.

Similar observations can be made in the 6-digit case when comparing the iOS
blocklist with the two data-driven versions. There are 3 PINs (159357, 147852,
246810) in our DD-6-digit-29 blocklist with only 29 PINs which are not rejected by
Apple’s blocklist with 2910 entries. Of those 3 PINs, at least 159357 and 147852

follow straightforward patterns which one may expect to be blocked. The intersection
with the large data-driven blocklist covers 2314 PINs, or 80% of the iOS blocklist.
The 596 PINs which are solely rejected by Apple follow three schemes: ababac (323
PINs), abccba (258 PINs), and abcabc (15 PINs). Again, those schemes are not
very popular across our participants: only 7 % of the PINs which were selected in
our study follow them.

4.3.3. Recruitment and Demographics

We recruited a total of 1944 participants using Amazon’s Mechanical Turk (MTurk).
After excluding a portion due to invalid responses to attention tests or survey errors,
we had 1705 participants remaining. We required our participants to be 18 years or
older, reside in the US (as checked by MTurk), and have at least an 85 % approval
rate on MTurk. The IRB approval required focusing on participants residing in the
US, but there may be a secondary benefit to this: US residents often do not have
chip-and-PIN credit cards (although, they do use 4-digit ATM PINs), in contrast to
residents in Europe or Asia, and thus may associate PIN selection more strongly with
mobile device locking. In any case, participants were explicitly primed for the mobile
device unlock setting. Participants indicated they understood this instruction, and
their qualitative responses confirm their understanding.

We also reviewed all of the participants’ responses for consistency, including an-
swers to attention-check questions, the honesty question, and speed of entry. We re-
moved 19 participants who provided inconsistent data but did not “reject” any partic-
ipants on Amazon Mechanical Turk. Participants were compensated with $ 1 (USD)
for completion; the survey took on average 5 minutes for an hourly rate of $ 12.

Demographics and background As typical on MTurk, our sample is relatively
young and better educated than the general US population. Of the participants, 923
identified as male (54%) while 768 (45 %) identified as female (1 % identified as other
or preferred not to say), and the plurality of our participants were between 25 and 34
years old (48 %). Most participants had some college (21 %) or a bachelor’s degree
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Table 4.4.: Usage of mobile unlock authentication schemes

Primary Scheme No. % Secondary Scheme No. %

Fingerprint 779 46%

4-digit PIN 387 50%
6-digit PIN 215 28%

Pattern 109 14%
Other 68 8 %

Face 263 15 %

4-digit PIN 113 42%
6-digit PIN 104 40%

Pattern 23 9 %
Other 23 9 %

Other Biometric 33 2 %

4-digit PIN 10 30 %
6-digit PIN 3 9 %

Pattern 16 49 %
Other 4 12 %

4-digit PIN 218 13%
6-digit PIN 59 4 %

Pattern 88 5 % No secondary scheme used.
Other 76 4 %
None 189 11 %

(42 %), and few (11 %) had a master’s or doctoral degree. While 28 % described
having a technical background, 69% said they did not. We have the full details of
the demographics responses in Appendix A.2.

Smartphone OS We asked participants which operating system they use on their
primary smartphone. Slightly more than half, 1008 (59%), of the participants were
Android users, while 676 (40 %) were iOS users. We collected browser user-agent
strings during the survey, and confirmed similar breakdowns, suggesting most par-
ticipants used their primary smartphone to take the survey. A detailed breakdown
can be found in the Appendix A.3.

Unlock schemes usage As we focus on mobile authentication, we were interested
in learning about the kind of mobile authentication our participants use, recalling
both biometric and knowledge-based authentication may be in use on a single device.
We first asked if a biometric was used and then asked what authentication scheme
participants use instead of, or as a backup for the biometric, when for example it fails.
While Table 4.4 shows a compact description, a detailed breakdown can be found
in the Appendix A.3. Among KBAs considered here, PINs are the most common:
43 % described using a 4-digit PIN, 22 % using a 6-digit PIN, and 3 % using a PIN of
another length. The second most common form of KBA are Android unlock patterns
at 14 %, and 57 participants (or 3 %) reported using an alphanumeric password. In
our study, 189 participants (11 %) reported not using any locking method.
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4.3.4. Ethical Considerations

All of the survey material and protocol detailed in this chapter were approved by The
George Washington University Institutional Review Board (IRB). Beyond meeting
the approval of the IRB, we worked to uphold the ethical principles outlined in the
Menlo Report [97].

In practicing respect for persons and justice, beyond informing and getting consent,
we also sought to compensate participants fairly at least at the minimum wage of
the municipality where the oversight was performed. Since some of our treatments
may frustrate participants, including where the blocklist was comparatively large
(DD-4-digit-2740 & DD-6-digit-291000), we also compensated those who returned
the survey and notified us of their frustration.

Additionally, as we are dealing with authentication information, we evaluated the
ethics of collecting PINs and distributing blocklists in terms of beneficence. With
respect to collecting PINs, there is risk in that participants may (and likely will)
expose PINs used in actual authentication. However, there is limited to no risk in
that exposure due to the fact that PINs are not linked to participants and thus
cannot be used in a targeted attack. A targeted attack would also need proximity
and awareness of the victim, of which, neither is the case for this study. Meanwhile,
the benefit of the research is high in that the goal of this research is to improve the
security of mobile authentication. Similarly, distributing blocklists increases social
good and scientific understanding with minimal risk as a determined attacker likely
already has access to this material.

Finally, we have described our procedures transparently and make our methods
available when considering respect for law and public interest. We also do not access
any information that is not already publicly available.

4.3.5. Limitations

There are a number of limitations in this study. Foremost among them is the fact
that the participant sample is skewed towards mostly younger users residing in the
US. However, as we described previously, there may be some benefit to studying
PINs from US residents as they are less familiar with chip-and-PIN systems and
may be more likely to associate PINs directly with mobile unlocking. We argue
that our sample provides realizable and generalizable results regarding the larger
ecosystem of PIN selection for mobile authentication. Further research would be
needed to understand how certain populations, for example, more age-diverse ones
select PINs [126]. For populations from different locations, there is some knowledge
about the differences between English-speaking and Chinese users [49], but other
populations have also not been studied yet.
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Another limitation of the survey is that we are asking participants to select PINs
while primed for mobile authentication and there is a risk that participants do not
act the same way in daily life. We note that similar priming is used in the authen-
tication literature for both text-based passwords for desktop [127, 128] and mobile
settings [115], and these results generalize when compared to passwords from leaked
password datasets [129]. We have similar results here. When compared to the most
realistic dataset previously available, Amitay-4-digit, the most common 4-digit PINs
collected in our study are also present in similar distributions to Amitay [51]. Also,
in analyzing the qualitative data, a number of participants noted that they re-used
their actual unlock PIN.

While this presents strong evidence of the effectiveness of mobile unlock priming,
we, unfortunately, do not have any true comparison points, like what is available for
text-based passwords. There is no obvious analog to the kinds of attacks that have
exposed millions of text-based passwords that would similarly leak millions of mobile
unlock PINs. Given the available evidence, we argue that collecting PINs primed
for mobile unlock authentication provides a reasonable approximation for how users
choose PINs in daily life.

Due to the short, online nature of our study, we are limited in what we can
conclude about the memorability of the PINs. The entirety of the study is only
around 5 minutes, while mobile authentication PINs are used for indefinite periods,
and likely carried from one device to the next. There are clear differences in these
cases, and while we report on the recall rates within the context of the study, these
results do not generalize.

Finally, we limited the warning messaging used when a blocklist event occurred.
We made this choice based on evaluating the messaging as used by iOS, but there
is a long line of research in appropriate security messaging [130–133]. We do not
wish to make claims about the quality of this messaging, and a limitation of this
study (and an area of future work) is to understand how messaging affects changing
strategies and click-through rates.

4.4. PIN Selection on Smartphones

In the following section, we discuss the security of both 4- and 6-digit PINs. Un-
less otherwise stated, our analyzed dataset consists of the PINs entered before any
blocklist warning in Step (5) of the study. These so-called “first choice” PINs (cf.
Table 4.7) are unaffected by the blocklists.
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Table 4.5.: Guessing difficulty for a perfect knowledge attacker

Online Guessing (Success %) Offline Guessing (bits)
Dataset Size λ3 λ10 λ30 H∞ G̃0.05 G̃0.1 G̃0.2

First-4 851 3.41 % 6.23% 11.75% 5.65 7.07 7.81 -⋆

Amit-4† 204 432 9.28 % 15.28% 22.91% 4.52 4.82 5.20 6.68
Rock-4† 1 780 587 8.23 % 17.63% 30.67% 4.73 5.00 5.42 5.94

First-6† 854 5.05 % 7.99% 13.04% 4.73 5.88 7.43 -⋆

Rock-6† 2 758 490 13.04 % 15.51% 19.27% 3.10 3.10 3.10 7.41

†: For a fair comparison we downsampled the datasets to the size of First-4 (851 PINs).
⋆: We omit entries which are not sufficiently supported by the underlying data.

4.4.1. Strength of 4- and 6-digit PINs

Entropy-based strength metrics We analyzed PINs in terms of their mathematical
metrics for guessing resistance based on entropy estimations. For this, we consider
a perfect knowledge attacker who always guesses correctly (in perfect order) as de-
scribed by Bonneau et al [45]. The advantage of such an entropy estimation approach
is that it always models a best-case attacker and does not introduce bias from a spe-
cific guessing approach. Our results are given in Table 4.5.

We report the β-success-rate, which measures the expected guessing success for a
throttled adversary limited to β-guesses per account (e.g., λ3 = 3 guesses). Moreover,
we provide the Min-entropy H∞ as a lower bound estimate that solely relies on the
frequency of the most common PIN (1234, 123456). Finally, we present the partial
guessing entropy (α-guesswork) Gα, which provides an estimate for an unthrottled
attacker trying to guess a fraction α of all PINs. In three cases, the calculation of
G̃0.2 is based on PINs occurring only once, due to the small size of the datasets. This
constraint would result in inaccurate guessing-entropy values which is why they are
not reported.

For a fair comparison among the datasets which all differ in size, we downsampled
all datasets to the size of the smallest dataset First-4 (851 PINs). We repeated this
process 500 times, removed outliers using Tukey fences with k = 1.5. In Table 4.5
we report the median values. The low Min-entropy of the Rock-6 dataset is due to
the fact that the PIN 123456 is over-represented. It is 21× more frequent than the
second-most popular PIN. In contrast, the most common 4-digit PIN occurs only
1.7× more often, leading to a higher H∞ value. Overall, the PINs we collected,
specifically primed for mobile authentication, have different (and stronger) strength
estimations than PINs derived from leaked text-based password datasets. This is
true for both the 4- and 6-digit PINs, which supports our motivation for conducting
studies that collect PINs directly.
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Guess number-driven strength estimates Next, we estimate the security of the
PINs in regard to real-world guessing attacks. Our attacker guesses PINs in decreas-
ing probability order based on the Amit-4, Rock-4, and Rock-6 datasets. When two
or more PINs share the same frequency, i.e., it is not possible to directly determine
a guessing order, we order those PINs using a Markov model [99]. We trained our
model on the bi-grams (4-digit PINs) or tri-grams (6-digit PINs) of the respective
attacking datasets which simulates the attacker with the highest success rate for each
case without overfitting the problem.

In the throttled scenario, depicted in Figure 4.5, we find that guessing 4-digit PINs
with the Amitay-4-digit dataset (△) is the most effective attack. In contrast to the
RockYou-4-digit dataset (▽) for which we extracted PINs from a password leak, the
Amitay dataset consists of actual PINs (cf. Section 4.2.2). We observe that guessing
based on the RockYou-4-digit is less effective than Amitay-4-digit. This finding
suggests we should use the actual PIN data contained in the Amitay set whenever
possible to simulate the attacker.

When comparing 4- (△) and 6-digit PINs (×), we see that guessing performance
varies. For 10 guesses (the maximum allowed under iOS), we find 4.6 % of the 4-digit
and 5.7% of the 6-digit PINs are guessed. For 30 guesses (a less determined attacker
on Android), 7.6 % of the 4-digit and 8.8 % of the 6-digit PINs are guessed and for
100 guesses (a reasonable upper bound on Android), 16.2 % of the 4-digit and 12.5%
of the 6-digit PINs.

Somewhat counter-intuitive is the weaker security for 6-digit PINs for the first
40 guesses. Upon investigation, the most-common 6-digit PINs are more narrowly
distributed than their most-common 4-digit counterparts. The most common 6-
digit PINs consist of simple PINs, such as 123456 as defined in Appendix A.4, and
repeating digits. In contrast, the most common 4-digit PINs consist of simple PINs,
patterns, dates, and repeating digits. As a result, the most common 6-digit PINs
may actually be easier to guess and less diverse than the most common 4-digit PINs.

There could be many explanations for this counter-intuitive finding. One expla-
nation may be that users have more 4-digit PIN sequences to draw on in choosing
a PIN, such as dates, but have fewer natural 6-digit analogs, and thus revert to
less diverse, more easily guessed choices. We will present some evidence for this
hypothesis in Section 4.4.2 where we analyze the selection strategies of 6-digit PINs.
Another explanation may be that users have a false sense of security that comes with
6-digit PINs as they are “two digits more secure” than 4-digit PINs. Thus, users do
not feel that they need more complexity in their 6-digit PIN choices. Either way,
future research is needed to better understand this phenomenon, which has also been
observed by Aviv et al. [57] in the context of increasing the size (3x3 vs. 4x4) of
Android graphical unlock patterns.
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Figure 4.5.: Guessing performance against mobile authentication systems based on
the number of guesses

Finally, we compare guessing resistance with other mobile authentication schemes
including Android’s graphical unlock patterns drawn on a 3x3 grid (□) and alphanu-
meric passwords (⋆), along with a uniform distribution of 3-digit PINs (–). In theory,
a 3x3 grid allows 389 112 unique patterns, yet, the distribution of patterns is highly
skewed [13]. When considering an attack throttled to 100 guesses, 35.5 % of the
patterns will be guessed. Against this attack, 4- and 6-digit PINs are twice as good.
Password-based authentication, on the other hand, is the most secure scheme. After
100 guesses only 1.9 % of the passwords are recovered.

Figure 4.6 shows the guessing time of an attacker due to rate limiting based on
Table 4.1 for iOS and Android. iOS has stricter rate limiting with a maximum of 10
guesses that can be completed in 1h 36m, at which point an attacker compromises
4.6 % of the 4-digit PINs and 5.7 % of the 6-digit PINs. At the same time limit of
roughly 1.5 h, an attacker on Android is able to compromise 13.6 % of the 4-digit
PINs and 11.0 % of the 6-digit PINs because of less restrictive rate limiting.

Especially on iOS, rate limiting becomes more aggressive after the initial guesses.
For example, the first 6 guesses on iOS can be done within a minute, while the first 8
guesses take 21 minutes. An attacker with only one minute on iOS can compromise
3.5 % of the 4-digit PINs and 5.2 % of the 6-digit PINs. However, for 10 guesses
which take 1h 36m on iOS, there are only marginal gains with 4.6 % of the 4-digit
PINs and 5.7 % of 6-digit PINs compromised. Hence, after the first minute with
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Figure 4.6.: Guessing performance against 4- and 6-digit PINs on Android and iOS
based on the required time. For 4-digit PINs, we only show the success
rate of an attack with Amit-4 as it outperforms Rock-4.

6 guesses on iOS, it does not greatly benefit the attacker to continue through the
aggressive timeouts for 4 more guesses at 1h 36m. In contrast, an attacker on Android
would benefit more from continuing to guess beyond the initial large increases in rate
limiting. Note, in a targeted attack, there may be additional information or other
motivations for the attacker not modeled here.

To summarize, we confirmed previous work from Wang et al. [49] that there is no
evidence that 6-digit PINs offer any security advantage over 4-digit PINs considering
a throttled guessing attacker with up to 40 guesses, which covers most mobile unlock
authentication settings. Only when considering threat models where the attacker is
allowed to make more guesses, 6-digit PINs start to exceed 4-digit PINs in terms of
their guessing resistance. To support this claim, we performed χ2 tests (α = 0.05) for
both the 4- and 6-digit PINs guessed within 10 [4.6 %, 5.7 %], 30 [7.6 %, 8.8 %], and
100 guesses [16.2 %, 12.5 %]. The test for 10 (p = 0.28) and 30 guesses (p = 0.39) did
not show a significant difference in PIN strength. For 100 guesses, on the other hand,
we were able to observe that the 6-digit PINs are significantly stronger than the 4-
digit ones (p = 0.03). This again highlights the importance of clearly defining threat
model in terms of how many guesses the attacker is able to make when deciding on
a certain PIN length.
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Effect of biometrics Users who employ a biometric, cf. Table 4.4, do not need to
provide their KBA as often as users who solely rely on a PIN, pattern, or password.
This choice may shift users towards more complex choices which are more cumber-
some to type, but, owing to the biometric, only need to be provided on rare occasions
like a device restart. Hence, the question arises: do users who authenticate with a
biometric select more secure PINs?

To test this hypothesis, we split each of the First-4 and First-6 dataset into two
datasets, based on if participants said they used a biometric. As we primed our par-
ticipants to select a PIN they would use to unlock their smartphone (cf. Figure 4.1),
we have all the information required for this type of analysis. The security metrics
for the “Biometric-used” and “No-biometric-used” datasets are shown in Table 4.7.
The results do not support the hypothesis, but instead, participants who do not use
a biometric tend to create more secure PINs. However, while the success rates of
the attacker differ by up to 3 % for 30 guesses when comparing Biometric-used-4 and
No-biometric-used-4, we were not able to observe any significant differences using a
χ2 test (α = 0.05).

4.4.2. Selection Strategies

In Step 6 of our study, we asked participants about their “strategy for choosing” their
PIN. We analyzed the free-text responses to this question by building a codebook
from a random sample of 314 PIN selection strategies using two coders. Inter-rater re-
liability between the coders measured by Cohen’s kappa was κ = 0.90. Appendix A.4
shows the 10 most popular strategies.

While users have many different selection strategies, most participants chose PINs
that they perceive as memorable in general or based them on personally-important
dates, especially birthdays and anniversaries. Other popular strategies are PIN-pad
patterns, choosing randomly, or selecting other kinds of meaningful numbers to the
participants, like a ZIP Code or a favorite number. While most of those strategies are
common across both PIN lengths, most participants who said they chose randomly
(26 of the 33, or 79%) were asked to create a 6-digit PIN. This result supports the
intuition that users have less experience with 6-digit PINs and have fewer meaningful
sequences at hand.

To further understand how users create 6-digit PINs and to see if users take their
4-digit selection strategy and just extend it to create a longer version, we now look
at the 4-digit substrings of the 6-digit PINs. For this, we took the 855 First-Choice-
6-digit PINs and created three lists extracting the 4 leftmost, the 4 middle, and
the 4 rightmost digits of each PIN. For comparison, we overlapped those lists with
the First-Choice-4-digit PINs. As can be seen in Table 4.6, the greatest overlap
with 23 %, occurs for the leftmost substring PINs, followed by the rightmost (14 %).
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Table 4.6.: Overlap of the First-4 PINs with the three substring lists extracted from
the First-6 PINs

Overlap Top 5 PINs
Substring No. % PIN No. % Most Common Addition

Leftmost 196 23 %

1234 17 9 % 123456 (91 %)
2580 7 4 % not distinct
6969 5 3 % 696969 (80 %)
1212 4 2 % 121212 (50 %)
1379 3 2 % not distinct

Middle 74 9%

0000 2 3 % 000000 (100 %)
1111 2 3 % 111111 (100 %)
2121 2 3 % 121212 (100 %)
7777 2 3 % 777777 (100 %)
9898 2 3 % 898989 (100 %)

Rightmost 116 14 %

6969 5 4 % 696969 (80 %)
4321 4 4 % 654321 (100 %)
1212 3 3 % 121212 (67 %)
4578 2 2 % 124578 (100 %)
7777 2 2 % 777777 (67 %)

The substring PINs consisting of the 4 digits in the middle only overlap with the
First-4 PINs by 9 %. Moreover, all of the PINs we extracted for this list follow
simple repetitions. These strategies are not specific to a certain PIN length. A
similar conclusion can be drawn from the rightmost PINs, there is no indication that
participants started with a 4-digit PIN and added two digits on the left. Again,
we see that the creation strategies can be used to create PINs of arbitrary length,
mostly repetitions (e.g., 1212/121212), and sequences (e.g., 4321/654321). However,
Table 4.6 also depicts two exceptions: 2580, and 1379. The former is a top-down
walk, which allows for a simple 4-digit PIN, yet, each of the 7 participants who started
a 6-digit PIN this way ended up differently. A similar observation can be made for
1379, where each of the four corners is selected without an apparent addition for
a 6-digit PIN. Both cases suggest that there are participants who did not have an
actual 6-digit strategy but used one they had in mind for 4-digits and added two
digits. This also fits the overall impression that users are more familiar with 4-digit
PINs.

4.5. Blocklists and PIN Selection

We now present results on our ten blocklist treatments: five for each PIN length as
shown in Table 4.7.
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Table 4.7.: Security metrics and usage times for PINs considering different datasets
and treatments

Blocklist 10 Guesses 30 Guesses 100 Guesses Guess No. Creation Entry Number of
Name Participants Hits No. % No. % No. % Median Time Time Attempts

D
at

as
et

s

First-Choice-4-digit 851 - 39 5 % 65 8% 138 16 % 1 330 - - -
Clicked-through-4 19 19 5 26 % 6 32% 13 68 % 50 - - -
Biometric-used-4 533 - 28 5 % 47 9% 91 17% 1347 - - -
No-biometric-used-4 318 - 11 4 % 18 6% 47 15% 1257 - - -

Control-4-digit 231 - 11 5 % 19 8% 39 17% 1 185 7.9 s 1.5 s 1.01

T
re

at
m

en
ts Placebo-4-digit 122 122 5 4 % 11 9% 19 16 % 2 423 21.8 s 1.5 s 2.15

iOS-4-digit-wCt 124 28 5 4 % 8 6% 18 15% 1 405 10.4 s 1.4 s 1.17
iOS-4-digit-nCt 126 21 4 3 % 10 8% 14 11 % 1 747 9.3 s 1.6 s 1.29
DD-4-digit-27 121 5 4 3 % 7 6% 18 15% 1 928 8.8 s 1.5 s 1.11
DD-4-digit-2740 127 88 0 0 % 0 0% 1 1% 2 871 25.4 s 1.6 s 2.98

D
at

as
et

s

First-Choice-6-digit 854 - 49 5 % 75 9% 107 13 % 49 021 - - -
Clicked-through-6 10 10 9 90 % 9 90% 9 90% 1 - - -
Biometric-used-6 542 - 33 6 % 51 9% 68 13% 47 773 - - -
No-biometric-used-6 312 - 16 5 % 24 8% 39 13% 50 922 - - -

T
re

at
m

en
ts

Control-6-digit 236 - 15 6 % 26 11% 35 15 % 42 584 11.0 s 2.5 s 1.01
Placebo-6-digit 117 117 3 3 % 6 5% 10 9% 154 521 28.5 s 3.0 s 2.17
iOS-6-digit-wCt 125 15 9 7 % 9 7% 13 10% 40 972 11.9 s 2.6 s 1.06
iOS-6-digit-nCt 125 16 2 2 % 4 3% 6 5% 61 036 12.2 s 2.8 s 1.22
DD-6-digit-29 126 12 1 1 % 2 2% 7 6% 82 373 11.1 s 2.5 s 1.23
DD-6-digit-291000 125 90 0 0 % 0 0% 0 0% 324 621 45.2 s 3.5 s 3.94
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Figure 4.7.: PIN creation times for the different treatments. For the sake of clarity,
we excluded two extrema from the plot: 1542.32 s from the DD-4-2740
treatment and 1105.13 s from DD-6-291000.
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4.5.1. PIN Creation and Entry Times

The blocklist has an impact on the PIN creation time: increase in the number of
blocklist messages leads obviously to increased creation time. The median creation
time when receiving a blocklist message can be found in Table 4.7; a more detailed
breakdown for each treatment can be seen in Figure 4.7.

In the 4-digit case, there are obvious differences between the control treatments and
the placebo and the large data-driven treatment DD-4-2740. The median creation
time increases from 7.9 s for the Con-4 treatment to 21.8 s for Pla-4 and 25.4 s for
DD-4-2740. Both differences are significant (p < 0.001) using a Kruskal-Wallis test
followed by a Bonferroni-corrected pair-wise Wilcoxon test. The differences for the
remaining 4-digit treatments iOS-4-wC, iOS-4-nC, and DD-4-27 are more subtle. The
median creation time for the small data-driven treatment DD-4-27 only increases by
0.9 s to 8.8 s, followed by the iOS-4-nC treatment (9.3 s), and iOS-4-wC (10.4 s).
Moreover, we were able to observe significant differences for the latter comparison,
i.e., Con-4 vs. iOS-4-wC (p < 0.01), whereas we were not for the comparisons of iOS-
4-nC and DD-4-27 with the control treatment. We did not observe any significant
differences between the 4-digit treatments for entry time.

The situation is similar for 6-digit PINs. As can be seen in both in Table 4.7
and Figure 4.7, the creation times for the Pla-6 and DD-6-291000 treatment increase
compared to the control treatment, but both iOS treatments (iOS-6-wC & iOS-6-nC)
and the small data-driven treatment DD-6-29 show minimal differences compared
to control. We observed significant differences for both Pla-6 and DD-6-291000
(p < 0.001) using a Kruskal-Wallis test followed by Bonferroni-corrected pair-wise
Wilcoxon tests. We did not find significant differences among iOS-6-wC, iOS-6-nC,
and DD-6-29.

The entry times are again not affected with one exception: the 6-digit case. Par-
ticipants required more time to enter the PIN they created in the large data-driven
treatment DD-6-291000. The median here is 3.5 s compared to 2.5 s in the respective
control treatment and this difference is also significant (p < 0.001) using the same
statistical tests.

This suggests that blocklists, when properly sized, can lead to significant increases
in creation time which may in turn frustrate users, as we will explore in Section 4.5.6
and 4.5.7. However, the subsequent usage of the PIN, as evidenced by the entry
time, is unaffected. Only in the case of a very large blocklist with 6-digit PINs do
we observe any meaningful increase in entry time.

4.5.2. Attacker’s Knowledge of Blocklists

As described in Section 4.2.1, we assume the attacker knows which blocklisting strat-
egy is used by the system and can optimize their guessing strategy by not guessing
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Table 4.8.: Attacker’s gain from blocklist knowledge

10 Guesses 30 Guesses 100 Guesses Guess No. Knowledge
Treatment No. % No. % No. % Median Beneficial

Pla-4 ±0 ±0 % ±0 ±0 % ±0 ±0 % ±0 –
iOS-4-wC -3 -2% -4 -2 % -9 -8% -303 ✗
iOS-4-nC +3 +2 % +7 +6% +3 +2 % +245 ✓
DD-4-27 +4 +3 % +7 +6% +5 +4 % +27 ✓
DD-4-2740 ±0 ±0 % ±0 ±0 % +1 +1% +2740 ✓

Pla-6 ±0 ±0 % ±0 ±0 % ±0 ±0 % ±0 –
iOS-6-wC -9 -7% -5 -4 % -8 -6% -7322 ✗
iOS-6-nC +2 +2 % +2 +2% +2 +2 % +1524 ✓
DD-6-29 +1 +1 % +2 +2% +2 +2 % +29 ✓
DD-6-291000 ±0 ±0 % ±0 ±0 % ±0 ±0 % +291000 ✓

items on the blocklist. Here, we consider how much benefit this optimization pro-
vides. Table 4.8 shows the net gains and losses for guessing PINs when considering
a blocklist-informed attacker.

Knowledge of the blocklist is unhelpful when considering the placebo (Pla-4 and
Pla-6) and the click-through treatments (iOS-4-wC and iOS-6-wC). The blocklist is
effectively of size one for the placebo as the first choice of a participant is dynamically
blocked. Merely knowing that a PIN was blocked is of little help to the attacker. As
there is no clear gain (or harm), we model a blocklist-knowledgeable attacker for the
placebo treatments (see Table 4.7).

The case with a non-enforcing blocklist where users can click through the warning
message is more subtle. If the attacker is explicitly choosing not to consider PINs on
the blocklist, even though they may actually be selected due to non-enforcement, the
guessing strategy is harmed (negative in Table 4.8). None of the tested modifications
of this strategy, such as by incorporating the observed click-through rate, lead to an
improvement. Therefore, we consider an attacker that does not use the blocklist
to change the guessing strategy for the click-through treatments (iOS-4-wC and
iOS-6-wC). In the remaining treatments (iOS-4-nC, DD-4-27, DD-4-2740, iOS-6-nC,
DD-6-29, DD-6-291000), there are clear advantages when knowing the blocklist.

4.5.3. Blocklisting Impact on Security

We now consider how the different blocklists perform in terms of improving security.
The primary results are in Table 4.7 where we report on the guessing performance
against each treatment. As described in Section 4.2.1, there are certain rate limits
implemented on Android and iOS which is why we report on throttled attacks with
10, 30, and 100 guesses in terms of the number and percentage of correctly guessed
PINs (No. and % columns). Furthermore, we provide the attacker’s performance
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in an unthrottled setting based on the median guess number. The 4-digit attacker
is informed by the Amit-4 dataset, while the 6-digit attacker employs the Rock-6
dataset. Both attackers guess in frequency order with knowledge of the blocklist
where appropriate (see Section 4.5.2).

To analyze the security, we performed a multivariant χ2 test comparison (α = 0.05)
for the PINs guessed within 10, 30, and 100 guesses across treatments. The test for
10 suggested some significant differences in the data (p = 0.007), however, we did not
find any actual significant differences in the post-hoc analysis (Bonferroni-corrected).
For 30 guesses and 100 guesses the test also showed significant differences (p < 0.001);
the results of the post-hoc analyses are described below.

Smaller blocklists When looking at the 4-digit treatments, there is little difference
among Placebo-4-digit, iOS-4-digit-wCt, iOS-4-digit-nCt, and DD-4-digit-27, com-
pared to Control-4-digit or First-Choice-4-digit. In our post-hoc analyses (Bonferroni-
corrected), we found no significant difference.

For our 6-digit treatments, the situation is similar, yet, there is one exception:
for 30 guesses we observed a significant difference between the small data-driven
blocklist and the control (p < 0.01). While this implies that it can make sense to
employ a small blocklist in certain cases, we will show in Section 4.5.7 that blocklist
warnings are associated with negative sentiments. Hence, it is hard to justify the
combination of throttling and blocklists in general.

In the unthrottled setting, we see differences between the smaller and placebo
blocklists. Notably, the smallest (DD-4-digit-27, DD-6-digit-29) outperforms the
larger iOS blocklists (iOS-4-digit-nCt, iOS-6-digit-nCt). We conjecture this may be
due to iOS’ inclusion of PINs based on repetitions which were chosen less often by
our participants. As a result, in an unthrottled setting, blocklisting can offer real
benefits. The median guess numbers for both 4- and 6-digit placebos suggest that
just pushing users away from their first choice can improve security. Unfortunately,
direct use of a placebo blocklist is unlikely to be effective and is problematic in
practice as users will quickly figure out the deception.

Finally, these improvements to the unthrottled attack setting appear to be only
of academic interest: given the small key space, any attacker that is able to bypass
the enforced rate limiting is able to exhaustively test all possible combinations [134].
For example, a tool from Elcomsoft is able to bypass the rate limiting on Apple’s
iPhone 5 and 5c. In this case, guessing all 4-digit PINs takes about 12 minutes while
enumerating all 6-digit PINs takes 20.5 hours [135].

Large blocklist We also consider very large blocklists in the DD-4-digit-2740 and
DD-6-digit-291000 treatment containing 2740 PINs and 291 000 PINs respectively.
These blocklists are bigger than their iOS counterparts, blocking 27.4 % in the 4- and
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Figure 4.8.: [4-digits PINs: For throttled attackers, limited to 100 guesses, a blocklist
of ∼10% of the key space (∼1000 PINs) is ideal

29.1 % of the key space in the 6-digit case. At this scale, we do see noticeable effects
on the security in the throttled setting. In the 4-digit case, the attacker finds only 1%
of 4-digit PINs after 100 guesses. Our χ2 tests support this, for 100 guesses we found
a significant difference (p < 0.001). For post-hoc analyses (Bonferroni-corrected)
we found significant differences between the large DD-4-2740 blocklist and Con-6
(p < 0.01) as well as the treatments: Con-4 (p < 0.001), Pla-4 (p < 0.01), iOS-4-wC
(p < 0.05), and DD-4-27 (p < 0.05).

In the 6-digit case, we make similar observations for the guessing routine although
we already start to see significant differences for 30 guesses when comparing the
DD-6-291000 and the control treatment (p < 0.01). For 100 guesses the guessing
success of the attacker in the DD-6-291000 treatment is significantly lower than for
all 4-digit treatments: Con-4 (p < 0.001), Pla-4 (p < 0.01), iOS-4-wC (p < 0.05),
DD-4-27 (p < 0.01), as well as the 6-digit control treatment (p < 0.001). All of this
suggests that a larger blocklist can improve security in a throttled setting.

While similar positive security results are present for the unthrottled setting, we
show in Section 4.5.6 that the larger blocklist also leads to perceived lower usability,
and thus it is important to balance the user experience with security gains.
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Figure 4.9.: [6-digits PINs: For throttled attackers, limited to 100 guesses, a blocklist
of ∼0.2% of the key space (∼2000 PINs) is ideal

Correctly sizing a blocklist While there is a clear security benefit to having a
large blocklist, it is important to consider the right size of a blocklist to counteract
negative usability and user experience issues. This leads to the question: Can a
smaller blocklist provide similar benefits in the throttled setting and if so, what is an
appropriately sized blocklist? Data from the large data-driven treatments enable us to
simulate how users would have responded to shorter blocklists. In our user study, we
collected not only the final PIN accepted by the system, but also all n−1 intermediate
(first-choice, second-choice, and so on) PINs rejected due to the blocklist. Consider
a smaller blocklist that would have permitted choice n−1 to be the final PIN, rather
than n. To simulate that smaller blocklist size, we use choice n− 1.

The results of the simulation are shown in Figures 4.8 and 4.9. We observe that
there are several troughs and peaks in the curves in both figures. We speculate that
these relate to changes in user choices as they move from their first choice PIN to
their second choice PIN, and so on due to the expanding blocklist restrictions. For
example, entering the first trough, the attacker is most disadvantaged when it is no
longer possible to rely on guessing only first choice PINs and second choice PINs
need to be considered. Eventually, the blocklist has restricted all first choice PINs,
whereby the attacker can now take advantage of guessing popular second choices
which results in a peak. These cycles continue until the blocklist gets so large that
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few acceptable PINs remain, and the attacker’s advantage grows steadily by guessing
the remaining PINs not on the blocklist.

Based on these cycles, we conclude that an appropriately-sized blocklist should be
based on one of the troughs where an attacker is most disadvantaged to maximize the
security gained in the throttled setting. As we are also concerned about minimizing
user discomfort and frustration (e.g, PIN creation time, see Section 4.5.1), the first
trough appears the most ideal. As can be seen in Figure 4.8, for 4-digit PINs the
first trough occurs at about 1000 PINs (10% of the 4-digit PIN space) throttled
at 100 guesses. A similar suggestion can be drawn from the simulation for 6-digit
PINs in Figure 4.9, however, due to the overall larger key space, a blocklist with
2000 PINs only corresponds to 0.2 % of all possible selections. We do not observe
equally aligned distribution, but the attacker’s success rate is sufficiently low when
blocking only 0.2 % of the keyspace. In contrast, the ideal 4-digit blocklist rejects
10 % of all possible PINs.

4.5.4. Enforcing the Blocklist

To test the effect of a click-through option, we compared the enforcing treatment
for each length (iOS-4-nC / iOS-6-nC) with its non-enforcing counterpart (iOS-4-
wC / iOS-6-wC). Neither showed significant differences. This absence of evidence
suggests that using a click-through option does not reduce security in the throttled
attacker setting despite the fact that clicked-through PINs are extremely weak (see
row Clicked-through-4 in Table 4.7). These results seem to be driven by the fact
that it is uncertain whether the user clicked through (see Table 4.8). In an enforcing
setting, the attacker can leverage the blocklist but is equally challenged in guessing
the remaining PINs.

We also investigated why participants chose to ignore and click through the warn-
ing. From 28 participants who saw a blocklist warning in the iOS-4-wC treatment,
we observed a click-through-rate of 68 % (19 participants). In the respective 6-digit
treatment iOS-6-wC, 10 out of 15, i.e., 67%, ignored the warning. This is twice
the rate at which TLS warnings are ignored (∼ 30%) [136]. Furthermore, we asked
the 29 participants who pressed “Use Anyway” about their motivations. The 3 most
observed answers are Memorability Issues: “Because this is the number I can remem-
ber,” Incomplete Threat Models: “Many people don’t tend to try the obvious PIN as
they think it’s too obvious so people won’t use it,” and Indifference: “I don’t give
[sic] about the warning. Security is overrated.” These findings are similar to prior
work where users do not follow external guidance for a number of reasons [137,138].
In older versions of iOS, the blocklist warning message was “Are You Sure You Want
to Use This PIN? This PIN is commonly used and can be easily guessed.” with the
safe option “Choose New PIN ” in bold and the unsafe click-through option saying
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Table 4.9.: Changes in participants’ PIN selection strategies across treatments

Selection vs. Changing Strategy Edit Distance
Treatment Hits Sample Same Minor New Mean SD

Pla-4 122 29 35 % 24 % 41% 3.20 0.90
iOS-4-wC 9⋆ 9 0 % 44 % 56% 3.11 0.87
iOS-4-nC 21 21 19 % 29 % 52% 3.24 0.92
DD-4-27 5 5 40 % 40 % 20% 3.20 0.75
DD-4-2740 88 29 14 % 24 % 62% 3.39 0.76

Pla-6 117 28 28 % 18 % 54% 4.59 1.41
iOS-6-wC 5⋆ 5 0 % 40 % 60% 4.40 1.20
iOS-6-nC 16 16 6 % 50 % 44% 4.00 1.54
DD-6-29 12 12 33 % 33 % 33% 5.25 0.72
DD-6-291000 90 29 14 % 21 % 65% 4.82 1.13

⋆: Hit blocklist, and did not click-through.

“Use PIN.” We observed that Apple changed this wording with iOS 11 to what is
depicted in Figure 4.3. Considering that TLS warning design research started with
similarly high click-through-rates of around 70% [131], we hope that new designs
can also improve blocklist warning CTRs [136].

4.5.5. PIN Changing Strategies

In our study, we asked 485 participants who faced a blocklist how their creation strat-
egy changed in response to the warning. We sampled 183 responses (∼ 10% of our
total number of participants) and grouped them into three categories: participants
who continued using the “Same” strategy, participants who made “Minor” changes
to the strategy, and participants who came up with a completely “New” strategy.
Two coders independently coded the data. Inter-rater reliability between the coders
measured by Cohen’s kappa was κ = 0.92. The detailed results for each treatments
are shown in Table 4.9.

About 50 % of the participants choose a new strategy when confronted with a
blocklist warning. Only participants of the DD-4-27 and DD-6-29 treatment with
a very small blocklist, tended to keep their pre-warning strategy. The edit dis-
tances vary slightly across the treatments and support this self-reported behavior:
participants in the 4-digit scenario changed on average 3 digits with the standard
deviation showing that some participants changed their PIN completely while some
participants only changed 2 digits. The same conclusion can be drawn from the
edit distances in the 6-digit case with one difference: participants in the DD-6-29
treatment changed more digits on average. This is particularly interesting because
the blocklist is by far the smallest which suggests that users may be more willing to
change their PIN if the warning does not appear to be arbitrary.
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Figure 4.10.: Participants’ PIN selection (first choice) and changing strategies (final
choice) for n = 183

To analyze how participants changed their PIN selection, we mapped the initial
selection strategies to the final ones. The result is shown in Figure 4.10. First of all,
25 % of the participants stated to have changed their PIN into something random (cf.
Table A.3 in Appendix A.4). While there are 7 % of the participants who already
had this strategy, we observe a shift from all of the other selection strategies to a
random PIN which shows the effectiveness of the blocklist warnings. Moreover, we
see that participants usually do not change their PIN to be “memorable,” a “date,”
or “simple.” Furthermore, we also see that a certain number of participants stick
to their strategy. While we already described that this decision is influenced by the
treatment (cf. Table 4.9), we are now able to see that the selection strategy also
influences this decision. For example, nearly all participants who initially selected a
random PIN, held on to this approach. This is less distinct across other strategies,
yet, participants who stuck to their selection strategy are always the largest group.
The only two exceptions are participants who reused a PIN or selected it based on
a pattern, they tended to change their strategy after seeing a blocklist warning.

4.5.6. User Perception

We analyzed participants’ perceptions regarding PIN selections with respect to secu-
rity and usability. Participants were asked to complete the phrase “I feel the PIN I
chose is” with three different adjectives: “secure, memorable, and convenient.” The
phrases were displayed randomly and participants responded using a Likert scale.
The results are shown in Figure 4.11. To compare these results, we converted the
Likert responses into weighted averages on a scale of -2 to +2. As the weighted aver-
ages are not normally distributed, tested using the Shapiro-Wilk test (p < 0.001), we
tested for initial differences using a Kruskal-Wallis test, followed with post-hoc, pair-
wise tests using Dunn’s-test comparisons of independent samples with a Bonferroni
correction.
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Treatment Security Memorability Convenience

Con-4 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Pla-4 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

iOS-4-wC 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

iOS-4-nC 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

DD-4-27 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

DD-4-2740 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Con-6 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Pla-6 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

iOS-6-wC 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

iOS-6-nC 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

DD-6-29 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

DD-6-291k
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Figure 4.11.: Participants’ perception of their PIN’s security (Secure – Insecure),
memorability (Easy to remember – Difficult to remember), and conve-
nience (Easy to enter – Difficult to enter).

We found that there are significant differences across treatments when considering
Likert responses for security. For the 4-digit PINs, post-hoc analysis did not indicate
any significant differences. One explanation for this overall high confidence in the
security of the PIN choice, may be the familiarity with 4-digit PINs. In contrast to
this, participants in the DD-6-291000 treatment perceive their PINs as more secure
compared to participants of the 6-digit control (p < 0.05), and iOS-6-wC treatment
(p < 0.01). Here, the large portion (72%) of participants who encountered the
blocklist may have lead to a change in the overall perception.

For memorability we also found significant differences among the treatments. In
post-hoc analysis we found that increased interaction with the blocklist led to lower
perceived memorability of PINs, as evidenced by the Pla-4 (p < 0.001), DD-4-2740
(p < 0.05), Pla-6 (p < 0.001), and DD-6-291000 (p < 0.001) treatments compared
to their respective control treatments. The DD-4-2740 and DD-6-291000 showed
the most significant differences with other treatments. Again, this is likely due to
the fact that many participants encountered a blocklist warning sometimes even for
multiple PIN choices and were thus relying on not just second-choice PINs, but also
third- and fourth-choice, etc. PINs that are perceived to be less memorable.

The responses to perceived convenience also show significant differences, however,
post-hoc analysis revealed limited effects when considering pair-wise comparisons. In
general, participants perceived their 4-digit or 6-digit PINs at the same convenience
level across treatments. However, there is one exception: PINs created in the DD-6-
291000 treatment are perceived as significantly more difficult to enter than PINs in
the 6-digit control treatment (p < 0.01), iOS-6-wC (p < 0.05), DD-6-29 (p < 0.05),
and all 4-digit treatments (p < 0.001). As for the memorability, this suggests that
while users may be comfortable with their first-choice 6-digit PIN, there is much
higher perceived inconvenience when having to conform with a large blocklist.
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Group Sentiment
Experienced vs. Imagined Blocklist

Experienced 0 20 40 60 80 100

Imagined 0 20 40 60 80 100

PIN Length
Pla-4 0 20 40 60 80 100

Pla-6 0 20 40 60 80 100

Non-Enforcing vs. Enforcing
iOS-4-wC 0 20 40 60 80 100

iOS-4-nC 0 20 40 60 80 100

iOS-6-wC 0 20 40 60 80 100

iOS-6-nC 0 20 40 60 80 100

Blocklist Size
Pla-4 0 20 40 60 80 100

iOS-4-nC 0 20 40 60 80 100

DD-4-2740 0 20 40 60 80 100

Pla-6 0 20 40 60 80 100

iOS-6-nC 0 20 40 60 80 100

DD-6-291000
0 20 40 60 80 100

Negative Neutral Positive

Figure 4.12.: Participants’ sentiment: We split the participants into four categories
and classified their feelings in terms of sentiment using EmoLex [139]

4.5.7. User Sentiment

To gain insight into participants’ sentiments regarding blocklisting, we asked “Please
describe three general feelings or reactions that you had after you received this warn-
ing message” or “would have had” if the participant did not encounter a blocklist.
Accompanying the prompt are three free-form, short text fields. A codebook was
constructed by two individual coders summarized in Appendix A.5 in Table A.5.
For each of the four categories (blocklist hit experienced vs. imagined, 4- vs. 6-digit
PINs, non-enforcing vs. enforcing, different blocklist sizes), 21 individuals’ responses
were randomly selected. Again, two individual raters were tasked with coding the
responses. The inter-rater reliability, computed using Cohen’s kappa, was κ = 0.98.

Using the NRC Word-Emotion Association Lexicon [139], we classified assigned
codes in terms of sentiment (positive, negative, or neutral) for Figure 4.12. EmoLex
maps individual English words (in this case, codes assigned by our coders) to exactly
one sentiment. For example, “indifference,” is labeled with the “negative” sentiment.
As expected, participants generally had a negative reaction to the blocklist warning.

While overall, participants expressed negative sentiments towards blocklist mes-
sages, which may be expected as warning messages are not often well received by
users [131], we only observed significant differences in a single comparison. Using a
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χ2 test, we found that there was significant difference (p < 0.05) in the proportion of
negative sentiment when considering PIN length for the two placebo treatments. As
both groups always experienced a blocklist event, a higher negative sentiment exists
for the placebo blocklist with 4-digits. This might be because users were confused by
the warning as the blocklist event was arbitrary. However, in the 6-digit PIN case,
less familiarity with 6-digit PINs may have led to less negative reactions.

Interestingly, participants in general consider displaying warnings about weak PIN
choices to be appropriate although they cannot imagine that their own choice might
be considered insecure. Moreover, sentiments are similar for those who hit the block-
list and those who imagined having done so. This suggests that future work on block-
list warning design may benefit from asking participants to imagine such events.

4.6. Conclusion and Recommendations

This paper presents the first comprehensive study of PIN security as primed for
the smartphone unlock setting. In the smartphone unlock setting, developers have
adopted notable countermeasures—throttling, blocklisting, PIN length—which we
consider as part of our analysis. Using a throttled attacker model, we find that
6-digit PINs offer little to no advantage, and sometimes make matters worse. Also,
we find that blocklists in use on today’s mobile operating systems are not designed
reasonably. In some cases, they need to be larger in order to affect security at all,
while they are oversized in other cases, needlessly impairing the user experience.

Given this information, we offer a number of recommendations to developers.

• In a throttled scenario, simply increasing the PIN length is of little benefit.
In our results, were only able to observe a significant difference between 4-
and 6-digit PINs for an attacker that performs at least 100 guesses. As this
is beyond reach for mobile attackers of interest, developers should not merely
adopt longer PINs without a concomitant change in threat model. Observe
that without throttling, an attacker could quickly try all 4- and 6-digit PINs.

• On iOS, with only 10 possible guesses, we could not observe any security ben-
efits when a blocklist is deployed, either for 4- or 6-digit PINs. On Android,
where 100 guesses are feasible, we find that a blocklist would be beneficial.
Such a blocklist would need to contain the 1000 most popular PINs in the
4-digit case or the 2000 most popular for 6-digit PINs, in order to increase the
security of the chosen PINs while minimizing user frustration.

• We observe that the increase in terms of the perceived security is only signifi-
cant when users are forced to conform with a large 6-digit blocklist as compared
to selecting a PIN in presence of a large 4-digit blocklist (as was the case in
the data-driven treatments). This may suggest users are less familiar with
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selecting 6-digit PINs, an observation our analysis of the selection strategies
supports. Yet, a detailed exploration of the reasons for this are left to future
investigation.

• While we observed advantages for using a placebo blocklist in the unthrottled
settings, we do not recommend implementing a placebo blocklist, as users will
simply game it once the deception is known.

4.7. Author Contribution

In this paper appearing in ACM Transactions on Privacy and Security, I personally
contributed a number of elements. Firstly, I designed and implemented an exhaustive
literature review on the topic, critically analyzing previous studies and delineating
the scope of our investigation. This review identified several gaps in the literature
including the need to study PINs on smartphones and the lack of public PIN datasets.
In turn, I contributed the Research Questions meant to reflect this delineation, and
our inquiry.

Secondly, I played a pivotal role in the development of our research methodology,
I contributed the design of a rigorous user study, including the survey instrument as
well as development of an analysis plan to interpret our findings.

Thirdly, I contributed an early version of the data collection website. Additionally,
I contributed the analysis and coding of the qualitative data, including identification
of participant perceptions of usability and security around selecting a smartphone
PIN. I contributed the primary codebook, and additionally recruited, supervised,
and collected data from an independent second coder to ensure the reliability of our
findings. This effort led directly to my contribution of the qualitative figures and
tables in the final manuscript.

Fourthly, I contributed our responsible disclosure message to Apple, drawing on
my experience responding to these messages in industry.

Fifthly, I designed and presented a poster based on our work. This presenta-
tion took place during the poster session of IEEE Security and Privacy 2022. Fi-
nally, I contributed extensively to the writing and revision process of the submitted
manuscript, helping to communicate our findings in a clear and concise manner. I
focused particularly on the ’Introduction,’ ’Methodology,’ and ’Discussion’ sections,
with particular emphasis on communication of our qualitative results and design and
review of our charts and figures.
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5.1. Introduction

Signal is an encrypted messaging application that is dedicated to preserving the
privacy of its users. It implements features toward that end, such as not centrally
storing users’ contact lists, messages, or location histories unencrypted. Signal has
historically relied only on users’ telephone numbers for identification, authentication
(via SMS), and contact discovery. Unfortunately, these methods are insufficient
against attacks, including SIM-swapping [140–142]. In addition, these have some
usability issues such as users who lose access to their telephone numbers also lose their
Signal contact lists. Finally, they hamper additional features requiring additional
metadata, like user profiles.

To improve the app in terms of these shortcomings, Signal released two new fea-
tures: Secure Value Recovery (SVR) [143] and registration lock [144]. Both features
require the user to select a PIN, which can be a sequence of numbers, like a tra-
ditional PIN, but also include letters and symbols. SVR uses the PIN to recover
encrypted backups of contacts and settings stored on Signal servers. The registra-
tion lock aims to prevent anyone but the original user from creating a Signal account
for a phone number without the associated PIN. The security of both features relies
solely on the assumption that an attacker does not have access to the victim’s phone
number and cannot guess the PIN.

Signal’s choice of naming the credential a “PIN” (as in, personal identification
number) may not clearly indicate to the user the importance of the PIN in the
Signal ecosystem. Unlike device or screen lock which is familiar to users, the in-app
use of the Signal PIN is meant to achieve an app-specific purpose not satisfied by the
device or operating system’s features. Observe that the phrase “local authentication”
is also used for this case of an app-specific KBA [114]. A banking app for example
might mostly be using local authentication to protect access to an OAuth token,
while Signal has a different goal.

As Signal represents one of the first, large-scale usages of in-app or “local” PINs,
in this chapter we investigate to what extent do participants, both the security-
/privacy-savvy and the general population, understand the PIN feature and what
effect does this have on their choice and usage? Additionally, we also investigate how
participants react to Signal’s PIN verification reminders that encourage users to not
only select a complex PIN but regularly remind users to reenter it for verification.
This feature may have been implemented because the PIN is not meant for daily
use, but instead only needed in acute moments of setting up a new device with the
Signal app. Finally, we examine the way participants select and compose their Signal
PINs and the effect of their general understanding of the underlying Signal features
to make these decisions. To this end, we consider the following research questions:
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RQ1 Are participants aware of how and why in-app PINs are used in Signal?

RQ2 How effective are PIN reminders assisting participants to remember PINs?

RQ3 How do participants choose and compose a PIN for Signal, and does their
understanding of how these PINs are used affect that choice?

We surveyed Signal users (n = 235), asking about their understanding, usage
of the Signal PIN feature, and response to Signal PIN verification. For example,
we asked participants to explain the purpose of Signal PINs, in their own words.
We additionally asked participants about the composition of their PIN such as the
length and character set, if they reuse the PIN in other contexts like phone lock or
in another messenger app, if they have opted out of selecting a PIN altogether, and
their response to periodic PIN verification.

We find that only 14 % (n = 33) of respondents opted out of setting a Signal
PIN, and also we find a large disparity between the practices of participants who can
explain the purpose of the local PIN authentication (who we term Signal enthusiasts;
n = 132; 56 %) and those who cannot (dubbed casual Signal users; n = 103; 44 %).

Many enthusiasts set PINs because they thought it was required — initial com-
munication from Signal indicated that it was, although it is not in current versions
of the app. Many enthusiasts also specifically mentioned registration locking and
cloud backups. Interestingly, when enthusiasts did not set a PIN, 44 % cited anti-
cloud storage sentiments, indicating that they are aware of the features Signal PIN
provides such as cloud backups of profiles but felt that this metadata storage did not
sufficiently guard their privacy. Among casual users, 25% set a PIN for generalized
security reasons although they are not able to clearly articulate what those might
be. Moreover, 13 % set a PIN simply because they were prompted by Signal or do
not know why they actually set a PIN (16%). If casual users did not set a PIN,
they typically indicate that it was inconvenient (18 %) or they did not see the ne-
cessity (18 %). Their inaccurate understanding also affects this decision: 24 % state
that they do not need an additional safeguard to secure access to their Signal app
although the PIN is not used for this purpose.

Very few participants who set a PIN indicated that they had difficulty remem-
bering their PIN; only 12 % said they occasionally, frequently or very frequently have
difficulty remembering. When interacting with the periodic reminders to verify their
PIN, 59 % confirm their PIN frequently or very frequently. Only 24 % of all partici-
pants confirm their PIN rarely, very rarely, or never when prompted, yet, here the
behavior of enthusiasts and casuals diverges: 16 % of the latter tend to ignore the
reminder prompt compared to 28 % of the enthusiasts. In addition, 45 or 24 % of the
participants who currently use a PIN disabled these reminders. When asked why,
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67 % of the enthusiasts mention that they use a password manager while casuals are
mostly annoyed (42 %) or do not feel it is necessary to be reminded (33 %).

We also find that enthusiasts’ PINs are more password-like, often containing num-
bers, letters and symbols. Compared to casuals, enthusiasts on average choose PINs
with an additional 1.3 digits, 3.0 letters, and 1.3 special characters. Moreover, many
participants, particularly enthusiasts, use a password manager to store their Signal
PIN, which additionally increased the complexity of their PIN: password manager
users selected PINs with an additional 2.1 digits, 5.3 letters, and 3.1 special char-
acters compared to non-password manager users. A number of participants, both
enthusiasts and casuals, noted the reuse of their Signal PIN in other contexts, apps,
and as their screen lock, yet, 76% of the participants who use a PIN within Signal
said they do not reuse it.

In short, it appears Signal’s core audience of privacy-conscious enthusiasts is using
the PIN effectively, however, this roll-out may have been affected by inconsistent
communication. Some earlier versions of the app made PIN creation a requirement.
In addition, Signal PINs can contain letters and special characters. Weak Signal
PIN choices can have consequences for those that choose secure PINs as secure com-
munication requires both parties to be secure. We would recommend that Signal
consider adding features to encourage better choices, like an improved blocklist, or
even re-branding Signal PINs to more accurately depict their use, like “Account Re-
covery Passwords,” which could help users apply the right context during selection
and storage of this credential. Though our focus is on Signal, our results may in-
form communication strategies of other app developers, since account recovery and
registration lock features are common in secure messaging.

All our findings were shared with the Signal developers.

This work appeared in Symposium on Usable Privacy and Security (SOUPS ’21)
in collaboration with Philipp Markert and Adam J. Aviv.

5.2. Enhancing Signal User Authentication

Signal is an open-source app and service, developed and operated by the non-profit
Signal Technology Foundation. Signal implements the underlying Signal protocol
which includes forward secrecy [145, 146] and is used by other secure messaging
clients, like WhatsApp [147] and Facebook Messenger’s secret conversation fea-
ture [148]. Signal boasts more privacy consciousness in its design and implemen-
tation, eschewing linkages to an identity or collection of metadata, as compared to
its competitors, like Telegram, WhatsApp, or Threema [149,150]. Hereinafter, when
we refer to Signal, we mean the app/service and not the protocol unless otherwise
specified.
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Given its focus on privacy, Signal historically relied on a user’s mobile phone num-
ber as an identifier, reasoning that this system was already in place. This approach
also makes migrating to a new device easier for users when using the same phone
number, as long as the user’s contacts were already backed up by other means. Other
app settings, e.g., groups and blocked contacts, were formerly not backed up.

Additionally, receiving a valid SMS with a security code was sufficient to re-
establish an account with Signal to send/receive encrypted messages. Unfortunately,
phone numbers can be subject to SIM-swapping attacks [140–142], whereby an at-
tacker is able to register an existing phone number with a new mobile SIM card,
effectively stealing a user’s account on Signal.

To address both backing up device settings and preventing account hijacking,
Signal introduced two new features: Secure Value Recovery [143] and registration
lock [144]. Both services require an additional authentication check, namely a PIN,
and in the rest of this section, we describe Secure Value Recovery, registration lock,
and how Signal rolled out PINs.

Secure Value Recovery Secure Value Recovery (SVR) enables encrypted backup
and recovery of the Signal app settings, including contacts, profile, and group mem-
berships. The backup data is encrypted and stored on Signal’s servers. When a user
migrates to a new device, the goal is to restore this data into the new app installa-
tion. As the decryption needs a key, the user has to choose, recall, and enter a PIN
which is input to a key-derivation function. The resulting symmetric master key is
used to further derive the backup encryption key.

Registration lock The registration lock is an optional feature that binds the Signal
PIN to the user’s phone number. This way knowledge of the PIN is required as
a second authentication factor in addition to the ability to receive an SMS with a
one-time security code. This approach protects Signal from attacks like SIM swap-
ping [140–142] where an attacker can obtain the SMS code.

To realize this functionality, the protocol uses the symmetric master key that is
calculated as part of SVR, this time to derive a 32-byte registration lock hash. This
value is used similarly to a password: it is sent to the server to authenticate the
user. If the calculated registration-lock hash matches the one that is stored on the
Signal server, the SMS code is sent. If not, the SMS code will not be sent and the
registration of the phone number cannot be completed.

On the other hand, if an account needs to be migrated to a new device and the
user does not know the PIN, setting up the account with the phone number is only
possible after 7 days of inactivity. After this time span, the server’s registration lock
hash (of the PIN) expires and a new account can be created. However, the counter
will be reset each time the client connects to the Signal server which happens when



92 Chapter 5 Users’ Understanding of Signal PINs

receiving or sending messages. Additionally, the iOS or Android apps make requests
on a regular basis to keep the PIN hash alive even if the app itself is used infrequently.

Signal PINs Unlike PINs used to authenticate to gain access, like unlocking your
phone, the Signal PIN is used as a secondary authentication factor when moving an
account from one device to another. A user does not need to enter the PIN to use
Signal once it is installed on a particular device. However, Signal has a separate
setting that locks the application from unauthorized access by forcing the user to
verify their mobile phone’s unlock authentication, such as the PIN used to unlock
the device.

Also different than unlock authentication PINs, if a user forgets their Signal PIN
while maintaining access to the Signal app, it can be reset without any repercussions
as the current secure messaging keys can serve the purpose of authentication. After
resetting the PIN, the SVR-encrypted backup can be re-encrypted and uploaded to
Signal’s servers, and the registration lock hash can be regenerated.

Communicating the purpose of the PIN to users, including all the features it does
and does not support, is not a straightforward task. While Signal published an
article explaining the technical details of SVR and registration lock [144], explaining
it to all users remains a challenging task. Signal also originally required a user to
establish a PIN, but later made that choice optional.

Finally, as the Signal PIN is only needed at acute moments, Signal employs periodic
PIN reminders to help users memorize their PIN. These reminders to verify a PIN
are spaced at regular intervals, starting at 12 hours, then 1 day, 3 days, 7 days, and
every 14 days. Figure 5.1 shows the prompt that is shown to users for this purpose.

To encrypt the backup, the PIN is first turned into a 32-byte key k using the key
derivation function Argon2. Afterwards, k and a label are used as input to HMAC-
SHA256 to calculate an 32-byte identifier auth_key. The key k and a different label
are input to HMAC-SHA256 to generate a 32-byte pseudorandom value c1. Observe
that knowledge of this value along with a copy of an encrypted backup would enable
an attacker to recover all other values.

A second 32-byte value c2 is generated by a secure random-number generator.
Subsequently, c1 and c2 are used as the input to calculate the 32-byte master key
master_key using HMAC-SHA256. Finally, the master key is used as the input to an
HMAC-SHA256 to calculate an application key which is used to encrypt the backup.
By saving the random value c2 along with the identifier auth_key in a secure enclave
on the Signal server, a client is able to redo the whole computation as long as the
PIN is known. In case the user forgets the PIN but still has access to the device,
a new PIN can be set which will create a new backup. If the user forgets the PIN
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and does not have access to the device, a new account can be created as long as the
registration lock has not been set.

We observe here that most apps deploying new features collect plaintext metadata
about the usage of the features, making tasks like these easier. Owing to its desire
for user privacy, Signal has limited ability to gauge user behavior.

SVR was introduced by Signal to store metadata about user accounts in an en-
crypted way on the Signal servers. Thereby, it allows users to recover this information
which includes the profile settings, contacts, and the list of blocked contacts, if their
device gets stolen or lost.

Furthermore, SVR is necessary for Signal’s plan to support non-phone number
based identifiers, such as a username, so that is possible to use Signal without re-
vealing a phone number. Observe that as long as the contact list in the Signal app
is based on the contact list of a user’s smartphone, Signal does not need this kind of
additional backup mechanism. Now, if Signal allows users to register solely with a
username, all contacts would be lost when switching to a new device or reinstalling
the application.

5.3. Related Work on Secure Usable Messaging

In our study, we note a number of casual users with limited comprehension, a theme
also observed in other circumstances of secure messaging. Abu-Salma et al. [151]
noted that security and privacy is not always a leading driver in the adoption of a
secure messenger like Signal, but rather community pressure of wanting to be able
to reach specific contacts. De Luca et al. [152] and Das et al. [153, 154] come to a
similar conclusion and show that the influence of social factors is not only limited
to the adoption of messengers but security tools in general. Abu-Salma et al. [151]
further note that many users have misconceptions about the security of messaging,
such as the perception of SMS as secure for sensitive communication. Oesch et al.
conduct a user study confirming user misconceptions and finding that group-chat
users tend to manage security and privacy risks using non-technical means such as
self-censorship and manually inspecting group membership [155].

The work of Unger et al. [156] divides secure messaging protocols into trust es-
tablishment, conversation security, and transport privacy. Observe that while Signal
addresses each of these, the Signal PIN – and therefore our work, falls squarely into
the problem of trust establishment. SIM-swapping attacks are one of the prime at-
tacks against Signal’s former design. This class of attacks has been studied by Lee
et al. and others [140,142].

In general, Signal and other secure messaging services often face the problem of
explaining secure protocols, however, authentication ceremonies are challenging for
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users to understand [157, 158]. To address this issue, Wu et al. offered a redesign
of the authentication ceremony that emphasizes comprehension [159]. Vaziripour
et al. [160], on the other hand, suggested to partially automate the ceremony by
using social media accounts. The Signal PIN is used for key derivation and is an
example of a usable encryption scheme in the real world. These have been previously
studied by Ruoti et al. [161] who propose a secure email system and study varying
levels of user transparency and automation. While Signal aims for automatic key
management and automatic encryption, Ruoti et al. find that users had more trust in
an approach that emphasized manual steps and therefore comprehension. While our
research aims to understand how comprehension affects users’ PIN practices, similar
efforts to better communicate about this feature would likely help users.

Recently, Khan et al. [89] and Casimiro et al. [90] studied PIN reuse across different
contexts. Both find that re-use is rampant, and that users tend to have a small set
of PINs they use regularly. In our work we also find that certain kinds of PIN re-use
is common for Signal PINs, such as for an ATM/Credit/Payment card. As Signal
PINs are generally chosen and entered on mobile devices, users may be less inclined
to choose hard-to-guess, full-fledged, alphanumeric passwords with special symbols.
(Recall that a Signal PIN can have numbers, letters, and special symbols.) Melicher
et al. studied user selection of passwords on mobile devices [115], finding that the
limitations of the keyboard setting may lead to more easily guessable and weaker
passwords.

In our work, we find that participants using a password manager are more likely
to select strong Signal PINs. Unfortunately, in the mobile setting, users remain
challenged in using password managers. Seiler-Hwag et al. investigated common
password managers on smartphones [162], finding that all score poorly on standard
usability metrics. Even when a password manager is adopted, using the password
generation feature is not a given for all users. Pearman et al. [163] studied why users
do (and do not) adopt a password manager and find that even those that do use a
password manager may not use the password generation feature.

To the credit of the Signal team, they understood that the Signal PIN is unlike the
case of mobile unlock authentication where a typical user unlocks the device multiple
times per day. Instead, they realized an infrequently-used PIN is much more subject
to being forgotten by the user. So they employ the well-known technique of graduated
interval recall (also called spaced repetition). While the positive effects on recall
rates have been shown in multiple studies [164–167], including the memorability
of passwords [168–173], the usage of it in this context is novel. The deployment
of Signal’s periodic reminders to verify the PIN offers a real world example of the
effectiveness of this strategy.
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Our work is related to the area of messaging and usability of secure systems. For
example, a lot of work has been done on the design of security warnings and the
decisions made by users. Considering the browser setting, Egelman et al. investigate
the effectiveness of browser phishing warnings [174]. Biddle et al. report on the
feature added to browsers to communicate that a site has an Extended Validation
TLS certificate [175]. Sunshine et al. and Felt et al. report on the sometimes-bad
decisions made by users in the face of repeated warnings about TLS certificates [130,
132,176]. Reeder et al. and Akhawe et al. continue this work studying user reactions
to browser warnings [131, 177]. Other research also covered the design of warning
messages in general [178].

Bravo-Lillo et al. investigate the design of security decision user interfaces and
build a mental model of how and why users respond to or ignore warnings [179–181].
Shay et al. focus specifically on guidance given to users during the password creation
process [118].

5.4. User Study Design and Methodology

We conducted a user study of n = 235 Signal users recruited to complete a survey
about their understanding and strategies for managing their Signal PINs. In this
section, we provide details of the survey, recruitment, limitations, and ethics.

5.4.1. Study Design

We recruited participants in two samples. The first sample was from Reddit, the
Signal Community Forum, and snowballing; the second sample via Prolific. For
participants completing the study on Prolific, we first used Prolific’s built-in screening
to only recruit participants who use Signal, and as this pool was still insufficient, we
used a single screener question (Appendix B.1) as part of a two-part recruitment,
where participants noted which messaging app they used. Those using Signal were
invited to the main study. The entire survey is provided in Appendix B.2, and it
took participants 7 minutes, on average, to complete.

1. Informed Consent: All participants were informed of the procedures of the
survey and provided consent. The informed consent notified participants that
they would be asked to complete a short survey that asks questions about how
they select PINs and how they feel about Signal’s implementation.

2. Signal Usage: Participants must indicate they are a Signal user answering the
question: “Do you use Signal?”(Q1) All participants who responded in the
affirmative continued with the survey.

3. PIN Comprehension and Usage: Participants were now prompted with the
text: “PINs are a new feature provided by Signal. In your own words, please
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Figure 5.1.: Prompt used by Signal to occasionally ask users to verify their PIN

explain how PINs are used by Signal,” (Q4) followed by “Did you set a Signal
PIN?”(Q5) and why they did (Q6a) or why they did not (Q6b). Those who
did not set a PIN skipped ahead to Q25.
Those who did set a PIN were asked if the PIN was since disabled (Q7), and
if so, why (Q8). We also asked participants who still had their PIN enabled if
they have difficulty remembering their PIN (Q9), and what they would do if
they forgot their PIN (Q10).

4. PIN Reminders: We then asked a series of questions (Q11-Q14) on Signal’s
periodic PIN reminders (cf. Figure 5.1), including if participants currently
have the reminder set; for those who do, how frequently they verify the PIN
when prompted; and if they disabled it, why.

5. PIN Reuse and Sharing: Participants were asked to report if they reuse their
Signal PIN in other contexts, such as mobile device unlock (Q15), ATM and
other payment cards (Q16), and other mobile applications (Q17). In addition,
participants were also asked if they have shared their PIN with friends or family
(Q18). These questions were derived from related work on PIN usage [89,90].

6. PIN Selection and Composition: The survey continued with a series of questions
about PIN length and composition, as well as the perceived strength of the PIN
(Q19-Q24).

7. Other Messengers: The survey continued by asking about the use of PINs in
other messengers, including Facebook, Skype, Telegram, WeChat, and What-
sApp (Q29). We also asked if the Signal PIN is reused in any other messenger
as well as the reasons for doing or not doing so (Q30a/Q30b).

8. Demographics: Finally, we asked about demographics (D1-D5), including age,
gender, and IT background.

5.4.2. Recruitment and Demographics

We recruited a total of n = 235 participants. Of those 170 were recruited from
Reddit, the Signal Community Forum, and snowballing, and 69 were recruited on
Prolific. We posted to Reddit’s r/SampleSize and r/Signal forums; and the Signal
Community Forum. We decided against a fixed payment for these participants in
favor of not collecting any personally identifiable information, such as an email ad-
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dress to offer a gift-certificate via a raffle, and thus these participants took the survey
voluntarily without compensation.

We used Prolific’s built-in custom prescreening filters, which allow researchers to
post a study to participants that meet specific criteria, such as residing within the
US. We applied the custom prescreening for Prolific members who indicated Signal
is one of the “chat apps” they use regularly. We were able to recruit 69 participants
this way, each paid GBP 1.50. To expand the Prolific pool, we also employed a
custom screening survey to find other Signal users, recruiting 500 responses (paying
GBP 0.15). Those who indicated that they used Signal were invited to the main
study (paying GBP1.50). We were able to recruit an additional 11 participants this
way.

As shown in Table 5.1, the demographics of our sample is skewed toward a younger,
more male-identifying, and more IT-oriented group. On the other hand, our partic-
ipants reside in many different countries increasing the generality of our results. Of
the 235 participants, Germany accounted for (68; 29%), the USA for (61; 26%);
the UK for (24; 10%). The rest of the world was the largest group with (82; 35%).
The actual demographics of the Signal community at large are unknown, so the skew
towards a certain participant pool may reflect our recruiting strategy or may be influ-
enced by the makeup of the underlying community. We observe that at 75%, males
make up the largest cohort. Similarly, at 64%, those with IT-focused education or
employment make up a majority of participants. In terms of education, bachelor’s
and master’s groups combined account for 55% of participants. Our group of enthu-
siasts is also male-dominated: self-identified males outnumber females more than 8:1.
Finally, we note that among enthusiasts, the IT-focused group is substantially larger
at 3:1, while the figures are more balanced for casuals: about 1.2:1. It is reasonable
to surmise that an IT background makes one more likely to be a enthusiast — put
another way, Signal’s existing communication strategy about the Signal PIN appears
to be more effective for those with an IT background.

5.4.3. Limitations

As this study took place online, it shares the usual limitations of many online studies,
such as finding a representative recruitment. On the one hand, our sample may not
be a representative sample of all Signal users. Though we did not explicitly sample
enthusiasts and casuals separately, we found that comparatively more enthusiasts
were recruited via Reddit and Signal Community Forum, which led us to perform
additional sampling from Prolific.

As an online survey, this study necessarily relies on self-reported data. With re-
gard to security and privacy user studies, Redmiles et al. [182] show online-survey
responses generalize quite readily to the broader population. Additionally, we con-
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Table 5.1.: Demographics of participants divided by subgroups

Enthusiasts Casuals Total

No. % No. % No. %

Gender 132 56 % 103 44 % 235 100 %

Male 106 45 % 71 30 % 177 75 %
Female 13 6 % 24 10 % 37 16%

Non-Binary 1 0 % 1 0% 2 1 %
Other 1 0 % 0 0% 1 0 %

Prefer not to say 11 5 % 7 3% 18 8%

Age 132 56 % 103 44 % 235 100 %

18–24 31 13 % 14 6 % 45 19%
25–34 57 24 % 53 23 % 110 47 %
35–44 29 12 % 17 7 % 46 20%
45–54 7 3 % 10 4% 17 7 %
55–64 5 2 % 3 1% 8 3 %
65–74 0 0 % 3 1% 3 1 %

75 or older 1 0% 0 0 % 1 0%
Prefer not to say 2 1 % 3 1% 5 2 %

Education 132 56 % 103 44 % 235 100 %

Some High Sch. 0 0 % 3 1% 3 1 %
High School 31 13% 12 5 % 43 18 %

Some College 0 0% 0 0 % 0 0%
Trade 0 0% 4 2 % 4 2 %

Associate’s 3 1 % 6 3% 9 4 %
Bachelor’s 35 15% 32 14% 67 29 %

Master’s 38 16 % 25 11 % 63 27 %
Professional 9 4 % 3 1 % 12 5%

Doctorate 10 4 % 12 5% 22 9 %
Prefer not to say 6 3 % 6 3% 12 5 %

Country 132 56 % 103 44 % 235 100 %

Germany 48 20% 20 9 % 68 29 %
USA 25 11 % 36 15 % 61 26 %

United Kingdom 7 3 % 17 7 % 24 10 %
Other 52 22 % 30 13 % 82 35 %

Background 132 56 % 103 44 % 235 100 %

Technical 96 41 % 54 23 % 150 64 %
Non-Technical 33 14 % 44 19 % 77 33 %

Prefer not to say 3 1 % 5 2% 8 3 %

ducted extensive pilot testing among members of our research groups and trusted
colleagues to identify any ambiguities in our survey questions.

Another limitation is that participants’ responses may suffer from the well-known
tendency toward providing socially-desirable answers [183, 184]. For example, it is
possible that PIN reuse is more prevalent than our study suggests, or that people
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choose PINs that are shorter and have less-diverse composition. The same holds
for questions where we asked participants about their own understanding, where
they might have looked up answers on Signal’s website. Despite this possibility, the
answers provided appeared unique and participants provided many apt phrases to
describe the situation. Additionally, we did not find responses that were directly cut
and paste from Signal’s website.

5.4.4. Ethics

The study was administered at an institution that does not have an Institutional
Review Board (IRB), but we still followed all appropriate study procedures similar
to studies that obtained IRB approval. For example, participants were informed
about the nature of the study, participated voluntarily, and could opt-out at any
time. Additionally, we conformed with the ethical principles laid out in the Menlo
Report [97], for example, we minimized any potential harm by not collecting any
personally-identifiable information from our participants.

As described above, we completed two recruitments, one with paid and one with
unpaid participants. Unpaid participants were recruited via Reddit, Signal Commu-
nity Forum, and snowballing. We decided not to pay those participants as paying
a comparatively small amount did not appear to withstand the harm that went
along with collecting email addresses. Additionally, as this community tends to be
more privacy-conscious, doing so might have depressed participation. Participants
recruited via Prolific were paid GBP1.50 for successfully completing the main survey,
as this amount is in line with the recommended rewards on Prolific [185].

5.5. Results

In this section, we present the results of our study of n = 235 Signal users. For
the structure of the section, we follow our three research questions: we start by
analyzing the comprehension of the usage of PINs in Signal (RQ1), continue with
user responses to the reminder feature (RQ2), and conclude with PIN selection and
composition (RQ3).

For qualitative analysis, we had a primary coder code all the qualitative responses,
producing an initial codebook. A secondary coder used that codebook to indepen-
dently code the same responses, and afterward, the two coders met to resolve differ-
ences to produce a final codebook. The primary coder then used that final codebook
to re-code the data. The codebook used for each qualitative question can found in
Appendix B.4.
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Figure 5.2.: Classification of the participants based on the participants’ ability to
explain the usage of PINs in Signal (Q4).

5.5.1. RQ1: Comprehension

As part of RQ1, we seek to understand Signal users’ awareness and understanding
of PINs and how they fit into the Signal ecosystem. To answer this question, we
divide the participant pool by those that have or have not adopted a Signal PIN,
and also by those that demonstrate understanding of how Signal uses the PIN.

Understanding Signal PINs After indicating if they are a Signal user (Q1–Q3),
we first ask participants to describe how Signal PINs are used in their own words
(Q4): PINs are a new feature provided by Signal. In your own words, please explain
how PINs are used by Signal. These responses were coded by comprehension and
accuracy; specifically, we seek to understand if the participants recognized that PINs
are used for SVR and registration lock. Participants who accurately described the
usage of Signal PINs were coded as enthusiasts (n = 132; 56 %), and those who could
not describe Signal PIN usage were coded as casual Signal users (n = 103; 44 %).

We observed many different ways of capturing the main elements of how PINs
are used by Signal. Many of the enthusiasts were even able to demonstrate a deep
understanding, for example P10 said:

“It protects data like settings and group membership and signal [sic] contacts
that will be stored on Signal’s servers using SVR. Previously this was only stored
locally on a user’s device and was lost upon device reset or getting a new device
unless a full backup was made on Android.”

Participant responses were assigned one or more codes based on the aspects cor-
rectly described. Overall among enthusiasts, the most popular codes were backup
(65; 49 %), encryption (45; 34 %), contacts (31; 24 %), and registration (23; 17%).
Some also noted settings (8; 6 %), profile (4; 3 %) or groups (3; 2 %), which are also
secured via a Signal PIN during backup, and a few specified key derivation (7; 5 %).
Some also mentioned that PINs were part of a process for Signal to move away from
using phone numbers for identity (6; 5 %). A handful of enthusiasts also expressed
anti-cloud sentiments when asked about Signal PINs (2; 2 %), suggesting that they
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understood that the PINs play a role in the encrypted cloud backup functionality of
SVR, and that they are opposed to that design direction.

For the casual users, a majority (57; 55%) provided non-answers, or answers that
do not indicate any understanding of the way the Signal PIN is used. The answer of
P47 accurately summarized the reasoning we observed for many casual users:

“I don’t understand their purpose very well. I thought that they might be using
the PIN system to verify the identity of the person using signal (if for instance
someone unauthorized gained access to the phone), but the way that pin entry
is optionally offered every few weeks doesn’t align with such a purpose. as such,
I have no idea what they’re trying to accomplish.”

As the majority of casual users didn’t know or provided non-answers, there are
many other examples to choose from, including “I initially thought it was used as a
local PIN to unlock the app on my phone. It doesn’t do that so I have no idea how
it works,” from P62. Additionally, many casual users falsely associated PINs with
securing messages (21; 20 %) although messages are not part of the backed-up data
and are not protected by the PIN, as explained by P183: “Keep your messages on
Signal encrypted via use of the PIN.”

An equal number felt that the PIN locks the Signal app (21; 20%), while in
fact that functionality is called Signal Screen Lock and is not related to the Signal
PIN — for that feature, Signal simply re-uses the device’s existing PIN, biometric,
or other authentication scheme. An example of this response is from P37: “Protect
application from opening from an unlocked phone.” Similar responses show this is a
common misconception: “Pins are used to prevent unauthorized access to the app”
from P227. Some individual participants also mentioned security as a general topic,
without further describing it (2; 2%), or associated the PIN with inconvenience (1;
1 %).

Why did participants set a PIN? In addition to knowing if participants understand
the usage of the PIN, we also want to analyze how many actually set a PIN in their
Signal app. In total, 202 or 86 % of all 235 participants adopted a PIN. If we
further divide those 202 participants based on their understanding, we see that more
enthusiasts (116; 57 %) than casuals (86; 43%) set a PIN.

To get a deeper understanding, Q6a asked participants to explain their decision.
By far the most popular reason, equally distributed among enthusiasts and casuals,
is security : 48 or 24% mentioned it in their answer. Once again, we find that
enthusiasts display a detailed, in-depth understanding, exemplified by P14:

“I want to be able to use secondary identifier once it becomes available and not
to lose my contacts that are not in my phone’s contacts list. I also want to be
secure against SIM-swap attacks.”
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This code is followed by participants mentioning that they were required to set a
PIN (33; 16 %). Among enthusiasts, we observed 25 that mentioned it was required
(or 22%). P164 said “I had absolutely no choice if I wanted to continue to use Signal.
Eventually, the box asking you to create a PIN kept you from opening any of your
messages until you did what it wanted.”

This response may reflect the changing nature of the PIN requirement. Initially, it
was required and then in a subsequent version, merely encouraged. The enthusiast-
casual split here suggests perhaps more enthusiasts were early adopters of the Signal
PIN. Another theme, of setting a PIN due to annoyance (12; 11%) may also reflect
this changing communication strategy for Signal PINs. See for example Figure B.1,
showing the initial prompt used by Signal to ask users to create a PIN; the prompt
has subsequently been updated to B.2, current as of this writing. Observe the com-
munication is also different when a user wishes to change their PIN as shown in
Figure B.3, again current as of this writing.

Enthusiasts also regularly noted registration lock as a reason to set a PIN (14;
12%). P3 said “The PIN stop [sic] others from registering as me, and also protects
access to my account details (profile, settings, contacts) if my device is misplaced.”

Casual Signal users noted security most frequently (26; 29%), but did so in a
more general way as seen in this quote from P141: “for security and for reassurance
if device gets stolen.” Additional codes include don’t know (16; 18%) and prompted
(13; 15%), suggesting that many casual users selected a PIN simply because they
were prompted to do so and had no other underlying motivations. For example,
P155 responded “I trusted the app and just did it when prompted.”

Why did participants not set a PIN? A total of 33 (14%) participants chose not
to set a PIN (see Figure 5.3). A roughly equal number of enthusiasts and casual
Signal users did not set a PIN: 16 enthusiasts (12%) did not set a PIN and 17 (17 %)
casual Signal users did not set a PIN. A χ2 test revealed no significant differences
between the groups.

When these n = 33 participants described why they did not set a PIN (Q6b),
there were a number of differences. Both casual (3; 18 %) and enthusiasts (4; 25%)
described PINs as inconvenient, but casual users were more likely to note that either
they do not need a Signal PIN (3; 18%) or that their phone lock provided security (4;
24%). For example P227 noted that their “. . . phone is always locked” and “Additional
authentication seems unnecessary.”

Enthusiasts expressed distrust as a reason for not setting a PIN. Either this dis-
trust is in the security of PINs for key derivation and management (3; 19 %), or they
distrust cloud storage (7; 44%). Distrust of cloud storage stems from privacy con-
cerns with the SVR feature that backs up contacts and settings. P216, for example
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stated, that they “had no desire to have any contact data uploaded,” and P207 said
“i [sic] do not want to store personal information in the cloud.”

0% 20% 40% 60% 80% 100%

Disabled PIN

No PIN Set

Enthusiasts Casuals

5 6

16 17

Figure 5.3.: Classification of the participants who disabled or did not set a Signal
PIN.

Why do participants disable PINs? On top of the 33 users who declined to set a
PIN, a total of 11 (5%) set a PIN and then later disabled it: 5 (45%) enthusiasts
and 6 (55 %) casual users, as shown in Figure 5.3. When asked to explain why they
disabled their PIN (Q8), participants mentioned that the PINs were annoying (4;
36 %) or inconvenient (2; 18%), which may be related to the periodic verification
reminders. P212 explicitly mentioned the “verification overhead.” Anti-cloud hesita-
tion to store data on Signal’s servers led (3; 27 %) participants to disable their PIN:
“Don’t want my data stored on their server” (P193). We also observed (2; 18 %)
participants who simply stated that they “do not need it” (P206).

RQ1 Results summary Signal users in our sample break down into two groups:
enthusiasts who were aware of the features Signal PINs enabled, and more casual
Signal users who were unable to describe how PINs are used within Signal. In
both groups, though, setting a Signal PIN was highly prevalent. Only 33 of the
235 respondents chose not to set a PIN. Among enthusiasts, their choice to not set
a PIN stemmed from either distrust in the key-derivation process or hesitancy to
store information in the cloud generally. Casual users did not set a PIN because
of inconvenience or a false belief that other authentication mechanisms, like locking
their phone, provided adequate protection. When participants disabled their Signal
PIN, inconvenience or annoyance were often cited, sometimes referring specifically
to the periodic reminders.

5.5.2. RQ2: PIN Recall and Reminders

In this section, to address RQ2, we consider how participants remember their PINs
and their reactions to the periodic PIN verification reminders. Throughout this
section we consider the n = 191 participants who still have their PIN enabled, and
not the 11 participants who since disabled their PIN.
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Q9: Difficulty Remembering
Enthusiasts 0 20 40 60 80 100

Casuals 0 20 40 60 80 100

Q12: Verify PIN
Enthusiasts 0 20 40 60 80 100

Casuals
0% 20% 40% 60% 80% 100%

Never Very Rarely Rarely
Occasionally Frequently Very

Frequently

Figure 5.4.: PIN memorability and verification

Forgetting PINs We asked the (n = 191) participants who still use a Signal PIN
in Q9 if they encountered difficulty in remembering their PIN. Overwhelmingly,
89% of participants (n = 170) indicated that they never, very rarely, or rarely have
difficulty remembering their PIN (see Figure 5.4; top). We compared the response
to this question from enthusiasts (n = 106) and casual (n = 85) Signal users who
still had their PIN enabled, and we found no statistical differences.

We asked participants in Q10 what they would do if they forgot their Signal PIN.
(Note that the PIN is not required to use Signal for messaging, and can be reset at
any time in the settings menu.) Many enthusiasts noted that their PIN was stored in
their password manager (45; 42%), and they would simply look it up. Fewer casual
participants mentioned a password manager (12; 15%). A number of participants
did not know what to do (27; 25% enthusiasts and 33; 40% casuals), while a few
casuals suggested they would contact Signal (4; 5%) and two enthusiasts said they
would reinstall the app (2; 2%). Others believed that their Signal account is now
unrecoverable (2; 2% enthusiasts and 3; 4% casuals); some would create a new
account (4; 4% enthusiasts and 5; 6%) casuals. A handful (2; 2% enthusiasts and
4; 5% casuals) denied that they would forget stating “It is a PIN I use for my bank
cards” (P145), for example. A small number of participants noted that they would
wait (8; 7% enthusiasts and 4; 5% casuals), aware that the registration lock expires
after 7 days of inactivity.

Periodic verification Perhaps recognizing that Signal PINs are only truly required
when transferring a Signal account to a new device, Signal decided to employ gradu-
ated interval recall [165] (or, spaced repetition) that regularly prompted participants
to verify their PIN when opening the Signal app. An example of such a reminder
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is found in Figure 5.1. To our knowledge, Signal is the first mainstream app to
implement such a feature.

We first asked participants if they were aware of the PIN verification reminders
(Q11). Most participants (n = 176; 92%) indicated that they were aware, and a
follow up question (Q13) asked if they have since disabled the reminders. Seventy-
four percent (n = 131) of participants have the periodic PIN verification enabled,
and many still verify their PIN when prompted. Seventy-six percent (n = 135) of
participants either occasionally, frequently, or very frequently verify their PIN when
prompted. When dividing this data by enthusiasts and casual Signal users (see
Figure 5.4; bottom), we did not observe significant differences between frequency of
PIN verification using a Mann-Whitney U test.

The remaining 23 % (n = 45) disabled the PIN reminders. These 45 participants
were asked why they disabled the reminders (Q14): (23; 51 %) mentioned doing so
because they use a password manager. P63 said “I don’t remember my PIN, it’s
stored in my password manager, frankly, I don’t even want to remember it.” Ten
(22%) said there was no need or their PIN was already memorized, and a further
(11; 24 %) found the reminders annoying. These figures suggest that the periodic
reminders are generally viewed as beneficial, or at least not substantially invasive
enough to warrant disabling them. As we rely on self-reported data, we do not
independently verify PIN recall rates.

Password manager usage We found a large amount of password manager (PM)
usage in our study. These reports were entirely unprompted as PMs were not men-
tioned in any survey material. Thirty-one percent (n = 62) indicated that they use a
PM in response to questions regarding either what they would do if they forget their
PIN Q10 or how they select their PIN Q20. As we did not explicitly ask about PM
usage, the true number of PM users might be higher.

More striking is the combination of the classification of enthusiasts and casual
participants combined with that of PMs: (52; 83 %) of the 62 participants who
said they use a PM were enthusiasts. Or, 50 % of the 103 enthusiasts who have a
PIN enabled use a PM. Only (10; 14 %) of the 73 casual Signal users using a PIN
mentioned PMs as a mechanism to either select or recall their PIN. Put another way,
participants who mentioned a PM were overwhelmingly enthusiasts.

RQ2 Results summary Participants indicated that they have little difficulty
remembering their PIN, many stating that this is a PIN they use all the time and
thus would never forget it. A large number of participants, notably half of PIN-using
enthusiasts, use password managers to both select and recall their Signal PIN, and
are thus, not concerned with forgetting their PIN. Reactions to Signal’s periodic
PIN verification requests were more mixed, but overwhelmingly participants verified
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Figure 5.5.: Frequency of PIN reuse and sharing

their PIN when prompted. Roughly a quarter of participants disabled periodic PIN
verification; most did so because they use a password manager. Others stated that
the PIN was already memorized, so there was no need for the reminders, and some
simply found the reminders annoying. Overall, since 76% of participants reported
verifying their PIN when prompted, we conclude graduated interval recall used for
Signal PIN verification is generally embraced by users, though the effectiveness of
this intervention is obviously an area that deserves future work.

5.5.3. RQ3: PIN Re-use and Composition

In this section, we explore selection strategies of Signal PINs by asking participants
if they re-use their Signal PIN in other contexts; the composition of their Signal PIN
with respect to numbers, digits, and special symbols; and the perceived security of
their Signal PIN in comparison to other PINs they use.

PIN re-use To explore the many ways in which PINs are reused, we adopted ques-
tions from Khan et al. [89] and Casimiro et al. [90] regarding PIN usage, more broadly.
The responses of n = 191 participants using a Signal PIN are found in Figure 5.5,
broken down by enthusiasts and casual users.

First, as a mobile application, we asked participants if they used their smartphone
unlock PIN as their Signal PIN (Q15). Thirteen percent (n = 26) did so, composed
of 12 enthusiasts and 14 casual users. In Q16, we asked if they used the Signal PIN
in other contexts, ranging from ATM/Credit/Payment cards, to garage door codes,
gaming consoles, and voice mail. (Refer to Appendix B.2 for the full list, derived
from Khan et al. and Casimiro et al.) Twenty-eight percent (n = 53) of participants
use their PIN in another context, consisting of (25; 43 %) enthusiasts and (28; 53 %)
casual users. Among those who reused, casual users did so more often: 1.39 times on
average, compared to enthusiasts who did so 1.24 times. The most common context
of PIN re-use overall was for ATM/credit/payment cards where (17; 32%) of 53
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Figure 5.6.: Most popular codes assigned to the answers of Q20: What was your
primary strategy in selecting your Signal PIN?

participants reused a PIN. Participants also mentioned laptop/PC authentication
(13; 24 %) and other online accounts (11; 21%).

We also asked if participants re-use PINs in other mobile applications (Q17): (21;
11 %) reported they did, and of those, 12 were enthusiasts and 9 were casual users.
Most commonly, the other app was WhatsApp (n = 6); WhatsApp implements the
Signal Protocol. Other common mobile apps where this PIN was reused were banking
apps (n = 5). In Q25–Q28, we asked participants if they use other messenger
services, such as Facebook messenger, Telegram, and WhatsApp: (183; 95 %) did.
We also asked if they set a PIN in these services and found (49; 26%) did.

Finally, we asked if participants share their PIN with friends and family: this was
rare. Only 3 participants did so, suggesting that PINs selected for Signal are not
widely shared with others and are considered confidential.

PIN composition A participant’s understanding of the Signal PIN’s functionality
had a large effect on the composition of their PIN. We asked participants what
was their primary PIN selection strategy in Q20: code frequencies summarized in
Figure 5.6 (with full details in Table B.8 in Appendix B.4).

Among enthusiasts, password managers (PM) were mentioned frequently (28;
26 %). For example P100 noted that their “password safe generated it.” Some par-
ticipants mentioned the name of their password manager explicitly, like KeePass
or Bitwarden. Far fewer casual Signal users (6; 7 %) mentioned a PM. The most-
frequent code among casuals was memorable: (30; 36%), choosing a PIN easy to
remember; among enthusiasts it was second-most frequent (23; 21 %). For example,
P7 noted their PIN was “Complicated enough but can still be remembered.” This
result suggests that despite the prevalence of randomized password generation, most
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Figure 5.7.: Most popular codes assigned to the answers of Q22: Why did you choose
a PIN with this security level?

participants want to select a PIN they can remember and recall easily, rather than
having to look it up in a PM.

Interestingly, while the study of Markert et al. found dates to be the most-popular
strategy for selecting a PIN, only 3 of our participants mentioned dates (2 enthusiasts
and 1 casual) [186]. In the study of Markert et al. with (n = 200), memorable was
the second-most frequent code (37; 19%).

We then asked participants why they select a PIN with the current “security level”
(Q22). (Results summarized in Figure 5.7; full details in Table B.9 in Appendix B.4.)
Among both enthusiasts (25; 23%) and casual Signal (20; 24%) users, many men-
tioned security; P44, an enthusiast, said “I am fairly security conscious.”

Casuals and enthusiasts roughly equally mentioned that they chose something that
was simply good enough: (16; 15 %) and (15; 18%) respectively. Slightly more casual
users mentioned memorability: (12; 11 %) enthusiasts and (18; 22 %) casual users. A
similar number of enthusiasts (11; 10%) and casuals (6; 7 %) mentioned that they try
to be consistent in their security choices around PINs (and authentication generally),
for example “Because I always choose this security level” (P109).

Recall that while Signal refers to this secret as a PIN, it is not a traditional
personal identification number, but rather has more of the properties of a password.
We asked participants to provide metrics for how many numbers, characters, and
special symbols they use in their Signal PIN (Q24). Participants were presented a
slider for each class from 0 to 12. While it is of course possible that a participant
might have more than 12 digits, as a practical matter more than this simply indicates
the use of a PM, which we can see in our data. Results are shown in Table 5.2.

Enthusiasts on average chose PINs with an additional 1.3 digits, 3.0 letters, and
1.3 special characters, and length increased overall by 5.5 characters. Except for
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Table 5.2.: PIN composition among different user groups of n = 191 participants
who set a PIN and did not disable it. t-tests were performed between
groups within categories; all p-values are displayed Bonferroni-corrected
for 8 overlapping hypothesis tests.

Length
Classification Participants Mean (SD) t-test

Enthusiast 106 12.7 (9.8) t = 4.65
Casual 85 7.2 (5.7) p < 0.001∗∗

PM User 62 17.3 (10.2) t = 9.42
non-PM User 129 6.8 (5.3) p < 0.001∗∗

Overall 191 10.3 (8.7) –

Digits Letters Special Characters
Mean (SD) t-test Mean (SD) t-test Mean (SD) t-test

6.2 (3.3) t = 2.97 4.4 (5.1) t = 4.57 2.2 (4.1) t = 2.74
4.9 (2.4) p = 0.026∗ 1.4 (3.3) p < 0.001∗∗ 0.9 (2.4) p = 0.05

7.0 (3.7) t = 4.72 6.7 (5.1) t = 8.79 3.7 (4.7) t = 6.16
4.9 (2.3) p < 0.001∗∗ 1.3 (3.2) p < 0.001∗∗ 0.6 (2.2) p < 0.001∗∗

5.6 (3.0) – 3.1 (4.7) – 1.6 (3.5) –

the number of special characters, we were able to observe significant differences
between the enthusiasts and the casuals using a t-test with Bonferroni-correction
(for 8 overlapping hypotheses).

When dividing the population by their use of PMs, the difference is even greater.
(Note that more enthusiasts employed a PM.) PM users chose PINs with an addi-
tional 2.1 digits, 5.3 letters, and 3.1 special characters. Overall, they used PINs which
are 10.5 characters longer on average. Using a t-test with Bonferroni-correction, we
were able to observe significant differences for all those statistics.

RQ3 Results summary Many participants re-use Signal PINs in a number of
ways. Roughly 15% indicated that they use their Signal PIN as their screen lock
PIN, used to unlock their smartphone. Nearly 30 % noted that the same PIN is
used in other contexts, most commonly as an ATM/banking/payment card PIN. The
Signal PIN is also reused in other mobile apps, such as a WhatsApp PIN, serving the
same purpose as a Signal PIN for SVR and registration lock. When selecting a PIN,
understanding of the purpose of Signal PINs led to much more diverse PINs, both
in terms of the PIN length but also the presence of special characters and symbols.
Among enthusiasts, the use of a password manager was particularly prominent when
selecting a PIN, as compared to more casual users. But by far the largest factor in
PIN selection overall is a desire for choosing a memorable PIN.
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5.6. Discussion of Recommended Enhancements

Communicating about Signal PINs Our data show Signal’s communication about
the PIN feature has been effective for its traditional community of privacy enthusi-
asts. Without prompting, participants told us they learned about the PIN by reading
blog posts, the Signal website, and tweets. Casual users, on the other hand, were
much less likely to have exposure to these other sources. For this reason, in-app
or in-the-moment resources nudging casual users in a more secure direction would
almost certainly be of benefit.

As explained in Section 5.2, the case of Signal is especially challenging. While
users are surely familiar with PINs as used in smartphone-unlock and payment-card
scenarios, Signal PINs are actually used to infrequently derive encryption keys for
SVR and infrequently act as a password for registration lock. Yet, despite the text
in the Signal PIN enrollment prompt (see Figure B.2) saying “You won’t need your
PIN to open the app,” many of the participants who did not set a PIN mentioned
inconvenience as a reason for their decision.

When further exploring the cause for this, the name “PIN” itself, is likely caus-
ing confusion. The Signal PIN is fundamentally a countermeasure against account
takeover and to offer recovery functionality. If for example, the Signal PIN were
to be called the “Account Recovery Password,” or perhaps “Restore/Recovery Pass-
word,” that might better convey the usage pattern. Text could then inform the user
of the ill consequences of a bad PIN choice. This end could be achieved with text
like “This password protects you from account takeover.” Re-framing the PIN in
this way could break the users’ mental association with device-unlock PINs while
also inspiring dread of consequences. While our study does not directly measure the
effectiveness of such an intervention, the themes we uncovered naturally point in this
direction.

Encouraging password managers The Signal PIN ultimately is used to derive a
symmetric key in SVR and to retrieve a copy of the encrypted profile backup. For
this reason alone, it is worth encouraging users to generate and store their Signal PIN
in a password manager (PM). Few users are willing to memorize long, random keys
and a PM is much better at generation, storage, and recall of secrets. Importantly,
the user interface of a PM is already designed to explain these concepts to a user.
The longest and most diverse PINs observed in the data were selected by participants
using a PM.

But to reach this goal, broader adoption of PMs is also needed: while half of the
enthusiasts in our study are already using a PM to manage their Signal PIN, only
10 casual participants do (10%). For at least this group of users, this approach is
preferable. The Signal app could reinforce this idea in the UI and encourage users
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to adopt a PM if they have not yet — and if they have, to use it to manage their
Signal PIN.

PIN security An account with a strong PIN is less likely to be taken over by
an attacker on the network. Our data show large differences in how subgroups
of participants select PINs. Although we did not ask participants for their Signal
PIN, we asked for its composition among classes of characters: digits, letters, and
special characters. Importantly Signal PIN security affects all users because account
takeover can affect both the sender and receivers, especially in a group conversation.
Even if a given user picks a strong PIN, if one of their messaging partners does
not — that well-behaved user is at risk of mistakenly communicating sensitive data
to an attacker who hijacked another account.

The current mechanisms of ensuring users select a strong PIN are minimal. Signal
currently implements a very small blocklist of weak numeric PINs. These include
the following:

(a) not empty;

(b) not sequential digits (e.g., 1234);

(c) not all the same digit (e.g., 0000)

Note that this leaves other popular choices like recent years and dates as acceptable
Signal PINs, which are often chosen by users [25, 186]. A targeted attack on an ac-
count where the victim’s birthdate, anniversary, etc. are known would likely greatly
assist the attacker. The sequence check also only applies to numeric PINs — observe
“abcd” and “aaaa” are both valid PINs. In addition, this approach fails to block
popular passwords like “password.”

This situation could certainly be improved quite easily, for example implementing
the blocklist as recommended by Markert et al. [186] and Bonneau et al. [25] for PINs
and following recent guidance from the literature and from government agencies for
passwords. NIST Special Publication 800-63B, recommends checking user password
choices against lists of the most popular passwords [3]. PIN checks could easily occur
locally on the user’s device; however full password checks would require additional
features to protect the privacy of the user’s password.

PIN verification reminders To our knowledge, this is the highest-profile roll-out to
date of PIN verification reminders (both on Signal and other messengers using the
Signal protocol, like WhatsApp). While our study is based on user self-reported data,
Figure 5.4 shows that participants do not generally feel they have a problem recalling
their Signal PIN. This could be due to password manager use or that participants
are using PINs they know well and use in other contexts. More than half of users
say they frequently/very frequently verify their PIN when prompted, which points
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to user acceptance of PIN reminders. Even though (45; 24 %) of respondents turned
off PIN reminders, many of those used a password manager; the remainder appear
to be comfortable and appreciate periodic PIN verification.

5.7. Conclusion

We conducted an online study (n = 235) of Signal users recruited from Reddit,
Signal Community Forum, snowballing, and Prolific about their understanding and
choice of Signal PINs. In total, 86 % of participants set a PIN, with 57% able to
technically describe what Signal PINs are used for (enthusiasts) and 43 % unable
to accurately describe how Signal PINs are used (casuals). We also find that PIN
composition followed similar lines: enthusiasts use significantly longer PINs with
more complex compositions, and casual participants used more traditional, numeric
PINs despite the fact that Signal allows PINs to be alphanumeric. This suggests
that communication about the Signal PIN has been effective for part of the Signal
population only and that new strategies will be needed to reach the remainder.

As an example of in-app authentication — an authentication mechanism that oc-
curs within a mobile app setting — our investigation shows that in the case of Signal,
in-app usage of PINs can be confusing for users who have grown accustomed to screen
lock and website login. These authentication metaphors are used often enough that
users can be reasonably expected to handle them without much explanation. Where
some authentication machinery (a PIN, for example) is repurposed for symmetric-key
derivation, only enthusiasts can be expected to read the blogs, documents, tweets,
and online help text to gain a full understanding.

Thus, we conclude that communication needs to meet the understanding of the
(possibly multiple) user communities. Outside of a core constituency, even something
as simple as the name matters. Signal’s choice of the term “PIN” can be seen as
correct and well-understood by the developers and enthusiasts. However, Signal
may be well served in renaming their PIN, e.g., to “Account Recovery Password,”
and other uses of in-app authentication will need to carefully choose names and
messaging to match user expectations.

Though our study does not measure the effect of this intervention, we believe
there is strong evidence that suggests renaming Signal PIN to better reflect its usage
could be helpful. First, a number of participants described it as an authentication
mechanism or message privacy mechanism or simply indicated they do not know.
A more precise name, like “Account Recovery,” would help users place the Signal
PIN in context with other credentials they manage. Second, reusing the term “PIN”
suggests to users that only digits are valid. Using the word “Password” or “Passcode”
could elicit broader classes beyond digits and encourage more diverse composition.
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5.8. Author Contribution

In this paper appearing in Symposium on Usable Privacy and Security, I was the
first author and I personally contributed most elements. Given the previous work on
PINs for smartphone unlock, I suggested the idea of performing a study on the Signal
PIN. I contributed the research questions and the survey instrument. I contributed
the analysis plan to interpret our results.

In addition, I was responsible for design and implementation of the online sur-
vey using the Qualtrics platform. I developed analysis scripts and implemented a
data-analysis pipeline. I coded and analyzed qualitative data including the primary
codebook. This effort led directly to my contribution of figures and tables in the
final manuscript. I contributed our presentation and talk based on our work which
appeared at the conference.
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6.1. Introduction

Smartphones store sensitive and personal information, including emails, photos,
videos, text messages, passwords, account numbers, among others [187]. Securing
access to these devices is essential to protect this information. Since both Android
and iOS allow smartphone unlocking using either a biometric or knowledge-based
authenticator (PIN/password), device security requires a PIN that is hard to guess.

Prior work notes that PINs are the most widely used mechanism to secure ac-
cess to smartphones, with about 60% of participants using PINs [12] to unlock
their devices. At the same time, however, previous studies [12] have shown that
many human-chosen 4-digit PINs can easily be guessed by adversaries in just a few
attempts, and that upgrades to 6-digit PINs, unfortunately, do not meaningfully
improve security [12,83].

Previous research [49, 61, 83] on PIN-guessing assumes a well-informed attacker
with access to commonly-used PIN datasets. Here, we investigate a different, more
commonplace setting, where users do not have access to this information and simply
try to guess a stranger’s PIN – a novice attacker.

Motivated by this unexplored attacker model and the threat models that real users
face, we seek to address the following three research questions:

RQ1 How do participants select PINs when primed to guess the PINs of other
participants?

RQ2 How well do novice attackers perform compared to the data-driven guessers
used previously?

RQ3 What PIN-based smartphone-unlock scenarios are participants most concerned
about?

To answer these research questions, we followed a methodology used by Uellenbeck
et al. [13] to study Android unlock patterns where participants were incentivized to
guess patterns selected by others in the study, receiving candy if they successfully
guessed another participant’s pattern. We adapt this methodology to study PINs
through an online survey where participants (n = 210) first select a “secret” PIN
they would use to protect their smartphone. Thereafter, participants entered five
guesses for PINs selected by others in the study, receiving a bonus payment if they
succeeded in guessing any other participant’s PIN. Each participant was assigned
to one of two treatments, corresponding to 4- or 6-digit PIN selection and guessing.
Each treatment had a total of 105 participants.

We find that PINs remain susceptible to guessing even by novices that have no
information about the victim, with a total of fourteen 4-digit PINs and seven 6-digit
PINs guessed by participants. There is also a benefit for 6-digit PINs as fewer of these
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PINs were guessed. Previous work analyzing informed, data-driven attackers [12,62,
83], found little to no benefit for 6-digit over 4-digit PINs.

To understand how novice attackers compare to data-driven attackers, we aggre-
gated participants’ guesses and measured their performance when guessing a large
PIN dataset collected by Markert et al. [12] for 4- and 6-digit PINs. We find that
in the throttled scenario of mobile authentication, where an attacker only has a lim-
ited number of guessing attempts, novice attackers perform similarly to data-driven
attackers, in line with previous work [12, 49, 83]. When making up to 30 guesses, a
novice attacker performs slightly better, guessing 8.1% of the 4-digit PINs collected
by Markert et al., comparable to the 7.6% guessed by a data-driven attacker. Simi-
larly, a novice guesser succeeds at guessing 9.6% of 6-digit PINs collected by Markert
et al. after 30 guesses, again slightly more than 8.7% guessed by a data-driven at-
tacker. Our results show that data-driven attackers indeed model real-world threats,
and support the guessing approaches leveraged in previous studies [12,49,83] where
the Amitay dataset has been used to guess 4-digit PINs, and the RockYou dataset
to guess 6-digit PINs.

Participants additionally explained their expectations around PIN security and
guessing. Thirty-seven percent of participants admitted attempting to access some-
one else’s smartphone without their knowledge, while 45% of participants changed
their PIN to keep someone out. About one-third (34%) of participants overall thought
their PIN would be guessed. For those whose PIN was guessed, once again one-third
(33%) thought it would be, suggesting participants’ perception of the risk of PIN
guessing is not related to their PIN choice. As ever, there is an opportunity for user
education to help align threats and expectations.

Overall, we conduct the first user study exploring how users guess PINs selected
by others as well as how they expect their PINs to be guessed. We find that novice
attackers without any knowledge about the victim have surprising capacity to guess
PINs, and can roughly guess one in eight PINs. These results suggest the need
for more design interventions to nudge users towards more secure PIN choices. We
additionally find that users express a need to delegate access to their smartphones
for various reasons, suggesting a need for more user awareness and education about
device-sharing options.

6.2. Related Work on Smartphone Threat Models

This study analyzes the security of both 4-digit and 6-digit PINs against a specific
threat model in the form of real-world human-scale attackers. Hence, this section is
two-fold, and presents work both on the security of mobile authentication as well as
users’ perceived threat models regarding access to their smartphones.
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Prior work has analyzed the security of numerous knowledge-based authentication
schemes used on mobile devices, e.g., alpha-numeric passwords [115,121], LG Knock
Codes [188], or Android unlock patterns [13,58,60,189–191]. The study most closely
related to our work is the one by Uellenbeck et al. [13]. In their study, participants
created a “defensive” Android unlock pattern and were given 5 attempts, so called
“offensive” patterns, to guess the defensive choices of other participants. We applied
this method to PINs to model an average real-world attacker by asking participants
to select their own PIN, and then provide 5 guesses for PINs they believe other
participants selected. This is different from prior work on the security of PINs [12,
49, 61, 83] which considers a perfect knowledge attacker with full knowledge about
the PIN distribution or a simulated attacker that has access to likely 4- or 6-digit
PINs collected from experiments or extracted from password leaks.

Bonneau et al. [61] focused their analysis on human-chosen 4-digit PINs which are
predominant for mobile devices but are also used in the banking sector for payment
cards. Wang et al. [49], Markert et al. [12], and Munyendo et al. [83] on the other
hand, also included 6-digit PINs which are predominant in Asia and the default on
Apple devices since the roll out of iOS 9 in 2015 [192, 193]. Their analyses show
that the security of 4- and 6-digit PINs is comparable and in certain cases, 4-digit
PINs are more secure. This is particularly the case for an online attacker limited
in the number of guesses they can make, with general knowledge of the distribution
of PINs, but no targeted knowledge about the victim. Munyendo et al. specifically
showed the limited security benefits of upgrading from 4- to 6-digit PINs.

6.3. Methodology

In this section, we describe the attacker model, datasets, structure of the survey,
recruitment and demographics of participants, as well as the qualitative data analysis
methods we used. We conclude with the ethical implications and limitations of our
study.

6.3.1. Attacker Model

This work focuses on a surreptitious throttled attacker, relevant to Google’s Android
and Apple’s iOS, where rate-limiting mechanisms are in place to slow or stop an
attacker from simply trying every possible PIN. We will refer to “secret” PINs chosen
by device owners to defend against attacks, and “guesses” or “guessing PINs” chosen
by an attacker on offense. Our simulation considers the attacker successful if any of
their 5 guesses matches the secret PIN of any other participant. We consider the
results of each guesser entering the same guesses on 105 different devices. Given
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the lifetime of unlock PINs, we assume each PIN will easily face many instances of
unattended attack opportunities. We assume that:

(1) The attacker is performing an online or UI-bound attack, limited in the number
of guesses. Based on the throttling implemented on iOS 15, the phone locks after 6
incorrect guesses, so an attacker can make 5 guesses without locking the phone and
therefore being detectable by its owner. Similarly on Android, after 5 guesses, the
phone locks for 30 seconds [194] (2) The attacker knows the secret PIN length, i.e.,
whether to guess a 4- or 6-digit PIN. This is the case for Apple devices where the
GUI of the lock screen indicates the PIN length. (3) The attacker is untargeted and
novice, i.e., has no personal information about the victim whatsoever and uses their
intuition to guess PINs others may have chosen. As described in Section 6.2, it has
been shown that an attacker who has knowledge about the victim, by knowing their
birthday for example, can use this knowledge to increase their success rate. Our
guessability results, therefore, provide a lower bound on an attacker’s capability.

6.3.2. Survey Structure

Below, we outline the overall survey structure. Please refer to Appendix C.1 for
a detailed description of the survey instrument including the full wording of all
questions.

To allow comparison with previous work, we use the same language and similar
ordering of prompts and tasks, the same general appearance and functionality of the
PIN pad, and survey questions from previous studies. For example, the practice,
task description, and creation prompts match those from Markert et al. [12] for the
selection of secret PINs. The overall aim of this approach is to minimize additional
bias that might be introduced due to question presentation, phrasing, or a different
PIN pad. All participants were required to complete the study using a smartphone:
their user-agent string was recorded to ensure a smartphone was used.

Further, we assigned participants to one of two PIN treatments (4-digits or 6-
digits). The study itself was identical for both groups, differing only when creating,
recalling, or guessing a PIN, with the PIN-pad layout requesting a 4- or 6-digit PIN.
After assignment to their treatment, each participant completed the following:

1. Informed Consent: On the landing page, participants were shown the consent
form where we described the purpose and duration of the research project as
well as any anticipated risks. We also informed participants that they can
withdraw from the study at any time without penalty.

2. Agenda: This page briefly described the overall layout of the study including
the three main tasks of the study: (1) creating a PIN, (2) making 5 attempts
to guess the PIN of other participants, and (3) completing a short survey.
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3. Practice: To ensure all participants were familiar with the PIN interface, we
asked them to practice entering a PIN. The PIN length was set to 4- or 6-digit,
depending on the treatment.

4. Task Description: Participants were told the context for which they would
create a PIN, namely, to unlock their smartphone. Furthermore, we highlighted
that the PIN should be remembered for the duration of the study without
writing it down.

5. Creation: On the page shown in Figure 4.2, participants created their secret
PIN; exactly the same as before, but now with the added word “secret” in “secret
PIN.” To ensure that participants did not accidentally mistype it, they also had
to confirm it. The layout of this page changed according to the assigned PIN
length.

6. Creation Strategy and Perception: After creating a secret PIN, we asked partic-
ipants about their creation strategy (Q1) and how they perceived it in terms of
security, ease of entry, and memorability (Q2–Q4), following Markert et al [12].
Moreover, we asked participants if they reused one of their own PINs (Q6) and
if they did, the context(s) for this (Q7), following Khan et al. and Casimiro et
al [89, 90]. In between these questions, we included an attention check (Q5).

7. Task Description: Followed by the questions about their own secret PIN, we
framed the guessing task as shown in Figure 6.1. We highlighted that the 5
guesses must be unique. We further informed participants that more than 100
participants would take the study, and any number of correct guesses would
earn the bonus payment of $0.50.

8. Guessing: Now that participants were informed about the guessing task, they
made their 5 guesses on the page shown in Figure 6.2. If participants provided
the same PIN twice, we notified them that the guesses must be unique. Note,
participants only guessed PINs of their assigned PIN length.

9. Guessing Strategy and Threat Model: After the guessing procedure, we showed
the participants their 5 guesses and asked them about their overall strategy
when making these guesses (Q8). Afterward, we asked participants about a
scenario in which others may try to access their smartphone, including their
reasons, and the strategies employed (Q9). We also asked participants if
they considered this scenario when creating their secret PIN or making their
guesses (Q12 and Q13). With the next 5 questions (Q14–Q18), we intended
to learn about participants’ perception and experience of someone accessing
their smartphone.

10. Recall: We now asked participants to recall their secret PIN. If they could not
recall their PIN within 3 attempts, they advanced to the next step, they were
compensated normally and their data was included in the evaluation.
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11. Guessing Success: We asked participants if and why they thought their secret
PIN would be guessed as well as if and why they think they guessed the PIN
of another participant.

12. Demographics: Questions D1 to D7 asked the age, gender, education and
IT background of participants as well as their smartphone usage. To prevent
interference of the participants’ demographic background with the results, we
asked these questions at the end, following survey best practices from Redmiles
et al [125].

13. Honesty: We concluded the study by asking participants if they participated
honestly. We highlighted that they would not be penalized in any sense if they
indicated dishonesty. This approach has been taken with the prior work in this
area in order to increase the quality of the data collected [12,83,195].

6.3.3. Recruitment and Demographics

We ran pilots with members of our institutions to ensure the clarity of the questions
as well as correctness of the data collection process. As a result, we made some
slight edits to the wording of some questions, leaving intact the “look and feel” of the
PIN pads used on prior work. No data from the pilot studies was incorporated into
the final results. For the main study, we recruited 226 participants through Prolific,
restricting participation to those residing in the U.S. After excluding 16 participants
who indicated dishonesty, we ended up with n = 210 participants, 105 for each PIN
length. Participants were compensated $3.50 for completing the study, taking on
average 13 minutes for an hourly wage of $16.15. In total, 179 participants correctly
guessed at least one PIN and were compensated a $0.50 bonus payment for a total
compensation of $4.00.

Table 6.1 depicts the demographics of our participants. The majority of partici-
pants were women (112; 53%) compared to men (90; 43%) or non-binary (8; 4%).
As expected when using a crowdsourcing platform [196], participants tended to be
younger, 73% below the age of 35, and more educated (59% had a Bachelor’s degree
or higher). The majority (143; 68%) reported that they did not have a technical
background.

6.3.4. Ethical Considerations

To limit any negative implications resulting from our study and the data we collect
through it, we took several steps. Foremost, our study and its design were approved
by our Institutional Review Board (IRB). Further, we informed participants about
the purpose of our study and required their consent to proceed. During the study,
participants could opt out at any time without any consequences.
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In regard to the data we collected, it may have happened that participants selected
their actual PIN during the study. We also asked participants in Q6 whether the se-
cret PIN they selected is a PIN they actually use and a total of 58 participants (27%)
affirmed. Although this supports the ecological validity of our data, it imposes the
risk of harming the user. To mitigate this risk, we used the Prolific ID as the only
identifier in our study and analyzed the PIN data separately from it. For Q9, we
asked participants to describe a situation where someone might access their phone
and if relevant include information about their relationship to this person. As this
might pose a risk of participants including Personally Identifiable Information (PII),
we explicitly told them not to include PII.

6.3.5. Qualitative Analysis

Several of our study questions involved open-ended answers. Each of these was re-
viewed by two independent coders in the following manner: A primary coder created
a codebook and coded all responses. A secondary coder used the codebook to code
all responses. Cohen’s κ was calculated for all questions, ranging from 0.825 to 0.926,
indicating that coding was reliable. To reach consensus, we observed that some dis-
agreements were lapses in code assignment by researchers; other disagreements were
resolved by disambiguating and combining some code descriptions.

6.3.6. Limitations

Our study has several limitations. Foremost, as this was an online study, we could
not fully ensure that participants followed our instructions completely. To miti-
gate this, we included open-ended text based responses as well as an attention-check
question. Additionally, participants could indicate if they did not participate hon-
estly at the end of the study, without fearing any negative consequences. Through
these questions, we identified 16 participants whose answers were excluded from the
final analysis. As is typical for studies using Prolific or other crowdsourcing plat-
forms, participants were younger and more educated. While the survey is not U.S.
census-representative, Redmiles et al. [182] showed that crowdsourced samples used
by researchers are generally an effective proxy for conditions in the real world, espe-
cially for U.S. participants aged 18-49 with at least some college education. While
we believe that our results reflect common user attitudes, additional work is required
to determine how well these results generalize, especially for more-diverse user pop-
ulations. For example, it has been shown that populations from other locales such
as China select PINs with different distributions [49]. Our study focused on partici-
pants from the U.S. only, and additional work is required to study PIN guessing in
other countries and cultures.
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Table 6.1.: Demographic information of participants

Woman Man Non-Binary Total
No. % No. % No. % No. %

Age 112 53 90 43 8 4 210 100

18–24 46 22 20 10 5 2 71 34
25–34 41 20 40 19 1 0 82 39
35–44 17 8 21 10 2 1 40 19
45–54 7 3 7 3 0 0 14 7
55–64 1 0 1 0 0 0 2 1
65–74 0 0 0 0 0 0 0 0

75+ 0 0 1 0 0 0 1 0
Prefer not to say 0 0 0 0 0 0 0 0

Education 112 53 90 43 8 4 210 100

Some High School 0 0 1 0 0 0 1 0
High School 0 0 1 0 0 0 1 0

Some College 20 10 11 5 2 1 33 16
Trade 24 11 14 7 3 1 41 20

Associate’s 2 1 2 1 0 0 4 2
Bachelor’s 11 5 3 1 0 0 14 7

Master’s 40 19 42 20 2 1 84 40
Professional 11 5 9 4 1 0 21 10

Doctorate 2 1 3 1 0 0 5 2
Prefer not to say 2 1 4 2 0 0 6 3

Background 112 53 90 43 8 4 210 100

Technical 24 11 35 17 1 0 60 29
Non-Technical 85 40 52 25 6 3 143 68

Prefer not to say 3 1 3 1 1 0 7 3

Similar to the study design used by Uellenbeck et al. [13], participants in our study
knew from the agenda text seen in Appendix C.1 that other users would attempt
to guess their PIN—which may have yielded more secure choices. Participants also
knew they would have to use and remember the PIN only for the short duration of
the study, which may also have encouraged the use of more secure PINs. On the
other hand, previous studies that have used a similar method collected generalizable
authentication data [12,129]. Moreover, unlike in Uellenbeck et al.’s study, we high-
lighted the bonus payment for correctly guessing other participants’ PINs for the
first time after participants had already created their secret PIN.

Some of our survey questions asked about behaviors that may not be seen as
socially desirable. For example, participants were asked if they had ever tried to
access someone else’s smartphone without their knowledge and if they had ever
changed their PIN to prevent someone from accessing their smartphone. In both
situations, a participant could be seen as admitting undesirable behavior: in the first
case by exceeding granted permissions, or in the second case by the need to perhaps
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Table 6.2.: Responses to Q6: PIN reuse

4-digit 6-digit Total
No. % No. % No. %

Yes 34 32 24 23 58 28
No 68 65 73 70 141 67

Do not use PIN 3 3 6 6 9 4
Unsure 0 0 2 2 2 1

conceal something. Our study cannot determine if participants were untruthful,
except to note that responses to both these questions were roughly the same, and
were somewhat consistent with previous studies.

6.4. RQ1: PIN Characteristics

In this section, we discuss how participants selected their secret PINs and how they
guessed other participants’ PINs. We first describe features of both the secret and
guessing PINs, and afterward, we discuss strategies used to create and guess PINs.

6.4.1. PIN Features

The features of secret and guessing PINs can be categorized into four groups: date,
repeat, sequential, and pattern. Table 6.3 provides a detailed breakdown for each
category. Note, some PINs such as 0101 can match multiple patterns, including
date and repeat. Overall, date is the most popular pattern for secret and guessing
PINs for both 4- and 6-digit PINs, as seen also in prior work [12, 61, 83]. Dates
throughout this section correspond to four different types of sequences, including
yyyy for “recent year,” defined as sequences 1940–2028, similar to the definition used
by Wang et al [49]. Examining the 4-digit PINs shows that 11% of the secret PINs
and 5% of the 4-digit guesses represent a recent year. Four-digit PINs of the format
mmyy (beginning with digits 01-12) account for 26% of the secret PINs compared to
33% of the guesses. The format mmdd accounts for 20% and 12% of secret and guessing
PINs respectively for 4-digit PINs. For the 6-digit PINs, we similarly observe that
the secret PINs and guesses follow the same patterns, with 37% of both secret and
guessing PINs following the format mmyyyy. PINs in the format mmddyy account for
30% of secret PINs, but only for 16% of guessing PINs. Lastly, yymmdd accounts
for 16% and 11% of secret and guessing PINs respectively. These results align with
prior work [12,61,83] which find that dates represent a sizable percentage of 4- and
6-digit user-selected PINs.

The most popular sequential feature across secret PINs is an ascending order, e.g.,
1234 for the case of 4-digit PINs. However, it only accounts for 2% of the total
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4-digit secret PINs. For both PIN lengths, only about 5% of all secret PINs follow
this pattern, despite its popularity among the guesses. Our results further reveal
that one in three 6-digit guesses depicts a rectangular walk on the PIN pad, e.g.,
139713, despite only 5% of the secret 6-digit PINs following this pattern. Overall,
participants’ guesses reflect the features imagined to be popular, which diverge from
the actual secret PINs the participants selected.

6.4.2. Selection Strategies

When asked about the strategies used to create their secret 4- or 6-digit PINs, par-
ticipants in both treatments often mentioned a date (n = 33; 31% for 4-digit and
n = 29; 28% for 6-digit). This finding is in line with results from our PIN analysis
as well as prior work [12, 61, 83]. However, the incidence of date-related responses
was somewhat higher in the 4-digit PIN treatment compared to the 6-digit PIN
treatment.

The second most frequent strategy in both treatments was memorable, i.e. choos-
ing a PIN that is easy to remember (n = 14; 13% for 4-digit and n = 19; 18% for
6-digit), also in line with prior work [12,83]. For instance, P3 mentioned that “it was
just three 2 digit numbers i [sic] knew I’d remember.”

Selecting a PIN based on something that had a meaning to participants was the
next most common strategy. This was more prevalent for 6-digit PIN participants
compared to 4-digit PIN participants (n = 8; 8% for 4-digit and n = 14; 13% for
6-digit). For example, P40 mentioned “using numbers that hold personal meaning
to me but don’t have to do with birthdays or anniversaries.”

Participants in both treatments also indicated using a pattern for various reasons,
including convenience. For instance, P104 stated:

“The shape or movement of my thumbnail, I drew a rocket ship with the
numbers so I could use muscle memory to sign in and not worry as much
about the numbers.”

The use of random numbers and reuse of PINs were also frequently mentioned by
participants, as well as creating a PIN that is simple. Other less frequently cited
strategies included using subsets of phone numbers, ZIP codes and words.

6.4.3. PIN Re-use

Reuse of credentials remains a challenge in online safety and therefore, we asked
participants whether they re-use their 4- or 6-digit PIN on any other accounts. Across
both treatments, more than half of the participants indicated they do not re-use their
PINs. However, reuse was more prevalent for 4-digit PINs at 32% compared to only
23% of 6-digit PINs, as shown in Table 6.2. While this may suggest a possible benefit
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of 6-digit PINs, 4-digit PINs are more commonly used, and are thus more likely to
be re-used.

6.4.4. Security and Usability Perception

When asked about the security perception of their chosen secret PIN, 83% of par-
ticipants in both 4- and 6-digit PIN treatments felt their secret PIN was “secure”
or “somewhat secure.” In reality, 90% of PINs were unguessed, so participants were
roughly correct in our threat model. For memorability, however, 97% of participants
in the 4-digit PIN treatment perceived their PIN to be “memorable” or “somewhat
memorable” compared to 90% in the 6-digit PIN treatment. Overall, while partic-
ipants perceive both their 4- and 6-digit PINs to be secure, they find 4-digit PINs
to be slightly more usable compared to 6-digit PINs. Therefore, system design-
ers should consider the additional usability burdens of 6-digit PINs as well as their
limited security improvement over 4-digit PINs before increasing PIN lengths.

6.4.5. Guessing Strategies

In contrast to the selection strategies for secret PINs, which have a large depen-
dency on PIN length, guessing strategies for 4-digit and 6-digit PINs were mostly
similar. While most participants selected their secret PINs using dates to make them
memorable, they often went for simple PINs when guessing other participants’ PINs
(n = 39; 37% for 4-digit and n = 34; 32% for 6-digit). Rather than speculate on
what dates or what sequences might be memorable to other users, most participants
focused on simple PINs—even though participants themselves most often used dates
to select their secret PINs. For instance, P2 noted:

“I knew ii [ sic] wouldn’t be able to guess ones that were chosen because
they were meaningful for some reason so I picked ones that are easy to
type in.”

6.5. RQ2: Novice Attackers’ Performance

In this section, we analyze how novice attackers perform in guessing PINs compared
to the data-driven guessers that have mostly been used in previous studies [12,49,83].

Datasets We collected new datasets by priming participants to select a secret PIN
and five guessing PINs, either of four or six digits in length. In Section 6.4, we
analyzed the features of these PINs and how they are selected. Now, we utilize them
to study the guessing resistance of PINs against novice attackers who do not utilize
knowledge of the general distribution of PINs. Following the way participants were
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primed and their assigned PIN length during the study (see Section 6.3), we refer to
the datasets as Secret-4, Secret-6, Guess-4, and Guess-6.

In addition to these four datasets collected, we also use datasets used in previous
studies. Since PINs are usually stored and validated on individual devices instead
of web servers, no large-scale leaks of PINs have yet appeared. Therefore, previous
studies have relied on a bricolage of datasets that were collected in a variety of ways.
Probably the most realistic, although not collected within the bounds of a controlled
experiment, is composed of 204 508 4-digit PINs. These PINs were gathered by the
iOS application “Big Brother Camera Security” from Daniel Amitay [51]; we refer
to this dataset as Amit-4. Since Amitay collected only 4-digit PINs, a similarly-
sized 6-digit dataset is not available. Other datasets have been derived from leaked
alphanumeric passwords. For instance, 4- and 6-digit subsequences were extracted
from the RockYou password leak by Bonneau et al. [61] and Wang et al [49]. We
refer to these datasets as Rock-4 and Rock-6. Two datasets have also been collected
within the bounds of a controlled experiment; Markert et al. collected both 4- and
6-digit PINs from participants primed to choose secret PINs [12]. We refer to these
as Markert-4 and Markert-6, respectively.

6.5.1. Individual Performance

We now examine participants’ individual guessing performance, or the smartphone-
unlock guessing threat posed by surreptitious untrained attackers. We focus on their
performance in successfully guessing the secret PINs collected as part of this study
but also datasets used in prior work. We additionally highlight trends that emerged
from the guessability analysis for both 4- and 6-digit PINs.

The 1050 guesses we collect (525 for each PIN length) comprise a total of 415
distinct PINs. In the 4-digit case, we observed 177 different PINs (1.77% of all
possible PINs), and 238 different 6-digit PINs (0.0238% of all possible PINs). Of
these 415 PINs, 91% (378) were guesses of three or fewer participants, and only
eight (2%) were guesses of more than 20 participants. Interestingly, these eight very
popular guesses split evenly between the two lengths and follow similar patterns:
the 4-digit PINs were 0000, 1111, 1234, and 2580, the 6-digit PINs were 000000,
111111, 123456, and 987654.

In terms of the guessing resilience of participants’ secret PINs, the PINs of 21
participants (10%) were guessed (amounting to 16 unique PINs). Fourteen (13%)
of these were 4-digit, 7 (7%) a 6-digit PIN. Regarding the variety of the selections,
the 21 participants selected 16 different secret PINs, 10 of them being 4-digit PINs
(0000, 1234, 1478, 1990, 1995, 1997, 2000, 2468, 2580, 6666) and six 6-digit PINs
(121212, 123456, 134679, 135790, 159753, 654321). From the guessers’ perspective,
179 participants (85%) guessed at least one secret PIN: 95 (91%) in the 4-digit and
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84 (80%) in the 6-digit treatment. In prior work [12, 49, 83], the insecurity of 6-
digit PINs arose from a stark selection bias, particularly with 123456 tending to be
overwhelmingly popular. Among the Secret-6 PINs, we did not observe this shift.
The reasons for this shift are unclear; while our study carefully reproduced the “look
and feel” of prompts used in prior work, our priming of users may have caused more
secure PIN choices.

The individual guessing success, i.e., the success of the five guesses of each par-
ticipant against datasets used in prior work can be seen in Figure 6.3. The violin
plots show the range of individuals’ PIN-guessing performance on a guess-by-guess
basis when guessing the Markert-4 and Markert-6 dataset. For example, after one
guess, the median, shown as a vertical line, for both 4- and 6-digit is equal to the
maximum proportion guessed: 2% for 4-digit and 4% for 6-digit PINs. The median
gains in individual performance after the first guess are marginal for both 4- and 6-
digit PINs. The highest increase happens after the third guess for 6-digit PINs and
the fourth guess for 4-digit PINs. For 4-digit PINs, the proportion guessed increases
from 4% (3 guesses) to 5% (4 guesses), for 6-digit, from 5% (2 guesses) to 8% (3
guesses). Overall, novice guessers perform better at guessing 6-digit than 4-digit
PINs in Markert et al.’s dataset. This is in line with findings from prior work about
the success rate of data-driven attacks against 4- and 6-digit PINs chosen without
security focus [12,49].

For comparison purposes, Figure 6.3 additionally depicts the simulated guessing
attacks constructed from other previously published datasets which were analyzed
by prior work. From these plots, we can see that the median performance of our
individual novice guessers closely matches the performance of data-driven guessers
built from Amit-4 (⋆) for 4-digit and Rock-6 (•) for 6-digit PINs. This supports the
ecological validity of previous studies’ use of these datasets to evaluate the guessing
resilience of PINs [12,49,83].

6.5.2. Combined Performance

To assess the performance of participants’ guesses in aggregate, we combined all
guesses to carry out a simulated attack against different 4- and 6-digit PIN datasets,
following the approach in the previous work of Markert et al., Munyendo et al. [12,83],
and others. This aggregated novice attacker is created based on the guessing order
we derive from merging the five guesses of all participants into a single dataset. If
two or more PINs share the same frequency in this dataset, we first try to rank them
based on the order in which the participants guessed them. For example, if two PINs
both occurred once but one of them was the third guess and other the fifth, we guess
the third guess first because it had a higher “priority” for the participant.
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An alternative approach sometimes seen in the guessing literature is to use the
guesses from a study as a training set for a Probabilistic Context-Free Grammar
(PCFG)- or Markov-based approach, following Wang et al. [197] that would gener-
ate many more guesses and therefore reach a strength estimation for the remaining
(unguessed) PINs. A PCFG approach can be helpful when guessing variable-length
passwords that follow a system, a generative structure like “name followed by date.”
According to our participants, less than 5% used a system. But the contribution
of our work is precisely to understand the actual guesses for 4- and 6-digit PINs
directly observed in our study. Moreover, we aim for surreptitious guessers who are
strictly limited to a small handful of guess attempts. Developing a guessing order
for the remaining unguessed PINs only applies to unthrottled attackers who could
make hundreds or thousands of guesses. As this attacker could merely try all possible
4-digit or 6-digit PINs, they are outside our threat model.

Figure 6.4a shows the performance of participants’ 4-digit guesses, while Fig-
ure 6.4b shows it for the 6-digit guesses. When considering 4-digit PINs, partici-
pants’ guesses have a comparable effectiveness when guessing the Rock-4 (•) and
Markert-4 (+) datasets, but perform slightly better on other participants’ Secret-4
PINs ( ). Interestingly, the success rate against Amit-4 (⋆) is noticeably better,
with over 15% of PINs in this dataset guessed after 20 guesses. This difference be-
tween the guessing performance of the Amit-4 dataset compared to the remaining
sets could be attributed to users not being specifically primed for security during the
selection of PINs in the Amitay app. This can be investigated in future research.

For 6-digit PINs, the success rate of participants’ guesses is lower in guessing other
participants’ secret PINs ( ) compared to PINs from the Markert-6 (+) dataset.
However, the difference is even greater when guessing Rock-6 PINs (•). This con-
trast can be attributed to the popularity of the PIN 123456 in Rock-6, leading to a
substantial portion of PINs being guessed with just one guess. After this first guess,
the rate appears to be more consistent with the guessing performance against the
other two datasets.

Overall, our results from Figure 6.4 indicate that participants’ guesses perform
similarly or better on previously published datasets compared to the secret PINs
selected by participants in our study, particularly for 6-digit PINs. As previously
discussed in Section 6.5.1, there were only six different 6-digit secret PINs that were
successfully guessed. This likely suggests that encouraging users to select secret PINs
that cannot be easily guessed is a promising way to make them select more secure
PINs. However, additional work is needed to specifically explore how this can be
implemented.

Figure 6.5 shows how well participants’ guesses, secret PINs, and the Amitay and
RockYou datasets perform when guessing PINs from Markert-4 (Figure 6.5a) and
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Markert-6 (Figure 6.5b). This serves as a benchmark to assess the effectiveness of
participants’ selections when applied to other datasets previously collected from the
literature. Overall, participants’ secret PINs ( ) perform the worst of the datasets
at guessing Markert-4 and by an even wider margin in the case of Markert-6. In the
prior case, Guess-4 (▲) performs similarly to Amit-4 (⋆), while Secret-4 performs
comparably to Rock-4 (•). However, in the case of Markert-6, the performance
is more varied, with Secret-6 ( ) performing poorly, guessing only one PIN cor-
rectly. Conversely, Guess-6 (▲) performs similarly to Rock-6 (•) when guessing the
Markert-6 dataset.

Overall, we find that the Amit-4 dataset performs comparably to participants’
Guess-4 PINs, while the success rate of the Rock-6 based attacker is similar to the
Guess-6 PINs of participants. This shows that on aggregate, novice attackers perform
similarly to data-driven attackers, and further supports the ecological validity of
previous studies [12,49,83] that have used the Amitay dataset to guess 4-digit PINs,
and the RockYou dataset to guess 6-digit PINs.

6.6. RQ3: Context for Smartphone Access

This section reports on concerns expressed by participants from RQ3: “What smartphone-
unlock scenarios are participants concerned about?” We report on how participants
conceptualize situations of smartphone access by others with a focus on the critical
context of who (Q9), why (Q10), and how (Q11), similar to Marques et al. [41].
Figure 6.6 summarizes these results.

6.6.1. Delegation and Emergency Access

Previous work [198, 199] has shown that sharing behaviors are common with regard
to smartphones, and that users have a desire to grant others limited, temporary
access to their devices. In this section, we explore how these sharing and delegation
behaviors align with the threat models envisioned by participants.

In Q9, we asked participants to “describe a situation where someone is most likely
to unlock your smartphone.” Answers overwhelmingly mention a close social contact,
rather than a stranger or thief. The combined categories of partner, friend, and
family account for 178 out of the total 210 responses (85%). In contrast, only
seven participants (3%) mention a thief or stranger. Considering partner, the most-
frequent code (81; 39%), P25 stated:

“I can imagine my wife needing my PIN to access my phone to make a
payment in a store and when my hands were full.”

In spite of that, individuals in the partner category are not without risk. The preva-
lence of this category in our data combined with the work of Tseng et al. [200] on
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intimate partner surveillance points to a need to further understand the nuances of
PIN security in controlling types of unauthorized access by insiders. Relationships
within the family (50; 24%) or with a friend (47; 22%) have already been shown to
pose similar risks [201,202].

Subsequently, Q10 asked why the individual would access their phone. Most often,
participants describe some form of delegation (88; 42%), with P37 saying:

“They would just be looking at a text or notification to let me know what
it said while I was presumably otherwise occupied.”

Finding some form of information, not necessarily with a bad intent, was the second
most popular answer (38; 18%). For example, P175 said the person might “check
something like the weather or bus schedule.” A similar use case, specifically in the
form of someone borrowing the phone, was described by 21 participants (10%).

Many participants also identified a special category of delegation: they indicated
that someone would access their smartphone in dire circumstances (24; 11%), e.g.,
when the owner is physically incapacitated. P112 said “in case of an emergency he
might be unlocking my phone to get help.” While unlocking the phone to call for
help is a valid scenario, sharing one’s PIN for this purpose is not necessary as both
Android and iOS allow anyone to make emergency calls even when the device is
locked. System developers have also been improving features that can further assist
with delegation and emergency access. For example, Android 13 allows user profiles
to be switched on from the lock screen and guest users granted access to installed
apps [203] and Android 14 may allow “cloned apps” to permit multiple installations of
a given app to use different user profiles [204]. This development suggests a broader
recognition in the industry of this user concern and would give added prominence
to the feature of user profiles. In our study, no participants mentioned user profiles
despite the preponderance of scenarios where profiles would be of benefit.

Overall, there appears to be a prevalence of benign motivations from close social
contacts when it comes to accessing participants’ phones (see Figure 6.6). A reason
for this might be the social-desirability bias which might have made participants
hesitate to be forthcoming about malicious activity in response to this question. On
the other hand, more than 37% admitted to “trying to access someone else’s smart-
phone without their knowledge” in Q17, which is more than those who mentioned
mal-intent (16; 8%) in Q10. Moreover, this finding is comparable to the 39% found
by Marques et al [40].

Participants also provided responses to Q11 asking about “the strategy the indi-
vidual would use to gain access to your smartphone.” Although guessing was the
most prominent answer, responses continued with the general theme of benign access
by social contacts. More than half of participant responses indicated that the person
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would simply ask (62; 30%) or already know the PIN because it is shared (59; 28%).
For example, P15 said “I would tell them the code,” while P79 added:

“He knows my PIN... but my trick is to say ‘it’s my birthday’ which shows
me who knows when my birthday is!”

This willingness to allow others access was further confirmed by the responses to Q18.
A large majority (184; 88%) said they have granted someone else access before, while
(23; 11%) had not.

6.6.2. Controlling Access and Guessing

Our survey found that participants had some difficulty controlling access, with nearly
half (95; 45.2 %) reporting that they had changed their PIN specifically to prevent
someone’s access in Q16. As guessing is the main focus of our study, we addition-
ally reviewed all responses to Q11 that mention guessing. By this more-inclusive
measure, 78 responses were included in this additional analysis.

A total of 51 responses mentioned the use of personal knowledge in formulating
guesses. As an example, P86 said “she would use my date of birth, or she would
use the ages of my grandkids.” This finding suggests an opportunity for future work
focusing on guessers who incorporate personal knowledge and is echoed by Munyendo
et al. [83] who found a personal hint can be effective in helping predict someone’s
PIN. In contrast, comparatively fewer participants (12; 15 %) reported shoulder-
surfing in their scenario. Previous work such as from Aviv et al. [63] suggest that
only about 11 % of shoulder-surfing attacks on 6-digit PINs are successful.

For comparison, of the 51 responses who mentioned personal hints, there were (33;
65 %) occurrences of birthday, day, or date. This confirms prior work [61, 83] that
has similarly shown that personal hints including birthdays can reveal users’ PINs.

Q14 and Q15 specifically asked about participants’ level of concern about their
phone being accessed without their consent. About half of participants were “some-
what concerned” (67; 32%) or “concerned” (26; 12%), with most of them saying that
they keep important information on their phone. Except for 8% who were indecisive,
all others indicated they were “somewhat unconcerned” (53; 25%) or “unconcerned”
(47; 22%). Most of these participants do not believe their phone can be unlocked
by someone else while others simply trust their surroundings or believe they have
nothing to hide.

To investigate participants’ perception about the security of their secret PIN,
Q19 asked if they think their secret PIN will be guessed by other participants.
Most participants said no (138; 66%), and only five of them were wrong. The PINs
they picked were years (1990, 2000) or common schemes (2580, 6666, 121212). In
contrast, of those who believed their PIN would be guessed (71; 34%), 16 were
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right. In other words, there was a tendency across participants to underestimate the
security of their PIN.

Finally, Q20 asked “Do you think you guessed someone else’s secret PIN? Why
or why not?” Most participants said yes or maybe (164; 78%), with a majority
(134; 82%) of them right. On the other hand, (43; 20%) said they would not guess
correctly: of these, only (14; 33%) were right. Participants who thought they did
not guess the PIN of another participant mostly mentioned that the PIN would be
of personal importance to a stranger or random. Participants who thought they did
guess correctly indicated that other participants artificially picked easy PINs, e.g.,
P112 was right in saying:

“I think I guessed someones PIN. Someone definitely used 0000.”

6.6.3. Participant Misconceptions

We were particularly interested in the survey responses of the 21 participants whose
PINs were guessed by another participant. Nine mentioned having important infor-
mation or valuing their privacy while only four mentioned some variation on trusting
others or having nothing to hide. When asked how someone would access their phone,
only four mentioned guessing compared to 10 who said the person would ask. Five
participants chose a PIN that was simple, while another five chose a PIN that was
memorable.

Of the 21, only 7 thought their secret PIN would be guessed by another participant,
suggesting that most participants were not purposefully setting weak PINs. The 14
participants who were overconfident higlight an opportunity for user education, as 3
said their PIN was reused while another 3 said their PIN was random.

6.7. Discussion and Conclusion

In this paper, we analyze the guessability and threat models of human-chosen 4-
and 6-digit PINs for smartphone unlock by considering more commonplace novice
attackers. Overall, we find that novice guessers perform comparably to the data-
driven attackers employed in prior work [12,49,83], and that most people would like
to delegate access to their smartphones in some way. In the rest of this section, we
discuss these findings further and offer recommendations to system designers that
can improve the security of human-chosen PINs.

6.7.1. Novice Attackers’ Guessing of PINs

The exact probability distribution of PINs in various contexts of smartphone device
unlock is not known. Previous studies have considered an attacker whose guessing
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order is informed by proxies, with the Amitay dataset used to guess 4-digit PINs,
PINs extracted from digit sequences in RockYou to guess 6-digit PINs alongside ad-
ditional PINs from participants primed to choose a new secret PIN [12, 49, 61]. To
our knowledge, we are the first to gather PINs from participants (n = 210) specifi-
cally primed for guessing, using an approach modified from Uellenbeck et al. [13] to
study Android unlock patterns. We find that in the aggregate, our individual novice
attackers perform very closely to the simulated attacking routines built from the
proxies that have been used in previous studies. The direct comparison is shown in
the median performance in Figure 6.3. Our work therefore supports the approaches
employed in previous work. We additionally show that human-chosen PINs remain
susceptible to guessing, even by novice attackers that have no personal information
about the victim. Therefore, more design interventions as well as user education are
required to guide users towards more secure PINs.

6.7.2. Implications for System Designers

The previous work has shown how to build optimized blocklists [12] from data-driven
attackers. Here, we find a justification for a small additional blocklist consisting of
those PINs guessed in our study. These PINs that were guessed tended to be guessed
by many participants. Therefore, systems could introduce additional friction for the
user based on our results. Messaging to users could take on additional urgency,
such as “This PIN would be guessed by many people.” In addition, though the
iOS blocklist currently allows a user to select “Use Anyway,” the risk is so great
with the guessed PINs that these should be completely disallowed. There is, as
ever, an opportunity for user education shown by the fact that only one-third of
participants whose PIN was guessed believed this would be true. Our work agrees
with Marques et al. [41] who suggested adding some realistic details when explaining
attacks to users, emphasizing the aspects of unattended access by non-strangers.
Where Marques et al. dub this the shower-time attack, as the phrase emphasizes
threats from non-strangers, low technical and temporal barriers to entry, combined
with a re-evaluation of what may be heretofore considered safe physical spaces. This
period of unattended access by insiders has been previously called the lunchtime or
midnight attack, noted by Naor and Yung to be “folklore” as early as 1990 [205].
Future work could test which of these phrases leads to changes in user behavior.
Finally, users could be notified when unsuccessful guessing occurs on their device.
It is by now common for websites to send email when the site is accessed by a new
device or in a new location. The device could send an email to the owner when a PIN
was guessed incorrectly. This approach would make this attack less surreptitious and
perhaps discourage attackers.



6.8. Author Contribution 135

6.7.3. PIN Length

In our attack setting where novice individuals provide five guesses applied to 105
simulated smartphones, participants performed better against 4-digit PINs than 6-
digit PINs; nearly twice as many 4-digit PINs (13%) compared to 7% of 6-digit PINs
were guessed. However, when using our participants’ offensive PINs to guess a larger
dataset such as the one collected by Markert et al. [12], we find that 6-digit PINs
are more easily guessed compared to 4-digit PINs, matching prior work [12, 49, 83].
In addition, we find 32% of our 4-digit participants compared to only 23% of 6-digit
participants reused their secret PIN. While this may suggest a possible benefit of
6-digit PINs, 4-digit PINs are more commonly used and are therefore more likely
to be re-used. Nonetheless, encouraging users to select secure PINs, of either 4- or
6-digit, might have better security outcomes than simply asking users to upgrade to
6-digit PINs, as noted by Munyendo et al. [83]. The exact messaging and design can
be explored further as part of future research.

6.7.4. Users’ Perceived Threat Models

When asked about scenarios in which someone would actually access their smart-
phone, participants overwhelmingly mentioned close social contacts. Most common
was a desire to delegate some forms of access to the device for example when driving.
Others in the literature such as Karlson et al. [199] have similarly observed that
users express a desire for delegated or guest accounts. Our survey also found that
participants had some difficulty controlling this access, with nearly half (n = 95;

45.2 %) reporting that they had changed their PIN specifically to prevent someone’s
access. Android 13 revamps the user-profile feature making it easier to delegate ac-
cess. Given that no participants mentioned user profiles, there is a need for more
user awareness and education on this improved feature, as well as how users can
use it. Further, participants mostly do not consider (and report being generally un-
concerned about) scenarios of smartphone unlock by strangers when selecting either
their “secret PIN” or their guesses, suggesting they value an easily-remembered PIN
over guessing resistance. More than half of respondents who mentioned guessing in
their scenario said the person would use a personal hint. More than half of those
mentioned “day,” ”date,” or “birthday” suggesting an opportunity for future work to
better understand the resistance of PINs to guessing in the presence of hints or other
personal or additional information.

6.8. Author Contribution

In this paper to appear in European Symposium on Usable Security in Oct. 2023, I
was the first author and I personally contributed most elements. Given the previous
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work on PINs for smartphone unlock, and my advisor’s previous study on Android
Patterns, it was natural to develop an idea like this. I contributed the research
questions and the survey instrument. I contributed the formal analysis plan to
interpret our results.

I developed some of the analysis scripts, which in some cases were based on our
earlier study on smartphone PIN unlock. I coded and analyzed qualitative data
including the primary codebook. This effort led directly to my contribution of figures
and tables in the final manuscript, along with being the lead author. I am currently
developing our presentation and talk based on our work which will appear at the
conference.



6.8. Author Contribution 137

Figure 6.1.: The instructions provided before the participants were asked to
guess others’ secret PIN

Figure 6.2.: The page on which we asked participants to guess other partic-
ipants’ secret PIN
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Table 6.3.: Features of the Secret PINs and Guesses

Secret PINs Guesses
4-digit 6-digit 4-digit 6-digit

Date

mmyy 27 26% mmddyy 31 30% mmyy 172 33% mmddyy 83 16%
mmdd 21 20% yymmdd 16 15% mmdd 64 12% yymmdd 55 11%

yyyy 11 11% ddmmyy 14 13% ddmm 51 10% ddmmyy 46 9%
ddmm 9 9% mmyyyy 4 4% yyyy 24 5% mmyyyy 9 2%

total 41 39% total 34 32% total 198 38% total 86 16%

Repeat

couplet 12 11% couplet 7 7% abab 141 27% ababab 97 19%
triplet 4 4% ababab 6 6% couplet 126 24% couplet 92 18%
abba 4 4% aabbcc 2 2% triplet 121 23% triplet 85 16%
abab 3 3% triplet 1 1% abba 121 23% aabbcc 78 15%
aaaa 2 2% aabb 120 23% abcabc 77 15%
aabb 2 2% aaaa 119 23% aaaaax 77 15%

xaaaaa 76 15%
aaaaaa 74 14%

total 15 14% total 13 12% total 150 29% total 120 23%

Sequential

asc 2 2% asc 2 2% asc 100 19% asc 95 18%
asc even 1 1% asc odd 1 1% desc 36 7% desc 40 8%
asc odd 1 1% desc 1 1% asc even 6 1% asc odd 8 2%

double-asc 1 1% asc odd 5 1% asc even 7 1%
double-asc 4 1%

total 4 4% total 5 5% total 147 28% total 154 29%

Walk

vertical 8 8% rectangle 5 5% vertical 47 9% rectangle 173 33%
diamond 2 2% vertical 1 1% corners 27 5% horizontal 8 2%
diagonal 2 2% diamond 12 2% vertical 5 1%
corners 2 2% rectangle 7 1% corners 3 1%

rectangle 1 1% box 6 1% box 1 1%
horizontal 1 1% diagonal 5 1%

total 16 15% total 6 6% total 104 20% total 190 36%

Total

total 105 total 105 total 525 total 525
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Figure 6.3.: Individual performance of participants’ guesses and simulated guessing
performance of other datasets when guessing Markert-4 and Markert-6.
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(b) Guessing 6-digit PIN datasets

Figure 6.4.: Using participants’ guessing PINs to guess 4- and 6-digit PIN datasets
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Figure 6.5.: Using indicated datasets to guess 4- and 6-digit PIN datasets from Mark-
ert
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Who? Why? How?

81 Partner

50 Family

47 Friend

  7 Thief/Stranger

25 Other Person
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21 Borrow Phone
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  7 Shared Info

13 Other Reason

Guess 63

Ask 62

Shared 59

Biometrics   7
Security Questions   3

Other Method 16

Figure 6.6.: Participants’ answers to Q9 asking who would try to access their smart-
phone, Q10 asking why this person would try to access it, and Q11
asking how this person would try to gain access.
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7.1. Summary and Key Results

In this dissertation, we examined several aspects around use of KBAs, especially
PINs used for mobile device unlock. These necessarily have grown out of newly
collected and unique datasets. As explained above, studying the use, re-use, and
composition of KBAs is a challenge: users are generally told not to reveal their
KBA, and users might not have full awareness of the number of times a KBA is
re-used. When it first appeared, Chapter 3 represented a fresh look at the problem
of password reuse, drawing on data collected from users’ everyday activities by the
Zeus banking trojan. We found that password complexity for financial sites was
indeed higher than for social-networking and shopping sites, a finding that has been
confirmed by subsequent work.

Chapter 4 focused on mobile device PINs, to our knowledge gathering the first
new datasets in a rigorous study specifically priming participants for mobile device
unlock. Among our findings is that, at least for the crucial first guesses before a
device throttles or locks, 6-digit PINs offer no additional benefit over their 4-digit
counterparts. Six-digit PINs are of benefit once large guess counts are considered,
but alas, an attacker with unthrottled access can easily perform exhaustive search.

We additionally looked at the practice of blocklisting, especially as currently de-
ployed on Apple iOS. Their 274-member 4-digit PIN blocklist, for example, is about
as effective as a much smaller blocklist. On the other hand, for a blocklist to be sig-
nificantly more effective, it would need to be quite large: a 2740-member list in the
throttled setting would lead to only 1% of PINs guessed by a data-driven attacker
within 100 guesses. Ultimately the purpose of blocklisting is to provide a meaningful
intervention that can educate users on the strength of their PINs. This hopeful sign is
a thread explored throughout this thesis. Users have unfortunate tendencies toward
picking bad KBAs, but education of the right kind can help address the problem.

Chapter 5 examined use of the PIN feature in the Signal secure messaging app.
What we found is a fairly large disparity in PIN complexity between two groups of
users: those who understand (and can explain) the purpose of the Signal PIN and
those who cannot. This observation reinforces one of our central points: if educated
users are picking more-diverse PINs, then education can point the way to better
outcomes in KBA selection. We also found that password managers are far more
prevalent in the group that understands the PIN. As password managers are often
used to generate better KBAs, there is an opportunity to educate users on their use.

Chapter 6 is the first to our knowledge to actually engage participants to try
and guess one another’s PINs. This dataset provides experimental justification that
helps validate the PIN-guessing attacker modeled in preceding chapters. Our data
showed that 31% of participants attempted to access someone else’s smartphone
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in the previous year. We examine how successful these novice attackers might be,
showing that given 5 guesses, a novice can unlock 1 in 8 smartphones.

Considering the sheer number of smartphones in circulation, this is quite a high
number, suggesting the need for more design interventions and user education to
encourage users to select more secure PINs.

7.2. Thesis Statement Evaluation

Here we re-state our thesis and examine it in light of the foregoing evidence: The
widespread use of knowledge-based authentication means a shared responsibility for
security in the face of usability challenges. Adapting authentication to the way users
comprehend, select, use, and re-use their passwords and PINs along with studying
the way attackers guess online can lead to improved outcomes for all stakeholders.

Our unique datasets have shown once again the usability challenges of KBAs, such
as re-use and users selecting easy-to-guess PINs/passwords. But the picture is more
nuanced than that. The risk is spread unequally. User choices are not universally
bad, but instead our work shows users are influenced by a number of factors.

• Account value (and password composition policy) affects the re-use rate

• PIN selection process — especially blocklist usage — affect guessability

• User comprehension of the purpose of a PIN affects PIN diversity

• The user’s mental model of the attacker’s capability affects PIN lifetime

• A desire to delegate or share access with close social connections affects users’
methods of PIN selection

In each of these cases, we can identify steps to better balance security and usability.
For example, in the case of blocklisting, we showed that for iOS, a much smaller
blocklist is just as effective in shifting the probability mass of user PIN selections —
despite being only 10% of the size of the existing blocklist. A smaller blocklist would
be encountered less often and therefore be less of a nuisance for users. Additionally,
we showed that contrary to intuition, 6-digit PINs are not necessarily harder to guess
than 4-digit PINs. Given that a smartphone unlock PIN will be entered many times
over the course of a day, having fewer digits to enter should enhance usability.

Better communication around the use of PINs, especially for local authentication
as in Signal, should lead to increased comprehension. From our study, it is evident
that for part of the user base, Signal’s messaging is working as intended. For the
other part who may not be privacy technology early adopters, the communication
is less effective and security behaviors such as password manager usage is not as
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widespread. Additional communication could help users understand why the Signal
PIN is important.

Our study analyzing the guessability and threat models of human-chosen 4- and
6-digit PINs shows that novice guessers perform comparably to the data-driven at-
tackers employed in previous chapters of this thesis [12, 49, 83], lending credence to
our overall approach. More importantly, these novice guessers have the most op-
portunities to actually attempt smartphone unlock and therefore we argue this may
be the most relevant attack scenario to address. Additionally, 45 % of participants
changed their PIN specifically to keep someone out. Explaining PIN selection in
light of these actual user concerns may lead to more-secure PIN choices overall.

Participants in our study on novice guessing attackers place a premium on allowing
friends and social contacts to access their device. Moreover, our data show that 31%
of participants in our study have attempted to access someone else’s smartphone
without their knowledge in the previous year. This use case suggests a need to
support forms of limited delegated access that don’t involve PIN sharing or guessing.
Android 13 revamps the user-profile feature making it easier to delegate access. Given
that no participants mentioned user profiles, there is a need for more user awareness
and education on this improved feature, as well as how users can use it.

7.3. Outlook and Future Work

System designers continue to implement more and more features that rely on a KBA.
Take for example Apple; as of this writing it has just rolled out Advanced Data
Protection (iOS 16.3, 13 Dec 2022) worldwide which relies on the device passcode
(PIN or password). In this way, a user’s iCloud backups can be secured so that
Apple does not maintain the decryption keys. Observe this “end-to-end encryption”
concept is also used in Signal. As these different uses of the KBA increase, the
number of threat models a user must understand increases. How will users respond?
Future work is needed to determine what educational interventions may be effective
in protecting PINs from guessing.

KBA replacement As always, industry and academia look to potential replace-
ments for KBAs. WebAuthN shows a great deal of promise, as does Apple’s new (as
of this writing) support for detachable hardware security modules. Though they are
sometimes called “key fobs” or “security keys,” the net effect is the same: a user can
prevent unlocking of their smartphone unless a hardware security module is attached
to the phone. Future work is needed to understand why users elect to use them and
what they believe they are achieving. Certainly this is a security feature with a
big usability tradeoff: the user must insert/otherwise make available the hardware
security module only when they want to use the phone. If the security key is always
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present/stored with the smartphone, an attacker can simply carry on as before. If
the security key is kept in a secure location, the user must retrieve it in order to use
their smartphone. Will the users of this feature diligently manage the security key-
smartphone relationship? Or will users disable this feature in frustration? Closer to
our work, many of the hardware security modules themselves require a PIN to unlock
it. Do users select better PINs for this use case? Or do they fall back to old habits
selecting and re-using guessable PINs? All these topics merit further investigation.

KBA re-use Users have an ever-growing collection of passwords to choose, remem-
ber, and enter. A common coping strategy is to reuse a handful of passwords across
a number of sites. Still, research efforts have been hampered by lack of data. Innova-
tive methodologies could lead to better understanding of re-use as it applies in new
settings such as local (in-app) authentication. For example, we have explored how
often do people re-use their mobile device unlock KBA as their Signal PIN? What
exactly is the unaddressed risk and what could be done about it? We also explored
the impact of password policies on re-use, finding that financial-site passwords were
more likely to be re-used. Since that initial experiment, prevailing guidance on pass-
word composition rules in NIST SP 800-63B [3] has changed. Password rotation and
complexity rules involving specific characters, such as requiring a number or symbol,
are no longer recommended. As the research community delves deeper into this area,
guidance is certain to change again. What effect do these new rules have on re-use
for accounts of different value? Are there targeted interventions that could assist
users in selecting better passwords?

Local (In-app) authentication As with the deployment of the Signal PIN, many
apps — especially financial — require secondary authentication beyond the device
being unlocked to use the app. It remains to be seen how widespread this practice
will become. From our work, we know that people routinely share access to their
device with friends and family members who may be trusted to play games or change
the music, but not trusted to transfer funds for example. Will more apps require
this secondary authentication? Will users struggle to comprehend the purpose of
local authentication, as with the Signal PIN? Will users cope with the demand for
yet another KBA by re-using PINs that are easily guessed?

Targeted guessing Our work shows that most participants envision friends and
family as most likely to unlock their device. Our experimental results show something
of a lower bound: the guessing performance of a novice stranger. But we know that
users often rely on numbers from their personal history (birthdays, anniversaries,
etc.) when selecting a KBA. Friends and family could take advantage of this fact by
modifying the guessing order: prioritizing known special numbers. At this point, we
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can surmise these hints should help the attacker, but it is not yet known how much
of an advantage is conferred.

Concluding remarks Despite their known shortcomings, KBAs are here to stay.
Rather than their eventual phase-out, which has been predicted many times before,
we seem to have more KBAs than ever. In this dissertation we have studied the case
of 4- and 6-digit PINs for mobile unlock authentication in detail. Yet, it is clear from
our summary of future work that there is much more to be done. This thesis is not
the last word on PIN guessability by any means. Researchers have much more to
contribute to lead to better outcomes for all stakeholders.
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A.1. Survey Instrument

Questions for participants who hit the blocklist.

We noticed that you received the following warning while choosing your PIN:

[A screenshot of the same warning message that the participant saw during the study.]

People use different strategies for choosing their PINs. Below, we will ask about your strategy.

1. Prior to seeing the warning above, what was your strategy for choosing your PIN?
Answer:

2. After receiving the warning message, please describe how or if your strategy changed when
choosing your PIN.
Answer:

The “Extra” question was only asked if the participant had the option to ignore the warning
and did so by clicking “Use Anyway.”

(Extra) You selected “Use Anyway” when choosing your final PIN. Please describe why you did not
change your final PIN after seeing this warning message.
Answer:

3. Please describe three general feelings or reactions that you had after you received this warning
message.
Feeling 1: Feeling 2: Feeling 3:

Please select the answer choice that most closely matches how you feel about the following state-
ments:

4. My initial PIN creation strategy caused the display of this warning.
◦ Strongly agree ◦ Agree ◦ Neutral ◦ Disagree ◦ Strongly Disagree

Questions for participants who did not hit the blocklist.

People use different strategies for choosing their PINs. Below, we will ask about your strategy.

1. What was your strategy for choosing your PIN?
Answer:

Imagine you received the following warning message after choosing your PIN:

[A screenshot of the warning message as in Figure 4.3 or Figure 4.4.]

2. Please describe how or if your strategy would change as a result of the message.
Answer:
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3. Please describe three general feelings or reactions that you would have had after you received
this warning message.
Feeling 1: Feeling 2: Feeling 3:

Please select the answer choice that most closely matches how you feel about the following state-
ments:

4. My PIN creation strategy would cause this warning message to appear.
◦ Strongly agree ◦ Agree ◦ Neutral ◦ Disagree ◦ Strongly Disagree

From now on all participants saw the same questions.

5. It is appropriate for smartphones to display warning messages about PIN security.
◦ Strongly agree ◦ Agree ◦ Neutral ◦ Disagree ◦ Strongly Disagree
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Please select the answer choice that most closely matches how you feel about the following state-
ments referring to the final PIN you chose:

The order of questions 6, 7, and 9 was chosen randomly for each participant. The
attention check question was always the 8th question.

6. I feel the PIN I chose is:
◦ Secure ◦ Somewhat secure ◦ Neither secure nor insecure ◦ Somewhat insecure ◦ Insecure

7. I feel the PIN I chose is:
◦ Easy to remember ◦ Somewhat easy to remember ◦ Neither easy nor hard to remember
◦ Somewhat hard to remember ◦ Difficult to remember

8. What is the shape of a red ball?
◦ Red ◦ Blue ◦ Square ◦ Round

9. I feel the PIN I chose is:
◦ Easy to enter ◦ Somewhat easy to enter ◦ Neither easy nor hard to enter ◦ Somewhat hard
to enter ◦ Difficult to enter

10. What is your age range?
◦ 18-24 ◦ 25-34 ◦ 35-44 ◦ 45-54 ◦ 55-64 ◦ 65-74 ◦ 75 or older ◦ Prefer not to say

11. With what gender do you identify?
◦ Male ◦ Female ◦ Non-Binary ◦ Other ◦ Prefer not to say

12. What is the highest degree or level of school you have completed?
◦ Some high school ◦ High school ◦ Some college ◦ Trade, technical, or vocational training
◦ Associate’s Degree ◦ Bachelor’s Degree ◦ Master’s Degree ◦ Professional Degree ◦ Doctorate
◦ Prefer not to say

13. Do you use any of the following biometrics to unlock your primary smartphone? (Select all
that apply)
□ Fingerprint □ Face □ Iris □ Other biometric □ I do not use a biometric □ I do not use a
smartphone □ Prefer not to say

If the participant stated they use a biometric in question 13:

14A) How do you unlock your smartphone, if your biometric fails or when you reboot your primary
smartphone?
◦ None ◦ Pattern ◦ 4-digit PIN ◦ 6-digit PIN ◦ PIN of other length ◦ Alphanumeric password
◦ I use an unlock method not listed here ◦ I do not use a smartphone ◦ Prefer not to say

If the participant stated they do not use a biometric in question 13:

14B) What screen lock do you use to unlock your primary smartphone?
◦ None ◦ Pattern ◦ 4-digit PIN ◦ 6-digit PIN ◦ PIN of other length ◦ Alphanumeric password
◦ I use an unlock method not listed here ◦ I do not use a smartphone ◦ Prefer not to say

15. What is the operating system of your primary smartphone?
◦ Android ◦ iOS (iPhone) ◦ Other ◦ I do not use a smartphone ◦ Prefer not to say
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16. Which of the following best describes your educational background or job field?
◦ I have an education in, or work in, the field of computer science, computer engineering or
IT.
◦ I do not have an education in, nor do I work in, the field of computer science, computer
engineering or IT.
◦ Prefer not to say to say

17. Please indicate if you have honestly participated in this survey and followed instructions
completely. You will not be penalized/rejected for indicating ’No’ but your data may not be
included in the analysis:
◦ Yes ◦ No

18. Please feel free to provide any final feedback you may have in the field below.
Answer:
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A.2. Demographics

Table A.1.: Overall demographics of the participants. For the sake of clarity, we
grouped answers for Non-Binary, Other, and Prefer not to say under
Other.

Male Female Other Total

No. % No. % No. % No. %

What is your age range? 923 54% 768 45% 14 1 % 1705 100%

18–24 125 7% 87 5 % 5 0% 217 13%
25–34 461 27 % 350 21% 5 0 % 816 48%
35–44 231 14 % 195 11% 2 0 % 428 25%
45–54 72 4% 84 5% 0 0% 156 9%
55–64 24 1% 47 3% 0 0% 71 4 %
65–74 10 1% 5 0% 0 0 % 15 1 %

Prefer not to say 0 0% 0 0 % 2 0 % 2 0%

What is the highest degree or level of school you have completed? 923 54% 768 45% 14 1 % 1705 100%

Some High School 3 0% 4 0% 0 0 % 7 0%
High School 95 6% 66 4% 3 0 % 164 10 %

Some College 208 12% 142 9 % 5 0% 355 21%
Training 33 2% 28 2 % 0 0 % 61 4 %

Associates 85 5 % 104 6% 2 0 % 191 11%
Bachelor’s 389 23% 321 19% 2 0% 712 42 %

Master’s 82 5% 86 5 % 0 0% 168 10%
Professional 13 1% 8 0% 0 0% 21 1 %

Doctorate 14 1% 9 0 % 0 0% 23 1 %
Prefer not to say 1 0% 0 0% 2 0 % 3 0%

Which of the following best describes your educational background or job field? 923 54% 768 45% 14 1 % 1705 100%

Tech 360 21 % 109 7% 3 0 % 472 28%
No Tech 534 31 % 638 37% 8 0% 1180 69 %

Prefer not to say 29 2% 21 1 % 3 0 % 53 3%
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A.3. Device Usage

Table A.2.: Answers of participants regarding their device usage. Note, for the bio-
metrics question, participants selected all that apply. For the sake of
clarity, we grouped answers for Non-Binary, Other, and Prefer not to
say under Other.

Male Female Other Total

No. % No. % No. % No. %

Do you use any of the following biometrics to unlock your primary smartphone? 923 54% 768 45 % 14 1% 1705 100 %

Fingerprint 504 30% 395 23 % 7 0 % 906 53 %
Face 161 9 % 102 6 % 0 0 % 263 15 %
Iris 41 3 % 17 1% 0 0 % 58 4 %

Other Biometric 19 1 % 26 2 % 0 0% 45 3%
No Biometric 299 18 % 266 16 % 5 0 % 570 34%

No Smartphone 2 0 % 0 0 % 0 0 % 2 0 %
Prefer not to say 28 2% 28 2 % 2 0 % 58 4 %

How do you unlock your smartphone, if your biometric fails or when you reboot your
primary smartphone?

594 55% 474 44 % 7 1 % 1075 100 %

None 2 0 % 5 0 % 0 0 % 7 1 %
Pattern 93 9 % 55 5 % 0 0% 148 14 %

4-digit PIN 262 24 % 245 23 % 3 0 % 510 47%
6-digit PIN 177 16 % 141 14 % 4 0 % 322 30%

PIN of other length 20 2 % 12 1 % 0 0% 32 3%
Alphanumeric 30 3 % 12 1% 0 0 % 42 4%
Other method 6 1 % 2 0 % 0 0% 8 1 %

No smartphone 1 0 % 0 0 % 0 0 % 1 0 %
Prefer not to say 3 0 % 2 0% 0 0% 5 0 %

What screen lock do you use to unlock your primary smartphone? 329 52% 294 47 % 7 1 % 630 100 %

None 85 13% 104 17 % 0 0 % 189 30 %
Pattern 54 8 % 32 5 % 2 0% 88 13%

4-digit PIN 115 18 % 101 16 % 2 0 % 218 36%
6-digit PIN 32 4 % 27 4 % 0 0 % 59 8 %

PIN of other length 8 1 % 3 0 % 0 0 % 11 2 %
Alphanumeric 8 1 % 7 1 % 0 0 % 15 3 %
Other method 10 2 % 4 1% 0 0% 14 2%

No smartphone 0 0 % 1 0 % 0 0 % 1 0 %
Prefer not to say 17 3% 15 2 % 3 0 % 35 6 %

What is the operating system of your primary smartphone? 923 54% 768 45 % 14 1% 1705 100 %

Android 592 35 % 408 24% 8 0 % 1008 59 %
iOS 323 19% 349 21 % 4 0% 676 40 %

Other 2 0 % 4 0 % 0 0% 6 0 %
No smartphone 0 0 % 0 0 % 0 0 % 0 0 %

Prefer not to say 6 0 % 7 0% 2 0% 15 1%
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A.4. PIN Selection and Changing Strategies

Table A.3.: We coded and analyzed a sample of 314 PIN selection strategies. Below,
we list the top 10 selection strategies. Two coders independently coded
the data. The level of agreement among the coders, measured by Cohen’s
kappa, was κ = 0.90. Question: “People use different strategies for
choosing their PINs. Below, we will ask about your strategy. What was
your strategy for choosing your PIN? ”

Code Name Frequency Description Example PIN Sample from the Study

Memorable 77 Memorability was the main concern 2827 / 777888 “A number easy to remember.”
Date 65 Special date like anniversary, birthday, graduation day 1987 / 112518 “A date I won’t forget.”

Pattern 37 Visualized a pattern on the PIN pad 2580 / 137955 “The numbers on how they appeared on the PIN pad.”
Random 33 Randomly chosen digits 4619 / 568421 “Random numbers that do not repeat.”
Meaning 27 Personal meaning; Familiar or significant number 6767 / 769339 “I chose my favorite numbers and used them repeatedly.”

Reuse 18 Reused PIN from a different device/service 0596 / 260771 “The one I normally use.”
Simple 16 Simplistic, comfortable, easy 0000 / 123987 “To just chose an easy PIN.”
Word 12 Textonyms; Converted a word to a number 2539 / 567326 “Dog name.”

System 10 User’s established systematic strategy 0433 / 041512 “I used the numbers from the current time 04:33 PM.”
Phone 7 (Partial) phone number 1601 / 407437 “I used the first four digits of a friend’s phone number.”

Table A.4.: We coded and analyzed a sample of 183 PIN changing strategies of par-
ticipants that encountered a blocklist and in response changed their PIN.
Below we list and explain our codes. Two coders independently coded
the data. The level of agreement among the coders, measured by Cohen’s
kappa was κ = 0.92. Question: “After receiving the warning message,
please describe how or if your strategy changed when choosing your PIN.”

Code Name Frequency Description Use Case Strategy Sample from the Study

Same 37 Same strategy for both Selection Date “Birthday of relative.”
Change Date “Chose another birthday.”

Minor 51 Slight modification of strategy Selection Meaning “It’s one I remember, a number with personal significance.”
Change Meaning++ “I changed one number in the sequence to get the app to accept it.”

New 95 New strategy that is different Selection Date “I used my girlfriend’s birthday.”
Change Phone “I changed my strategy to a memorable phone number’s last 4 digits.”
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A.5. Feelings and Sentiments

Table A.5.: As part of our questionnaire, we asked participants for 3 feelings about
the blocklist warning. We coded and analyzed these feelings from a
sample of 182 participants that encountered a blocklist. We also included
21 participants that only imagined hitting a blocklist. Below, we list
the top 20 reported feelings. Two coders independently coded the data
and the level of agreement between the coders, measured by Cohen’s
kappa was κ = 0.98. Question: “Please describe three general feelings
or reactions that you had after you received this warning message.” or
“Please describe three general feelings or reactions that you would have
had after you received this warning message.”

Code Name Frequency Sample from the Study Sentiment

Annoyance 125 “Annoyed by this message.” Negative
Worried 81 “I am worried about my PIN’s security.” Negative

Frustrated 56 “This message frustrates me.” Negative
Surprised 53 “Surprised to see this message.” Neutral

Indifference 48 “Don’t care about this message.” Negative
Thinking 47 “Thinking about my PIN’s security.” Neutral

Acceptance 46 “I agree with this message.” Positive
Fear 43 “Afraid of attackers.” Negative

Compelling 41 “Motivated to change my PIN.” Positive
Doubt 39 “I distrust the veracity of this message.” Negative

Confusion 35 “This message is confusing.” Negative
Angry 32 “Angry this message appeared.” Negative

Cautious 30 “Cautious about my PIN.” Positive
Happy 24 “Happy my PIN will be stronger.” Positive

Curiosity 19 “I wonder why this message appeared.” Positive
Shame 19 “Ashamed my PIN wasn’t strong.” Negative

Remember 17 “I might forget my PIN.” Neutral
Alert 15 “I’m now more aware.” Neutral

Disappointed 14 “Disappointed seeing this warning.” Negative
Safe 13 “Confident this PIN will be safe.” Positive
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B.1. Additional Pre-Screening Study

The following question was asked in an additional pre-screening study on Prolific to be able to recruit more
Signal users for our main study:

P1 Which instant messaging apps do you use? (Select all that apply)
□ WhatsApp □ Facebook Messenger □ Signal □ Telegram □ iMessage □ WeChat □ QQ □ Other,
please specify:

B.2. Survey Instrument of the Main Study

Q1 Signal Private Messenger is a cross-platform encrypted messaging service. Do you use Signal?
◦ Yes ◦ No

[Participants who indicate No are screened out of the survey at this point, and only Signal users
move forward]

Q2 I use Signal primarily on:
◦ Android ◦ Apple iPhone
◦ Other, please specify:

Q3 I also use Signal on: (Select all that apply)
□ Desktop □ Tablet □ None of these

Q4 PINs are a new feature provided by Signal. In your own words, please explain how PINs are used by
Signal.
Answer:

Q5 Did you set a Signal PIN?
◦ Yes ◦ No

[Participants who indicate Yes to Q5]

Q6a Why did you choose to set a PIN?
Answer:

[Participants who indicate No to Q5]
Q6b Why did you choose not to set a PIN?

Answer:
[Participants who indicate No to Q5 skip ahead to Q25]

Q7 Since setting your Signal PIN, are you still using it, or have you since disabled it?
◦ My Signal PIN is currently enabled ◦ My Signal PIN is currently disabled

[Participants who indicated that their PIN is disabled in Q7]
Q8 Why did you disable your Signal PIN?

Answer:
[Participants who indicated that their PIN is disabled in Q7 skip ahead to Q25]

[Participants who indicated that their PIN is enabled in Q7]



B.2. Survey Instrument of the Main Study 165

Q9 How frequently do you have difficulty remembering your Signal PIN?
◦ Very frequently ◦ Frequently ◦ Occasionally ◦ Rarely ◦ Very rarely ◦ Never

[Participants who indicated that their PIN is enabled in Q7]
Q10 If you were to forget your Signal PIN, what would you do?

Answer:

[A screenshot of the Verify PIN prompt (see Figure 5.1, Page 96)]

Q11 Have you seen this dialog in Signal?
◦ Yes ◦ No

[Participants who indicated that they have seen the dialog in Q11]
Q12 When prompted, how frequently do you verify your Signal PIN?

◦ Very frequently ◦ Frequently ◦ Occasionally ◦ Rarely ◦ Very Rarely ◦ Never

[Participants who indicated that they have seen the dialog in Q11]
Q13 Have you disabled Signal PIN reminders?

◦ Yes ◦ No
[Participants who indicated that they have seen the dialog in Q11 and that they have disabled re-
minders in Q13:]

Q14 Why did you disable Signal PIN reminders?
Answer:

Q15 Many smartphone users also unlock their phone using a PIN or passcode. Is your Signal PIN the
same one you use to unlock your smartphone?
◦ Yes ◦ No ◦ Unsure ◦ I do not lock my smartphone with a PIN or passcode

Q16 Do you use your Signal PIN in other contexts besides unlocking your smartphone? (Select all that
apply)
□ ATM/Credit/Payment Card □ Laptop/PC □ Online Accounts
□ Electronic Door Lock □ Home Security System/Safe □ Garage Door Opener □ Car/Truck/SUV
□ Bike/Gym lock □ Voicemail □ Gaming Console
□ Smartwatch □ Other, please specify:

Q17 Do you use your Signal PIN in any other mobile applications?
◦ Yes, please specify: ◦ No

Q18 Do you share your Signal PIN with friends or family?
◦ Yes ◦ No

Q19 How long is your Signal PIN?
Answer:

Q20 What was your primary strategy in selecting your Signal PIN?
Answer:

Q21 Compared to other PINs you use, did you try to pick a Signal PIN that was:
◦ The most secure PIN you use ◦ About the same security as other PINs you use ◦ Less secure than
other PINs you use

Q22 Why did you choose a PIN with this security level?
Answer:

Q23 What is the shape of a red ball?
◦ Red ◦ Round ◦ Blue ◦ Square

[For each category, this question uses sliders so the user can choose a value between 0 and 12, or
check the category’s box for “Not applicable:”]
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Q24 My Signal PIN contains:
Digits:
Letters:
Special characters:

Q25 Do you use other messenger services like: (Select all that apply)
□ Facebook messenger □ Skype □ Telegram □ WeChat □ WhatsApp
□ Other, please specify:
[For the services above, place them in order of how often you use them:]

Q26 Besides Signal, did you set a PIN in one or more other messengers?
◦ Yes ◦ No

[Participants who indicate Yes to Q26]
Q27a Why did you set a PIN in the other messenger(s)?

Answer:

[Participants who indicate No to Q26]
Q27b Why didn’t you set a PIN in the other messenger(s)?

Answer:
[Participants who indicate No to Q26 skip ahead to D1 ]

[Participants who indicate Yes to Q26]
Q28 In which other messenger(s) did you set a PIN? (Select all that apply)

□ Facebook Messenger □ Skype □ Telegram □ WeChat □ WhatsApp
□ Other, please specify:

[Participants who indicate Yes to Q26]
Q29 Did you re-use the same PIN with any of these other messengers?

◦ Yes ◦ No

[Participants who indicate Yes to Q29]
Q30a Why did you re-use the same PIN in another messenger?

Answer:

[Participants who indicate No to Q29]
Q30b Why didn’t you re-use the same PIN in another messenger?

Answer:

D1 What is your age range?
◦ 18-24 ◦ 25-34 ◦ 35-44 ◦ 45-54 ◦ 55-64 ◦ 65-74 ◦ 75 or older ◦ Prefer not to say

D2 With what gender do you identify?
◦ Male ◦ Female ◦ Non-Binary ◦ Other ◦ Prefer not to say

D3 What is the highest degree or level of school you have completed?
◦ Some high school ◦ High school ◦ Some college ◦ Trade, technical, or vocational training ◦ Associate’s
Degree ◦ Bachelor’s Degree ◦ Master’s Degree ◦ Professional Degree ◦ Doctorate ◦ Prefer not to say

D4 What is your country of residence?
[Drop-down all countries]

D5 Does your educational background or job field involve IT?
◦ Yes ◦ No ◦ Prefer not to say
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B.3. Additional Figures

Figure B.1.: First prompt to ask Signal users to create a PIN

Figure B.2.: Updated prompt to ask Signal users to create a PIN
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Figure B.3.: Prompt used when Signal users wish to change their PIN
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B.4. Codebooks

We have 10 open-ended questions in our study for which two coders independently coded
all answers we received. The two coders compared and combined codes until they agreed.
For each question, n depicts the number of responses. As a single response might receive
multiple codes, the number of codes does not sum to n. All codes of participant responses
are shown below.

Table B.1.: Q4: “PINs are a new feature provided by Signal. In your own words, please
describe how PINs are used by Signal.” (n = 235) Based on the answer to Q4,
132 participants were classified as enthusiasts.

Code Name No. % Description Sample from the Study

Backup 65 49% Participant mentions secure
backup of settings and contacts
but not messages

“The PIN enables storing a backup
of the user’s settings on the sig-
nal servers in an encrypted form.”
(P13)

Encryption 45 34% Participant mentions encryption
based on the PIN

“deriving a key to encrypt data
stored on signals servers” (P82)

Contacts 31 24% Participant mentions the backup
of contact data

“To secure contacts data saved on
signal server with your own pin”
(P7)

Registration 23 17% Participant mentions the registra-
tion lock

“to prevent reregistration of an ac-
count for the same mobile phone
number for a given amount of
time” (P91)

Settings 8 6% Participant mentions the backup
of settings

“For encrypted backups - on cloud
storage - for the user settings and
profile. Not the messages them-
selves.” (P127)

Keying 7 5% Participant mentions the keying of
the PIN

“They say it’s part of a key-
ing mechanism providing a non-
phone-number value that allows
secure storage and retrieval of con-
tacts and social graph info across
devices.” (P2)

Phone number 6 5% Participant mentions the intention
of Signal to move away from the
phone number as an identifier

“I think for backup purposes and to
later fade out the phone number as
identifier.” (P106)

Profile 4 3% Participant mentions the backup
of profile information

“PINs are used for recovery of set-
tings and profile information af-
ter re-installation of Signal app.”
(P54)

Groups 3 2% Participant mentions the backup
of group memberships

“They are used to secure private
information such as group mem-
bership and store it on the Signal
server’ (P35)

Anti-Cloud 2 2% Participant expresses negative sen-
timent about the data being stored
by Signal

“they are used to secure data in
acloud service that is beeing forced
on users” (P208)

SVR 1 1% Participant mentions Secure Value
Recovery (SVR)

“Secure Value Recovery” (P222)
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Table B.2.: Q4: “PINs are a new feature provided by Signal. In your own words, please
describe how PINs are used by Signal.” (n = 235) Based on the answer to Q4,
103 participants were classified as casuals.

Code Name No. % Description Sample from the Study

Don’t Know 57 55% Participant does not mention any
terms that may indicate an under-
standing

“I don’t understand their purpose
very well. I thought that they
might be using the PIN system to
verify the identity of the person us-
ing signal (if for instance some-
one unauthorized gained access to
the phone), but the way that pin
entry is optionally offered every
few weeks doesn’t align with such
a purpose. as such, I have no idea
what they’re trying to accomplish.”
(P178)

Messages 21 20% Participant mentions the backup
of messages

“Secure backup of messages” (P23)

Unlock 21 20% Participant mentions that the PIN
is used to protect access to the app

“Protect application from opening
from an unlocked phone” (P37)

Security 2 2% Participant mentions security “Security somehow...’ (P7)
Inconvenient 1 1% Participant mentions inconve-

nience
“I have not tried it considering
that it’d pop up for additional ver-
ification through the pin.” (P212)
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Table B.3.: Codes assigned to the answers of the participants for (Q6a) on adopting a PIN.
Q6a: “Why did you choose to set a PIN? ” (n = 202).

Enthusiasts Casuals
Code Name No. % No. % Description Sample from the Study

Security 7 5 % 26 25% Participant mentions se-
curity

“I wanted some extra secu-
rity” (P50)

Required 25 19% 6 6% Participant mentions
that there was no other
choice

“I did not see an option to
not set one” (P121)

Prompted 8 6% 13 13% Participant mentions
that Signal showed a
prompt that suggested it

“cause signal asked me to
do so” (P78)

Don’t Know 4 3% 16 16% Participant does not
mention any of the
terms that indicate an
understanding

“So that people that get a
hold of my phone would
have greater difficulty
accessing my messages.”
(P159)

Annoying 12 9% 6 6% Participant mentions the
feature was annoying

“Because it kept hassling
you with a pop up screen”
(P154)

Registration 14 11% 2 2% Participant mentions the
registration lock

“I chose to set a PIN to both
set registration lock and to
backup my contacts.” (P51)

Features 8 6% 3 3% Participant mentions
features without further
defining them

“To be able to use the fea-
tures that depend on a PIN”
(P111)

No harm 8 6% 3 3% Participant describes
there being no draw-
backs

“No disadvantage doing so”
(P20)

Trust 4 3% 2 2% Participant expresses
trust in Signal

“I trusted the app and
just did it when prompted.”
(P155)

Privacy 2 2% 3 3% Participant mentions
valuing privacy

“Because privacy is impor-
tant to me and it’s an added
layer of it” (P162)

Contacts 3 3 % 0 0% Participant mentions the
backup of contact data

“I want to be able to ac-
cess contact data saved on
signal server if I some-
how can’t access my current
phone” (P7)

Comfort 2 2% 0 0% Participant mentions
feeling comfortable

“Because it I felt com-
fortable with the trade-off.
Picked a long passphrase
rather than a four digit
PIN.” (P127)

Encryption 1 1% 1 1% Participant mentions en-
cryption based on the
PIN

“For me it’s okay to encrypt
and store data on Signal’s
servers as I have no high
threat model.” (P87)

Lock 1 1% 0 0% Participant mentions
locking apart from
registration lock

“basically to lock and to
avoid sim hijacking” (P19)
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Table B.4.: Codes assigned to the answers of the participants for (Q6b) on adopting a PIN.
Q6b: “Why did you choose not to set a PIN? ” (n = 33).

Enthusiasts Casuals
Code Name No. % No. % Description Sample from the Study

Inconvenient 4 25 % 3 18% Participant mentions incon-
venience

“I want to access my apps
as seamless and fast as pos-
sible.” (P212)

Anti-Cloud 7 44% 0 0% Participant expresses neg-
ative sentiment about the
data being stored by Signal

“had no desire to have
any contact data uploaded”
(P216)

Key
management

3 19% 0 0% Participant described the
use of the PIN in key deriva-
tion

“I don’t trust Signal’s en-
cryption strategy involving
SGX. It’s my belief that
SGX is likely to be compro-
mised by nation-state ac-
tors, and cannot be used se-
curely. If any of my private
information must be stored
persistently in a cloud ser-
vice, it is unacceptable to
use anything other than an
encryption key that I per-
sonally control.” (P203)

Lock 0 0% 4 24% Participant falsely links the
phone lock to the PIN

“My phone is always locked.
Additional authentication
seems unnecessary” (P227)

No need 0 0% 3 18% Participant mentions seeing
no need

“it’s not necessary for me”
(P233)

Memorability 1 6% 1 6% Participant described mem-
orability issues

“I didn’t want to be both-
ered with remembering an-
other code.” (P224)

No awareness 1 6% 0 0% Participant did not know
Signal had a PIN

“I didn’t know it existed.”
(P232)

Not
prompted

0 0% 1 6% Participant said they were
not prompted to set a PIN

“was not asked.” (P218)

Rarely use 0 0% 1 6% Participant described using
Signal only rarely

“I dont use signal much, its
not for sensitive messages
so dont need the extra se-
curity” (P223)

Unsupported 0 0 % 1 6 % Participant described using
an unsupported client

“Not possible because of
using a unsupported na-
tive client for SailfishOS”
(P220)
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Table B.5.: Q8: “Why did you disable your Signal PIN? ” (n = 11)

Enthusiasts Casuals
Code Name No. % No. % Description Sample from the Study

Annoying 3 60% 1 17% Participant mentions be-
ing annoyed

“It was annoying.” (P188)

Anti-Cloud 2 40% 1 17% Participant expresses
negative sentiment about
the data being stored by
Signal

“Don’t want my data stored
on their server” (P193)

Inconvenient 1 20 % 1 17% Participant mentions in-
convenience

“Verification overhead”
(P212)

No backup 1 20% 0 0% Participant describes not
needing a backup

“It’s annoying to re-enter
the PIN and I don’t need
backup for signal since
there’s no important
conversation” (P231)

No need 1 20% 1 17% Participant sees no neces-
sity

“I do not need it” (P206)

Table B.6.: Q10: “If you were to forget your Signal PIN, what would you do? ” (n = 191)

Enthusiasts Casuals
Code Name No. % No. % Description Sample from the Study

Don’t know 27 25% 33 40% Participant does not
know what to do

“Honestly don’t know”
(P68)

PW Manager 45 42% 12 15% Participant has the PIN
stored in a password
manager

“I’ve stored my Signal PIN
in my PW manager” (P74)

Reset 0 0% 12 15% Participant describes re-
setting the account

“Check the help page for
how to reset” (P158)

Wait 8 7% 4 5% Participant is aware that
the PIN expires and
would wait

“wait for pin expiration”
(P161)

New PIN 4 5% 7 6% Participant would set a
new PIN

“as long as I have access
to my Signal account I can
set a new PIN at any time”
(P18)

New account 4 4% 5 6 % Participant would create
a new account

“I would make another ac-
count” (P181)

Reused 2 2% 4 5% Participant reuses the
PIN and does not expect
to forget it

“It is a PIN I use for my
bank cards, so I would not
forget it.” (P145)

Unrecoverable 2 2% 3 4% Participant accepts that
there is not way to re-
cover

“Signal said there is no way
to recover it. All chats
constants block list will be
lost.” (P79)

Contact 0 0% 4 5% Participant would con-
tact Signal directly

“Contact the signal team”
(P137)

Guess 0 0% 3 4% Participant would try to
guess the PIN

“try a lot of PINs i use”
(P98)

Reinstall 2 2% 0 0% Participant would rein-
stall Signal

“delete the app and reinstall
it” (P106)

Written 1 1% 1 1% Participant mentions
that the PIN has been
written down

“I would check the PIN on
my journal, I wrote it down
with all the passwords and
the login info.” (P143)
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Table B.7.: Q14: “Why did you disable Signal PIN reminders? ” (n = 45)

Enthusiasts Casuals
Code Name No. % No. % Description Sample from the Study

PW Manager 22 67% 1 8% Participant has the PIN
stored in a password
manager

“Because I have a password
safe and do not need to re-
member the pIn” (P49)

Annoyed 6 18% 5 42% Participant describes be-
ing annoyed

“Because it asked my pin to
often” (P70)

No need 5 15% 4 33% Participant describes not
needing them

“I don’t think I need them”
(P160)

Memorized 0 0% 1 8% Participant does not ex-
pect to forget the PIN

“Thought I’d be able to re-
member it” (P157)

Effective 0 0% 1 9% Participant mentions the
effectiveness of the re-
minders

“After a few reminders I
was sure not to forget the
PIN” (P87)

Table B.8.: Q20: “What was your primary strategy in selecting your Signal PIN? ” (n =
191)

Enthusiasts Casuals
Code Name No. % No. % Description Sample from the Study

Memorable 23 21% 30 36% Participant mentions
memorability

“My ability to remember it.”
(P116)

PW Manager 28 26% 6 7% Participant describes us-
ing a password manager

“My password safe gener-
ated it.” (P100)

Reuse 16 15% 13 16 % Participant describes
reusing a PIN

“I used my PIN that I often
use.” (P176)

Random 15 14% 7 8% Participant describes
choosing a random PIN

“random number genera-
tor” (P63)

Meaning 6 6% 6 7% Participant describes
choosing a meaningful
PIN

“Something meaningful to
me” (P77)

Security 3 3 % 8 10% Participant describes se-
lecting a secure PIN

“just something safe an
long” (P200)

Pattern 3 3% 4 5% Participant describes
choosing a PIN that
depicts a pattern

“Thinking of a pattern thats
memorable to me” (P142)

None 2 2% 3 4% Participant describes not
having a strategy

“no strategy” (P115)

Word 2 2% 3 4% Participant describes
converting a word to a
PIN (textonyms)

“Words to numbers” (P115)

Date 2 2% 1 1% Participant describes us-
ing a date

“It‘s a date that is relevant
but nobody knows” (P154)

System 2 2% 1 1% Participant describes
having a certain system

“My preferred format”
(P138)

Typable 0 0 % 1 1% Participant mentions a
PIN that is easy to enter

“Strong alphanumeric pass-
word that is secure enough
but fairly easy to type
on the phone, even if I
couldn’t paste it from pass-
word manager for some
reason.” (P54)

Simple 0 0% 1 1% Participant mentions
simplicity

“Something simple” (P154)

Phone 0 0% 1 1% Participant mentions a
phone number

“Old phone number i can
remembee” (P108)
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Table B.9.: Q22: “Why did you choose a PIN with this security level? ” (n = 191)

Enthusiasts Casuals
Code Name No. % No. % Description Sample from the Study

Memorability 12 11% 18 22% Participant mentions
memorability

“Because I wanted it to be
easy to remember.” (P5)

Enough 16 15% 15 18% Participant describes the
security level being suffi-
cient

“I think that’s enough”
(P179)

Security 25 23% 20 24% Participant mentions se-
curity

“I am fairly security con-
scious” (P44)

Consistent 11 10% 6 7% Participant describes this
level being the standard

“Because I always choose
this security level.” (P109)

Trade-off 9 8% 2 2% Participant describes
some form of trade-off

“trade-off between remem-
bering and security” (P60)

Reuse 7 7% 2 2% Participant describes
reusing a PIN

“The same as the iPhone
passcode.” (P144)

PW manager 6 6% 2 2% Participant describes us-
ing a password manager

“why not, if i can use a pw
manager” (P76)

Don’t know 1 1% 6 7% Participant cannot re-
member the strategy

“I don’t remember” (P84)

None 2 2% 4 5% Participant describes not
having a strategy

“no strategy” (P88)

Convenience 3 3% 1 1% Participant mentions
convenience

“Convience over security”
(P113)

Privacy 2 2% 1 1% Participant mentions pri-
vacy

“The chats and contacts in
Signal have a relatively high
level of privacy, so it should
be properly protected. Yet
the pin is not as good as
for example my computers
encryption password but as
good as my android encryp-
tion phrase.” (P94)

Low-threat 0 0% 2 2% Participant sees little
need for data security

“The info isn’t super impor-
tant” (P168)

Indifference 2 2% 0 0% Participant says the PIN
is unimportant

“Dont think that the pin is
too important” (P120)

Rarely use 2 2% 0 0% Participant described us-
ing the PIN only rarely

“Unlike my smartphone un-
lock pin for example, I don’t
have to enter my Signal
PIN frequently (never re-
ally, unless I set up a new
smartphone) and thus had
no problem with selecting a
long and complicated PIN”
(P20)

Minimum 1 1% 0 0% Participant mentions a
Signal requirement

“Initially 6 digits were re-
quired.” (P132)
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Table B.10.: Codes assigned to the answers of the participants for (Q27a) and (Q27b) on
setting a PIN in other messengers.

(a) Q27a: “Why did you set a PIN in other messenger(s)? ” (n = 49)

Enthusiasts Casuals
Code Name No. % No. % Description Sample from the Study

Security 24 67% 8 62% Participant mentions se-
curity

“For more security, 2FA”
(P95)

Prompted 4 11% 1 8% Participant mentions be-
ing prompted by the ap-
plication

“Prompted to do so, and I
understand the reasons why
it is a good idea.” (P196)

Required 4 11% 1 8% Participant mentions
that there was no other
choice

‘Forced to set” (P93)

Feature 2 6% 1 8% Participant mentions be-
ing given the option to

“Because I could” (P117)

Don’t know 1 3% 2 16 % Participant doesn’t ad-
dress the question

“Telegram” (P48)

Reuse 1 3% 0 0% Participant mentions
reusing a PIN when
possible

“Since I already has a pin
memorized, why not use it
in other messengers” (P50)

(b) Q27b: “Why didn’t you set a PIN in other messenger(s)? ” (n = 131)

Enthusiasts Casuals
Code Name No. % No. % Description Sample from the Study

No feature 20 35% 24 33% Participant mentions not
being able to set a PIN

“They don’t have that op-
tion” (P35)

No need 18 32% 12 17% Participant describe that
there is no necessity

“Not required” (P156)

Not asked 10 17% 20 28% Participant describes not
being asked to

“Was not asked to” (P67)

Use rarely 3 5% 4 6% Participant describes
only using them rarely

“I don’t use them often, if
at all.” (P51)

Screen lock 3 5% 2 3% Participant describes
that the phone lock is
sufficient

“The phone in itself has a
pin” (P194)

Annoyed 2 3% 1 2% Participant describes be-
ing annoyed

“They are inconvenient, do
not know how, and I do not
use them for secure messag-
ing. My Signal is already
password protected so a pin
seems redundant.” (P55)

Insecure 0 0% 2 3% Participant describes
that they don’t use them
for secure communication

“Not intended for secure
communication.” (P62)

Comfort 1 2% 0 0% Participant mentions
feeling comfortable

“comfort” (P102)
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Table B.11.: Codes assigned to the answers of the participants for (Q30a) and (Q30b) on
reusing the Signal PIN in another messenger.

(a) Q30a: “Why did you re-use the same PIN in another messenger? ” (n = 10)

Enthusiasts Casuals
Code Name No. % No. % Description Sample from the Study

Memorability 5 63% 2 100% Participant mentions
memorability

“I was too lazy to memo-
rize a new one... not good
I know” (P50)

Messenger
PIN

2 25% 0 0% Participant mentions us-
ing a PIN for messengers

“Because I have one pin for
messengers.” (P5)

Convenience 1 12% 0 0% Participant mentions
convenience

“Convivence, but it was
probably a poor decision, as
WhatsApp is more vulner-
able to a secret warant.”
(P196)

(b) Q30b: “Why didn’t you re-use the same PIN in another messenger? ” (n = 37)

Enthusiasts Casuals
Code Name No. % No. % Description Sample from the Study

Security 17 65% 6 60% Participant mentions se-
curity

“Reusing PINs is a bad
practice.” (P54)

PW Manager 8 31% 2 20% Participant describes us-
ing a password manager

“Why would i? Thats
what passwordmanagers are
for.d” (P23)

Other
options

3 12% 0 0% Participant describes
having other options

“Some of them gave me
the option of using my
thumbprint.” (P3)

Don’t know 1 4% 1 10% Participant cannot ex-
plain the reason

“I didn’t really think about
it, it just happened” (P179)

Required 0 0% 1 10% Participant mentions dif-
ferent requirements

“different lengths” (P381)
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C.1. Survey Instrument

Agenda
PINs or passcodes are often used to unlock mobile devices. You will be asked to choose a PIN just
like you would to protect your smartphone. Afterward, you will complete a short survey and then
try to guess the PINs of other participants. You will enter 5 guesses. Finally, you will answer some
questions about your experience.
You contribute to research, so please answer correctly and as detailed as possible. Next, you will
practice the PIN selection.
Practice entering a [4/6]-digit PIN.
PIN pad as shown in Figure 4.2
Your Task
You will be asked to choose a digit PIN you would use to unlock your smartphone. You will need to
remember your secret PIN for the duration of the study. Please DO NOT write down your secret
PIN.
Create a [4/6]-digit secret PIN
A secret PIN protects your data and is used to unlock your smartphone.
PIN pad as shown in Figure 4.2
Questionnaire
People use different strategies for choosing their PINs. Below, we will ask about your strategy.
Q1 What was your strategy for choosing your secret PIN?

Answer:
Please select the answer choice that most closely matches how you feel about the following state-
ments:
Q2 I feel the secret PIN I chose is:

◦ Secure ◦ Somewhat secure ◦ Neither secure nor insecure
◦ Somewhat insecure ◦ Insecure

Q3 I feel the secret PIN I chose is:
◦ Easy to enter ◦ Somewhat easy to enter ◦ Neither easy nor hard to enter ◦ Somewhat
hard to enter ◦ Hard to enter

Q4 I feel the secret PIN I chose is:
◦ Easy to remember ◦ Somewhat easy to remember
◦ Neither easy nor hard to remember ◦ Somewhat hard to remember
◦ Hard to remember

Q5 What is the shape of a red ball?
◦ Red ◦ Blue ◦ Square ◦ Round

Q6 Was the secret PIN that you entered a PIN that you use on your smartphone or other personal
devices?
◦ Yes ◦ No ◦ Unsure ◦ I do not lock my smartphone with a PIN

If participants indicated reuse of their PIN in Q6:
Q7 Did you choose a secret PIN you use in other contexts besides unlocking your smartphone?

(Select all that apply)
□ ATM/Credit/Payment Card □ Laptop/PC □ Online Accounts □ Bike/Gym lock □ Elec-
tronic Door Lock □ Home Security System/Safe □ Garage Door Opener □ Car/Truck/SUV
□ Voicemail □ Gaming Console □ Smartwatch
□ Other, please specify:
□ No, I did not choose a PIN from other contexts.

Your Task
• Enter 5 PINs that you think other participants entered
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• Any number of correct guesses earns a bonus $0.50, paid 1-2 weeks after the completion of
this study

• More than 100 people will be taking this study
Please enter 5 different guesses.

The following page appeared 5 times
Guess x
Try to guess someone’s [4/6]-digit secret PIN. Guesses must be unique!
PIN pad as shown in Figure 6.2
About Your Guesses
Previously, you made the following guesses:
Guess 1: [pin]
Guess 2: [pin]
Guess 3: [pin]
Guess 4: [pin]
Guess 5: [pin]
Q8 In two to three sentences, please describe your overall strategy you used when guessing other

participants’ secret PINs.
Answer:

Q9 Please describe a situation where someone is most likely to unlock your smartphone. If rel-
evant, indicate your relationship to this person but do NOT include Personally Identifiable
Information (PII).
Answer:

Q10 In this situation, why would the individual be accessing your smartphone?
Answer:

Q11 In this situation, describe the strategy the individual would use to gain access to your smart-
phone.
Answer:

Q12 Did you consider this situation when you chose your secret PIN?
◦ Yes ◦ No ◦ Unsure

Q13 Did you consider this situation when you were guessing the PINs of other participants?
◦ Yes ◦ No ◦ Unsure

Q14 My level of concern for someone accessing my phone without consent is:
◦ Unconcerned ◦ Somewhat unconcerned
◦ Neither concerned nor unconcerned ◦ Somewhat concerned ◦ Concerned

Q15 Why do you feel this level of concern?
Answer:

Q16 Have you ever changed your PIN to keep someone from accessing your smartphone?
◦ Yes ◦ No ◦ Unsure

Q17 Have you ever tried to access someone else’s smartphone without their knowledge?
◦ Yes ◦ No ◦ Unsure

Q18 Have you ever granted someone else access to your smartphone?
◦ Yes ◦ No ◦ Unsure

Re-enter your [4/6]-digit PIN
PIN pad as shown in Figure 4.2
About Your Guesses
Q19 Do you think the secret PIN you entered at the start of this survey will be guessed by other

participants in this study? Why or why not?
Answer:
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Q20 Do you think you guessed someone else’s secret PIN? Why or why not?
Answer:

Enter Demographic Information
D1 What is your age range?

◦ 18–24 ◦ 25–34 ◦ 35–44 ◦ 45–54 ◦ 55–64 ◦ 65–74 ◦ 75 or older
◦ Prefer not to say

D2 What is your gender?
◦ Woman ◦ Man ◦ Non-binary ◦ Prefer to self-describe ◦ Prefer not to say

D3 What is the highest degree or level of school you have completed?
◦ Some high school ◦ High school ◦ Some college
◦ Trade, technical, or vocational training ◦ Associate’s Degree
◦ Bachelor’s Degree ◦ Master’s Degree ◦ Professional Degree ◦ Doctorate ◦ Prefer not
to say

D4 Do you use any of the following biometrics to unlock your primary smartphone? (Select all
that apply)
□ Fingerprint □ Face □ Iris □ Other biometric □ I do not use a biometric
□ Prefer not to say

If participants indicated to use a biometric in D4:
D5a How do you unlock your smartphone, if your biometric fails or when you reboot your primary

smartphone?
◦ None ◦ Pattern ◦ 4-digit PIN ◦ 6-digit PIN ◦ PIN of other length ◦ Alphanumeric
password ◦ I use an unlock method not listed here
◦ Prefer not to say

If participants indicated not to use a biometric in D4:

D5b What screen lock do you use to unlock your primary smartphone?
◦ None ◦ Pattern ◦ 4-digit PIN ◦ 6-digit PIN ◦ PIN of other length ◦ Alphanumeric
password ◦ I use an unlock method not listed here
◦ Prefer not to say

D6 What is the operating system of your primary smartphone?
◦ Android ◦ iOS (iPhone) ◦ Other ◦ Prefer not to say

D7 Which of the following best describes your educational background or job field?
◦ I have an education in, or work in, the field of computer science, computer engineering, or
IT.
◦ I do not have an education in, nor do I work in, the field of computer science, computer
engineering, or IT.
◦ Prefer not to say

One More Thing
Please indicate if you’ve honestly participated in this survey and followed instructions completely.
You will not be penalized/rejected for indicating ’No’ but your data may not be included in the
analysis:
◦ Yes ◦ No
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C.2. Qualitative Codes

• no (183)
• yes (134)
• pattern (127)

physical (2), word (2), sequential (1), odd-numbers (1)
• simple (106)
• maybe (101)
• delegation (97)

entertainment (24), respond (11), find-information (7), shopping (4), location (3), take-photo (2)
• partner (96)
• memorable (94)
• random (90)

guess (1)
• date (89)
• guess (79)

personal-hint (51), shoulder-surf (12), smudges (1)
• ask (63)
• shared (61)
• important-information (61)

financial (13), personal (13), sensitive (8), private (6), social-media (3), messages (2), email (2),
confidential (2), apps (2), photo (1), health (1), photos (1), other-passwords (1), relation-
ships (1), mature-content (1), encrypted (1), files (1), communication (1), browsing-history
(1), contacts (1)

• friend (58)
• family-member (58)
• personal-importance (56)

birthday (13), zip-code (3), date (2), partner (2), favorite-number (2), months (1), year (1), dat
(1), name (1), acquaintance (1), lucky-number (1)

• phone-locked (43)
pin (20), biometric (6), password (4), access (1), pattern (1)

• find-information (41)
location (2)

• physical-control (36)
• meaning (31)
• users-lazy (28)

unaware (1)
• picked-common (28)
• nothing-to-hide (28)
• borrow-phone (26)

contact (12), find-information (5), entertainment (4)
• dire-circumstances (25)
• reuse (24)
• hard-to-guess (23)

nobody-made-easy (3), needed-more-guesses (1), generation (1), not-enough-information (1),
tricky (1)

• picked-easy (23)
• privacy (22)
• mal-intent (21)
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• picked-pattern (21)
• other-method (17)
• uncommon (17)
• picked-sequence (16)
• easy-to-guess (15)

simple (3), obvious (1)
• unique (13)
• word (13)
• statistically-unlikely (12)
• picked-memorable (11)
• phone (10)
• picked-simple (10)
• shared-info (10)

financial (2), files (2), contacts (2)
• other-pins-more-secure-than-irl (9)
• family-trusted (9)

partner (2)
• undescribed (9)
• no-one (8)
• picked-easy-enter (8)
• trust-others (8)

acquaintances (2), familiar (1)
• system (8)
• biometrics (8)
• curious (8)
• picked-random (8)
• laziness (8)
• unspecified (7)
• none (6)
• picked-repetition (6)
• guessed-by-luck (6)
• no-important-information (6)

financial (1)
• malice (6)

financial (2), scam (1), manipulate-documents (1)
• hard (6)

no-personal-info (1), no-feedback (1), others-mindset (1)
• distress (5)
• thief (5)
• app-locked (5)
• picked-date (5)

year (3)
• common (5)

numbers (1)
• shared-passcode (4)

partner (1), family (1)
• not-obvious (4)
• need-prior-knowledge (4)
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• phone-insecure (4)
pin (3)

• financial (4)
• number-users (4)

will-guess (1)
• picked-other (3)

zip (1), no-strategy (1), diverse (1)
• unconcern (3)
• security-questions (3)
• question-of-legality (3)
• not-pattern (3)
• zipcode (3)
• similar-thought-process (3)
• stranger (3)
• no-motive (2)
• resigned (2)
• police (2)
• luck (2)
• similar-reasoning (2)
• insecure (2)
• used-friends-pin (2)
• picked-insecure (2)
• brick-phone (2)
• lost-phone (1)
• smartphone-pin (1)
• not-complex (1)
• easily-change-password (1)
• not-difficult (1)
• multiple-attempts (1)
• boss (1)
• not-random (1)
• not-a-target (1)
• appearance (1)
• manufacturer-trust (1)
• no-knowledge (1)
• other-pins-more-simple-than-irl (1)
• cryptocurrency (1)
• no-pattern (1)
• convenient (1)
• search-warrant (1)
• phone-unlocked (1)
• number-participants (1)
• app-security (1)
• typical (1)
• need-consent (1)
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