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Abstract

Initially used in niche military applications, cryptography has evolved to be the indispensable
foundation for guaranteeing user privacy and safety in today’s data-driven and universally
connected world. Technological mega trends like Artificial Intelligence (AI) and the Internet
of Things (IoT) vastly accelerate the collection and processing of unimaginable amounts of
personal data whose confidentiality, integrity and authenticity must be protected. Nowadays,
cryptography is not only a mere extension to a system, but it even lies at the heart of many
applications’ functionality, for example, in the context of decentralized networks.

As a result, cryptographic algorithms are widely implemented in both soft- and hardware on a
heterogeneous spectrum of devices ranging from payment cards, over key tokens and automotive
platforms, to modern smartphones. As cryptographic algorithms often have to be realized within
a resource-constrained context while guaranteeing high throughput and low latency, many chip
vendors have started integrating cryptography as a dedicated, on-chip hardware module. Such
accelerators are highly attractive as they drastically improve performance compared to sole
software implementations.

While all common cryptographic algorithms are considered secure from a mere cryptanalytic
viewpoint, i.e., when an adversary is limited to choosing and observing in- and outputs of the
algorithm, and the execution itself is considered a black box, many works have shown that
this theoretical restriction of adversarial behavior is not accurate in various realistic scenar-
ios. In many cases, an attacker can access additional information during the execution of a
cryptographic implementation, weakening the assumption of a black-box model. By passively
observing the physical characteristics of a device, like the timing, the power consumption, or
the electromagnetic emanation during the execution of a cryptographic algorithm, an adversary
may obtain confidential information that is currently processed. We refer to attacks that lever-
age such unintentional relations as Side-Channel Analysis (SCA) attacks. Since their discovery,
SCA attacks have proven to be highly effective for the purpose of recovering key material and
breaking the security of many real-world and widespread devices.

This is why intensive focus has been laid on finding strong countermeasures. A prominent and
well-studied protection against SCA is offered by the masking countermeasure, which, since its
introduction in the context of SCA two decades ago, has received the lion’s share of attention due
to its sound theoretical foundation rooted in the concept of secret sharing. Here, a randomized
split of the information in the processed data aims to move the successful recovery of secret
keys into the practically impossible.

Achieving thorough masking in hardware is a tedious and delicate task, even for experts that
can look back on many years of experience in building SCA-resistant hardware implementations.
Due to the vast variety of leakage-driving physical effects within digital hardware circuits, minor
errors in the design can render an implementation entirely insecure in practice. Starting from
a process that mainly involved masking based on heuristics and experimental evaluation of
the resulting hardware implementation through standard leakage assessment methodologies,



part of the research efforts has been devoted to deriving more systematic masking approaches
and evaluating designs early on in the design process. The establishment of formal adversary
models, which realistically, but abstractly, model an SCA adversary’s capabilities and define
what information leakage can be extracted from a circuit, was a key enabler for deriving both
systematic masking that can even be entirely automated, and security verification based on the
netlist of the circuit. Due to its high abstraction, the robust d-probing model is a well studied
and highly convenient SCA adversary model in the hardware context.

While generally aiming to drive advances with respect to ensuring strong protection against
power-related SCA attacks, this thesis particularly presents contributions in three categories.
We underline the ongoing relevance of SCA attacks – even for complex, modularized systems –
by showing how combining software exploits and SCA can pose a potent threat to user privacy
in widely spread consumer devices. We furthermore introduce new techniques to realize formal
verification, i.e., the attestation of security and composability of masked hardware designs with
respect to the formal robust d-probing adversary model. Last but not least, we introduce several
novel schemes and methodologies for systematic and automated masking. With these, we hand
an engineer a toolbox for automatically transforming any digital circuit into a circuit thoroughly
protected against SCA attacks while offering high flexibility to find a suitable trade-off between
security level, latency and area footprint of the resulting design.
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Kurzfassung

Formale Überprüfung und automatisierte Maskierung von
Kryptografischer Hardware
Ursprünglich in militärischen Nischenanwendungen eingesetzt, hat sich die Kryptografie in der
heutigen datengesteuerten und global vernetzten Welt zu einer unverzichtbaren Grundlage für
die Gewährleistung der Privatsphäre und Sicherheit der Nutzer entwickelt. Technologische Me-
gatrends wie Künstliche Intelligenz (KI) und das Internet der Dinge (IoT) beschleunigen die
Erfassung und Verarbeitung unvorstellbarer Mengen personenbezogener Daten enorm. Daher
ist es unerlässlich, die Vertraulichkeit, Integrität und Authentizität dieser Daten zu schützen.
Kryptografie ist heute nicht mehr nur eine Erweiterung eines Systems oder einer Anwendung,
sondern das Herzstück vieler Anwendungsfunktionen, z. B. im Zusammenhang mit verteilten
Netzwerken.

Kryptografische Algorithmen sind sowohl in Soft- als auch in Hardware auf einem heterogenen
Spektrum unterschiedlicher Geräte implementiert, welches von Zahlungskarten, über Schlüssel-
Token und Automobilplattformen, bis hin zu modernen Smartphones reicht. Da kryptografische
Algorithmen oft in einem ressourcenbeschränkten Kontext realisiert werden müssen und gleich-
zeitig ein hoher Durchsatz und eine niedrige Latenzzeit garantiert werden müssen, haben viele
Chip-Hersteller damit begonnen, die Kryptografie als dediziertes On-Chip Hardwaremodul zu
integrieren. Solche Hardwarebeschleuniger sind äußerst attraktiv, da sie die Effizienz im Ver-
gleich zu reinen Softwareimplementierungen drastisch verbessern.

Während alle gängigen kryptografischen Algorithmen unter rein kryptanalytischen Gesichts-
punkten als sicher gelten, d.h. wenn ein Angreifer nur die Ein- und Ausgaben des Algorithmus
auswählen und beobachten kann und die Ausführung selbst als Black Box betrachtet wird, ha-
ben viele Arbeiten gezeigt, dass diese theoretische Einschränkung des gegnerischen Verhaltens
in verschiedenen realistischen Szenarien nicht zutreffend ist. In vielen Fällen ist ein Angreifer in
der Lage, während der Ausführung einer kryptografischen Implementierung auf zusätzliche In-
formationen zuzugreifen, wodurch die Annahme eines Black-Box Modells unzulässig wird. Durch
die passive Beobachtung der physikalischen Eigenschaften eines Geräts, wie z. B. des Timings,
des Stromverbrauchs oder der elektromagnetischen Abstrahlung während der Ausführung eines
kryptografischen Algorithmus, kann ein Angreifer vertrauliche Daten beziehen, die gerade verar-
beitet werden. Wir bezeichnen Angriffe, die solche unbeabsichtigten Zusammenhänge ausnutzen,
als Seitenkanal(SCA)-Angriffe. Seit ihrer Entdeckung haben sich SCA-Angriffe als äußerst ef-
fektiv erwiesen, um Schlüsselmaterial zu extrahieren und die Sicherheit vieler realer und weit
verbreiteter Geräte zu brechen.

Aus diesem Grund wurde ein intensiver Fokus auf die Suche nach starken Gegenmaßnahmen
gelegt. Einen prominenten und gut untersuchten Schutz gegen SCA-Angriffe bietet die Gegen-
maßnahme Masking, die seit ihrer Einführung im Zusammenhang mit SCA vor zwei Jahrzehnten
aufgrund ihrer soliden theoretischen Grundlage, die auf dem Konzept des Secret Sharings be-



ruht, den größten Teil der Aufmerksamkeit erhalten hat. Hier zielt eine zufällige Aufteilung
der Informationen in den verarbeiteten Daten darauf ab, die erfolgreiche Wiederherstellung von
geheimen Schlüsseln in den Bereich des praktisch Unmöglichen zu rücken.

Das Erreichen einer soliden Maskierung in Hardware ist eine langwierige und heikle Aufgabe,
selbst für Experten, die auf viele Jahre Erfahrung im Design von SCA-resistenten Hardware
Implementierungen zurückblicken können. Aufgrund der großen Vielfalt von physikalischen Ef-
fekten innerhalb digitaler Hardwareschaltungen können kleine Fehler im Design eine Implemen-
tierung in der Praxis völlig unsicher machen. Ausgehend von einem Prozess, der hauptsächlich
die Maskierung auf der Grundlage von Heuristiken, und die experimentelle Bewertung der Si-
cherheit der resultierenden Hardware Implementierung durch gängige Evaluierungsmethoden
umfasste, wurde ein Teil der Forschungsanstrengungen der Ableitung systematischerer Maskie-
rungsansätze und der Bewertung von Hardwaredesigns in einem frühen Stadium des Designpro-
zesses gewidmet. Die Erstellung formaler Angreifermodelle, die die Fähigkeiten eines Angreifers
realistisch, aber abstrakt, modellieren und abdecken, war eine wichtige Voraussetzung für die
Ableitung sowohl einer systematischen Maskierung, die sogar vollständig automatisiert werden
kann, als auch einer Sicherheitsüberprüfung auf der Grundlage der Netzliste der Schaltung. Auf-
grund seiner hohen Abstraktion ist das robuste d-Probing-Modell das am meisten untersuchte
und ein gut geeignetes SCA-Angreifermodell im Kontext von Hardware.

Während wir generell darauf abzielen, Fortschritte im Hinblick auf die Gewährleistung ei-
nes soliden Schutzes gegen SCA-Angriffe zu erzielen, liefert diese Arbeit insbesondere Beiträge
in drei Kategorien. Wir unterstreichen die anhaltende Relevanz von SCA-Angriffen - selbst
für komplexe, modularisierte Systeme - indem wir zeigen, wie die Kombination von Software-
Exploits und SCA eine starke Bedrohung für die Privatsphäre der Benutzer in weit verbreiteten
Endverbrauchergeräten darstellen kann. Darüber hinaus stellen wir neue Techniken vor, um
eine formale Verifikation zu realisieren, d.h. den Nachweis der Sicherheit und Verschaltbarkeit
maskierter Hardware Designs in Bezug auf das formale robuste d-Probing Angreifer-Modell. Zu
guter Letzt stellen wir mehrere neue Methoden zur systematischen und automatisierten Mas-
kierung vor. Damit geben wir Ingenieuren einen Werkzeugkasten an die Hand, mit dem sie au-
tomatisch jede beliebige digitale Schaltung in eine Schaltung umwandeln können, die gründlich
gegen SCA-Angriffe geschützt ist und gleichzeitig eine hohe Flexibilität bietet, um einen geeig-
neten Kompromiss zwischen Sicherheitsniveau, Latenzzeit und Platzbedarf des resultierenden
Designs zu finden.

Schlagworte.

Kryptographie, Hardwaresicherheit, Seitenkanalangriffe, formale SCA-Angreifermodelle, Mas-
kierung, sichere Verschaltbarkeit, formale Verifikation, Automatisierung, iPhone Sicherheit
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Motivation

Chapter 1

Introduction

The scope and contributions of this work are outlined below. We discuss the impor-
tance of providing robust protection against side-channel attacks. In this context,
we further motivate the need to formally verify hardware components regarding their
side-channel resistance and secure integration into larger circuits. We also high-
light the drawbacks of handcrafted, heuristic protection mechanisms in the context
of masking, and emphasize the need for systematic techniques to achieve practical
side-channel protection.

Contents of this Chapter

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Our Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Motivation
The surge in demand for microchips, driven by the Internet of Things (IoT), Artificial Intelli-
gence (AI), and the automotive transformation to autonomous driving, underscores the trend
toward ubiquitous connectivity in a data-driven world. Its current scale far outstrips supply,
which is further exacerbated by the increasing complexity of systems, shaky supply chains and
a persistent talent shortage [BdJD22, BKP+22].

Considering autonomous driving as a highly relevant example of large-scale communication
networks based on real-time data collection and processing, secure vehicle-to-vehicle commu-
nication in compliance with fundamental security goals such as confidentiality, integrity, au-
thenticity and availability is crucial to ensure user safety and privacy. For performance reasons,
such complex systems, which involve a large number of communication nodes, use heterogeneous
cryptographic primitives, typically combining asymmetric cryptography for the establishment
of a secure communication channel and symmetric cryptography for the actual high-throughput
communication over this channel.

While today’s established ciphers are considered secure in a purely cryptanalytic sense, i.e.,
there are no known possible key recovery attacks in a black-box scenario where the adversary
is limited to choosing arbitrary plaintexts and observing the corresponding ciphertexts without
gaining any information about the computation itself, their real-world integration into larger
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Chapter 1 Introduction

systems has proven to be highly inconsistent with these assumptions. This leaves the implemen-
tation and integration of cryptographic algorithms vulnerable to broad physical attack vectors
in many scenarios, thus compromising security and potentially having far-reaching consequences
with respect to a system’s security and privacy guarantees.

Even though there has been a long and deep research effort to protect cryptographic im-
plementations against these types of physical attacks, the countermeasures themselves and the
process of thoroughly protecting implementations are still far from reaching their optimum
in terms of efficiency and cost-effectiveness, ensuring a continued high relevance for achieving
further improvements.

Consequently, several factors are crucial to consider in this context. A practical and con-
tinuous assessment of the relevance of physical attacks and their threats is important to cover
the majority of attack vectors and scenarios. Furthermore, it is essential to reduce the cost
of implementing solid countermeasures, and it is highly beneficial to optimize the development
process, since resources in terms of money, time and expertise are tied up in realizing thorough
protection against these types of attacks. This thesis aims to make progress on all of these
factors.

Silicon Root of Trust. The integrity of a system and the guarantee that it will boot in a secure
and trusted state is rooted in the hardware components involved and the secret key material
stored on them. Therefore, it is crucial that the keys remain secret and unaltered, even in the
presence of physical access, such as during shipping. A system’s trust is therefore anchored in the
lowest level of its components: The silicon of the hardware. While the majority of chip vendors
offer some form of silicon root of trust, Google and its partners have launched the OpenTitan
project [JRR+18] with the goal of developing an open source root of trust through design
and implementation transparency, underscoring the strong need for a trustworthy hardware
foundation. Since the security guarantees of a complex system ultimately fall back on the
security of the hardware, it is crucial to build a silicon root of trust that is thoroughly protected
against all kinds of physical attack vectors.

Cryptograhic Hardware Accelerators. Driven by increasing functionality requirements and
decreasing technology size, Integrated Circuits (ICs) and Printed Circuit Board (PCB) designs
are becoming increasingly complex, making it difficult to perform thorough security evaluations.
To ensure high throughput and confidential communication between devices, general-purpose
computing units are often paired with dedicated symmetric encryption logic, either in a com-
pletely separate IC or on the same die in the form of a System on Chip (SoC). Examples of
such accelerators are Intel’s and AMD’s AES-NI [HC12], but Apple’s iPhones are also equipped
with dedicated AES hardware realizations placed within their Application Processor (AP) and
Secure Enclave Processor (SEP) [App22], which are crucial components in the root of trust and
are involved in the boot, user authentication and data encryption processes.

Cost of Hardware Development and Production. Security integration and evaluation are
important factors to consider when estimating the development and production costs of a new
IC design. In general, the cost of manufacturing and developing ICs can be broadly divided into
one-time costs and recurring costs per IC. Minimizing fixed, non-recurring costs is important for
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low-volume and highly specialized ICs. According to this categorization, security-related non-
recurring costs include labor costs for expensive security specialists and security evaluation. At
the same time, the increased area required to integrate protection mechanisms drives recurring
production costs. Finding new ways to optimize both is a highly relevant goal of ongoing
academic research and the semiconductor industry. It is therefore crucial not only to thoroughly
protect the hardware implementation against physical attacks, but also to establish a scientific
basis for implementing countermeasures in an economically viable way, thus lowering the barrier
for integrating important protection mechanisms. Such a lower burden will lead to a wider
application of robust protection, even for devices of smaller product lines.

Side-Channel Analysis Attacks. At a high level, SCA refers to attacks in which the adversary
exploits unintended dependencies between sensitive data stored on or processed by a crypto-
graphic device and the physical characteristics of the device. The term cryptographic device
simply describes a device that performs some form of cryptographic operation, like an encryp-
tion, or stores cryptographic key material [MOP07]. Cryptographic devices include genereal-
purpose microcontroller, reconfigurable hardware (Field Programmable Gate Arrays (FPGAs))
and Application Specific Integrated Circuits (ASICs) – possibly in combination. While there are
many more, common examples of exploitable features include timing [Koc96], power consump-
tion [KJJ99] and electromagnetic radiation [GMO01]. Passively observing and analyzing these
physical properties often allows an adversary to completely extract secret key material from
smart cards [MOP07], smart phones [BFMT16, VMC19, LKMM21] and other critical hard-
ware systems [EKM+08, KKMP09, OP11, ORP13, SRH16]. Although the threat model initially
assumed direct physical access to the device, more and more research has been published that
relaxes this requirement by introducing fully remote attack vectors [SGMT18, ZS18, SGMT21],
further expanding the scope of dangerous attack scenarios and highlighting the need for ad-
equate protection mechanisms. In this thesis, we focus on power-related SCA on symmetric
algorithms realized as a digital hardware circuit.

Masking as a SCA Countermeasure. In general, mitigation strategies for SCA aim to weaken
the dependency between confidential data and the leaking physical characteristics (the side
channel) to such an extent that obtaining useful information becomes impractical for any real-
istic adversary. Besides hiding [MOP07], which relaxes this dependency more directly through
technical means, e.g., by increasing electrical noise or equalizing power consumption for differ-
ent secret states or operations, masking is a prominent and well-studied SCA countermeasure
on an algorithmic level [ISW03, Tri03, NRS11, RBN+15, GMK17, GM18, SM21]. Rooted in
the concept of secret sharing [Sha79], sensitive data is split into independent, random shares,
and the cryptographic operation is then performed on the shares instead of the secret itself.
Intuitively, this splitting of information makes recovery much more difficult (and, if properly
implemented, even prohibits practical SCA altogether), but it is non-trivial to implement and
introduces high overhead into the design in terms of latency and area footprint.

Formal Adversary Models. To formally argue about the resilience of a hardware design
against SCA, various adversary models have been introduced over time, aiming to real-
istically model a real-world SCA adversary while working at different levels of abstrac-
tion [ISW03, FGP+18, DDF19, BDF+16, DFS15]. The main advantage of introducing formal
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adversarial models is twofold. First, given sufficient abstraction, it allows for the systematic
formulation of new masking algorithms and methods in provable compliance with security in
the adversary models. Second, it allows evaluating the security of a design with respect to the
formal adversary model. This security assessment can be made very early in the design cycle,
on the synthesized netlist of a masked implementation. Assuming that the model accurately
covers a real adversarial scenario, practical SCA resilience can be guaranteed or verified prior to
production, eliminating the need for multiple iterations after experimental security verification
fails, and as a consequence drastically reducing cost and time to market.

Securely Composable Gadgets and Automated Masking. Masking large circuits that realize
complex, nonlinear functions such as ciphers has proven to be extremely difficult. Even for
experts with years of experience in SCA and masking countermeasures, the process of masking
such designs is highly error-prone. Since minor errors can render a design completely insecure in
practice [MMSS19], a major branch of research with respect to masking focuses on establishing
more systematic and automatable ways to achieve SCA resilience [ISW03, BBD+16, CS20].
Here, with a solid theoretical foundation based on formal adversary models, masked hardware
modules have been developed that guarantee SCA resilience even when interconnected to form
a larger circuit. These building blocks – commonly referred to as hardware gadgets in the
literature – are then used to mask any given circuit in a divide-and-conquer fashion. The
underlying process can even be completely automated. Many of these building blocks realize
masked versions of atomic functions like an AND gate. Still, they can be instantiated for
arbitrary security levels, eventually enabling the systematic masking of arbitrary digital circuits
at any desired security level.

Formal Verification. The traditional approach to verifying an implementation’s resistance to
SCA relies heavily on experimental security verification after IC fabrication. The goal of this
experimental verification is to identify any dependencies between a given physical characteristic
(such as electromagnetic radiation or power consumption) and a secret currently stored on or
processed by the device. This is done by statistical analysis of actual experimental measure-
ments. Since this type of practical verification requires going through all the steps of the hard-
ware design process, including layout and fabrication, a design that turns out to be insecure in
practice must be adjusted before fabrication is repeated. Obviously, this iterative process is very
costly and time consuming. Accurate formal adversary models make it possible to evaluate the
level of protection against SCA very early in the design process. Typically, it can be performed
at the netlist level after the Register Transfer Level (RTL) description has been synthesized with
respect to a specified gate library, eliminating the need for a try-and-error approach and dras-
tically reducing the resources required in terms of time and cost. Assuming that the adversary
model accurately captures all realistic SCA attack scenarios, software tools for formally verify-
ing the security of an implementation through its netlist are highly beneficial for achieving SCA
resilience in an effective and efficient manner [BGI+18, BBC+19, KSM20, MM22, BMRT22].

Cost Reduction and Use-Case Specific Requirements. While achieving SCA resilience
through masking is an important goal in itself, making it practical, i.e., achieving it at a rea-
sonable cost and guaranteeing sufficient throughput and speed, is ultimately the more relevant
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objective. Compared to handcrafted masking based on heuristics and experience, fully auto-
mated masking typically introduces significant overhead into the design in terms of randomness
requirements, additional latency and the area footprint of the protected circuit. The area
footprint (and randomness requirements since some sort of randomness source with sufficient
throughput must be provided on-chip) translates directly into the cost of producing crypto-
graphic ICs. At the same time, low latency is important for specific use cases such as fast
memory encryption. The creation of an improved and diverse library of hardware gadgets is
highly important to enable automated masking with reduced production costs and to tailor the
protected design to a specific use case.

1.2 Structure of this Thesis
This thesis is divided into three main parts. The first chapter in Part I contains the introduc-
tion to our work, giving a general motivation, followed by this section, and finally summarizing
the main research contributions in Section 1.3. The following chapter of this part, Chapter 2,
provides all the scientific concepts used throughout this thesis, including elaborations on sym-
metric cryptography, side-channel analysis and countermeasures, formal side-channel adversary
models, automated masking and composability notions as well as formal verification of side-
channel resistance. Part II contains all the scientific publications that are part of this thesis.
Each publication is preceded by a brief summary of its content, the publication details and
a summary of the contributions made by the author of this thesis. This chapter is divided
into four topical sections that form the basis of this thesis. Chapter 3 deals with the persis-
tent threat of side-channel analysis, before publications dealing with the formal verification of
masked hardware circuits are presented in Chapter 4. This is followed by our research on new
composable hardware modules for masking in Chapter 5 and our publication on novel methods
and tools for automated masking in Chapter 6. Part III summarizes this work and discusses
open issues that may be addressed in future work.

1.3 Our Research Contribution
Generally, all research contributions made by the scientific publications forming this thesis aim
to effectively and efficiently protect hardware against power-related SCA attacks. This objective
is founded on four pillars. First, we elaborate on new SCA attack scenarios in the context
of widespread end-consumer targets. Second, we introduce new methodologies and tools for
verifying a hardware design’s resilience against SCA solely based on the netlist representation
of the circuit. Subsequently, we present a set of novel masked hardware modules that can be
freely combined without compromising security guarantees, before we present new techniques
for enabling and improving the automated generation of masked circuits.

1.3.1 Persistent Relevance of SCA and Novel Threat Models

A continuous evaluation of possible new threat scenarios with respect to physical attacks in
modern and complex hardware architectures is crucial to ensure high security of widely used
devices. Therefore, part of the focus of this thesis is to elaborate on the relevance of side-channel
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attacks on complex and modularized consumer devices that are based on various hardware and
software components.

Advances in SCA Attack Scenarios on Widespread Consumer Devices [LKMM21]. Pub-
lished work on practical power side-channel attacks on consumer devices has become rare due
to the immense increase in complexity of modern ICs and SoCs, accompanied by the increased
difficulty of performing successful SCAs attacks. Smartphones are good examples of such com-
plex architectures. We show that when it comes to the security of complex systems, hardware
and software cannot be considered independently, and that there are manifold attack vectors
that combine both to form a powerful lever for privacy exploitation.

To ensure that a complex system boots into an intended state, the boot process is divided
into several steps that together form a chain of trust. Each step guarantees the integrity of the
next. This chain typically starts with a minimal piece of software embedded in the chip that
cannot be updated by firmware updates. This immutable piece of software is used to validate
the integrity of any software that is subsequently loaded. Together with the hard-fused key
material used for validation, this piece of software forms the root of trust. Changing this chain
or obtaining key material from the hardware can have immense consequences for the security
of a system, as it allows the boot process to be altered and modified software to be loaded.
Therefore, in complex environments, security analysis of hardware and software should never
be considered separately.

In our work, we use a public BootROM exploit on an iPhone 4 to run our own software on
the device, with the goal of gaining oracle access to the iPhone’s AES core. By oracle access, we
mean that we can trigger an unlimited amount of encryptions and decryptions on chosen input
data. This oracle access allows us to perform SCA attacks on the iPhone 4’s hardware-fused
key material. We perform an SCA based on the Electro-Magnetic (EM) emanation of the AP
as well as an attack based on the imminent power consumption. In addition to the Group
Identifier (GID), a key that is identical across devices of the same model and is involved in
guaranteeing the integrity of the operating system, we successfully recover the so-called Unique
Identifier (UID) key, which is device-specific and plays a crucial role in user authentication.
More specifically, it cryptographically binds the user authentication to be performed on the
device. This process is intentionally designed to take some time (about 80ms [App12]) to cre-
ate a hardware barrier to brute forcing the user’s passcode. Once the key is recovered, the
passcode search can be performed offline and is arbitrarily scalable with respect to the under-
lying resources. Without any advanced optimizations, we show that using multiple Graphical
Processing Unit (GPU)s dramatically accelerates the brute force search compared to on-device
computation. For example, we reduce the worst-case runtime for a common six-digit number
from 22 hours to only 26 seconds using 8 GeForce RTX2080 TIs [NVI18].

Thus, with this work, we highlight the importance of continuously evaluating consumer de-
vices for possible implementation attacks and implementing appropriate countermeasures that
protect against all types of attack scenarios in the context of complex systems involving various
hardware and software components. We do this by presenting the following main contributions:

(i) Successful recovery of the GID and UID key from an iPhone 4 by performing a Correlation
Power Analysis (CPA) attack. A picture showing the setup for the CPA, including the
EM probe used, can be seen in Figure 1.1.
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(ii) Significant gain over an on-device brute-force passcode search, boosted by several GPUs,
since the extraction of the UID allows it to be performed offline. The results are given in
Table 1.1.

Figure 1.1: CPA setup: EM probe
placed on the AP of the
iPhone 4 [LKMM21].

digits iPhone 1xGPU 8×GPU
4 13 minutes 2 seconds < 1 second
6 22 hours 3 minutes 26 seconds
7 9 days 35 minutes 4 minutes
8 92 days 5 hours 43 minutes
9 925 days 58 hours 7 hours
10 25 years 24 days 3 days
11 253 years 243 days 30 days
12 2536 years 2439 days 304 days

Table 1.1: Runtime comparison of passcode
search: on-device vs. GPU cluster.
GPU = RTX 2080 TI [LKMM21].

1.3.2 Formal Verification of Masked Circuits

Traditionally, evaluating the resilience of cryptographic hardware implementations against SCA
attacks has been, and often still is, purely experimental. However, a purely experimental ap-
proach has the disadvantage that production must be fully completed before a core can be
evaluated. If the evaluation indicates an inadequate level of security, the design must be ad-
justed accordingly. This iterative methodology can be extremely costly and time-consuming.
In addition, it is immensely difficult to identify the source of the vulnerability by analyzing the
results of the experimental evaluation alone.

Using formal adversary models, we can evaluate the SCA resilience of a cryptographic hard-
ware core very early in the design process, at the netlist level of a circuit. In contrast to an
experimental setup, formal adversary models further abstract from a specific technology, plat-
form and environment, hence allowing for a worst-case security evaluation. While experimental
security guarantees are always in the context of the used evaluation setup and environment,
formal adversary models enable a more general security statement.

In this thesis, we therefore introduce novel verification techniques to guarantee a thorough
SCA resilience early in the design process of a new cryptographic implementation.

A Complete and Accurate Tool for Verifying Security and Composability in the Robust d-
Probing Adversary Model [KSM20]. We have develop a novel methodology for analyzing secu-
rity and composability in the formal d-probing model [ISW03] and its robust variant [FGP+18].
Our technique allows to perform thorough SCA resilience checks at the netlist level of an im-
plementation, thus detecting security flaws early in the circuit design process. To achieve this,
we translate all security and composability notions into a unified form based on evaluating the
statistical independence between observations and (unshared) circuit inputs. We then use so-
called Binary Decision Diagrams (BDDs) [Jr.78] which are well-established data structures for
circuit analysis performed in the context of Electronic Design Automation (EDA). These data
structures allow us to check for such statistical independence and thus evaluate security with
respect to the formal security and composability notions considered.
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We have implemented our results in the form of a tool called SILVER. At the time of publica-
tion, SILVER was the first complete and accurate tool for security verification in the context of
the formal glitch-extended robust d-probing model. It is complete in the sense that it covers all
common formal notions of security and composability. It is accurate in the sense that it does not
produce false positive or false negative results. Of course, if a design is claimed to be secure, it
is crucial that it really is secure, i.e., that it conforms to the security definition of the d-probing
model. On the other hand, other existing formal verification tools, such as maskVerif [BBC+19],
allow false negatives, i.e., designs that are claimed to be insecure by the tool are actually secure
in the d-probing model. This is because the security check is performed in an overly conservative
manner to achieve a reduction in verification complexity. The downside of allowing such false
negatives is that it can introduce unnecessary overhead into a circuit, because in practice an
engineer will tweak the circuit until the tool indicates its security. With SILVER, we get an
accurate security statement at the cost of reduced efficiency. For this reason, SILVER is most
useful for evaluating smaller hardware designs in the context of composability notions.

In addition to indicating the security and secure composability of a hardware circuit, SILVER
provides additional information to the user. If the circuit is insecure or non-compliant with one
or more composability notions, SILVER provides the cause of the problem in the form of leaking
probes. This is a very useful piece of information, as it makes it much easier to locate the source
of the problem. In practical leakage assessments, it is expected that the noisy sum of all wires
will be observed during a single clock cycle [CJRR99]. Since many operations are performed in
parallel during a single clock cycle in hardware, the exact leakage source cannot be detected by
a classical Test Vector Leakage Assessment (TVLA).

With this work, we have further improved the formal verification of hardware circuits. In
particular, the accuracy and the support of all common composability notions have proven to
be very useful in practice and have paved the way for much follow-up work on automation and
efficient designs – by us and within the research community. With our work we achieve the
following main contributions:

(i) Unifying the methodology for checking security and composability notions in the glitch-
extended robust d-probing model using statistical independence.

(ii) Introducing SILVER, a software tool that, based on a circuit’s netlist, can evaluate secu-
rity in the glitch-extended d-probing model along with all common composability notions
(Non-Interference (NI) [BBD+15],Strong Non-Interference (SNI) [BBD+16] and Probe
Isolating Non-Interference (PINI) [CS20]). It is also capable of checking the output uni-
formity [Bil15] of a circuit.

(iii) SILVER provides precise information about the origin of the leakage.

(iv) As SILVER works on the synthesized netlist of a hardware design, it is perfectly suited to
be integrated into established EDA design flows and tool chains.

Covering Data Transitions on Registers in the Context of Formal Verification [MKSM22].
Data transitions at registers are known to be a major source of information leakage in hardware
designs. Therefore, they are abstractly covered in a worst-case manner in the context of the
(robust) d-probing model [FGP+18]. This abstraction allows for a simple security check under
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Scheme Latency Randomness Function Reference
HPC1 2 d(d + 1)/2 + r[d]† AND [CGLS21]
HPC2 2 d(d + 1)/2 AND [CGLS21]
GHPC∗ 2 m f : Fn

2 → Fm
2 [KSM22]

GHPCLL
∗ 1 2n ·m f : Fn

2 → Fm
2 [KSM22]

HPC3 1 d(d + 1) AND [KM22b]

†r[d] = [1, 2, 4, 5, 7, 9, 11, 12, 15, 17] for d ≤ 10
∗ restricted to d = 1

Table 1.2: Comparison of existing PINI-composable and glitch-robust Hardware Private Circuits
(HPCs). Gadgets in bold were published in the course of this thesis. d denotes the
security order.

transitions by simply adding an additional preprocessing step to the probing sets placed on a
sequential circuit.

While formal hardware verification tools had already covered glitches as a common physical
effect in hardware that facilitates leakage, consideration of transitions at registers and the com-
bination of transitions and glitches remained very rudimentary. Since our initial methodology
for SILVER also lacks any consideration of transitions, we extend our initial work and include
support for transitions in the original version of the tool.

More precisely, we extend SILVER to support sequential, iterative circuits, where the same
physical module can be executed multiple times with respect to the same input, and where a
sequence of different inputs must be considered accurately. We also adapt our probe extension
methodology to adequately cover the occurrence of transitions and the combination of glitches
and transitions. This extension allows us to analyze various designs found in the literature and
identify leakage caused solely by transitions at registers. We are able to confirm our tool-based
findings by performing practical elaborations on top.

With this work, we highlight the importance of considering transitions when formally verifying
hardware designs. We show that, while transitions lead to insecurity when not considered
appropriately, adding a lot of additional overhead into the design just to handle transitions can
be unnecessary in many cases. With our new version of SILVER, we are able to circumvent
both cases, further paving the way for efficient and effective masking countermeasures.

Our main contributions are summed up in the following:

(i) We derive a new technique for handling transitions and the combined occurrence of glitches
and transitions for iterative circuits that can be fed by a sequence of different inputs.

(ii) We extend SILVER to support our new methodology and study various masked circuits and
schemes from the literature for their (in)sufficiency in handling transitions appropriately.
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1.3.3 Novel and Securely Composable Hardware Modules for Masking

Securely masking large and complex circuits is a delicate and error-prone task, especially when
higher security orders are considered. Therefore, securely composable hardware modules – com-
monly referred to as gadgets – can provide a crucial building block for creating larger hardware
components that are thoroughly protected against SCA attacks in a divide-and-conquer fash-
ion. In the course of this thesis, we have developed several new gadget constructions, all of
which offer different trade-offs with respect to the overhead metrics of a masked circuit. Con-
sequently, the contributions made in this part of the thesis aim to give a researcher or engineer
more flexibility to tailor a masked circuit to a specific use case. For example, reducing latency
as much as possible may be a requirement when implementing memory encryption. Another
requirement might be to make the masking as inexpensive and therefore as small as possible,
while still achieving a very high level of security. All our designs aim to provide more freedom
in the systematic design of masked circuits.

Extending the Functionality of Trivially Composable Hardware Modules [KSM22]. Until
the publication of our work, freely composable gadgets were limited to implementing very basic
functionality. They typically represented masked variants of atomic logic gates, such as a simple
two-input AND or OR.

Being restricted to such gadgets with limited functionality has the significant drawback that
each gadget introduces individual overhead – such as randomness requirements, area footprint
and latency – into a design. Since a large number of gadgets is required to realize complex
circuits such as entire encryption cores, this naturally results in a significant final overhead for
the protected implementations.

In our work, we focus on extending the functionality that composable gadgets can provide
while not drastically increasing the randomness and latency overhead over existing atomic
gadgets. With our novel construction called Generic Hardware Private Circuit (GHPC), we
introduce a methodology to realize gadgets that are freely composable under the notion of
PINI [CS20] in the glitch-extended robust probing model with arbitrary functionality. Such
gadgets can be easily derived based on the functional description, i.e., the vectorial Boolean
function, it should realize. While restricting our considerations to the first security order, we
introduce two variants of our technique.

In its standard variant, GHPC allows to realize any functionality with only two register stages
and one fresh random bit per coordinate function. Our low-latency variant – denoted GHPCLL
– allows to build a gadget for any functionality with n unshared inputs, using only a single
register stage, but consuming 2n random bits per coordinate function. A comparison with
other PINI-composable hardware gadgets can be seen in Table 1.2. It should be noted that the
area complexity grows exponentially with the number of inputs to the circuit. For this reason,
it is advantageous to avoid building very large functions as GHPCs, but to adjust the tradeoffs
between latency, randomness and area requirements by adjusting the complexity of the gadgets
in terms of their functional scope. For example, we can realize a complete S-box as a single
GHPC with a rather large area footprint but low latency and low randomness requirements, or
we can reduce the area by further dividing the S-box into functional blocks and then building
GHPCs for those blocks.
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We also like to emphasize that our introduced constructions are freely composable with any
other existing PINI-composable gadget, thus further extending their range of application.

As a result, our novel GHPC constructions hand an engineer more flexibility for masking a
circuit based on composable gadgets, and allow the creation of a custom gadget library where
gadgets can be selected based on the use case and what trade-off between fresh randomness,
latency and area footprint is required.

Our work provides the following key advantages over the state of the art:

(i) We introduce GHPC – our standard variant: A generalized construction that allows build-
ing first-order, PINI-composable hardware gadgets for arbitrary vectorial Boolean func-
tions. This variant requires only a single fresh random bit per coordinate function and has
a latency of two clock cycles.

(ii) We introduce GHPCLL – our low-latency variant: A generalized technique for building first-
order, PINI-composable hardware gadgets for arbitrary vectorial Boolean functions. This
variant requires 2n fresh random bits per coordinate function, where n is the number of
unshared inputs, while requiring only a single cycle latency.

Freely Composable Gadgets with Randomness Reusage [KM22a]. The randomness require-
ments of masked circuits ultimately translate into area overhead, since a dedicated randomness
source must be placed on-chip. This source must be able to provide sufficient throughput for the
required randomness supply. To ensure a secure design, each random bit supplied to a composed
circuit must be renewed every clock cycle in the context of common and widely used gadget
designs and composability notions. Because a large number of gadgets is typically required
to implement full encryption – each with individual randomness requirements – gadget-based
masking typically results in designs that require a high-throughput randomness source.

While a generic cost function for generating randomness has never been derived, meaning
that there is no lower bound on the area required to implement a randomness source capable
of providing a given throughput, it is an interesting topic to reduce the randomness require-
ments of masked circuits and evaluate the resulting overall area gain in terms of a common
implementation of a randomness source.

One way to reduce the overall randomness requirements of a circuit is to construct gadgets
that allow the reuse of random bits across gadget boundaries.

In our work, we introduce COMAR, a methodology that leads to a set of novel gadget con-
structions that implement all common atomic logic gates in a masked fashion, and allow us to
construct any circuit that is protected for the first security order in the glitch-extended robust
probing model. This allows us to reduce the number of required fresh bits to a total of six,
completely independent of the complexity and size of a circuit. This means that we can build
any protected circuit using a total of only six fresh random bits, not including the randomness
needed to share the input to the circuit.

While paying the price of increased latency, we show that if the randomness supply is imple-
mented as a Linear Feedback Shift Register (LFSR), which is common practice in comparable
literature, we can achieve significant reductions in the area consumption of the overall design,
i.e., when considering the encryption core together with the LFSRs.

In addition, we show that the input width of our COMAR gadgets can be arbitrarily increased
without significantly increasing the overall randomness requirements. This is simply due to the
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fact that the total requirements are only determined by the maximum requirements of a single
gadget, since all random bits can be reused across gadgets. Widening the input width does not
increase the latency of a gadget, but it generally allows the design to be fine-tuned for a better
latency/area tradeoff.

With COMAR, we offer another tool for systematic masking that effectively decouples the
randomness requirement of a first-order masked circuit from its size and complexity, allowing
arbitrary circuits to be masked using a total of only six random bits. This is another step in
the direction of giving a designer more flexibility to tailor a circuit to a particular use case.

Our work makes the following main contributions to freely composable gadgets with random-
ness reuse:

(i) A freely first-order composable AND gadget that can be instantiated for arbitrary input
widths. Gadgets for other nonlinear logic gates can be trivially derived from this AND
gadget.

(ii) A freely first-order composable XOR gadget, also instantiable for arbitrary input widths.

(iii) Random bits are fully reusable across gadgets. If the circuit instantiates nonlinear COMAR
gadgets with at most n inputs and linear COMAR gadgets with at most m inputs, the
number of fresh mask bits required for the entire circuit is max(n,m) + max(2n, 2m).
If we only use two-input gadgets, this results in an overall requirement of only six fresh
random bits.

Low-latency Hardware Private Circuits [KM22b]. Latency – in terms of the number of clock
cycles required for an input to produce the desired output – is an important factor in synchronous
circuit design. Low latency is desirable in many applications, such as fast memory encryption.
Glitches in the robust d-probing model are one of the main drivers of latency, as registers must
be carefully placed to avoid unwanted information leakage due to signal recombinations caused
by such physical effects.

Since composability notions limit leakage for each gadget individually, each gadget instan-
tiation introduces latency into the design. In the context of PINI [CS20], the overall latency
is determined by the path within the circuit that contains the most nonlinear atomic gates,
since linear operations can be performed in a trivial, share-wise manner and do not contribute
additional latency to the design.

Intuitively, the length of such a path is determined by the algebraic degree of the Boolean
function the circuit is realizing, and is quite large for cryptographic primitives, for example in
the context of AES, which uses an 8-bit S-box. While [CGLS21] shows how global optimizations
in the context of HPC2 gadgets can actually reduce the overall latency for small 4-bit S-boxes
by taking into account the asymmetry in the input-output latency of the gadgets, no PINI-
composable gadget had a single clock cycle latency for all inputs.

In our work, we introduce HPC3, a PINI-composable gadget that realizes a masked variant of
an AND gate and is instantiable for arbitrary security orders. Compared to the state of the art,
HPC3 has a latency of only a single clock cycle, making it highly advantageous in low-latency
use cases. The decrease in latency we achieve comes at the cost of doubling the randomness
requirements compared to HPC2. An overview of PINI composable gadgets is presented in
Table 1.2.
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We also present a variant of HPC3 that is composable under the Ouput Probe-Isolating
Non-Interference (O-PINI) notion introduced in [CS21] with the aim of guaranteeing trivial
composition under the combined occurrence of glitches and transitions. As evaluated as part
of this thesis [MKSM22], its practical use is mainly limited to specific edge use cases.

As a result, our work offers new constructions for the systematic creation of masked circuits,
which is advantageous in use cases where latency is a critical factor. The main advances of our
work are as follows:

(i) We present HPC3: A PINI-composable hardware gadget that implements a masked variant
of an AND gate and can be initialized at arbitrary security orders. It has a latency of only
a single clock cycle, while doubling the randomness requirements compared to the state of
the art, i.e., HPC2 gadgets.

(ii) This allows us to achieve a significant latency reduction for gadget-based masking compared
to comparable work.

1.3.4 Methodologies and Tooling for Automated Masking
Securely masking large and complex circuits is a difficult task, especially when considering
higher security orders. It requires extensive experience and time. Achieving solid protection
through handcrafted masking based solely on heuristics is extremely difficult for higher security
orders, which is underscored by the lack of published work presenting such heuristically derived
designs that are secure for security orders greater than three.

Therefore, a systematic and automatable masking approach based on a divide-and-conquer
methodology that allows to mask arbitrary circuits at any desired security order has been part of
the focus within the research community. Such a methodology is based on composable hardware
modules, of which we present several novel variants in this thesis.

The simple underlying idea is based on the replacement of unprotected gates by their masked
and securely composable counterparts: The corresponding hardware gadgets. Since these coun-
terparts fulfill well-defined theoretical properties that guarantee security when composed to-
gether, the derived circuit will be provably SCA resistant with respect to the (robust) d-probing
adversary model.

Automated Masking of Unprotected Circuits [KMMS22]. In our work, we present a tool for
automated hardware masking that effectively relies on a simple divide-and-conquer approach.

Our tool, called AGEMA, is based on composable gadgets. In fact, AGEMA works on a
custom library of PINI-composable gadgets that can be easily extended by any novel construc-
tions, as long as they fulfill the notion of PINI [CS20]. Basically, AGEMA takes the netlist of an
unprotected circuit as input and outputs a circuit that is secure in the formal glitch-extended
d-probing model [FGP+18]. It is possible to configure various parameters that define not only
how the unprotected circuit is preprocessed before being masked, but also the security order. In
general, it is possible to mask a circuit for any desired security order, while arbitrary security or-
ders are not possible for all preprocessing methods. Since gadgets introduce individual latencies
into the design, AGEMA users can choose between two different synchronization techniques. If
higher throughput is desired, the design is pipelined, while clock gating can be used to achieve
a more compact circuit design.
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An extensible library of gadgets, together with our various preprocessing methods, enables
the rapid generation of protected hardware, while providing many options for customizing the
implementation to best suit the needs of a specific use case. This allows engineers to find
favorable tradeoffs between randomness requirements, area footprint and latency. Integration
of future, novel PINI-composable gadgets is straightforward, as they can be easily integrated
into the custom gadget library.

At the time of publication, AGEMA was, to the best of our knowledge, the first fully au-
tomated tool for turning any entirely unprotected hardware design into a design thoroughly
protected against SCA attacks, offering provable security guarantees in the context of the (ro-
bust) d-probing model. We should highlight that the process only needs a few seconds.

As a consequence, with our work, we present the following main advances:

(i) We introduce AGEMA: A tool for fully automated masking of unprotected circuits. The
result is guaranteed to be secure in the glitch-extended robust d-probing model. AGEMA
is able to achieve security for arbitrary security orders.

(ii) Introduction and thorough comparison of different preprocessing techniques for the unpro-
tected circuit and elaboration of their influence on the resulting, masked circuit.

(iii) AGEMA is well suited for direct integration into existing EDA tool chains.
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Chapter 2

Background
In this chapter, we provide the scientific foundation necessary for our work. We give
an introduction to physical attacks, in particular SCA attacks. In this context, we
will give a detailed description of existing abstract adversary models and explain the
masking countermeasure, before describing the concept of composability notions and
how they can be used for systematic and automated masking. Finally, we will show
how the SCA resilience of a hardware design can be formally verified in the context
of the corresponding adversary model.

Contents of this Chapter
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2.7 Formally Verifying SCA Resistance and Secure Composability . . . . . . . 43

2.1 Notation1

Capital letters usually denote random variables. In the context of masking, we indicate share
indices by subscripts, while input indices are identified by superscripts, e.g., Xj

i , denotes the
random variable describing the i-th share of the j-th input. Calligraphic font is used to denote
sets, while vectors are written in bold. We usually denote the number of shares as s. We
denote the vector of all valid Boolean sharings of a specific value x ∈ F2 by Sh(x) = {x =
(x0, x1, . . . , xs−1) | ⊕s−1

i=0 xi = x}. We denote all shares from a set S corresponding to input j
by Sj . While we use Pr[·] for denoting the probability, we otherwise use common notation for
statistical concepts like dependencies. We use E(·) for the expectation operator. Assignments
to variables – that are possibly the result of a randomized processes – are indicated by ‘←’. If
we want to highlight a deterministic assignment, we use ‘:=’. We further denote drawing X

independently and uniformly from R by X
$← R.

1May differ from the notation used in Part II. The notation of the included publications is always declared
within the publication.
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2.2 Cryptography

While the concept of secret messages goes back a long way, and rudimentary encryption devices
existed as early as ancient Greece, a more formal and broader consideration emerged in the early
20th century and was accelerated by the introduction of computers and the digitization [Dav97].
While cryptography was originally concerned with keeping messages between two parties secret
in an information-theoretic sense, modern-day cryptography is a vibrant area of research that
spans a variety of scientific disciplines, from mathematics to information technology, computer
science and electrical engineering. A simple definition can be found in [PP09]: “Cryptography
is the science of secret writing with the goal of hiding the meaning of the message.” While this
definition captures the important goal of confidentiality, modern cryptography aims to achieve
a much wider range of goals, including data authenticity and integrity.

Differing in their key distribution mechanism and efficiency, symmetric and asymmetric ci-
phers together form the fundamental building blocks of modern cryptographic protocols that
are utilized for secure communication.

2.2.1 Asymmetric Cryptography

Introduced in 1976 by W. Diffie, M.Hellmann and R. Merkle, asymmetric cryptography, or
public-key cryptography, drastically simplifies key management compared to symmetric ap-
proaches [DH76]. In contrast to symmetric cryptography, each identity is assigned a key pair: a
public and a private key. The public key can then be stored in an accessible way, for instance on
a server, and can be utilized by any other identity to encrypt or verify messages. All of the tra-
ditional asymmetric schemes rely on one of three mathematical problems: integer factorization,
discrete logarithm and the elliptic-curve discrete logarithm problem. As these problems are
strongly expected to be efficiently solvable with the emergence of practical and sufficiently pow-
erful quantum computers [Sho97], current research is fully concentrated on establishing novel
post-quantum schemes that guarantee thorough security in a future age of widespread quan-
tum computers. Asymmetric cryptography is commonly applied for modern signature schemes
and key exchange protocols. Because of its limited throughput, it is not directly used for data
encryption in most cases. Instead, a symmetric and shared key is derived by means of a key
exchange protocol which is based on asymmetric key pairs. This combines the advantages of
both symmetric and asymmetric schemes by providing efficient key management while fast data
encryption is guaranteed. Such hybrid approaches are widely applied in modern complex system
architectures like IoT systems or inter-vehicle communication.

2.2.2 Symmetric Cryptography

Symmetric ciphers are the main building blocks for guaranteeing high-throughput and confiden-
tial communication between two parties through symmetric encryption schemes. Fundamen-
tally, a symmetric encryption scheme can be defined according to Definition 2.2.1.

Definition 2.2.1 (Symmetric Encryption Scheme [KL14]). A symmetric (or private-key) en-
cryption scheme is a tuple of probabilistic polynomial-time (p.p.t.) algorithms (GEN, ENC, DEC)
that are defined as follows:
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GEN: The key-generation algorithm GEN takes as an input 1n and outputs a key k ∈
{0, 1}m, where m ≥ n and n is called the security parameter.

ENC: The probabilistic encryption algorithm ENC takes as input the key k and a message
m ∈ {0, 1}∗ and outputs the cipher as c← ENCk(m).

DEC: The algorithm DEC takes as input a ciphertext c and the key k and outputs the
plaintext as m := DECk(c).

The security of such a scheme is then expressed with respect to the capabilities of the adver-
sary, i.e., the adversary model, and the security goal. Intuitively, no practical adversary should
be able to retrieve any (useful) information about the plaintext by observing a fresh ciphertext.
This is called semantic security. Practical here refers to computationally bounded adversaries.
Computational security weakens the highly conservative definition of perfect security, which
forbids the existence of any adversary who can gain any information, by restricting security to
attacks that are practically feasible, i.e., that can be described by a p.p.t. algorithm, and where
an adversary is allowed to retrieve negligible information about the plaintexts [KL14].

There are various threat models which can be considered when evaluating the security of
an encryption scheme. For example, an adversary may be limited to observing only a single
ciphertext, or he may observe a sequence of plaintext and ciphertext. Commonly considered
strong security definitions are Indistinguishability Under Chosen Plaintext Attacks (IND-CPA)
or even Indistinguishability Under Chosen Ciphertext Attacks (IND-CCA), where an adversary
is not only able to obtain encryptions of plaintexts of his choice, but even to choose ciphertexts to
be decrypted for him, thus having access to an encryption and decryption oracle. For example,
IND-CPA can be formally defined as given in Definition 2.2.2.

Definition 2.2.2 (IND-CPA [KL14]). A symmetric encryption scheme provides IND-CPA, if
for all p.p.t. adversaries ADV, there is a negligible function negl such that playing the IND-CPA
game described in Algorithm 1, it holds that Pr[b′ = b] ≤ 1/2 + negl(n).

Algorithm 1 IND-CPA Game

(1) Key k is generated through GEN.

(2) The adversary ADV is given 1n and access to ENCk. ADV constructs two plaintexts m0
and m1.

(3) A bit b is chosen uniformly and at random from {0, 1}. c ← ENCk(mb) is provided to
ADV.

(4) ADV still has oracle access to ENCk. Eventually, ADV outputs a bit b′.

Intuitively, this formally describes the inability of any adversary to learn useful information
from the ciphertext alone. Note that here the randomization of ENC is crucial, because if ENC
would be entirely deterministic, winning the game would be trivial as ADV has ongoing oracle
access to the encryption.
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2.2.3 Block Ciphers
The basic building blocks of symmetric encryption schemes are block ciphers, which in their
theoretical sense are keyed pseudo-random permutations as defined in Definition 2.2.3.

Definition 2.2.3 (Keyed Pseudorandom Permutation [KL14]). Let πn be the set of all permu-
tations over {0, 1}n and let f : {0, 1}n×{0, 1}a 7→ {0, 1}n be a polynomial-time, keyed function.
f is a pseudorandom permutation if for any p.p.t. distinguisher D that either gets access to fk,
or gets access to F drawn uniformly at random from πn , there is a negligible function negl, such
that ∣∣Pr[Dfk(·) = 1]− Pr[DF(·) = 1]

∣∣ ≤ negl(n),

where k is drawn uniformly from {0, 1}a.

Intuitively, Definition 2.2.3 states that if a pseudorandom permutation is randomly keyed, it
should be indistinguishable from a permutation randomly drawn from the space of all permu-
tations of bit length n.

Block ciphers can then be instantiated in different modes of operation to form encryption
schemes for arbitrary data lengths, examples being Cipher Block Chaining (CBC) and Counter
(CTR) mode. It has been shown that, assuming that a cipher used is indeed a pseudorandom
permutation, the encryption scheme resulting from running that cipher in CBC or CTR mode
provides IND-CPA. Note that a block cipher is itself deterministic under a fixed key. The
randomization is achieved by exploiting randomness in the overarching mode of operation and
using random initialization vectors for each encryption (commonly, the initialization vectors are
simply part of the ciphertext).

While AES is the most widely used block cipher, ciphers such as PRESENT [BKL+07] or
Skinny [BJK+16] are receiving increasing attention due to their favorable area consumption in
hardware. Note that while we call these designs block ciphers, there is no formal proof that
they are indeed pseudorandom permutations. The scientific community is just confident that
these practical ciphers are (very close to) keyed pseudorandom permutations. While this is not
ideal, existing provable constructions are very inefficient and impractical [KL14].

We briefly recapitulate the theoretical foundations of symmetric encryption here, because we
will see that security from a mathematical, cryptanalytic point of view is often not enough to
guarantee security in practice, because the scope of the classical threat model is too limited.

2.2.4 Practical Block Cipher Constructions
Block ciphers operate on blocks of data with typical bit lengths of 64 or 128 bits and are en-
crypted with 128-, 196- or 256-bit keys. Two widely used principles to achieve the indistinguisha-
bility from randomly drawn permutations described in Definition 2.2.3 are confusion and diffu-
sion [Sha49a]. Confusion describes the high statistical independence between the ciphertext and
the plaintext, whereas diffusion describes the property that a single-bit change in the plaintext
or the key should affect many bits of the ciphertext. To achieve confusion and diffusion, most
modern and popular block ciphers – such as AES and PRESENT – consist of repeatedly running
a substitution and permutation layer in the form of a so-called Substitution–Permutation (SP)
network. Substitution is typically achieved by applying a carefully designed 4-bit or 8-bit
mapping, the S-box, to the entire state of the block [KR11]. In the context of side-channel
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protection, the substitution layer is the main driver of overhead, because its high nonlinearity
makes it immensely challenging to mask. While there are other methodologies for construct-
ing block ciphers, like Feistel or Lai-Massey constructions [MvOV01], we focus on SP-based
constructions in this thesis.

2.3 Side-Channel Analysis Attacks

SCA attacks have proven to offer powerful tools to break the security guarantees of hardware
systems. In the followinng, we will hence give an introduction to the underlying principles of
such strong attacks.

2.3.1 Physical Attacks

The last three decades have revealed a large gap between the original black-box security defini-
tions, as elaborated in Section 2.2.2, and the capabilities of adversaries in real-world scenarios.
This is due to the fact that attackers are often not limited to a mere oracle access to the de-
cryption or encryption algorithm where the computations themselves are entirely hidden. In
practice, they are able to obtain information about the internal states of the cipher or even ma-
nipulate the execution of the algorithm in many cases. This is because cryptographic primitives
are implemented either in software or in hardware on an actual physical device. By interfacing
this implementation, or manipulating it, the adversary becomes much stronger than an attacker
that is, for example, defined according to Definition 2.2.2. Attack scenarios where the adver-
sary exploits the actual implementation instead of cryptanalytically analyzing the underlying
algorithm are commonly referred to as physical attacks or implementation attacks. These types
of attacks have proven to be highly efficient and effective in many scenarios because their re-
quirements are often met in modern systems. As a result, they have received a great deal of
attention within the research community, and a lot of effort has been devoted to thoroughly
understanding these attack vectors and building strong protection mechanisms.

Physical attacks can be categorized according to [MOP07]. Here, passive physical attacks
refer to scenarios where the cryptographic device is operated within its specification and the
secret is extracted by passively observing the physical properties of the device. In contrast,
active attacks force the device to operate outside its specification by directly manipulating the
device, its input or its execution environment. A further categorization can be made according
to the invasiveness of an attack. We distinguish between non-invasive, semi-invasive and invasive
attacks. Side-channel attacks are non-invasive, passive attacks where only directly accessible
interfaces are observed. Since these are the focus of this thesis, we will describe them in more
detail.

2.3.2 SCA Threat Model and Security Goal

In general, for a given attack scenario, elaborating on the threat model and the security objec-
tive lays the foundation for further consideration. The threat model describes the adversaries
capabilites, while the security objective describes the goal of the adversary. In the context of
SCA attacks, the adversary passively monitors unintended physical characteristics of a device.
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Examples of such characteristics are the imminent power consumption [KJJ99], the electromag-
netic radiation [GMO01], or the timing [Koc96]. By exploiting unintended statistical depen-
dencies between these characteristics and secret values currently stored on or processed by the
device, the adversary can often completely break the security of a system, making these attacks
extremely powerful and thorough protection immensely important.

Threat Model. Traditionally, a necessary assumption of SCA attacks was direct physical ac-
cess to the attacked device. Recently, this assumption has been relaxed as completely remote
scenarios have been introduced [SGMT18, ZS18, RPD+18, GKT19, OD19, SGMT21]. These
attacks pose a serious security threat in shared resource architectures, such as cloud comput-
ing. Side-channel attacks can be further categorized into profiled and unprofiled scenarios. In
a profiled attack, which is considered to be the strongest, it is assumed that the adversary has
full access to a cryptographic device similar to the one under attack with power over setting
the secret key. This allows him to derive a model of the device’s behavior (a template) for
different keys. Now, for the actual device, an adversary can simply compare the generated
templates with the actual behavior. This may allow him to efficiently retrieve the secret key.
While the original model was based on a multivariate Gaussian distribution [CRR02], more
complex models have been applied over time, especially with increasing advances in machine
learning [MPP16, CDP17, PSB+18]. In unprofiled attacks, the adversary is limited to accessing
the device under attack, but it is usually assumed that the adversary has some control over the
input of the cryptographic algorithm and can trigger its execution.

Security Goal. Typically, the goal of an SCA attack is to recover the secret key of an im-
plemented cipher, thereby breaking the implementation of the encryption altogether. In many
cases, it is possible to recover the key directly. In other cases, SCA reduces the entropy of the
key to a point where simple brute force is possible.

2.3.3 Power Side Channel

In this work, our focus is on power side channels. Therefore, when we talk about SCA attacks,
we usually refer to power-related attack scenarios throughout this thesis.

Power Consumption of Modern Devices. Power SCA attacks include all attack scenarios
that leverage unintentional dependencies between the data stored within or processed by a
hardware circuitry and the imminent power consumption of it [MOP07]. No matter whether we
consider general-purpose microcontrollers, reconfigurable hardware (FPGAs) or ASICs, data is
eventually processes by a hardware circuit. For modern devices, this circuit is usually realized
using Complementary Metal Oxide Semiconductor (CMOS) technology. In this context, the
correlation between the processed data and the immediate power consumption stems from fluc-
tuations in the activity of the underlying CMOS circuit. According to [MOP07], the overall
power consumption of a CMOS circuit is the sum of the static and dynamic power consump-
tion. The static power consumption refers to the consumption of the logic cells when there is no
switching activity. The dynamic power consumption occurs when the input or output of logic
cells switches. While for larger technology sizes (≥ 100 nm), the dynamic power consumption
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is the dominant driver of the overall consumption, the static power consumption becomes in-
creasingly relevant for smaller technology sizes and both types can be leveraged for side-channel
analysis [Moo22].

Measurement. To measure the power consumption of a cryptographic device during com-
putation, we can measure the voltage drop over a small resistor (typically as large as 1Ω for
modern technology sizes) that is placed in the GND or Vdd path of the device. This drop will
be proportional to the power consumption of the device. Another option is to measure the
power consumption of a (part of a) circuitry in a more localized and indirect way by measuring
the EM radiation of the circuitry during computation. This is usually done by specialized EM
probes that utilize a tiny coil to translate the radition into a voltage signal. In both cases, the
voltage is eventually sampled and recorded by an oscilloscope.

2.3.4 Experimental Leakage Assessment

From a security perspective, it is less important to certify that an implementation is resistant to
a particular type of attack, but rather to assess the overall resistance to any side-channel attack.
Basically, this is done by determining general statistical dependencies between observations of
physical properties and sensitive data.

A common approach to evaluating practical side-channel resistance is to measure this depen-
dency using a statistical t-test, also referred to as TVLA [GJR].

Welch’s t-Test. The Welch t-test [Wel47] is a generalization of Student’s t-test introduced in
[Stu08], enabling the comparison of two populations with different variances. For two normally
distributed populations X and Y , Welch’s t-test is a test of the null hypothesis H0: “The
means of X and Y are equal”. This can be used to indirectly identify dependencies between
the internal states of the implementation and the observed characteristic, such as the power
consumption of the device. For a non-specific t-test, the power consumption of the device is
measured while processing either random or fixed plaintexts. To avoid false positives due to
temporal environmental effects or state transitions between executions, it is important that
the selection of whether a fixed or random plaintext is fed to the algorithm is completely
random. Finally, we check whether we can distinguish the population corresponding to the
fixed plaintext from the one corresponding to the measurements of the random plaintexts by
their mean using Welsh’s t-test. The intuition is that the mean of the group of measurements
with randomly supplied plaintexts converges to the average power consumption over all possible
intermediate states within the implementation. Now, if we can distinguish the fixed group from
this random group, there must be an internal state caused by another plaintext that we can
distinguish from the state of the fixed plaintext, otherwise the means would be the same. As a
result, we can indirectly identify data dependencies. Note that this only allows us to identify
dependencies specific to the selected fixed plaintext, although it can often be assumed that if
an implementation leaks information about the data, it does so for different fixed plaintexts.
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For performing the actual t-test, we calculate the variance σ2 and the mean µ for both groups
of observations and calculate the t-statistic as

t = µX − µY√
σ2

X
nX

+ σ2
Y

nY

,

where σ2
i , µi and ni correspond to the variance, the mean, and the number of elements of the

set of observations corresponding to population i ∈ {X, Y } respectively.
Another important parameter in hypothesis testing is the significance level α, which is the

tolerable probability of falsely rejecting the null hypothesis. Based on a given number of obser-
vations, and using the well-defined t-distribution, we can then translate a specified significance
level into bounds for our t-statistic. If the t-value exceeds these limits and we reject the null
hypothesis, the risk of being wrong would be less than our defined significance level. For the
t-test, it can be shown that if we have more than 1000 observations, i.e., an estimated degree
of freedom greater than 1000 – which is easily achieved in practice – a significance level lower
than 10−5 always translates into an upper bound for the absolute t-value of 4.5. In practice,
we can therefore simply compute the t-statistic and assume data dependence, i.e., we assume
different means of both groups, if the absolute t-value exceeds the threshold of 4.5. The risk
of being wrong, i.e., of overlooking equal means, is very small, namely less than 10−5 [SM16].
We like to emphasize that if the t-test indicates leakage, it does not mean that this leakage is
exploitable by a practical attack.

Assessment for Higher Statistical Orders. Protected implementations often aim to avoid
any data dependencies up to a certain statistical order. The test methodology of a t-test
has therefore been extended to detect differences in statistical moments higher than the first
standard moment, i.e., the mean [SM16]. Other statistical moments relevant in the context of
SCA are the dth-order centered moments and the standardized moments of a random variable
X following a normal distribution, which are defined as

CMd = E
(
(X − µ)d)

, SMd = E

((
X − µ

σ

)d)
.

Conceptually, the higher-order analysis again divides the observations into two groups before
calculating the mean and standard deviation. Then, each observation is preprocessed before
the t-test is calculated as described above. For each observation, the mean is subtracted. For
the standardized moments, the result is further divided by the standard deviation. In both
cases, the resulting value is raised to the power of d. After this preprocessing, the t-test is
performed as described above. Now, for a second-order analysis, the second-order centered
moment CM2 is considered, which actually corresponds to comparing the variances of the
two groups’ distributions. For d ≥ 3, SMd

2 is considered, i.e., the higher-order standardized
moments.

Power Traces. In practice, not only a single observation per execution is recorded. Instead,
the power consumption of a device is sampled many times during one and the same execution,

2SM3 is called the Skewness and SM4 is called the Kurtosis of a pupulation.
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i.e., the processing of a single plaintext. This results in one power trace over the time dimen-
sion for each execution of the considered algorithm. While the t-test can be performed in a
univariate fashion, i.e., for each sample point of the trace individually, it can also be performed
on combinations of sample points, using multivariate testing [SM16].

Optimization Techniques. Since a single trace can contain several thousand sample points, all
corresponding to different power observations of a single execution of the considered algorithm,
and the evaluation is often performed for many millions of traces, run time quickly becomes
an issue when performing the Welch t-test as a leakage assessment. For this reason, one-pass
formulas have been derived in [SM16] that allow efficient and parallel computation of the t-
statistics, even at higher security orders. This makes it easy to run the leakage assessment in
parallel with the power measurements since the statistics can simply be updated with each new
measurement.

2.3.5 Correlation Power Analysis
CPA [BCO04] is a common method for extracting the secret key from a cryptographic imple-
mentation. The underlying principle is very simple and follows a divide-and-conquer method-
ology, where parts of the secret key can be recovered individually. More precisely, CPA is a
specific form of Differential Power Analysis (DPA) [KJJ99], which generally describes power
analysis attacks that lower the entropy of a secret by measuring many executions of an cryp-
tographic implementation and applying appropriate statistical methods. While there are many
different statistical methods that can be applied, like for example Mutual Information Anal-
ysis (MIA) [GBTP08] or independence testing via χ2-test [MRSS18, RKM19], correlation is
used for CPA. To perform a CPA, we first define a power model that accurately models the
power consumption of a device. This model is based on parts of the plaintext and parts of the
key. Common power models are, for example, the byte-wise Hamming weight after the first
substitution layer of the cipher, or the Hamming distance between neighboring bytes after the
substitution layer. If we have information about the underlying implementation, it is usually
much easier to find a well-fitting power model, since we can derive it by considering the internal
structure and the order in which the data is processed. If we have no information about the
implementation at all, finding an appropriate model usually consists of educated guesswork and
a trial-and-error procedure.

As a first step, we measure the power consumption during cipher computation for many
randomly selected plaintexts. In practice, for each of these plaintexts, we would measure several
sampling points over time, resulting in a so-called power trace for each plaintext – similar to
the t-test scenario elaborated in Section 2.3.4. Then, the following procedure is performed for
each point in time separately in a univariate fashion. Let us consider a single point in time and
let (pi, ti) be the pair of the i-th plaintext and the corresponding measured power value ti for
0 ≤ i < nt where nt is the number of measured power values.

Identifying Correlation. Based on a power model M : F|p̃|
2 × F|k̃|

2 → R that maps a plaintext
part p̃ and a key part k̃ to a real value, we can derive hypothetical power values for each
plaintext for which we measured the power consumption during computation. Now for each
key guess, i.e., value from F|k̃|

2 , we can compute the hypothetical power values hi ← M(p̃i, k̃)
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for each p̃i as a part of the plaintext selected from pi. We then compute Pearson’s correlation
coefficient [Pea95] between the measured power values T =

{
ti

}
0≤i<nt

and the hypothetical
power values H =

{
hi

}
0≤i<nt

as

ρT ,H =
∑nt−1

i=0 (ti − µT )(hi − µH)√∑nt−1
i=0 (ti − µT )2

√∑nt−1
i=0 (hi − µH)2

,

where µT and µH are the averages over T and H respectively. ρ takes values between −1 and
1, and is essentially an estimate of the normalized covariance between two random variables.
Thus, it represents linear dependencies between two populations. The closer its absolute value
is to one, the more the dependency of the populations can be described by a linear relationship.
Now, assuming that our model M accurately models the power consumption of the attacked
implementation, we expect to see the highest correlation between T and H for the correct
key guess k̃. While we are only using classical CPA in the course of this thesis, there are
also techniques for performing higher-order attacks by means of the correlation. Furthermore,
similar to performing the t-test statistics, one-pass formulas for efficiently performing CPA are
introduced in [SMG16].

Selection of the Power Model. To avoid false-positive key guesses, we typically choose a
power model in which the hypothetical power values for a false key guess appear mostly random
compared to the real power consumption, and thus their relation cannot be well approximated
by a linear function. To achieve this, we can actually use the general structure of a cipher to
our advantage by choosing a power value based on intermediate values after the substitution
layer. As described in Section 2.2.4, an S-Box is designed to guarantee that a single bit flip in
the input will affect many bits in the output. Thus, even a wrong key guess with a single bit
difference to the correct one will result in an output distribution that is far from the actual one,
and thus correlates very poorly with the actual power consumption.

For an AES implementation, common power models include M(p̃, k̃) = HW(S(p̃ ⊕ k̃)) or
M(p̃′||p̃′′, k̃′||k̃′′) = HD(S(p̃′⊕k̃′), S(p̃′′⊕k̃′′)), where HW corresponds to the Hamming weight of a
value, HD is the Hamming distance between two values and S denotes the S-box Mapping; p̃ and
k̃ are bytes selected from the plaintext and from the key respectively. With this methodology,
we can recover the key part by part, effectively reducing the complexity compared to traditional
cryptanalytical key recovery attacks. If, for example, M(p̃, k̃) = HW(S(p̃ ⊕ k̃)) is an accurate
model for an AES-128 implementation, we can reduce the complexity to 16·28 = 212 by guessing
the key byte-wise and identifying the right key byte through CPA.

2.4 SCA Countermeasures

There are several approaches to counteract side-channel leakage, which can be broadly catego-
rized into hiding and masking according to [MOP07]. Since SCA exploits dependencies between
intermediate values processed by a cryptographic device and physical properties, countermea-
sures naturally aim to weaken this dependency.
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2.4.1 Hiding Countermeasure
Unlike the masking countermeasure, the hiding countermeasure aims to reduce this dependency
without changing the processed data, i.e., without changing the intermediate values [MOP07].
Hiding can be applied in both the time and the amplitude domain. Hiding in the time domain
aims at randomly changing the time of the operations performed. In hardware, this can be
achieved by randomly changing the clock frequency or by performing dummy operations during
random dummy cycles on random data. In this way, the relevant information within a power
trace will be at different sample points for each execution of the implementation. Hiding in the
amplitude domain involves either reducing the signal, i.e., the useful information contained in
the measured observations, or increasing the noise within an operation. Reducing the signal
can be achieved by equalizing the power consumption. A well-studied approach in this context
is the use of Dual-Rail Precharge (DRP) logic [TAV02, TV04]. Noise can be increased by
implementing a dedicated noise engine that performs noisy operations on random data during
each clock cycle.

2.4.2 Masking Countermeasure
Ultimately, masking aims to make it infeasible for any realistic adversary to obtain secret
information from side-channel leakage observations by randomizing the processed data. For
symmetric ciphers – which we focus on in this thesis – Boolean masking is commonly used.
According to Definition 2.4.1, the goal of Boolean masking is to split a secret into independent
random shares so that information about the secret is revealed only if information about all of
them is recovered.

Definition 2.4.1 (Boolean Masking [CJRR99]). Based on the idea of secret sharing [Sha79],
Boolean Masking splits a sensitive value X ∈ F2 into s ≥ 2 independent random shares Xi ∈ F2
such that X = ⊕s−1

i=0 Xi. Then, any combination of up to s− 1 shares does not reveal anything
about X.

Definition 2.4.2 (Uniform Masking [Bil15]). A masking X = (X0, X1, . . . , Xs−1) of a secret
X ∈ F2 is uniform if and only if it is uniformly distributed over all valid sharings of X, i.e., if
and only if for all x it holds that

Pr [X = x |X = x] =
{

p, if x ∈ Sh(x),
0, otherwise,

and ∑

x∈Sh(x)
Pr [X = x] = Pr[X = x].

Usually, Boolean masking of a secret value x is practically achieved by drawing s− 1 shares
uniformly at random from F2 and calculating the remaining share as the secret XORed with
all other shares. Note that through this procedure, we achieve uniform masking as defined in
Definition 2.4.2. This ensures that no information with respect to the unshared value can be
retrieved from any proper subset of the shares.

The intuition behind masking in hardware becomes clear when considering a simple example.
Suppose that the power consumption of a set of wires is equal to the sum of the bit values
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Figure 2.1: Comparison unshared vs. shared observation distribution

carried by each of the wires plus a normally distributed noise. For simplicity, we further assume
a single unshared input bit which is uniformly distributed. Under these assumptions, without
sharing the sensitive bit value, we can simply distinguish between the two possible values 0 and
1 by looking at the mean of the power observations. This is shown schematically in Figure 2.1a.
If we now randomly split the sensitive variable into two parts, we would observe a distribution
similar to the one shown in Figure 2.1b. The value would be split into (X0, X1) = (0, 1) or (1, 0)
with the sum of the wires equal to one if the value is one. If the unshared value is zero, the
sharing is (X0, X1) = (0, 0) or (1, 1) and the sum is either zero or two. Now it becomes clear
that the mean of the observations is the same for both nonshared cases 0 and 1, so it is not
possible to distinguish the underlying secret by the mean of the observations. By implementing
masking, we force the adversary to consider higher statistical moments [BDF+16], such as the
variance as a second-order centralized moment. For sufficient noise levels, it can be shown that
the complexity of such distinguishing grows exponentially with the security order [BDF+16].
As a result, masking provides a powerful tool to push the complexity for successful SCA attacks
into the practical impossible.

2.5 Formal SCA Adversary Models
To capture and formalize the capabilities of an adversary in the context of SCA, abstractions of
a circuit, physical effects and probing capabilities had to be derived. In the following, we give
an overview of these abstractions.

2.5.1 Circuit Model
In accordance to [AIS18], we use the Encoded Circuit Model to model the behavior of a hardware
circuit in an abstract way.

As considered in [ISW03] and later extended in [CS21], any stateful and deterministic circuit
C is modeled as a Directed Acyclic Graph (DAG) GC = {V, E}, where V is the set of vertices
and E is the set of edges in GC. In this context, edges are the wires carrying elements from
F2, while vertices are either initial inputs to the combinatorial circuit, logic gates such as AND
and XOR, refresh gates, or memory gates (flip-flops). On each invocation of the circuit (each
rising edge of the clock signal) a refresh gate, which has no inputs, outputs a freshly drawn
random bit by tossing a fair coin. Memory gates work by outputting the previous input to the
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gate while storing the next input for the next invocation of the circuit (the next clock edge).
Overall, the circuit implements a Boolean function f : Fn

2 → Fm
2 – while possibly requiring

multiple invocations.
Because it is based on a DAG structure, this model lacks the ability for the circuit to contain

feedback loops, which occur in many compact and iterative designs. As a result, it has been
extended in [CS21] to allow modeling of multiple executions of the same physical module.
Essentially, the definition is extended to a simple directed graph, where nodes correspond to
states of physical gates during different clock cycles. Here, one and the same physical gate is
called a structural gate and a physical wire connecting two structural gates is called a structural
wire. A circuit execution is then reflected by a graph corresponding to all state transitions of
structural gates over time, as defined in Definition 2.5.1.

Definition 2.5.1 (Circuit Execution [CS21]). A circuit execution of a structural circuit GC =
(G,W) for the set of cycles T is a directed graph G′

C = (V, E) with V ∈ G × T and E ∈ W × T
where wires connect the gates according to their latency. Here, G and W denote the structural
gates and wires of C.

These abstractions provide all the necessary means to abstract the behavior of a hardware
circuit and to define adversary capabilities for SCA attacks.

To limit adversarial probing to the masked circuit, and to exclude masking and unmasking
of input data from being observed, the secure computation process is divided into three steps.
As defined in [AIS18], a circuit compiler is defined by a tuple of three algorithms (COMPILE,
ENCODE, DECODE) which are defined as follows.

■ The COMPILE algorithm is deterministic and takes as input a structural circuit C and
outputs a randomized (masked) circuit C̃.

■ ENCODE is a probabilistic algorithm that takes as input the unshared input X to C and out-
puts the encoded input X to C̃. This encoded input corresponds to the shared representation
of the data, which – in our case – is derived by means of Boolean masking.

■ Eventually, DECODE is a deterministic algorithm that takes the encoded data Y and de-
codes/unshares it to achieve the unshared output Y of C.

As a result, these algorithms allow sharing the initial input data (via ENCODE), computing
on the shared representation of the input (via C̃), and unsharing the result (via DECODE), so
that Y ← (DECODE ◦ C̃ ◦ ENCODE)(X) for Y ← C(X), while the adversary is restricted to
making observations only within C̃. This means that the algorithms ENCODE and DECODE
are known to the adversary, but the actual execution cannot be probed.

2.5.2 Noisy Leakage Model
The noisy leakage model – introduced in 1999 – is assumed to be very close to the actual physical
leakage processes. Its drawback is its low level of abstraction, which makes it very involved to
work with. As a result, formulating and deriving sound security arguments within this model
relies on complex information-theoretical arguments.

According to Chari et al. [CJRR99], each wire of the circuit leaks its value as described by
noise(X)← X +χ, where X describes the value of the wire and χ follows a normal distribution.
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The security, or SCA resilience, of a circuit is then defined by the number of observation traces,
i.e., the observed executions of the circuit required to obtain the processed secret.

The original noisy leakage model was later generalized in [PR13], which describes a more
general noise function noise defined by the statistical distance – denoted by δ – between a
uniform X and X|noise(X). Intuitively, the statistical distance describes how much information
of X is contained in the noisy leakage observations noise(X). This has the advantage that it
generalizes the noise function from considering only additive Gaussian noise to include more
complex noise functions.

This model is well suited to explain why masking is such an effective countermeasure against
SCA attacks. In [CJRR99], it was shown that, given sufficient noise, identifying useful in-
formation from noisy shares becomes exponentially harder as the number of shares increases.
Masking can thus be viewed as noise amplification with respect to the unshared value. Note
that in theory, security against SCA attacks can be achieved without any masking, simply by
having an immense amount of noise in each observation, so that deriving useful information
becomes impossible for any realistic adversary. However, achieving such a high noise level is
not really feasible in practice, and it is therefore advantageous to implement a hybrid approach
that increases the noise contained in each observation by technical means and further amplifies
the noise with respect to the unshared secret by masking on an algorithmic level.

2.5.3 Random Probing Model
While conceptually very close, the ϵ-random probing model further increases the abstraction
compared to the noisy leakage model. It uses a very simple noisy leakage function for each wire,
namely

φ(X) =
{

X with probability ϵ,

⊥, otherwise,
(2.1)

where ⊥ symbolizes the null value, meaning nothing is leaked. For each execution, each wire
hence leaks its value with probability ϵ. This model was later relaxed by Dziembowski et al. in
[DFS15] in the form of the average ϵ-random probing model that allows for a tighter reduction
to the noisy leakage model. This was achieved by a seemingly small twist: Equation 2.1 does
not need to hold for all possible wire values, but only on average over all possible values for X
(note that the definition for the model does not restrict wires to carrying elements from F2).

For a single execution of a circuit, the observation is given by a set of wires and their corre-
sponding values that have been leaked according to the simple leakage function φ. The security
level in the random probing model is then simply given by the probability that an observation
under a defined noise level ϵ leaks information about the secret, i.e., depends on the secret. This
is a very intuitive security definition, because it gives us the expected number of traces until
an adversary receives a leaking set. In practice, this is computed by counting all leaking probe
sets for all possible set sizes, and then computing the probability with respect to a Bernoulli
distribution.

2.5.4 d-Probing Model
Because of its high level of abstraction, most security arguments in the area of SCA resistance
are settled in the d-probing adversary model [ISW03]. Here, an adversary is granted the ability
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Algorithm 2 glitch-extend
Input: Probe P
Output: Glitch Extension of P : Pext

if P is placed on an output of a combinatorial gate then
Pext ←

⋃
0≤i<n

glitch-extend(Pi) ▷ where Pi, 0 ≤ i < n are probes placed onto all inputs to
the combinatorial gate

else
if P is placed on an output of a register or on a primary input then
Pext ← {P}

end if
end if

to place up to d probes on the wires of the circuit and should not learn any information about
the processed secret. More precisely, security in the d-probing adversary model is given if the
distribution over the observations measured by the probes is independent of the distribution of
the processed secret.

The standard model was later extended by Faust et al. [FGP+18] in form of the robust d-
probing model to cover leakage-enhancing physical effects that occur in the hardware, such as
glitches, transitions at register stages, and coupling between wires. For each physical effect,
the set of probes is extended in a specific way, with the goal of always covering the worst-case
scenario, i.e., the maximum amount of information an adversary can observe. Fundamentally,
the robust d-probing model covers the fact that the leakages of wires within a circuit cannot be
considered independently in many cases.

Glitches. In the SCA context, glitches are unintentional signal recombinations caused by dif-
ferent path delays between two register stages. These recombinations may allow an adversary
to observe not only the stable and settled signal on a wire, but possibly other inputs of the com-
binatorial circuit on which a probe is placed. Thus, when glitches are considered in the context
of the robust d-probing adversary model, a probe placed on a wire of a circuit is extended to
a new set of probes placed on each stable signal that contributes to the wire’s computationally
intended value. These signals are either register outputs or primary inputs to the circuit. A
pseudo-algorithm for deriving such a probe extension for a single probe is given in Algorithm 2.
When extending a set of probes, each probe can be extended separately before the union of
the extensions is built. A glitch extension of a probe set {P, Q} on an example circuit can be
seen in Figure 2.2a. The initial set of probes is essentially replaced by a stronger set of probes
{P1, P2, P3, P4} and security is evaluated under this new set of probes, i.e., the independence of
the observations and the secret is checked.

Transitions. Data transitions on registers (flip-flops) are known to be an important source of
leakage information in hardware circuits. When considering transitions in the robust probing
model, a probe placed on a register can always observe the values of two consecutive clock
cycles, so that a single-valued observation is extended to an observation tuple of size two. An
illustration of a set of probes that is glitch- and transition-extended is given in Figure 2.2b.
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Figure 2.2: Probe extension on exemplary circuit

Again, the security check is simply preceded by a preprocessing step that effectively replaces
the original probe set with a stronger one (in this case {P0, P1, . . . , P6}).

Coupling. Coupling between wires describes signal recombinations within a circuit caused by
the close proximity of adjacent wires. Here, when a probe is placed on a wire, it can be extended
to observe adjacent wires. As a result, the original probe is replaced by a set of probes containing
all probes on wires within a certain radius (including itself).

The (g,t,c)-Robust Probing Model. A tuple (g, t, c) indicates the physical effects considered
by the robust probing model. Here, g, t ∈ {0, 1} indicate whether glitches or transitions are
considered, and c ≥ 0 describes how many adjacent wires are considered for coupling. For
example, security under the (1, 1, 0)-extended d-probing model is given if all considered probes
are glitch- and transition-extend ed before checking for security similar to the standard probing
model, but considering the new set of probes. The robust probing model is thus a natural
extension of the standard probing model, which hands the adversary an extended set of probes.

Model Used in This Thesis. We use the robust d-probing model as a formal SCA adversary
model throughout this thesis. The reason for this is twofold. Both the noisy leakage model
and the random probing model assume independent leakage of wires, and thus do not account
for recombining physical effects in hardware that can degrade security. Furthermore, it has the
highest level of abstraction, which makes it very convenient to work with.

2.5.5 Bounded Moment Model
The bounded moment model, introduced by Barthe et al. in [BDF+16], provides an intuitive
explanation of why security with respect to the d-probing model usually results in high practical
security evaluated by common TVLA methods. In this model, the leakage Lc during a single
clock cycle of a hardware circuit execution is assumed to be the arithmetic sum of all values
processed during that cycle. Considering the arithmetic sum is crucial as it maintains the
independence assumption, i.e., the values are not combined in a nonlinear fashion.
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d-probing security ϵ-random probing security noisy-leakage security
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Figure 2.3: Security reductions between formal SCA adversary models

Definition 2.5.2 (Mixed Moment [BDF+16]). Given a set of random variables {Xi}ri=1 and
positive integers o1, o2, . . . , or, the expectation

E(Xo1
1 ·Xo2

2 · . . . ·Xor
r )

is called mixed moment of order o = ∑
i oi.

Given Definition 2.5.2, security in the bounded moment model under order o is given if and
only if all the mixed moments up to order o of {Lc}nc

c=1 are independent of the secret. Here,
{Lc}nc

c=1 is the set of leakages over all nc cycles of an implementation’s execution. It was further
shown in [BDF+16] that security in the d-probing model implies security in the bounded moment
model under o = d, meaning we can construct a d-probing adversary from an adversary in the
bounded moment model.

In the bounded moment model, the security of an implementation is expressed as the inde-
pendence of specific statistical moments of the observations and the processed secret. This is
analogous to what is commonly tested through a t-test methodology for leakage assessment.
As a result, the reduction between the bounded moment model and the d-probing model links
security in the d-probing model to security under common experimental TVLA.

It further offers an explanation for the effectiveness of masking, as identifying dependencies
between the secret and a moment of an observation becomes exponentially hard with increasing
order o if the leakage is sufficiently noisy.

2.5.6 Relations Between Formal Adversary Models
Figure 2.3 provides an overview of the relations between the formal SCA adversary models
described above. The arrow indicates that there is a security reduction between the two models.
This means that an adversary in the d-probing model can be constructed from an adversary in
the noisy leakage model. By inverting this argument, d-probing security implies security in the
noisy leakage model. In the following, we give an intuition of how these reductions work. For
a formal elaboration, we refer the interested reader to [DDF19] and [BDF+16].

From Noisy Leakage to Random Probing. To construct an adversary in the ϵ-random probing
model from an adversary in the noisy leakage model, we can show how to derive a leakage
simulator in the random probing model that offers the same information to an adversary as
the noisy leakage. Let us consider the noisy leakage over a wire carrying values of F2. The
noise here describes how much information about a processed value X ∈ F2 can be derived by
observing the noisy value noise(X) and is identified by the statistical distance δ – as described
in Section 2.5.2. The two extreme cases are depicted in Figure 2.4. In Figure 2.4a, we have an
example distribution over a wire with no noise, as we have very high (nearly complete) certainty
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Figure 2.4: Low noise vs. high noise in the noisy leakage model

about X when observing noise(X). This can be trivially modeled by a leakage simulator in the
ϵ-random probing model by setting ϵ = 1, i.e., φ(X) = X and an adversary would simply receive
the value of that wire with each query. In Figure 2.4b, a distribution with full noise is shown.
By observing the noisy value, we actually gain no certainty about the value whatsoever. This
again can trivially be modeled by setting φ(X) =⊥, i.e., ϵ = 0 in the random probing model.
Following this intuition, it was shown that an ϵ-random probing adversary can be constructed
from any δ-noisy adversary [DDF19] and that random-probing security implies noisy-leakage
security.

From Random Probing to d-Probing. Now we can construct a leakage simulator that models
the behavior in the d-probing model based on an adversary in the random probing model. This
is done more or less by directly applying Chernoff’s bound [Che52], since leakage in the random
probing model is modeled in a binominal fashion [DDF19]. This allows us to derive an upper
bound on the probability that more than a certain number of wires will leak. As a result, we can
construct a d-probing adversary from an adversary in the random probing model for a specific
d depending on the noise level of the circuit.

From Bounded Moment to d-Probing. In the bounded moment model, leakage is described
by the noisy arithmetic sum of all values processed during a single clock cycle. Let us consider
a circuit with wires carrying elements from F2, where we have two clock cycles, each processing
three values. The noiseless leakage during the cycles can be described by L1 = Y1 + Y2 + Y3
and L2 = Z1 + Z2 + Z3. Second-order security in the bounded moment model is given if E(L1),
E(L2), E(L1 · L2), E((L1)2), and E((L2)2) are each independent of the processed secret. Due
to the linearity of expectation, all of these can be described by sums of different expectations
of the form E(Y o1

1 · Y o2
2 · Y o3

3 · Zo4
1 · Zo5

2 · Zo6
3 ), where ∑6

i=0 oi ≤ 2 = d, i.e., each of these terms
contains only expectations of monomials consisting of at most d = 2 values. The independence
of all tuples containing a maximum of two of the processed variables from the secret implies the
independence of these terms. This is exactly what is checked in the d-probing model.

2.6 Automated Hardware Masking and Composability Notions
When it comes to masking, a wide spectrum of approaches for creating a masked hardware
implementation exists. At one end of the spectrum, there is the handcrafted masking approach
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which mainly relies on heuristics. At the opposite end, there is the fully automated mask-
ing approach, which is grounded in a strong theoretical foundation and offers robust security
guarantees in the face of formal adversary models. Each approach has its unique set of bene-
fits and drawbacks, and a multitude of hybrid strategies aim to harness the strengths of both
methodologies.

2.6.1 Handcrafted Masking and Experimental Evaluation
Handcrafted Masking. For a certain period of time, masking a circuit was mainly based on
heuristics. A common approach to achieving side-channel resistance was to divide a circuit into
different functional blocks before heuristically masking those blocks, and finally arguing why
the overarching, interconnected design is secure. Achieving solid masking – such as masking
that is consistent with the robust d-probing model – through such handcrafting is a difficult and
time-consuming task that is highly error-prone, even for experts with several years of experience
in side-channel-resistant cipher design. Furthermore, the process of handcrafted masking for a
particular cipher and architecture (round-based, serialized, unrolled) is not directly applicable
to other ciphers and architectures. For each specific design, the masking process has to be
done more or less from scratch, involving highly trained experts and consuming a high amount
of resources and time. Furthermore, seemingly minor errors can render an implementation
completely insecure in practice. Various examples for designs that where carefully, but manually,
designed can be found in the literature [Sug19, SBHM20, SBM21, SM21].

Experimental Evaluation. Traditionally, masked implementations were validated solely by
experimental analysis, specifically practical TVLA, without any proof or verification that they
conformed to a formal security definition. With this approach, the security statement regarding
the SCA resilience of an implementation is always bound to the experimental context, i.e., the
setup and environment. Running the implementation in a different context, e.g., on a different
technology or platform, or with different experimental equipment, may affect its security. Formal
adversary models, such as the d-probing model, abstract from such conditions by conservatively
modeling the leakage behavior of a cryptographic circuit, and allow a more general security
statement to be made. As a consequence, a relevant part of the research community has started
focusing on systematic ways of applying masking to unprotected implementations that result
in security guarantees with respect to a formal adversary model. Due to its high level of
abstraction, most of these schemes are analyzed with respect to the robust d-probing adversary
as described in Section 2.5.4.

2.6.2 Towards Sound and Systematic Hardware Masking
As conformity to the (robust) d-probing model usually results in high practical security, part of
the research focus has transitioned from manually designing masking schemes and experimen-
tally verifying the resulting post-silicon implementation to systematic approaches that result
in provably secure implementations with respect to the formal (robust) d-probing adversary
model.

A first attempt to realize provable security in the presence of glitches is the so-called Threshold
Implementation (TI) [NRR06]. Here, a function is implemented as a vector of sout component
functions f = (f0, f1, . . . , fsout−1) realized as combinatorial circuits computing the output shares.
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Figure 2.5: Automated Masking Concept

Besides its correct functionality, the concept of TIs is rooted in two main security-related prop-
erties of a shared circuit:

Non-Completeness. Any combination of up to d component functions fi must be inde-
pendent of at least one input share per input.

Output Uniformity. The output of the shared function must be a uniform masking of the
unshared function output as defined in Definition 2.4.2. This is equivalent to saying that
the TI must be uniform according to Definition 2.6.1.

Definition 2.6.1 (Uniform sharing of a function [Bil15]). Let sin be the number of shares per
input. The dth-order sharing f of a circuit operating on F2 and realizing f : Fn

2 → Fm
2 is uniform

if for all x ∈ Fn
2 and y ∈ Fm

2 with f(x) = y, and all y ∈ Sh(y) and sout ≥ d + 1, it holds that

|{x ∈ Sh(x)|f(x) = y}| = 2n(sin−1)

2m(sout−1) .

Intuitively, the non-completeness property ensures that placing up to d probes on the circuit
will only reveal a part of all shares and never all of them – even in the presence of glitches.
Then, if the input sharing is uniform according to Definition 2.4.2, the observations will be com-
pletely independent of any secret. The output uniformity property aims to ensure composability,
meaning that the input to another TI will again constitute a uniform sharing. Elaborations on
higher security orders were given by Bilgin et al. in [BGN+14], before it was shown that the
TI properties are not sufficient for guaranteeing security in the higher-order d-probing model in
[RBN+15]. Also, for each new composition of TI constructions, the output uniformity has to be
re-evaluated. Other systematic approaches were introduced in [RBN+15], [GIB18] and [GM17].
Later, it was shown that all of these schemes suffer from higher-order design and composability
flaws when initialized in hardware [MMSS19]. This is why part of the focus was laid on finding
a modular masking approach that is automatable and less prone to security flaws.
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2.6.3 Gadget-Based Masking
Gadget-based masking is founded on a modular divide-and-conquer approach. Instead of mask-
ing the cipher on a global level, it allows building a protected circuit from small building blocks
that individually satisfy specific and well-defined properties that guarantee that the composed
circuit is secure in the (robust) d-probing model. These building blocks are usually masked vari-
ants of small logic gates such as AND or XOR [BBD+16, CS20, CGLS21, KM22b, KM22a], but
building blocks with larger functionality also exist and are introduced in this thesis [KSM22].
We refer to these composable and masked hardware modules as gadgets. Most gadgets with
atomic functionality can be instantiated at any security level, allowing the unprotected circuit
to be systematically masked for arbitrary security levels, thereby tailoring the level of protec-
tion to a specific use case. The basic principle of gadget-based masking is straightforward and
is illustrated schematically in Figure 2.5, where the unprotected combinatorial circuit is sim-
ply transformed by inserting appropriate composable gadgets. Here, only gadgets with atomic
gate functionality were used. Gadget-based masking has significant advantages over heuristic
masking. Due to its modular approach based on components that are designed to individually
satisfy well-defined theoretical properties that guarantee secure composability, a circuit com-
posed of gadgets is provably secure in the formal robust d-probing adversary model and thus
also provides strong security guarantees with respect to practical SCA resistance as elaborated
in Section 2.5. Because of its theoretical and modular foundation, this approach is well suited
to be fully automated, eliminating the need for additional extensive post-masking security veri-
fication. Complete automation reduces the need for expertise in the area of hardware masking,
while providing an easy way to produce hardware that is thoroughly protected against SCA at-
tacks. Furthermore, it can be easily applied to any symmetric cryptographic primitive or cipher,
implemented in any architectural fashion, such as serialized, round-based, or fully unrolled.

Rooted in its generic applicability, gadget-based masking has some relevant drawbacks com-
pared to heuristic masking tailored to a specific design, i.e., algorithm and architecture. In
addition to processing multiple signals (shares) per unshared input, each gadget introduces in-
dividual overhead into the design in form of requiring register stages and fresh random bits.
This results in a higher overhead introduced in terms of area, randomness requirements and
latency of the overarching composed circuit, especially when compared to heuristically masked
designs.

Due to its many advantages, it is highly beneficial to find optimized constructions for gadget-
based masking that reduce overhead requirements, or to find a good trade-off between latency,
randomness requirements and area overhead for different use cases and applications.

2.6.4 Composability Notions
The theoretical foundation for achieving fully automatic masking that guarantees security in the
(robust) d-probing model is laid by so-called composability notions. Ultimately, these notions
define gadget-individual properties that aim to define sufficient conditions for ensuring the
secure interconnection of gadgets to form larger cryptographic (or any digital) circuits with
strong guarantees with respect to SCA resilience.

Probe Simulation. To better describe the essence of these notions, we define perfect probe
simulation in Definition 2.6.2. For each possible probe placement, it must be possible to con-
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struct a simulator according to this definition such that the simulator only works on a proper
subset of all shares of each input and not on all of them. The exact restriction with respect to
the set of input shares is defined by the composability notion.

Fundamentally, for a given set of probes P = {P0, P1, . . . , Pp} and when fixing all shares in
the simulation set S, the output of the constructed simulator has to follow the same distribution
(is described by the same probability mass function) as the probes placed on the real circuit,
i.e., the distribution over (P0, P1, . . . , Pp), only by using S and without any knowledge of the
distribution over other inputs to the masked circuit. This must hold for every possible, fixed
value assignment to S. In this context, it is crucial to differentiate internal randomness from
inputs to the circuit, although they are supplied by an external randomness source in practice.

To better understand what the concept of perfect probe simulation describes, we can consider
the two simple examples presented in Figure 2.6. In Figure 2.6a, a single probe is placed on
the registered output of an AND gate that takes both shares of a secret as input. Now in
order to perfectly simulate the probe, both shares are required. Without loss of generality, we
assume that X0 = 1. In this case the distribution over X1 is forwarded to the output. Without
knowledge of X1, we cannot simulate the output of the AND gate. Hence, we need both of
them to simulate the output for all possible values of (X0, X1). The same is true if we replace
the AND gate by an XOR gate. The situation changes if we consider Figure 2.6b. Here we
refresh one of the shares before the AND operation is performed. The refresh is assumed to
be done by internal randomness, meaning we can assume that the blinding bit is drawn from
a uniform distribution over F2. We also depict the observation distribution for X0 = 0 and
X0 = 1, respectively. Because of the blinding, the output of the XOR gate will follow a uniform
distribution over F2, i.e., it is derived by a fair coin toss, independent of X1. Hence, if X0 = 1,
this distribution is forwarded to the output. We can simulate this by simply tossing a coin. If
X0 = 0, the output will always be 0 due to the nature of an AND gate. A simulator sim can
hence be simply build according to Algorithm 3.

Definition 2.6.2 (Perfect Probe Simulation). Let P be a set of probes placed on a masked
circuit. Then P is perfectly simulatable by a set S of input shares if and only if there exists a
p.p.t. simulator sim such that for any values of the inputs to the masked circuit, the probability
distribution over P and sim(S) are equal.

Probe Propagation. The idea of a probe simulator was later picked up in [CS20], where the
related concept of probe propagation was introduced. Here, a set of probes is said to propagate

Algorithm 3 sim: A simulator to simulate P in Figure 2.6b
Input: S = {X0 ∈ F2}
Output: P ∈ F2: Simulated probe observation

if X0 = 0 then
return P ← 0

else
return P

$←− F2
end if
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Figure 2.6: Perfect simulatability example: Probe placement on exemplary minimal circuits

into a wire if the signal on that wire is required to perfectly simulate the probe’s view, i.e.,
mimicking the observations made by the probes over any number of circuit executions.

Intuitively, the concept describes how leakage traverses backward through the circuit, starting
from the location where a probe is placed. This enables formal arguing about which input shares
a set of probes can get information. Fundamentally, for the resulting overall circuit, it comes
down to ensuring that any set of probes on the circuit only propagates into a part of all shares
and not all of them. If the input masking fulfills Definition 2.4.2, this will not reveal any
information about the secret itself. Note that restricting probe propagation to subsets of all
shares is not equivalent to guaranteeing d-probing security but may impose stronger restrictions
onto a masked circuit. This means it is indeed a sufficient requirement, but not a necessary
one.

A simple example for a probe whose observations are independent of the secret but which
propagates into all shares of a secret is given in Table 2.1. If we assume that X0, X1, Y0 are the
result of a uniform masking, we have that

Pr[P = 1|X = x] = Pr[P = 1] = 1/4 and Pr[P = 0|X = x] = Pr[P = 0] = 3/4, ∀x ∈ {0, 1},

and hence independence between the secret X and probe P . Nonetheless, the probe cannot be
perfectly simulated according to Definition 2.6.2 without knowledge of both X0 and X1.

Ultimately, this conservative approach abstracts from the information-theoretic argument of
independence between random variables and makes constructing and arguing about security
much easier, but may introduce unnecessary overhead into a circuit. Over time, various com-
posability notions have been proposed, all of which aim to restrict probe propagation within
gadgets sufficiently so that d-probing security is guaranteed when they are interconnected and
form a larger circuit. We introduce them below.

Non-Interference. The fundamental idea of composability notions is the restriction of probe
propagation within gadget boundaries. Here, it is ensured that every possible set of probes
placed onto a gadget only propagates into a limited set of input shares. All proposed compos-
ability notions aim to sufficiently restrict such sets in order to guarantee secure composition.
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X X0 X1 Y0 P =
(
X0 ⊕ Y0

)
X1

0 0 0 0 0
0 0 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0

Table 2.1: Example probe which is independent of the secret X but propagates into X0 and X1.

The idea is to limit gadget-individual probe propagation in a way that ultimately restricts
propagations of global probes placed on the interconnected circuit in such a way that only in-
formation of a proper subset of all shares of each initial secret inputs is leaked, hence ensuring
(robust) d-probing security. The NI notion, introduced by Barthe et al in [BBD+15], ensures
that any set of t ≤ d probes only propagates into at most t shares per input, which is captured
by Definition 2.6.3.

Definition 2.6.3 (d-Non-Interference (NI) [BBD+15]). A masked circuit C̃ provides d-Non-
Interference if and only if for any probe set P of t ≤ d probes, there exists a set S of input
shares with |Sj | ≤ t for all input indices j such that P can be perfectly simulated by S.

Strong Non-Interference. As the NI notion was not sufficient to guarantee secure composition
of gadgets, probe propagation was further restricted by a novel extension, the Strong Non-
Interference (SNI) notion [BBD+16]. In this context, probes placed onto output wires do not
increase the number of shares available for simulation. Intuitively, this stops the propagation of
probes placed onto composed circuits at gadgets fulfilling the SNI property. This is formalized
in Definition 2.6.4. One drawback of SNI is that the trivial implementation, i.e., share-wise
application, of linear functions is not SNI, and special care must be taken to omit critical probe
propagation by inserting SNI refresh gadgets into the composed circuit.

Definition 2.6.4 (d-Strong Non-Interference (SNI) [BBD+16]). A masked circuit C̃ provides
d-Strong Non-Interference if and only if for any probe set P containing t = t1 + t2 ≤ d probes,
where t1 probes are placed on internal wires and t2 on output wires, there exists a simulation
set S of input shares with |Sj | ≤ t1 for all input indices j such that P can be perfectly simulated
by S.

Probe-Isolating Non-Interference. The concept of Probe Isolating Non-Interference (PINI)
was introduced by Cassiers et al. in [CS20] with the goal of reducing the overall overhead of
composed circuits compared to the SNI context. According to Definition 2.6.5, very similar
to Domain-Oriented Masking (DOM) [GMK16], share domains are introduced, and internal
probes placed on a gadget are restricted to propagating into an arbitrary single share domain.
In contrast, output probes are only allowed to propagate within the same share domain as the
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output share on which the probe was placed. Compared to NI/SNI, this novel composability
notion has the significant advantage of allowing the trivial realization of linear functions. More
precisely, the share-wise application of linear functions is directly consistent with the PINI
notion. Thus, in contrast to NI/SNI, they do not introduce any additional overhead into the
design, except for signal expansion and function duplication. No additional registers or fresh
random bits are required. Furthermore, the composition of gadgets that satisfy the PINI notion
is straightforward. As long as wires of gadgets are connected with respect to equal share
domains, the composed circuit will be secure in the d-probing adversary model, which greatly
simplifies the gadget-based construction of masked circuits.

Definition 2.6.5 (d-Probe Isolating Non-Interference (PINI)). Let PI be the set of internal
probes with |PI | = t1. Furthermore, let IO be the index set assigned to the output wires probed
by PO with |IO| = t2.

A masked circuit C̃ provides d-Probe Isolating Non-Interference if and only if for every P =
PI ∪ PO with t1 + t2 ≤ d, there exists a set II of circuit indices with |II | ≤ t1 such that P can
be perfectly simulated by input shares with indices drawn only from II ∪ IO.

2.6.5 Gadget Realizations

Over time, various composable hardware gadgets have been proposed that satisfy different
security notions and aim to optimize for different overhead parameters. An overview of common
gadget realizations in the context of the d-probing model is given in Table 2.2.

HPC1. HPC1 was introduced in [CGLS21] and is essentially an extension of a simple DOM
multiplier [GMK16]. To achieve composability under the notion of PINI, a SNI refresh was
inserted for one of the inputs, preceding the actual DOM multiplier. As a consequence, compared
to the original DOM multiplier, additional fresh randomness is introduced, the amount of which
is determined by the security order d.

HPC2. Also in [CGLS21], HPC2 was introduced as a PINI-composable gadget that essentially
lowers the randomness requirements of HPC1 by cleverly combining shares to compute cross-
domain terms without the need for a dedicated SNI refresh of any of the inputs. It requires a
total of two register stages. An additional advantage of HPC2 is the asymmetry in input-output
latency. One of the gadget’s inputs is only needed in the combinatorial logic between the first
and second register stages, while the other is needed before the first register stage. It has been
shown in [CGLS21] that this asymmetry can be exploited to achieve a favorable total latency
of composed overarching designs, meaning that the total latency can be less than twice the
maximum number of AND gates in any path of a circuit.

HPC3. In [KM22b], we introduce a low-latency hardware private circuit. Similar to HPC1
and HPC2, it implements an AND functionality and can be instantiated for arbitrary security
orders. HPC3 has a favorable trade-off with respect to latency, since it requires only a single
register stage, but uses twice as many random bits as HPC2.
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Gadget Notion d Function #Random Bits Latency
HPC1 [CGLS21] PINI arbitrary AND d(d + 1)/2 + r[d]∗ 2
HPC2 [CGLS21] PINI arbitrary AND d(d+1)

2 2
HPC3 [KM22b] PINI arbitrary AND d(d + 1) 1
GHPC [KSM22] PINI 1 Fn

2 → Fm
2 m 2

GHPCLL [KSM22] PINI 1 Fn
2 → Fm

2 m · 2n 1
ISW-AND [FGP+18] SNI arbitrary AND d(d + 1)/2 2
CMSLL

† [MPZ22] SNI arbitrary AND 2(d + 1)2 1
∗ r[d] = [1, 2, 4, 5, 7, 9, 11, 12, 15, 17] for d ≤ 10
† hand-optimized for low security orders; number of randomness = [2,6,12] for d = [1,2,3] respectively

Table 2.2: Overview of different nonlinear hardware gadgets; constructions that are part of this
thesis are marked in bold.

GHPC. In [KSM22], we introduce a novel methodology for creating gadgets that are securely
composable for the first security order under the notion of PINI. With this technique, a cir-
cuit with arbitrary functionality can be transformed into a masked gadget solely based on its
functional description, e.g., its Algebraic Normal Form (ANF). GHPC comes in two variants:
(i) the standard variant, which requires two clock cycles to perform any functionality and uses
only a single bit of randomness per coordinate function of the vectorial Boolean function, and
(ii) a low-latency variant – referred to as GHPCLL – which requires only a single clock cycle
regardless of the realized functionality, but uses 2n random bits per coordinate function, where
n is the number of unshared inputs.

ISW-AND. In order to compose probing-secure circuits, SNI-compliant ISW-AND gadgets can
be used, which were introduced in a glitch-robust variant in [FGP+18]. In contrast to the PINI
notion, in the context of SNI, refresh gadgets must be carefully inserted into the composed
circuit to prevent security-degrading probe propagation. As shown in [BBD+16, CGLS21],
trivial, i.e., share-wise, implementations of linear operations are not SNI. Depending on the
circuit structure, this may demand for additional robust-SNI refresh gadgets to be inserted
into the circuit which further increases the introduced overhead. As the original composition
approach by Barthe et al. [BBD+16] was too conservative considering the insertion of refresh
gadgets, Beläıd et al. introduced a new composition strategy in [BGR18], drastically reducing
the number of required refresh gadgets.

CMSLL. In [MPZ22], an adaption of Consolidating Masking Schemes (CMS) [RBN+15] was
introduced to construct an SNI-composable hardware gadget that realizes a masked variant of
an AND gate and only needs a single register stage in total. Similar to ISW-AND, a careful
combination of CMSLL and SNI refresh gadgets allows the systematic construction of masked
circuits secure in the (robust) d-probing model.
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2.6.6 Discussions on the Costs of Automated Masking
As discussed above, automated masking adds significant overhead to a design. In the following,
we will briefly discuss the general costs of automated masking.

As cost metrics, we consider the on-chip area footprint of implementations, the latency in clock
cycles and the randomness requirements as the number of coin flips. Note that the randomness
requirements will eventually translate into area overhead, as fresh random bits originate from
some form of randomness source realized as a dedicated hardware circuit on the chip. In practice,
the randomness supply is commonly realized by a Pseudo-Random Number Generator (PRNG)
whose area grows with the output throughput per clock cycle. Consequently, the randomness
requirement indirectly translates into area overhead, but since there is no well-defined cost
function for the throughput of a randomness source, quantifying the cost in a general way is
currently impossible, and elaborations are based on specific case studies.

In general, for two-input nonlinear gadgets (with input X and Y ), e.g., HPC{1, 2, 3}, ISW-
AND and CMSLL, the area (and randomness) costs of each gadget scale within O(

(d + 1)2)
, as

both are mainly determined by deriving the cross terms Xi · Yj with i ̸= j (the multiplication
of shares from different domains), while restricting the probe propagation in accordance with
their respective composability notions. In this case, the area of a composed circuit is mainly
driven by the number of nonlinear gates in the unprotected circuit, while the total latency is
determined by the maximum number of nonlinear gates in any input-output path of the circuit.

GHPC and GHPCLL pose an exception as they enable the construction of low-randomness and
low-latency construction for the first security order. Here, the cost is driven by the number of
inputs into the circuit. Note that the area consumption of both increases exponentially with
the number of unshared inputs to the circuit. This is the price we have to pay for guaranteeing
a fixed latency independent of the complexity of the Boolean function.

Generally, there exists no one-fits-all solution, i.e., one gadget that is superior with respect
to all overhead metrics. It is always a trade-off between area, latency and randomness and the
gadgets have to be selected with care given a specific use case.

2.7 Formally Verifying SCA Resistance and Secure Composability
Attesting SCA resilience early on in the process of IC design is highly beneficial, as it allows to
check security before the actual production of the chip.

2.7.1 Pre-Silicion Verification Methodologies for Hardware
Pre-silicon verification of the SCA resilience of cryptographic hardware implementations has
significant advantages over experimental leakage assessments as described in Section 2.3.4. It
eliminates the costly iteration from masking, through production, to experimental verification,
and allows for rapid and cost-effective pre-production security verification. Several methods
and tools have been proposed for this purpose, which we summarize below. There exist many
more tools that are not checking for security in a formal adversary model like tools based
on RTL-based simulation [ZSHS12, HS17, HPN+19, PPFT22, LRB22] and low-level power
simulation [YTK+21, KYL+22, KLS22, MZG+22]. Moreover, there are tools settled in the
random probing model [BCP+20] or tools that check the composition-based security, i.e., the
correct interconnection of gadgets [BGR18, BDM+20, CGLS21]. Here, we focus on gate-level
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verification in the robust d-probing model and refer the interested reader to [FSG22] for an
excellent survey.

Rebecca [BGI+18]. Rebecca is a verification tool that is based on the netlist description of a
masked circuit. It checks for security in the d-probing model while it models glitches differently
than the robust probing model introduced in [FGP+18]. Its methodology is based on combining
Fourier transformation and elaborating correlation through a Satisfiability (SAT)-solver. This
technique can lead to false negative results, i.e., there are designs that are claimed to be insecure
by Rebecca, but which are actually in conformity with the d-probing model.

maskVerif [BBD+15]. maskVerif performs formal verification within the d-probing model.
For this, it utilizes a symbolic representation of leakage which is defined by a given syntax
and semantics. Internally, it then uses a semantic-preserving transformation of leakage sets
before it concludes secret dependencies. As well as Rebecca, the underlying approach can
lead to secure designs being falsely claimed as insecure. The approach was later picked up in
different works [BBD+16, Cor18, BBC+19, BGG+21, BK21] with the aim to increase verification
efficiency, extend the scope of functionality or omit false negative results.

SILVER [KSM20]. SILVER – which is part of this thesis – was introduced as the first tool to
support comprehensive evaluation in the (robust) d-probing model in the presence of glitches.
It not only supports the verification of a circuit’s conformance to d-probing security, but also
allows the verification of all common composability notions introduced in Section 2.6.4. For the
actual verification, it uses BDDs to compute and compare distributions.

IronMask [BMRT22]. IronMask can formally verify masked circuits in the (robust) d-probing
model and the random probing model. For each possible probe placement, IronMask identifies
a necessary and sufficient set of inputs for a perfect leakage simulation. In addition to verifying
the security of d-probing and random probing itself, it is capable of verifying compliance with
all common notions of composability. It is thus a complete tool for the formal verification of
hardware circuits.

PROLEAD [MM22]. PROLEAD is a simulation-based tool that verifies a circuit’s compliance
with the (1, 1, 0)-robust d-probing model, i.e., it considers glitches and transitions at register
stages, but does not perform an exhaustive verification for each and every input. Instead,
it simulates the circuit for different (shared) inputs and checks for dependencies between the
observations of probes placed on wires derived with respect to the (1, 1, 0)-robust d-probing
model, and the secret. The dependency itself is elaborated by a G-test [Hoe12].

2.7.2 Binary Decision Diagram

Binary Decision Diagrams (BDDs) are data structures utilized for presenting Boolean functions.
Common applications can be found in EDA where they are used for logic synthesis and digital
circuit analysis.
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Shannon’s Expansion. Shannon’s Expansion [Sha49b] – also called Shannon Decomposition –
offers a well-defined format to represent any Boolean function. A definition is given in Defini-
tion 2.7.1.

Definition 2.7.1 (Shannon’s Expansion [Sha49b]). Let f : Fn
2 7→ F2 be a Boolean function.

Then Shannon’s decomposition of f(X0, X1, . . . , Xn−1) with respect to Xi is given as

f(X0, X1, . . . , Xn−1) = Xi · fXi ∨Xi · fXi
, with

fXi ≡ f(X0, . . . , Xi−1, 1, Xi+1, . . . , Xn−1),
fXi
≡ f(X0, . . . , Xi−1, 0, Xi+1, . . . , Xn−1).

(2.2)

We refer to fXi and fXi
as Shannon co-factors of the expansion. Straightforwardly, we can

derive an alternative, but still valid, expansion by replacing the logic OR by an XOR because
both terms Xi · fXi and Xi · fXi

in Equation 2.2 cannot be true at the same time. It is possible
to further expand a Boolean formula by recursively applying the decomposition on the derived
Shannon co-factors.

As an example, we can consider f = X0X1 ∨X0X2 ∨X1. Shannon’s expansion with respect
to X0 would lead to:

f(X0, X1, X2) = X0 ·
(
X1 ∨X2

) ∨X0 ·
(
X1

)

Now, if we continue the expansion recursively, this would lead to

f(X0, X1, X2) = X0 ·
(
X1 ∨X2

) ∨X0 ·
(
X1

)

= X0X1 ·
(
X2 ∨ 1

) ∨X0X1 ·
(
X2

) ∨X0X1 ·
(
1
) ∨X0X1 ·

(
0
)

= X0X1X2 ∨X0X1X2 ∨X0X1.

Binary Decision Diagram. Binary Decision Diagrams (BDDs) [Jr.78, Bry86] are commonly
applied data structures in the context of computer science and discrete mathematics and are
based on the fact that each Boolean function f : Fn

2 7→ F2 can be represented as a rooted,
directed, acyclic binary graph consisting of decision nodes. Each node – except the leaves – is
labeled by an input variable and has exactly two children. One outgoing edge represents the
variable taking value 0 while the other edge represents value 1. Hence, each node can be seen
as the Shannon decomposition of the subgraph of which the node is the root. The leaves of the
BDD represent the values the function can take, i.e., it is labeled either 0 or 1. Eventually, each
path in the graph represents a function evaluation with respect to a particular input.

Furthermore, a BDD can be reduced or ordered, which is defined in Definition 2.7.2 and Defi-
nition 2.7.3, respectively. It can also be both reduced and ordered as defined in Definition 2.7.4.

Definition 2.7.2 (Ordered Binary Decision Diagram (OBDD) [Bry86]). An Ordered Binary
Decision Diagram (OBDD) is an BDD where on each path, the input variables are traversed in
the same order.

Definition 2.7.3 (Reduced Binary Decision Diagram (RBDD) [Bry86]). A Reduced Binary
Decision Diagram (RBDD) is derived from a BDD by:

(1) Merging isomorphic subgraphs

45



Chapter 2 Background

X0

X1 X2

X2X2 X1X1

1 1 1 0 1 0 1 0

(a) Example BDD

X0

X1 X1

X2X2 X2X2

1 1 1 0 1 1 0 0

(b) Example Ordered BDD

X0

X1 X1

X2

1 0

(c) Example Reduced and Ordered BDD

Figure 2.7: From BDD to Reduced and Ordered BDD of f(X0, X1, X2) = X0X1 ∨X0X2 ∨X1

(2) Erasing any node whose two children are isomorphic

Definition 2.7.4 (Reduced Ordered Binary Decision Diagram (ROBDD) [Bry86]). A Reduced
Ordered Binary Decision Diagram (ROBDD) is a BDD which is a RBDD and an OBDD.

Considering our example function f(X0, X1, X2) = X0X1 ∨ X0X2 ∨ X1, a corresponding
unordered and unreduced BDD can be seen in Figure 2.7a, while an OBDD is depicted in
Figure 2.7b. An ROBDD of f can be seen in Figure 2.7c.
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Let’s Take it Offline

Chapter 3

Persistent Threat of Side-Channel Analysis
Attacks

In this chapter, we present a peer-reviewed publication as part of this thesis which
underlines the persistent threat of SCA attacks. In particular, we present our pa-
per published in the IACR Transactions on Cryptographic Hardware and Embedded
Systems (TCHES).

Contents of this Chapter
3.1 Let’s Take it Offline: Boosting Brute-Force Attacks on iPhone’s User Au-

thentication through SCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Let’s Take it Offline: Boosting Brute-Force Attacks on iPhone’s
User Authentication through SCA

Publication Data

Oleksiy Lisovets, David Knichel, Thorben Moos, and Amir Moradi. Let’s Take it Offline:
Boosting Brute-Force Attacks on iPhone’s User Authentication through SCA. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021(3):496–519, 2021

This work is reproduced here with permission. This work is licensed under a Creative Com-
mons Attribution 4.0 International License. Copyright is held by the authors. The author
of this thesis is also an author of this research paper.

Content. In this work, we extract hardware-fused key material from an iPhone 4 by combining
publicly available software exploits and SCA attacks. For this, we first gain on-device code
execution by means of a BootROM exploit, which allows us to obtain oracle access to the
AES core of the iPhone. Afterwards, leveraging this oracle access, we run an SCA attack.
In particular, we perform successful CPAs on the GID and UID key of the device. For this,
we compare the efficiency of our attack when collecting EM traces to the performance when
measuring the power consumption of the device. We show that having the UID key in hand
allows to perform a passcode search offline. As a result, we are able to achieve a massive speed-
up compared to the on-device search by running the passcode search in parallel on multiple
GPUs.
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Contribution. The author was involved in conducting the key recovery attack. Furthermore,
the author significantly contributed to the writing and the presentation of the results. The au-
thor would like to thank all three co-authors for their substantial contributions and particularly
like to thank Oleksiy Lisovets, whose hard work during his master thesis – which was supervised
by the author of this thesis – led to this publication.
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Let’s Take it Offline:
Boosting Brute-Force Attacks on iPhone’s User

Authentication through SCA

Oleksiy Lisovets , David Knichel , Thorben Moos and Amir Moradi

Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany,
{firstname.lastname}@rub.de

Abstract. In recent years, smartphones have become an increasingly important
storage facility for personal sensitive data ranging from photos and credentials up
to financial and medical records like credit cards and person’s diseases. Trivially,
it is critical to secure this information and only provide access to the genuine and
authenticated user. Smartphone vendors have already taken exceptional care to
protect user data by the means of various software and hardware security features
like code signing, authenticated boot chain, dedicated co-processor and integrated
cryptographic engines with hardware fused keys. Despite these obstacles, adversaries
have successfully broken through various software protections in the past, leaving
only the hardware as the last standing barrier between the attacker and user data.
In this work, we build upon existing software vulnerabilities and break through
the final barrier by performing the first publicly reported physical Side-Channel
Analysis (SCA) attack on an iPhone in order to extract the hardware-fused device-
specific User Identifier (UID) key. This key – once at hand – allows the adversary to
perform an offline brute-force attack on the user passcode employing an optimized
and scalable implementation of the Key Derivation Function (KDF) on a Graphics
Processing Unit (GPU) cluster. Once the passcode is revealed, the adversary has full
access to all user data stored on the device and possibly in the cloud.
As the software exploit enables acquisition and processing of hundreds of millions of
traces, this work further shows that an attacker being able to query arbitrary many
chosen-data encryption/decryption requests is a realistic model, even for compact
systems with advanced software protections, and emphasizes the need for assessing
resilience against SCA for a very high number of traces.
Keywords: iPhone · SCA · Passcode Recovery

1 Introduction
Over the last decade, smartphones entirely reshaped the way we communicate while
drastically increasing the amount of user-related data collected and stored on device or
uploaded into the cloud. With the advancement of the Internet of Things and increased
interconnection of everyday-life devices, this trend is reinforced even further. Smartphones
became a replacement for various smart cards including credit cards; they process health-
related data, and serve as an access key in various applications. As a result, compromising
the security and data protection mechanisms of smartphones dramatically impacts user
privacy. Here, the user authentication plays a key role as its bypass would lead to full
control over the device. While biometric-based authentication methods like fingerprint
matching or face recognition were introduced over the years, using a (numeric) passcode is
still commonly the fall-back option if these methods fail. Next to Samsung and Huawei
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devices, Apple’s iPhone is the most sold smartphone in the world showing a market share
of 14% in the first quarter of 2020 [Goa20]. With the introduction of Touch ID in iPhone 5s
and later with Face ID for the iPhone X, Apple has started integrating biometric-based
user authentication methods in their devices while setting a passcode still remains as a
prerequisite to enable Touch ID or Face ID. Whereas a 4-digit numeric passcode was the
default option for older system versions, its length has been extended to contain 6 numeric
digits with the launch of iOS 9. Nevertheless, iOS always offers an option for manually
setting an arbitrary-length (≥ 4) numeric/alphanumeric passcode. We should highlight
that it is always possible – and in case of a cold boot even required – to unlock the iPhone
using the passcode instead of the configured biometric authentication methods. Therefore,
the passcode is still the default fall-back solution for user authentication, enabling an
adversary to alternatively target this method in order to maliciously gain access to the
device’s system and user data.

When the user enters the passcode, it is entangled with a device-specific key called
User Identifier (UID). The UID is an encryption key unique for each device and is fused
into hardware during manufacturing. The result of running the aforementioned function is
then used to decrypt/encrypt user data stored on the device. The entanglement between
passcode and the UID key restricts brute-force attempts to be performed on the (same)
device. In addition, a single execution of the aforesaid cryptographic function is designed to
take about 80 milliseconds, resulting in an expected time of over 22 hours for an on-device
brute force search of a 6-digit numeric passcode.

Current methods, like the one presented by Markert et al. in [MBG+20], try to optimize
the on-device search of a user’s passcode through an ordered list of common PINs, as PIN
verification is tied to a specific phone. By utilizing Side-Channel Analysis (SCA) attacks,
we show that the coupling of the brute-force search to a specific iPhone can be levered out
completely, enabling a significantly faster passcode recovery.

Since the first introduction of SCA attacks as a threat to cryptographic implementa-
tions [Koc96, KJJ99], researchers and practitioners have reported successful key-recovery
attempts mainly on their-own-designed devices. This picture has changed when they have
been shown highly effective by targeting real world devices, even in a blackbox scenario,
where no details about the implementation are known to the adversary. For example,
in [EKM+08, KKMP09] SCA attacks were used to completely break the remote keyless
entry system based on KeeLoq technology employed by several car manufacturers at that
time. In [ORP13], by means of SCA, the authors reported the recovery of the Yubikey 2’s
secret key – a One-Time Passwords (OTPs) token used for two factor authentication –
enabling the malicious generation of valid OTPs, even after returning the token to the
owner. In 2011, the result of a power analysis attack on the contactless smartcard DESFire
MF3ICD40 was reported [OP11], resulting in a complete recovery of its 112-bit key. As
this smartcard was employed in several large payment and public transport systems around
the world at that time (e.g., Czech railway, Australian myki card, Clippercard in San
Francisco) it evidently emphasizes the relevance of SCA attacks in real-world scenarios.
Further, in [SRH16], Saab et al. show two ways of recovering AES keys in the context of
Intel’s AES-NI cryptographic instruction set extension by placing a magnetic field probe
in close proximity of two capacitors on a motherboard hosting an Intel Core i7 Ivy Bridge
microprocessor.

An example for a successful SCA attack performed on a smartphone is presented
in [BFMT16], where Belgarric et al. successfully recovered the key used in the imple-
mentation of the ECDSA signature scheme in Android’s standard cryptographic library.
In their work, they leverage the electromagnetic emanation of the CPU to distinguish
between different elliptic curve operations in the context of Weierstrass and Koblitz Curves.
Another EM-based SCA attack on a smartphone is reported in [VMC19], where the authors
successfully extract the secret AES key of the CPU’s hardware coprocessor. The work
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especially focuses on issues arising when performing such an attack on a modern system and
involves desoldering the DRAM placed on top of the main SoC. However, the manufacturer
and model of the device under test are not disclosed.

Academic publications dealing particularly with physical attacks on iPhones are hard
to find. To the best of our knowledge only a 2016 work by Sergei Skorobogatov [Sko16]
describes a real-world implementation attack on an iPhone. In more detail, the author
describes how to perform a real-world mirroring attack on an iPhone 5c, enabling to bypass
the limit of passcode retry attempts by restoring a previous state of the NAND flash
memory. Beyond that, only informal reports of successful hardware exploitation of iPhone
devices exist. For instance, an article from The Intercept, published in 2015 in course of
the Snowden Leaks, mentions that already in 2011, EM-based SCA attacks were performed
by the CIA in order to extract the Group Identifier (GID) key from iPhone 4 devices in
order to decrypt and analyze the boot firmware for vulnerabilities [SB15]. More details
can be found in [int15].

In previous works by Sogeti [sog11b] and Elcomsoft [elc11], the software implementation
of iPhone data protection has been reverse engineered. Furthermore, they utilized a
BootROM vulnerability to perform on-device passcode cracking by booting a custom
Secure Shell (SSH) ramdisk with a patched kernel, allowing them to instruct the Advanced
Encryption Standard (AES) engine to use the UID key from userspace.

In this work, we utilize a BootROM vulnerability to deploy a custom payload in
bootloader context, which allows us to communicate with the AES engine and perform a
successful SCA attack on an iPhone 4 recovering the complete 256-bit UID key fused into
the hardware design of an individual device’s processor. Despite the fact that no detailed
information about the attack procedure is included in the leaked documents [SB15, int15],
it is likely that the attacks supposedly performed by the CIA to extract the GID key from
an Apple A4 processor, are very similar to our attack presented in this work. The hardware
AES engine can be configured to use either of the two keys, GID or UID, so that the attack
procedure for extracting them is identical. In our attack, having the UID key in hand, the
authentication process becomes decoupled from the device, enabling a significantly faster
and scalable brute-force search of the passcode utilizing highly parallelized computation on
Graphics Processing Units (GPUs). Since we show that existing software vulnerabilities
enable the collection and processing of a high number of measurement traces, our work
underlines the practical relevance of assessing the resilience of a device against SCA,
even for several hundreds of millions of traces, which is often questioned by the research
community.

For the collection of the SCA measurements, the device evidently needs to be physically
accessed by the adversary. Afterwards, however, the adversary does not have to be in the
possession of the iPhone anymore, as the storage can be dumped and the passcode search
is performed completely offline. In order to give an overview on the performance of our
attack, we refer to the required time for a trivial on-device brute-force search of an 8-digit
numeric passcode which is reduced from 92 days to less than 3 hours by performing the
search on 2 NVIDIA RTX 2080 TI GPUs [NVI18].

The rest of the paper is structured as follows. First, we give an overview of the attack
scenario and our approach in Section 2, before all necessary background is clarified in
Section 3. In Section 4, we describe how we recovered the UID key by performing SCA
attacks on an iPhone 4. Once recovered, we use this key to perform a parallel brute-force
search of the passcode, as detailed in Section 5. A discussion on the applicability of this
attack to newer iPhone series is given in Section 6. Finally, we conclude the paper in
Section 7.
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2 Attack at a Glance

The attack procedure described in the following is based on the assumption that code
execution by means of a software exploit, i.e., a BootROM exploit, is achieved. The
adversary then has oracle access to the AES engine realized as a dedicated hardware
co-processor on the CPU and can query arbitrary data to be encrypted in a chosen-
plaintext SCA attack. For our device under test, the necessary BootROM exploit is
publicly available.

2.1 Attack Scenario

First, the adversary maliciously gains physical access to the victim’s device. Without any
persistent modification of the system, she then boots a custom ramdisk providing SSH
access and downloads the System Keybag from device (further described in Section 3.2).
Furthermore, she performs an SCA attack in order to extract the device-specific UID key.
For user authentication, the UID key is entangled with the user’s passcode in order to
derive the so-called passcode key which is in turn used to unwrap further keys from the
System Keybag. This can then be used to unlock individual files stored encrypted on the
filesystem. Using existing vulnerabilities, we show that the attacker can easily extract
this file from the device – again without any permanent changes on the system – which,
together with the UID key, enables the recovery of the user’s passcode by means of an
offline brute-force search. After successful recovery of the passcode, the system can be
normally booted and the adversary can simply log into the device, allowing complete
access to all data, e.g. by running an iTunes backup. As the necessary modifications of
the mainboard only consist of removing the metal shielding of the CPU (which can be
simply unclipped and clipped back), they can easily be reversed and the phone can still be
operated normally after the attack, leaving the victim with no direct chance to recognize
any malicious activity. The power analysis attacks which we performed in addition to the
EM-based attacks, require the disassembly of inductors and capacitors from the board,
but even in that case it is possible to reverse the modifications, although greater care and
effort is required. Admittedly, the attack procedure requires not only physical access and
minor modifications of the hardware, but also a considerable amount of time to acquire
the necessary amount of measurements (in our case, it took three weeks in total to recover
the UID). Nonetheless, we can think of highly relevant attack scenarios where an attacker
is able to invest the time for this attack and where it is worthwhile to do so. Apart from
finding or stealing a device and extracting all the sensitive user data, an attacker could also
run a malicious phone shop where she extracts the UID keys in advance before handing
out the phone to the customer and might sell them to malicious third parties. In fact the
break-even point, where the time spent to perform the physical attack is less than the time
saved when doing offline instead of on-device brute-force search is reached for passcodes of
8 digits and more.

In this work we present the aforementioned attack on an iPhone 4; however the same
setup (with minor changes) can be used to collect SCA measurements and extract the
keys from an iPhone 4s and iPhone 5/5c. We further believe that similar research can
be done on devices up to the iPhone X/iPhone 8. In fact, due to a couple of publicly-
known vulnerabilities [@ax, Xu] of such newer devices (explained in detail in Section 6), it
might be possible to obtain oracle access to the relevant AES engine and collect the SCA
measurements necessary for an attack. However, since we have not practically attempted
such experiments yet, we cannot make any claims about the success/difficulty of the
attacks on newer devices, especially considering that newer iPhones reportedly contain
DPA countermeasures.
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2.2 High-Level Description
At first, we execute the SHA-1 Image Segment Overflow (SHAtter) exploit to disable
signature checks in the initial Secure Boot process, enabling the execution of custom codes.
Afterwards, we deploy a payload integrated into the second-stage bootloader, enabling us
to query an arbitrary amount of chosen data to the AES hardware engine for encryption
and decryption, and to re-configure one of the General Purpose Input/Output (GPIO)-pins
(e.g. volume-down button) as output for triggering the SCA measurements. By performing
a Correlation Power Analysis (CPA), we exploit correlation between the recorded SCA
traces and secret intermediate values of the AES encryption, allowing us to recover the
complete 256-bit UID key. We show that being in possession of this key allows an offline
recovery of the user passcode by running a parallelized brute-force search on several GPUs.
Having recovered the passcode in turn enables a decryption of all user files previously
stored on the device and potentially (if the user is signed in to iCloud on the device) data
stored on the user’s iCloud.

3 Background
3.1 Secure Boot
As described in [App12], the Apple iPhone 4 implements a secure boot mechanism to
establish a boot-chain-of-trust which starts at the BootROM and works its way up to the
operating system kernel and even further to application level. Here we focus only on the
first boot components relevant to our attack.

On power up, the BootROM, which is an immutable piece of software fused into the
System on Chip (SoC), is executed. This is the root of the trust chain. The BootROM
functionality is kept minimal as it is the most trusted code and a vulnerability in the
BootROM cannot be fixed with a software update. Its task is to load, validate and execute
the first stage bootloader either from Non-Volatile Random Access Memory (NVRAM) or
over Universal Serial Bus (USB). The latter is used in cases where the former fails or the
user enters the Device Firmware Upgrade (DFU) mode using a special button combination.

The first stage bootloader runs in the Static Random Access Memory (SRAM) with
its main responsibility being the initialization of low-level hardware components such as
Dynamic Random Access Memory (DRAM) and to load, validate and execute the next
stage of the bootloader. As it is executed in DRAM, the second stage is provided with
much more memory capacities. It is responsible for initializing higher-level hardware
components (such as the screen) and further for loading – amongst other parts – the boot
logo, the devicetree and a ramdisk (in case of a recovery/update boot). Finally, the second
stage bootloader loads, validates, initializes and executes the kernel.

Every component, which is loaded before the kernel is executed (including the kernel
itself), is shipped as an img3 image, which is cryptographically signed and encrypted
with Cipher Block Chaining (CBC)-AES-256. Each img3 image contains an Initialization
Vector (IV) and key, which are encrypted using a device model specific hardware fused
Key Encryption Key (KEK) also called Group Identifier (GID) key. After the signature
of the img3 image is verified, the GID key is used to decrypt the corresponding image
specific IV and key, which are then in turn used to decrypt the image itself.

The GID key (as well as the UID key) is never exposed to the Central Processing
Unit (CPU) directly. Instead, decryption oracle queries are made to a dedicated hardware
AES engine, which uses the GID/UID key internally. More precisely, there is a software-
based selection of the key slot the Advanced Encryption Standard (AES) engine uses for
encryption.

On newer iPhones (starting from the iPhone 4s), the second stage bootloader even
disables selection of the GID as key to the AES engine before executing the kernel (enforced
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through hardware registers), ruling out any usage by the operating system. Other key
slots, such as the one containing the UID key or user supplied keys, can still be selected
by the operating system.

3.2 iPhone Data Protection and User Authentication Mechanisms
A detailed overview of the iPhone’s Data Protection and User Authentication Mechanisms
can be found in [App12]. All necessary concepts for this work are described in the following.

Before written to the flash memory, every file is – per default – encrypted with a 256-bit
per-file-unique key utilizing the AES engine running in CBC mode. Note that, disabling
encryption of the filesystem by the user is not possible. A per-file key itself is wrapped
with a key corresponding to a certain protection class and stored in the file’s metadata.

The system contains different file classes with various access rights, shortly explained
below.

• Files of the Complete Protection class can only be accessed while the iPhone is
unlocked. Their in-memory keys are discarded after the device has been locked for
10 seconds.

• The Protected Unless Open class allows creating new files while the device is locked,
but once the file is closed, it cannot be reopened until the user unlocks his device.

• The Protected Until First User Authentication class prevents the files from being
accessed on a fresh boot until the user unlocks the iPhone for the first time by the
passcode.

• Finally, No Protection is the default class for all files not assigned to a specific other
class. Note that, even in this case, the corresponding files are stored in encrypted
form. This prevents attackers from accessing the files by desoldering and dumping
the flash memory.

The class keys in turn are wrapped by a key derived by combining the device-specific
UID key and the user passcode (if set, except for the No Protection class) and stored in a
file referred to as the System Keybag.

According to Apple’s whitepaper the System Keybag is unlocked, i.e., the class keys are
unwrapped, by means of Password-Based Key Derivation Function 2 (PBKDF2) processing
the user passcode by a Pseudo Random Function (PRF) being AES making use of the
UID key [App12]. The PBKDF2 internally iterates the PRF for a high number of times.
The iteration count is chosen to lengthen a single unlock attempt to approximately 80
milliseconds, resulting in the iteration count being set to 50, 000 in case of the iPhone 4.

By default, iOS limits users to perform only a total of 10 attempts (to unlock the iPhone
with passcode) with increasing time delays in between, after which – if enabled– the device
wipes the system, rendering all data inaccessible. Note that this is a software-induced
restriction which can be bypassed by utilizing known BootROM exploits.

On first setup, the user is prompted to choose a 4-digit numeric passcode (or 6-digit
starting from iOS 9) as the default user authentication method. Although iOS offers
options to use longer numeric or even alphanumeric passcodes, to the best of our knowledge
and based on our personal survey asking 3,864 iPhone users, the majority of users just
stays with the default option.

3.3 Side-Channel Analysis
Instead of targeting the cryptographic algorithms as in classic cryptanalysis, physical attacks
aim at recovering the secrets stored in or processed by the so-called cryptographic device
as a particular realization of cryptographic algorithm(s). Side-Channel Analysis (SCA)
attacks, as a passive and non-invasive class of physical attacks, have absorbed the lion’s
share of attention in the scientific community due to their high efficiency. Further, such



O. Lisovets, D. Knichel, T. Moos and A. Moradi 7

attacks leave no sign on their back indicating the device has been compromised. SCA
attacks exploit dependencies between physical properties of the implementation and the
processed secret data. Next to the execution time [Koc96], other exploitable side channels
have been introduced over time, including but not limited to power consumption [KJJ99]
and Electro-Magnetic (EM) radiations [GMO01]. In short, nowadays it is well known that a
cryptographic device would be vulnerable to various SCA attacks unless the implementation
is equipped with countermeasures dedicated to each attack vector.

Correlation Power Analysis. In this work, we mainly use CPA, where the measured
power/EM traces are correlated to the result of a hypothetical power/EM model over
the key-dependent intermediate values of the underlying cryptographic algorithm. This
process is conducted in a divide-and-conquer fashion allowing the attacker to recover
the secret key in small portions, e.g., byte by byte in case of the AES. As a side note,
since Pearson’s correlation coefficient estimates the linear dependency of two random
variables, the feasibility of a CPA attack depends on the linear dependency (similarity) of
the hypothetical power/EM model to the actual leakage of the attacked cryptographic
device. In such a case, the correlation associated to the correct key guess should show
a distinguishable distance to that of the other key candidates. Apart from collecting
low-noise SCA measurements, the difficultly of CPA attacks indeed lies on choosing an
appropriate intermediate value and finding a fitting hypothetical power/EM model [MS16].

Leakage Assessment. In this work, we apply the fixed-versus-random t-test [SM15],
making use of a statistical test based on the student’s t-distribution. In short, two groups
of SCA measurements are collected: 1) when the cryptographic device (with a secret key)
is supplied by a fixed input (plaintext in case of encryption) and 2) when random input is
given to the device (with the same secret key). The first-order fixed-versus-random t-test
examines whether these two groups of SCA measurements are distinguishable from each
other through their sample mean (average). If so, it is said that very likely there is an
attack which can exploit such a distinguishability to recover the secret. Since the result
of a t-test is a confidence level (probability) of the aforementioned distinguishability, the
higher the t-statistics is, the higher leakage (stronger distinguishability) is predicted.

4 SCA Attacks on iPhone
4.1 iPhone Preparation
For the collection of SCA measurements we applied a set of non-permanent soft- and
hardware modifications to the iPhone. These modifications are described in the following.

4.1.1 Hardware Preparation

First, we disassembled the iPhone, removed its mainboard from the case, and disconnected
all peripherals in order to gain access to the CPU. Afterwards, we removed the metal shield
protecting the CPU which enables placing an EM probe directly at the top of the chip. Next,
we built a Universal Asynchronous Receiver Transmitter (UART) connector [Ess] utilizing
a PodBreakout [pod] connector and an FT232RL USB-to-Serial Breakout Board [FT2].
This yields a connector with two USB cables, one for communicating with the iPhone and
one for UART to be connected to a Personal Computer (PC).

Additionally, we removed the volume buttons from the case and connected wires to
the volume-down button for easy access. This is done for the purpose of providing a fast
and low latency interface to the CPU as these buttons are directly connected to the SoCs
GPIO pins.
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Afterwards, we dismounted the battery connector, enabling to operate the mainboard
with an external DC Power Supply set to 4.0V (which is slightly above the normal supply
voltage of 3.7V) draining on average about 100mA during the measurements. Note that
this was an ad-hoc choice which is not expected to influence the results of the attack, as
the relevant ICs are powered via further voltage regulators.

Figure 1: iPhone 4 mainboard mounted on a stage

4.1.2 Payload Execution

As we need arbitrary code execution to perform our measurement, we make use of public
exploits. The crucial steps required to enable execution of a custom payload in the
second-stage bootloader are described in the following.

As an initial step, the iPhone is forced to boot in DFU mode. Therefore, it has to
be first connected to a PC using a USB cable. In order to enter DFU mode, the power
button and the home button are pressed simultaneously for 10 seconds. After the power
button is released, the home button should still be held pressed for another 15 seconds.
The screen stays black when DFU mode is entered successfully.

After the iPhone entered DFU mode, we used the SHAtter exploit to disable signature
checks in BootROM. To this end, we utilized ipwndfu [@ax], which is a python tool
providing BootROM exploits for several iOS devices. Subsequently, we used irecovery [lib],
an open source tool for communicating with iOS bootloaders over USB, to transfer a
patched first- and second-stage bootloader.

The applied patch disables signature checks in the first-stage bootloader allowing us
to execute a modified second-stage bootloader. In the second-stage bootloader – which
provides a proprietary recovery console – one of the commands (namely go) is redirected
in order to force the program flow to jump to the loadaddress which is the location in
memory where data uploaded over USB is stored. As a result, applying this patch allows
uploading and executing custom payloads on the device.

Finally, we again used irecovery to transfer a custom payload binary and to interact
with the second-stage bootloader recovery console. By executing the previously patched
go command, we ran the uploaded payload.

4.1.3 Measurement Payload

The custom payload executed in the second-stage bootloader enables querying encryp-
tion/decryption of chosen plaintexts/ciphertexts by the on-chip AES engine. Furthermore,
it enables us to choose which key slot (GID, UID, or custom) is used by the AES engine.
In the following, the structure and functionality of the inserted code is described.

First, the GPIO interface for the volume-down button is reconfigured to act as an
output port. This allows driving the corresponding exposed pins high/low by utilizing
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Memory Mapped Input/Output (MMIO), i.e., by simply writing a value to a specific
address in memory.

Next, the bootloader’s builtin AES routine, responsible for communicating with the
hardware AES engine, is patched to set the GPIO pin on high at the start of the en-
cryption/decryption, and on low right after its termination. This configuration enables
tabbing the exposed pin and detecting the time instances associated to the activity of the
AES engine. Therefore, we could easily use the tabbed signal to trigger the oscilloscope
collecting SCA measurements.

Finally, we replaced a recovery console command to enter a custom measurement
mode. The measurement mode is a custom function which first disables the bootloader’s
cooperative scheduler by patching the yield-function to return immediately. Subsequently,
it enters an infinite loop which waits to receive a command over UART and executes
its functionality accordingly. We developed the custom measurement mode to ease the
operations necessary for SCA measurements. Due to the slow communication via UART
we configured the measurement mode to limit the UART communications while allowing
to collect several SCA measurements. To this end, we followed the concept introduced
in [SM15], meaning that the PC sends a few custom commands to the iPhone via UART,
the measurement mode configures the AES engine accordingly, generates random input
(plaintext/ciphertext) and runs the AES encryption for a certain number of times, and
finally sends back a checksum to the PC. During this time the oscilloscope is repeatedly
triggered and collects SCA traces. Since the PC and iPhone are synchronized (via the
initial commands), the PC calculates the randomly-generated plaintexts/ciphertexts as
well and associates them to the traces collected by the oscilloscope. This process greatly
accelerates the SCA measurement process.

4.2 The Apple A4
Our target device – the iPhone 4 – uses the Apple A4 SoC, which is also used in the iPod
Touch fourth generation, the iPad first-generation and the Apple TV second-generation.
The Apple A4 provides a 32-bit ARMv7-A CPU manufactured on Samsung’s 45 nm
fabrication process [chi10], clocked at 800MHz (or 1GHz in case of iPad) with Package on
Package (PoP) used to provide 256MB Random Access Memory (RAM) (or 512MB for
the iPhone 4).

Due to the PoP, the RAM is located on top of the CPU as can be seen in Figure 2. It is
indeed impossible to put an EM probe very close to the CPU surface to monitor its direct
emanations. Instead, we are only able to put the probe either on top of the packaging or on
the Printed Circuit Board (PCB) next to the chip, measuring the emanations associated
to the power distribution network around the die.

Figure 2: Cross-section of the A4 processor + RAM Package on Package (PoP) (taken from
iFixit A4 teardown [ifi10])

4.3 Measurement Setup
We use a Langer EMV-Technik RF-B 0,3-3 EM probe, which has a flat head with a
diameter of 2mm allowing to capture frequencies in the range of 30MHz to 3GHz. The
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probe is connected to a Langer EMV-Technik PA 303 SMA amplifier (with similar
bandwidth), which amplifies the EM signal by 30 dB, before the signal is monitored by the
oscilloscope.

We employed a Teledyne LeCroy WaveRunner 8254M with 2.5GHz bandwidth
for monitoring the signals and recording the SCA traces. The traces have been sampled at
a sampling rate of 40GS/s, which is the machine’s maximum capacity.

4.4 Preprocessing of the Traces
Figure 3a shows a part of the superimposition of 500 collected EM traces, where we detect
a heavy misalignment, complicating any straightforward statistical analysis. Although we
configured the measurement mode to run on a single-threaded core in bootloader context,
it can clearly be seen that the trigger signal, which we provided to indicate the start and
end of encryption/decryption is not fully synchronized to the activity of the AES engine.
It actually implies that the code running on the CPU core does not work synchronously
either with the co-processors or with the IO peripherals, which controls the GPIO pin we
used for triggering the oscilloscope.

As a consequence, one part of our preprocessing tries to align the traces. Here, we
realized that the misalignment often appears in groups, i.e, multiple traces are shifted by
a similar offset. Thus, our main approach is to find those clusters and coarsely align them
to one group by shifting them so that the strongest peaks overlap. Afterwards, for a more
fine grained alignment, we chose an arbitrary reference trace and align the other traces by
an appropriate temporal offset so that they match as closely as possible to the reference
trace. We used the minimum euclidean distance as the metric to find the best matching
offset between two traces.

(a) before preprocessing (b) after preprocessing

Figure 3: Superimposition of 500 EM traces before and after preprocessing

As after alignment, a significant amount of traces still showed some noisy peaks going
out of bounds, we additionally filtered out traces whenever these peaks occurred during
the time interval on which we performed our analysis, thereby discarding around 20% of
the collected traces. The result after applying our alignment and filtering process on those
500 traces can be seen in Figure 3b.

As a side note, we noticed that the jitter and misalignment is greatly reduced when
decrypting multiple blocks consecutively. Hence, in our attacks and analyses we always
collected the traces associated to decrypting 8 blocks in CBC mode.

4.5 Leakage Assessment
First, we performed the fixed-versus-random t-test (see Section 3.3) on the aligned traces
when the EM probe was placed arbitrarily on the SoC. We collected 10,000,000 traces
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while the input (ciphertext for the decryption function) was randomly interleaved between
a fixed value and a random input.

(a) t-value

(b) t-value (zoomed)

Figure 4: Non-specific t-test

Figure 4a shows the corresponding t-value over the time covering the decryption
of 8 blocks of AES in CBC mode. Very large t-values can be seen in several portions
of the traces. Most notably, the period between 0.3µs and 0.6µs corresponds to the
communication between the CPU and the AES engine through the dedicated Input/Output
(I/O). The chunks around 1.2µs, 1.4µs and 1.6µs are predicted to be relevant to the similar
communication in the reverse direction, i.e., AES engine to the CPU. We assume that the
decryptions take place in between 0.8µs and 1.2µs, which still show a considerably-high
t-value (see Figure 4b). Hence, we concentrated on this period to conduct the attacks.

4.6 Power Model
The iPhone AES engine allows to specify a user key for its operation, thus we search for
an appropriate power model in a known-key scenario, i.e., we collected traces for which we
know the underlying key. This way we are able to easily examine different hypothetical
power models since all cipher’s intermediate values are known to us.

Based on the information from Apple’s whitepaper describing how the AES engine
is used, we made certain assumptions about how the AES hardware might have been
designed. We know that the AES engine needs to be fast since during the operation of the
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iPhone, key derivation as well as encryption/decryption of files are performed quite often.
A slow AES engine would lead to serious efficiency penalties. It should also support both
encryption and decryption of different variants of AES with 128-, 192- and 256-bit key.
Furthermore, due to the way data protection is designed for iPhones, we know that the
AES key is changed frequently (each file has a separate key).

Therefore, we assume a round-based implementation, as it is a good trade-off between
flexibility, performance and physical area on the SoC. More precisely, our assumption is
that the AES engine performs a cipher round in a clock cycle.

Based on these assumptions, we considered different design architectures for the
AES decryption, and examined various hypothetical models over different intermediates
values. Examples include Hamming Weight (HW) of the cipher state after each round
operation (e.g., SubBytes (SB), ShiftRows (SR), AddRoundKey, and MixColumns (MC))
and Hamming Distance (HD) between consecutive cipher states for each aforementioned
round operation.

C

Klast
SR−1 SB−1

Ki

MC−1

P

Figure 5: Guessed design architecture for the round-based AES decryption module

Figure 5 depicts the guessed round-based design architecture, for which we could
observe high correlation by the aforementioned power models. We determined the best
fitting power model as the HD of the consecutive 128-bit values stored in the state register
(see Figure 5), if we follow the operations inversely, i.e., from the last round of decryption.
The last value stored in the state register is the plaintext P , and the second-last one is
SR ◦ SB(P ⊕K1) since the MixColumns’ inverse (MC−1) is omitted in the last round in
this design architecture. Therefore, the HD of the state register in the last decryption
round can be written as

HW
(
SR ◦ SB(P ⊕K1) ⊕ P

)
, (1)

where the first round key is denoted by K1. The same model for the second-last round
yields

HW
(

SR ◦ SB
(
K2 ⊕ MC ◦ SR ◦ SB(P ⊕K1)

)
⊕ (2)

SR ◦ SB(P ⊕K1)
)
,

where K2 denotes the second round key. The same model can similarly be derived for
the other cipher rounds. Note that since we focus on the last rounds of decryption, we
write the equations over the plaintext and using the encryption operations instead of their
inverse.

The result of correlating 80,000,000 measured and aligned EM traces with the aforesaid
power model (when the AES engine’s inputs are selected randomly) are shown in Figure 6.
The cipher rounds can be easily detected as depicted in Figure 6b. We further repeated
this procedure for all encryption blocks within the trace. As shown in Figure 6c, we can
clearly distinguish the distinct time periods in which an AES operation is performed.

4.6.1 Full-Chip Scan

After we found a promising hypothetical power model, we tried to optimize the probe’s
position on the SoC. We divided the SoC surface (which is around 7.3mm square) into a
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(a) 7th cipher round (b) Every round is plotted by a different color

(c) All rounds of a decryption block are plotted by
the same color

Figure 6: Multiple correlation traces associated to the selected HD power model, using 80,000,000
traces

grid of 25×25 spots, at each of which we collected 150,000 EM traces. After aligning the
traces at each spot individually, we estimated the correlation of the intermediate values
using the above-explained HD power model for all cipher rounds and for all decryption
blocks. Maximum resulting correlations for each spot are shown by a 3D heatmap on the
left-hand side of Figure 7. In case a strong signal stands out at a certain spot, neighboring
positions are expected to have a similar correlation value as well. As shown by the 3D
heatmap, maximum correlations belong to the cases where the probe is placed at the
border of the SoC. This is indeed in line with our expectation with respect to its PoP
technology, as explained in Section 4.2. Based on this experiment, we identified the
position (x, y)=(4.1mm, 1.1mm) as the most suitable spot. We have examined other
spots with high correlation as well, but the traces at those positions contained more noise
compared to those measured at the selected spot. For the key-recovery attacks, explained
in the following, we placed the EM probe at this position, shown on the right-hand side of
Figure 7, and collected 500,000,000 traces when the AES engine was supplied by random
inputs.

4.6.2 Key-Recovery Attacks

All above given results were based on the HD model over consecutive 128-bit cipher-
intermediate values. In order to perform an attack, we need to consider a smaller portion
to decrease the attack complexity, i.e., being able to search for a small part of the key e.g.,
a byte. This is trivially achieved by taking the HD of a byte of the same intermediate
value. More precisely, we refer to Equation (1), where by guessing an 8-bit portion of
K1, the HD of the corresponding 8-bit consecutive intermediate value can be estimated.
Following this process, we can recover the first 128-bit round key in a byte-by-byte fashion.

Since the underlying AES engine realizes the AES-256 function and the targeted UID
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Figure 7: 3D heatmap of the SoC plotting highest correlation in time using the selected HD
power model and 150,000 traces at each spot (left) and probe position (right)

is a 256-bit key, we need to extend the attack to one more round, i.e., the round before
the last decryption round. As given in Equation (2), knowing the first round key K1, HD
of the consecutive 8-bit values can be estimated by only guessing an 8-bit portion of the
second round key K2. Therefore, the same attack, i.e., with complexity of 28 for each byte
of K2 can be conducted at the second to last round.

Figure 8 shows the result of a couple of attacks targeting different key bytes at either the
last or the second last decryption rounds. Notably, we required a large number of aligned
traces to reveal the correct key guesses. For some key bytes, we needed around 30,000,000
traces, and in some other cases this number reached 270,000,000. As the AES engine is
run in CBC mode, each recorded EM trace contains a series of single AES decryptions;
in case a block did not yield a distinguishable correlation, a different one was considered.
This helped us to limit the number of required traces since not all decryption blocks in a
noisy trace are affected.

In short, we have conducted three sets of attacks: one when the key was known
to us (user supplied key), one to recover the UID key and the last one to reveal the
GID key. For each of these cases, which led to successful key recovery, we required
not more than 300,000,000 traces. This is much more than what has been reported in
literature with respect to the SCA attacks on unprotected cryptographic implementations,
e.g., [MS16, EKM+08]. We predict that either the implementation contains a form of
Differential Power Analysis (DPA) countermeasure or this high number of required traces
is due to the high noise level and low signal amplitude. As stated, the EM probe could
not be placed close to the CPU die and we encountered different noise sources in our
measurements. Nevertheless, our results (despite a high number of required measurements)
in fact confirm that such SCA attacks can still be considered as serious threats even to
extremely compact embedded systems fabricated with nano-scale process technologies and
running at a high clock frequency1.

In summary, data acquisition of plaintexts, ciphertexts and traces for 500,000,000
EM measurements took about two weeks in total, while conducting all attacks to fully
recover a 256-bit AES key using a machine with 40 CPU cores, 64GB of memory and 2
NVIDIA RTX 2080 TI took around one additional week. Note that we expect the required
time to be shorter when performing the attack multiple times on further devices of the
same type due to the experience obtained during each device’s analysis and the natural
optimization of the measurement procedure. We are also confident that improvements of
the measurement setup are possible which may reduce the data and time complexity of
this attack.

1Assuming a round-based implementation, based on our SCA measurements and correlation peaks
identifying consecutive cipher rounds in Figure 6, we conclude that the AES engine is supplied by a clock
at a frequency of around 200MHz.
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(a) (b)

(c) (d)

Figure 8: Exemplary CPA attack results

4.6.3 Power vs. EM

Given the large number of measurements required to recover the key of the AES engine
via EM measurements, it is fair to wonder whether the distance between the probe and
the active area of the die was simply too large to capture the radiated information in
maximum quality. Since the PoP packaging prevents us from placing the EM probe any
closer to the actual AES core, we decided to also investigate the power consumption of
the A4 processor. Conceptually, power measurements do not require such a close physical
proximity to the computing cells. Therefore, we placed a 1Ω shunt resistor in the VDD path
of the core power supply of the A4 processor. Of course, the core power supply of the
CPU is not directly accessible, e.g., via the battery connector. Instead, it is generated on
the PCB via a Buck converter circuit from the main power supply. Measuring the power
consumption in front of this converter (i.e., measuring in the main power supply at the
converter’s input) would yield no successful analysis as any small instantaneous voltage
drop on its output side (i.e., in the core power of the chip) gets quickly compensated by
the internally stored charges and only the charging cycle of the converter could be seen on
its input. Therefore, after we had identified the position of the Buck converter circuit on
the PCB, we removed its inductors, effectively cutting the core power supply open, see
Figure 9a. Afterwards, we removed one of the larger capacitors on the PCB which we
previously identified as a smoothing capacitor for the core voltage. Then, we soldered two
cables to the SMD pads of the (now missing) smoothing capacitor and powered the core
of the A4 processor through these pads via an external DC Power Supply at 1.35V, see
Figure 9b. Please note that the pictures in Figure 9 show two different devices and not
the same board before and after modification. Although we destroyed the inductors of
the Buck converter during the removal process, it is generally possible to perform both
adaptations of the PCB carefully enough to keep all pieces intact in order to revert the
changes later on. We also need to mention here that the iPhone struggled to boot after
altering the PCB in the described manner. However, after patching the bootloader to
operate in a reduced power mode we did not experience any bootloader crashes and could
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(a) removed inductors (left) and original PCB (right)

(b) artificial core power supply (left) and original PCB (right)

Figure 9: PCB adaptations required for measuring the CPU’s core power.

perform the desired measurements. The reduced power mode also leads to decreased
operating frequencies and therefore may be beneficial for physical adversaries anyway.

As mentioned before, a 1Ω shunt resistor needs to be placed in the VDD path of the
power supply. This was realized with an auxiliary board connected between the external
power supply and the iPhone, see Figure 10. We employed a DC Blocker (BLK-89-S+
from Mini-Circuits2) to remove the DC shift and an AC amplifier (ZFL-1000LN+ from
Mini-Circuits) to increase the amplitude of the measured signal. Then, we measured
the voltage drop across the CPU’s core via a coaxial cable connected to the amplifier’s
output. We have recorded the measurements using our digital oscilloscope configured
to a bandwidth limit of 1GHz and a sampling rate of 2.5 GS/s. Similar to the EM
measurements, we could not identify any AES-like sequence of power peaks in the traces.
Even more problematic was the absence of any communication or IO peaks in the traces
which could have been used to achieve the same re-alignment that was previously detailed
for the EM analysis. Hence, we had to perform the attacks on the raw traces without
any pre-processing. Nevertheless, Figure 11 shows two successful recoveries of different
key bytes via CPA using the same power model as for the EM analysis. Here, about

2https://www.minicircuits.com



O. Lisovets, D. Knichel, T. Moos and A. Moradi 17

Figure 10: Auxiliary board with AC amplifier (red), DC blocker (blue) and 1Ω shunt resistor
(yellow).
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Figure 11: Exemplary CPA attack results exploiting the power consumption.

20 and 75 million traces were required to isolate the correct key candidates from the
incorrect ones. However, attacks on other key bytes required up to 200 million traces for
an unambiguous recovery. In that regard, we can conclude that the attacks exploiting the
power consumption are hardly any more effective than the EM attacks, especially when
considering the additional effort to modify the PCB. Yet, both side channels can be used
in practice to successfully recover the keys processed by the hardware AES engine.

4.7 Reversing the Modifications
As described in Section 4.1.1, for collecting the EM traces, the case of the iPhone has to
be opened in order to expose the battery, the mainboard, and the CPU. The battery is
dismounted and the volume buttons are removed from the case. Note that the necessary
modifications can be made on a separate set of hardware allowing the target device to
remain mostly unmodified. For example, wires can be soldered to a spare volume-button-
cable, which is then (in place of the original part) temporarily attached to the mainboard
using the available connector. Furthermore, the on-board battery connector does not need
to be modified, when instead a modified battery cable is used. In addition, the metal
shielding has to be removed. As long as its mount on the board is left in place, this
can also simply be clipped back on afterwards. For the power measurement described
in Section 4.6.3, some inductors and a large capacitor had to be removed from the PCB.
These elements can be soldered back onto the board after performing the attack. As a
result, the modifications necessary to perform the attacks are entirely reversible, enabling
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an attacker to completely hide the malicious key recovery from the victim.

4.8 Possible Countermeasures
In order to protect future devices from attacks similar to the one presented in this work,
several suitable options are available ranging from software protections over architecture-
level defenses to classical DPA countermeasures. For the newer iPhone series (from 5s
onward), Apple itself has already applied an additional architecture-level barrier to protect
the most sensitive hardware-fused keys from extraction, namely by introducing the Secure
Enclave, a dedicated processor unit, and prohibiting usage of the SEPUID (used for the
entanglement with the passcode) from the application processor [App21]. This way, a
software exploit on the application processor is not sufficient to get oracle access to the
relevant crypto engine and is hence not sufficient to perform a chosen-plaintext SCA attack.

Naturally, possible protection mechanisms of the crypto engine itself include classical
DPA countermeasures like masking and hiding which aim to either split the sensitive
information into a number of shares using randomly chosen masks which shifts leakages to
higher orders, or reduce the signal-to-noise ratio and make the measured traces hence less
informative [MOP07]. According to [App21] and beginning with Apple’s A9 processor, the
company has also started to integrate DPA countermeasures into their designs, although no
further details on the kind of countermeasures that were implemented are given. Further
possible countermeasures could include the introduction of tamper protection, making it
harder to physically modify the device without the victim’s notice [App21].

5 Offline PIN Recovery
Up to this point, we recovered the UID key by performing an SCA attack. We now show
that being in possession of this key, the brute-force attempts completely decouples from
the device, enabling a highly parallelized search for the user’s passcode by a GPU cluster.

5.1 Dumping the System Keybag
As discussed in Section 3.2, the System Keybag contains wrapped class keys protected by
the UID key tangled with the user passcode via a key derivation function. For each passcode
guess, the key derivation function should be executed to calculate the guessed derived
key. Afterwards, the correctness of the guessed derived key is examined by attempting to
unlock every class key from the keybag. If every class key could be successfully unlocked,
the correct passcode is found.

In order to extract the System Keybag from the device, we used msftguy’s ssh-rd
tool from [msf]. It is a tool written in Java, which automatically downloads the iPhone
firmware from Apple’s servers; extracts, decrypts and patches bootloaders as well as the
kernel, and creates a ramdisk providing an SSH server, which is then booted on the device.
As this is similar to one-time booting a live Linux distribution from USB on a computer,
no modifications are made to the filesystem. Note that it does not harm if the booted
ramdisk uses a possibly older version of iOS than the installed one.

Next, we established an SSH connection to the device in order to download the
System Keybag which is stored at /private/var/keybags/systembag.kb on normal boot or
/mnt/keybags/systembag.kb on a ramdisk boot (if we mount the user data partition to
/mnt).

5.2 Highly Parallelized Passcode Recovery utilizing GPUs
For the purpose of recovering the user’s passcode, we implemented a parallelizable program
in OpenCL whose speed scales with the number of GPUs of a single host, as well as with
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the number of hosts. Utilizing OpenCL offers independence from the underlying hardware,
i.e., our implementation can be executed on several architectures including NVIDIA, AMD,
Intel, ARM Mail or any other hardware supporting OpenCL. Our implementation is split
into
(1) parsing the System Keybag,
(2) generating the passcode batch,
(3) pre-processing the passcode batch,
(4) deriving the key based on the passcode batch, and
(5) verifying the derived key batch.

Step (1) and (5) are performed on CPU, since parsing the keybag needs to be performed
only once and unwrapping class keys – following RFC 3394 – is not computationally
intensive and can be stopped once a single key failed to unwrap. Note that, in order to
verify the correctness of the derived key batch, we considered unlocking all 10 class keys
from the System Keybag.

The other steps are performed on GPU with the batch size being calculated as
GPU_workgroup_size × 64 × GPU_factor with the GPU_workgroup_size being 1024 for
our NVIDIA RTX 2080 TI GPUs and the GPU_factor being manually set to 64 in order to
balance performance and processing time per batch loaded onto the GPU. For our setup,
this results in a batch containing 222 = 4, 194, 304 passcode guesses which takes about 14
minutes to be processed. It is possible to further decrease the GPU_factor to process a
smaller number of passcode guesses, i.e., when only searching for a 4-digit passcode in
a single batch. However, these values are determined as optimal when searching for a
number of passcode guesses higher than those fitting into a single batch.

Step (2) generates a batch of passwords to be stored in memory. In our program,
we limited the generation of passcodes to numeric ones, while its extension to cover
alphanumeric passcodes is straightforward. However, we would like to note that finding
alphanumeric passcodes becomes more efficient when combined with dictionary attacks or
other password-search techniques as described in [AHW18], which are out of the scope of
this work.

Next, step (3) performs PBKDF2 to compress the arbitrarily length string (i.e., pass-
code) to a sequence of 32 bytes. Unlike described in [App12], the key derivation function is
not implemented as PBKDF2 with AES as the PRF. It rather consists of a single iteration
of the regular PBKDF2 algorithm with SHA1-HMAC as PRF followed by Apple’s custom
Key Derivation Function (KDF).

Step (4) performs Apple’s custom KDF which consists of the PBKDF2-derived 32-
byte user key, the UID key, an iteration count, and an internal 32-byte state (as reverse
engineered by Sogeti in ramdisk_tools/AppleKeyStore_kdf.c in [sog11a]). First, the internal
state is initialized with the user key. Afterwards, the following is executed in a loop: The
IV (which is initially set to zero) is salted with the current iteration count and XORed to
the user key, which is then encrypted utilizing AES-128 in CBC mode keyed by the UID
key. The output is then XORed to the state and the last block (of two blocks in total) is
used as the new IV. This is repeated as many times as specified by the iteration count,
before the state is returned as output (50,000 times in case of our target iPhone 4).

Since this is the computationally most intense operation, we implemented a bitsliced
version of AES which processes 64 blocks in parallel. This is even further parallelized
on multiple GPU threads, thus computing 64 work groups of size 1024, each of which
computes 64 blocks at a time, resulting in a total of 4,194,304 blocks being processed in
parallel.

Finally, step (5) is performed on multiple CPU threads and uses the previously computed
keys to unlock all class keys from the System Keybag. Only if all class keys are successfully
unlocked, the corresponding passcode is considered to be the correct one. As most of the
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time the unlocking of the first class key from the System Keybag fails, this step usually
terminates rapidly.

5.3 Results
Table 1 shows a comparison between the required time to find numeric passcodes in the
worst-case scenario for different passcode lengths when performing the brute-force search
on device and on a GPU cluster. Given the ability to execute arbitrary code, short numeric
passcodes can be reasonably searched on-device. Assuming the verification of a single
passcode guess takes 80ms as described in [App12], finding 6-digit passcodes requires
22 hours (in worst-case) if verification is performed on device. Our practical experiments
with Sogeti’s iphone-dataprotection toolkit from [sog11a] on an iPhone 4 show that verifying
2,000 passcodes takes 6 minutes (180ms per attempt). This means that the actual numbers
given in Table 1 for the on-device search are higher by a factor of 2.25. According to Sogeti,
the time to crack a passcode may vary depending on the device [sog11b]. It should be
noted that Elcomsoft reported 73.5ms per attempt on an iPhone 5 which is slightly faster
than the stated 80ms. Our work decouples passcode search from hardware limitations of
the target device and enables performing the corresponding search programs on arbitrary
platforms. Using a single NVIDIA RTX 2080 TI, we already achieved a speedup by a
factor of 380, making it possible to search for a 10-digit passcode in a reasonable time by
simply utilizing a 2-year-old gaming setup. Employing a GPU cluster with 8 instances
of NVIDIA RTX 2080 TI, accelerates the search even further. With this advanced setup,
searching for an 11-digit passcode would take around 30 days in the worst-case scenario
while renting these resources would cost around 2000 EUR. As this scales linearly, the
worst-case time to find longer passcodes using more GPU instances can be easily estimated.
Overall, taking into account the time required to perform the SCA attack in order to
extract the UID key (see Section 4.6.2), our attack outperforms the trivial on-device search
approach if the target numeric passcode is at least 8 digit long.

Table 1: Worst-case passcode search time

digits iPhone RTX 2080 TI 8×RTX 2080 TI
4 13 minutes 2 seconds < 1 second
6 22 hours 3 minutes 26 seconds
7 9 days 35 minutes 4 minutes
8 92 days 5 hours 43 minutes
9 925 days 58 hours 7 hours
10 25 years 24 days 3 days
11 253 years 243 days 30 days
12 2536 years 2439 days 304 days

6 Applicability to Newer iPhone Series
Generally, this attack is applicable to newer iPhone series as well. Without major
changes the same procedure can be performed on iPhone 4s and iPhone 5/5c, when
using checkm8 [@ax] instead of SHAtter.

Starting with the iPhone 5s, the iPhone features a Secure Enclave coprocessor (SEP),
which is responsible for data protection. Instead of using the Application Processor (AP)
UID key, the SEP has a separate UID key (SEPUID), which is entangled with the user
passcode for file encryption. Thus, to perform the same analysis, it is required not only to
get code execution on the AP, but also on the SEP.
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For the iPhone 5s, iPhone 6, iPhone 6s, iPhone 7, iPhone 8 and iPhone X (and all other
devices with the same CPU), vulnerabilities in both, the AP BootROM and SEP BootROM
are publicly known (namely checkm8 and blackbird [Xu]) providing a way to execute
arbitrary code with the highest possible privileges on the AP and the SEP. Therefore, it is
generally possible to create payloads with similar capabilities as described in Section 4.1.3
to be executed on the SEP rather than the AP. The corresponding exploits for such
vulnerabilities are not publicly available for all listed iPhone generations yet. However, at
least for the iPhone 7 there exists a publicly available tool called checkra1n [aea], which
exploits the known vulnerabilities to gain code execution on the SEP. We would like to
mention that we have already initiated follow-up research to examine if a similar SCA
attack is possible on iPhone 7 and later. In our initial attempts, we were able to gain code
execution on the SEP using checkra1n and to query the SEP’s AES engine to encrypt
chosen data. Although this allows collecting SCA measurements from newer hardware, it
is hard to predict whether extracting the UID/SEPUID key using the SCA measurements
would be similar to (or harder/easier than) that on the iPhone 4, especially since Apple
claims to have introduced DPA countermeasures to protect the hardware AES engines
starting from the A9 processor generation, i.e., from the iPhone 6s series onward [App21].

7 Conclusions
Utilizing public software exploits for known vulnerabilities in order to enable oracle access
to the AES engine, we extracted both hardware fused 256-bit AES keys, namely the UID
and the GID of an iPhone 4 through Side-Channel Analysis (SCA) attacks processing the
Electro-Magnetic emanation and power consumption of the AES engine embedded on the
underlying A4 processor. Independent of the implications of our attacks, to the best of our
knowledge, no successful SCA attack on an iPhone has been reported in academic literature
so far. We, for the first time, presented the success of a corresponding key recovery process
despite a compact System on Chip with PoP packaging. Although we need a large amount
of traces to recover the complete AES keys, we showed that, if the software barriers are
overcome, i.e., there are exploits available to execute custom code on the device, the model
of a physical attacker being able to query arbitrary many chosen-plaintext encryptions (or
chosen-ciphertext decryptions) is absolutely realistic, emphasizing the need for sufficient
protection against SCA – even for hundreds of millions of traces.

Having the UID key in hand, it becomes possible to conduct offline brute-force attacks
recovering the user’s passcode. Using a highly parallelized GPU implementation, we
established a scalable method to highly increase the performance of the passcode search
procedure. As the performance linearly scales with the number of utilized GPUs, the
search time can be shortened depending on the value of the data versus the budget. We
showed that a 10-digit numeric passcode can be revealed in a reasonable time employing a
common gaming setup, while a large-scale adversary might even be able to cover 12-digit
numeric passcodes.

A possible remedy would be to choose stronger passcodes (either numeric or alphanu-
meric); however that may result in user inconvenience, as the passcode needs to be entered
once in a while despite biometric authentication. We stress that this vulnerability cannot
be mitigated on affected devices via a software update, since the leakage originates from
the integrated AES engine. In short, our attack emphasizes the need for implementing
sophisticated countermeasures against physical attacks, particularly against SCA attacks,
for mobile devices, even when the device is a highly compact embedded system and the
adversary’s knowledge is restricted to a blackbox model.

New software exploits may allow the adversary to interact with the AES engine on
the newer iPhone generations. This enables SCA measurements to be collected from such
devices and key-recovery attacks to be examined. Trivially, investigating the applicability
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of such attacks is among our future works.
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Chapter 4

Formal Verification of Masked Hardware
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Abstract. Implementing cryptographic functions securely in the pres-
ence of physical adversaries is still a challenge although a lion’s share of
research in the physical security domain has been put in development
of countermeasures. Among several protection schemes, masking has ab-
sorbed the most attention of research in both academic and industrial
communities, due to its theoretical foundation allowing to provide proofs
or model the achieved security level. In return, masking schemes are dif-
ficult to implement as the implementation process often is manual, com-
plex, and error-prone. This motivated the need for formal verification
tools that allow the designers and engineers to analyze and verify the
designs before manufacturing.
In this work, we present a new framework to analyze and verify masked
implementations against various security notions using different secu-
rity models as reference. In particular, our framework – which directly
processes the resulting gate-level netlist of a hardware synthesis – partic-
ularly relies on Reduced Ordered Binary Decision Diagrams (ROBDDs)
and the concept of statistical independence of probability distributions.
Compared to existing tools, our framework captivates due to its simplic-
ity, accuracy, and functionality while still having a reasonable efficiency
for many applications and common use-cases.

Keywords: Verification · Side-Channel Analysis · Probing Security ·
Reduced Ordered Binary Decision Diagram · Statistical Independence ·
Probability Distribution.

1 Introduction

Even after two decades of research since the seminal description of Side-Channel
Analysis (SCA) as a threat to cryptographic implementations [32,33], secure im-
plementation of cryptographically strong algorithms is still a challenging and

⋆ These authors contributed equally to the work.
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open problem. In particular, those decades of research have shown that SCA on
cryptographic implementations can be performed by observing various physical
sources and effects, such as timing [32], power consumption [33], electromag-
netic (EM) emanations [27], or temperature and heat dissipation [30]. Eventu-
ally, observing the physical characteristics of an electronic device during security-
critical cryptographic operations can reveal secret and sensitive information to
any observer and adversary. As a consequence, a wide range of protection mech-
anisms and countermeasures have been proposed to prevent or mitigate any
side-channel leakage.

Among all candidates, masking (based on the concepts of secret sharing) is
one of the most promising countermeasures against SCA due to its formal and
sound security foundation [18] . As a consequence, many different schemes and
variants have been introduced and proposed over the years [31,43,39,42,29,28] to
address different implementation and security requirements. Unfortunately, not
a few of those schemes have been shown to be insecure due to design flaws or
inaccurate models or assumptions [36]. As a result, all these examples confirm
that design and implementation of protection mechanisms and countermeasures
against SCA is a mostly manual, complex, and error-prone process which requires
good understanding of the execution environment and careful consideration of
physical and security models.

To this end, an entirely new branch of research started to focus on the devel-
opment of formal models for adversaries and physical execution environments to
simplify and assist in formal verification [31,23,5,26]. Ideally, strong theoretical
foundations in security models can assist and help to simplify the design, imple-
mentation, and verification of cryptographic implementations and appropriate
security mechanisms. In the context of masking, formal verification often is con-
ducted in the simple and abstract Ishai-Sahai-Wagner (ISW) d-probing security
model [31] (under some basic assumptions on noise and independence of inputs),
which allows an adversary to probe (observe) up to d intermediate values during
the processing of sensitive information.

Due to its conceptual simplicity and level of abstraction, the d-probing model
was rapidly and widely adopted for formal verification [38,6,24,3,4,11,20,44,2].
Indeed, the introduction of this simple but effective security model propelled the
automation of formal verification, allowing to reduce the combinatorial complex-
ity of security proofs for masking schemes and their implementations. In fact,
development of automated formal verification tools also – in return – stimulated
the research and progress on masking schemes, e.g., reducing the cost in terms of
randomness [9] or solving the problem of secure composition of masked circuits
and gadgets [3,4,17].

However, in its basic manifestation, the d-probing model does not consider
specific physical defaults, such as glitches, transitions, or couplings [26], that
may occur during the processing of sensitive information on a physical device. In
fact, many schemes proven to be secure in the d-probing model, eventually fail in
security analyzes when concretely implemented. That is mainly due to undesired
and unintentional physical defaults that particularly violate the assumption on
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the independence of inputs. In particular for hardware implementations, glitches
are well-known to be an issue and concern for masking schemes [39], wherefore
Bloem et al. [11] and Faust et al. [26] independently proposed an extension of the
basic ISW d-probing model considering glitches for hardware implementations
of masking schemes.

In addition, Bloem et al. used the concept of Fourier coefficient estima-
tion to implement an automated tool formally verifying the security of mask-
ing schemes and their implementations against the basic and glitch-extended
d-probing model. However, due to computational limitations based on the esti-
mation of Fourier coefficients, this tool primarily applies to the security anal-
ysis of the first-order setting without consideration of advanced notions such
as Non-Interference (NI), Strong Non-Interference (SNI), and Probe-Isolating
Non-Interference (PINI). In contrast to this, Barthe et al. [2] recently presented
a language-based formal verification tool called maskVerif which uses the prob-
abilistic information flow to assess the security of masking schemes and their
implementations. In particular, using conservative heuristics and an optimistic
sampling method, maskVerif executes more efficiently than the tool by Bloem
et al., while minimizing but still accepting false negatives for non-linear cases.

Contributions. In this work, we present and introduce an efficient methodol-
ogy to analyze and verify the security of masked circuits and implementations
under various security notions. Due to a symbolic and exhaustive analysis of
probability distributions and statistical independence of joint distributions, we
can avoid false negatives and overly conservative decisions. In particular, by
means of ROBDDs, a well-known concept and methodology for Integrated Cir-
cuit (IC) testing and verification, we formally analyze and verify masked circuits
in the ISW d-probing model even in the presence of glitches as physical defaults.

In addition, based on the seminal work of De Meyer et al. [21], we reformulate
the security notions of d-probing security, d-Non-Interference, d-Strong Non-
Interference, and, for the first time, d-Probe-Isolating Non-Interference based on
statistical independence which can be efficiently checked and verified by our tool.
Hence, for the first time, state-of-the-art security notions for masked circuits can
be analyzed exhaustively without false negatives. Eventually, this contribution
is even extended further by efficient verification methods to check and verify the
uniformity for output sharings of arbitrary masked circuits.

Outline. While Section 2 briefly summarizes our notations and introduces pre-
liminary concepts and notions, including ROBDDs, our circuit model, and se-
curity notions, Section 3 is dedicated to a conception and discussion of our ver-
ification approach. Besides, Section 3 outlines our leakage models and discusses
the main ideas of our verification concept, particularly sketching the application
of ROBDDs to check and verify security notions. In Section 4, we then provide
formal proofs for all security notions and our leakage verification concept based
on statistical independence checks. Before we present details on practical evalua-
tions and experiments in Section 6, we briefly discuss and compare our approach
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and concept to essential related work in Section 5. Eventually, we conclude our
work in Section 7.

2 Background

2.1 Notation

We use upper-case characters to denote random variables, bold ones for sets of
random variables, and subscripts for elements within a set of variables. Further,
let us denote Xi as the set of variables X \ Xi. Accordingly, we use lower-
case characters to denote values a random variable can take, bold ones for sets
of values, and subscripts for elements within the set of values. Again, let us
denote xi as the set of values x \ xi. In addition, we use Pr[X = x] for the
probability that a random variable X takes a value x, while Pr[X = x] denotes
the joint probability that each Xi ∈ X takes the value xi ∈ x. Accordingly, the
conditional probability for X = x given Y = y is written as Pr[X = x|Y = y].
Hence, Pr[X = x|Y = y] denotes the conditional probability that each Xi ∈ X
takes the value xi ∈ x, if each Yi ∈ Y takes the value yi ∈ y. Moreover, the
joint distribution over the set X is denoted as Pr[X], while Pr[X|Y] = Pr[X] is
simply equivalent to Pr[X = x|Y = y] = Pr[X = x] for all possible combination
of x and y. Extending this notation, Pr[X|Y] = Pr[X|Z] is the same as Pr[X =
x|Y = y] = Pr[X = x|Z = z] for all possible combination of x,y, and z.

Further, functions are denoted using sans-serif fonts. Handling masked func-
tions, we denote the s-th share of the a variable as Xs. Hence, the set of
all unshared inputs of a function f is denoted as X = (X0, . . . , Xn−1) while
the set containing all t shares of each variable in X is denoted as Sh(X) =
(X0

0 , X
1
0 , . . . , X

t−1
0 , X0

1 , . . . , X
0
n−1, . . . , X

t−1
n−1). Similarly, the set containing all

shares of Xi ∈ X is denoted as Sh(Xi). Eventually, for a set of indices I ⊆
[0, . . . , t − 1], Sh(X)I denotes the set containing all shares Xs

i with 0 ≤ i < n
and s ∈ I.

2.2 Reduced Ordered Binary Decision Diagrams (ROBDDs)

Binary Decision Diagrams (BDDs) are a basic structure in discrete mathematics
and computer science introduced by Akers [1] and refined by Bryant (introducing
variable ordering) [15]. In particular, many applications in computer-aided IC
design and verification make use of (reduced, ordered) BDDs.

In general, BDDs are concise and unique (i.e., canonical) graph-based rep-
resentations of Boolean functions Fn

2 → F2 with a single root node and two
terminal nodes (leaves) {T,F}. The formal definition of ROBDDs, given in the
following paragraphs, is divided into a purely syntactical definition, describ-
ing the structure based on Directed Acyclic Graphs (DAGs), before providing
a semantical definition, clarifying the representation of Boolean functions as
ROBDDs.
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Syntactical Definition of ROBDDs. Before providing a syntactical defini-
tion for ROBDDs, we first recall the (syntactical) definition of Ordered Binary
Decision Diagrams (OBDDs).

Definition 1 (OBDD Syntax). An Ordered Binary Decision Diagram is a
pair (π,G), where π denotes the variable ordering of the OBDD and G = (V, E)
is a finite DAG with vertices V, edges E, and the following properties:

(1) There is a single root node and each node v ∈ V is either a non-terminal
node or one of two terminal nodes {T,F}.

(2) Each non-terminal node v is labeled with a variable in X, with |X| = n,
denoted as var(v), and has exactly two child nodes in V which are denoted
as then(v) and else(v).

(3) For each path from the root node to a terminal node, the variables in X
are encountered at most once and in the same order defined by the vari-
able ordering π. More precisely, the variable ordering π of an OBDD is a
bijection π : {1, 2, . . . , n} → X.

Furthermore, assuming the following two restrictions ensures a concise and
canonical representation (under a given variable ordering π), defined as ROBDD.

Definition 2 (ROBDD Syntax). An OBDD is called Reduced Ordered Bi-
nary Decision Diagram, if and only if there is no node v ∈ V such that then(v) =
else(v) and there are no duplicate nodes, i.e., two nodes {v, v′} ∈ V such that
var(v) = var(v′), then(v) = then(v′), and else(v) = else(v′).

Semantical Definition of ROBDDs. Each ROBDD with root v ∈ V re-
cursively defines a Boolean function f : Fn

2 → F2 according to the following
definition.

Definition 3 (ROBDD Semantics). An ROBDD over X represents a Boolean
function f recursively carried out at each node and defined as follows:

(1) If v is the terminal node F, then fv|x = 0, otherwise, if v is the terminal
node T, then fv|x = 1.

(2) If v is a non-terminal node and var(v) = xi, then fv is defined by the
Shannon decomposition fv = xi · fthen(v)|xi=1 + xi · felse(v)|xi=0.

Boolean Operations over ROBDDs. Given the syntactical and semantical
definitions for ROBDDs, we now can define arbitrary Boolean operations over
Boolean functions fv1 and fv2 represented by two ROBDDs with root nodes
v1 and v2. In particular, let f = fv1 ◦ fv2 where ◦ denotes any binary Boolean
operation, then the ROBDD for f can be derived and composed recursively as:

f = xi · f|xi=1 + xi · f|xi=0

= xi · (fv1 ◦ fv2
)|xi=1 + xi · (fv1 ◦ fv2

)|xi=0

= xi · (fv1 |xi=1 ◦ fv2 |xi=1) + xi · (fv1 |xi=0 ◦ fv2 |xi=0)

(1)
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2.3 Circuit Model

For the remainder of this work, we consider and model a deterministic circuit
C as a DAG, where the vertices are combinational gates and edges are wires
carrying elements from the finite field F2.

Physical Model. Without loss of generality, the physical structure of a de-
terministic circuit C at gate level is modeled using the set of combinational
gates {not, and, nand, or, nor, xor, xnor} (with fan-in at most 2) while all sequen-
tial memory gates reg model a clock-dependent synchronization point. Further,
each Boolean input variable is associated with a single in gate (with fan-in 0),
while the output and result of a Boolean function is associated with a single
out gate (with fan-out 0). Eventually, ref are special-purpose gates with fan-in 0
that introduce a independently and identically distributed (i.i.d) random element
from the finite field F2.

Functional Model. Each deterministic circuit C realizes an n × m vectorial
Boolean function F : Fn

2 → Fm
2 given its coordinate functions f1, . . . , fm defined

over X ∈ Fn
2 . In particular, each Xi ∈ X is assumed to be independently and

identically distributed (i.i.d) and associated with a single in gate, while each fi
is associated with a single out gate.

Further, the function of each gate within the circuit model C is derived re-
cursively over the functions of its fan-in gates by means of Boolean operations
over ROBDDs. Hence, each gate in the circuit model itself can be considered as
a Boolean function over (a subset of) the inputs X ∈ Fn

2 and we can introduce
a functional abstraction layer to the physical circuit model using ROBDDs to
canonically represent and store the derived Boolean functions.

Security Model. Eventually, security critical circuits handling a sensitive se-
cret X are associated with a security order d and protected (masked) based
on Boolean sharing. This means, each security critical and sensitive secret X is
shared with at least d+ 1 shares such that X =

⊕d
0 X

i. Similarly, sensitive and
security critical outputs of a masked circuit are shared using Boolean sharing,
such that F(X) =

⊕d
0 F

i(X).

2.4 Security Notions

Before introducing our verification approach and methodology to analyze an
arbitrary circuit under various security notions, we first introduce the definitions
of all necessary security notions. In particular, our security definitions are based
on the work in [21] while we reformulate the definitions in order to provide
generalizations from circuits with d+1 input shares to circuits with an arbitrary
number of shares when examining dth-order security. In addition, we extend the
definitions from single sensitive and secret variable to a set of arbitrary number
of secret variables.



SILVER 7

Probing Security. Probing security is defined as the probes being statistically
independent of any sensitive input. More precisely, the joint distribution of the
considered set of probes has to be independent of the joint distribution of all
sensitive inputs. This can be formally defined as:

Definition 4 (d-Probing Security.). A circuit C with secret input set X ∈ Fn
2

is d-probing secure, if and only if for any observation set Q containing d wires,
X is statistically independent of the observation set, i.e., the following condition
holds:

Pr[Q|X] = Pr[Q] (2)

Non-Interference. The notion of Non-Interference allows partial information
on the sensitive inputs becoming available to the adversary through probing the
circuit. In particular, if the observed circuit is d-NI, the adversary is not able
to successfully distinguish the circuit result from a simulator working on partial
information knowing, i.e., using at most d shares of each input.

More formally, each adversarial probe set should be perfectly simulatable
knowing only a subset of all shares of each input. Let S be a set over arbitrary
input shares Xj

i , i.e., S ⊂ Sh(X), and |S|i denote the number of shares in S that
correspond to input Xi. In order to guarantee d-NI, there exist a simulation set
S with |S|∀i ≤ d for which a probe in Q is perfectly simulatable, i.e., an attacker
is not able to distinguish between a simulation of C using only elements in S
from the observations of C even when knowing all input shares. This can be
directly translated into the condition that there has to exist a simulation set S
with |S|∀i ≤ d, for which the distributions Pr[Q|S] and Pr[Q|Sh(X)] are equal.

Definition 5 (d-Non-Interference). A circuit C with secret input set X ∈ Fn
2

provides d-Non-Interference if and only if for any observation set of t ≤ d wires
Q there exists a set S of input shares with |S|∀i ≤ t such that

Pr[Q|S] = Pr[Q|Sh(X)]. (3)

Strong Non-Interference. The notion of SNI has been introduced as exten-
sion to NI correcting deficiencies in terms of composability of secure gadgets
within a circuit. In contrast to NI, any probe on a circuit output (also, through
composition, considered as input to a subsequent gadget) is not allowed to give
information about any share in the input. This means, each probe on an output
wire must be perfectly simulatable without knowledge of any input shares in
order to stop the flow of sensitive information between composed gadgets.

More formally, each adversarial probe set again should be perfectly simulat-
able knowing only a subset of all shares of each input. However, for a set Q of
d probes with t1 probes on internal wires and t2 probes on output wires while
t1 + t2 ≤ d, the size of the set S is bounded by the internal probes only, i.e.,
|S|∀i ≤ t1. This directly translates into the following definition and condition.
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Definition 6 (d-Strong Non-Interference). A circuit C with secret input set
X ∈ Fn

2 provides d-Strong Non-Interference if and only if for any observation
set of t = t1 + t2 ≤ d wires Q of which t1 are internal wires and t2 are output
wires, there exists a simulation set S of input shares with |S|∀i ≤ t1 such that
Equation (3) holds.

Probe-Isolating Non-Interference. Unfortunately, the security notion of
SNI in practice is often very conservative and inefficient as it introduces more
area and randomness than necessary to achieve certain security goals. To ad-
dress this issue, Cassiers et al. introduced the notion of Probe-Isolating Non-
Interference [17] which offers trivial composition of any gadgets inspired by
the trivial composition of linear functions and the concept of sharing domain
separations as introduced in [29]. As the original SNI definition limits compos-
ability to single-output gadgets, Cassiers et al. also introduced a generalization
of SNI to gadgets with multiple inputs and multiple outputs (Multiple-Input-
Multiple-Output SNI (MIMO-SNI)). This is a very strong notion which in fact
already implies security under the PINI notion, i.e., every gadget that provides
d-MIMO-SNI also provides d-PINI. As PINI already guarantees trivial compo-
sition, we do not consider MIMO-SNI any further in this work.

In the context of PINI, each circuit input and output is assigned a unique
circuit share index (i.e., a share domain) and any probe set on these wires should
be perfectly simulatable knowing only the set of inputs that are assigned to the
same circuit share index. Further, any additional probe on internal wires gives the
adversary access to at most one additional circuit share, i.e., must be perfectly
simulatable knowing only the according set of inputs assigned to these circuit
shares. Eventually, this translates to the following definition.

Definition 7 (d-Probe-Isolating Non-Interference). Let P be the set of
internal probes with |P| = t1. Let further IO be the index set assigned to the
probed output wires O with |IO| = t2.

A circuit C with secret input set X ∈ Fn
2 provides d-Probe-Isolating Non-

Interference if and only if for every P and O with t1 + t2 ≤ d there exists a set
II of circuit indices with |II| ≤ t1 such that Q = P∪O can be perfectly simulated
by S = Sh(X)II∪IO , i.e., Equation (3) holds.

Uniformity. The security of (Boolean) masking schemes relies on a fundamental
assumption: uniform sharing. For that, the initial sharing of any secret variable
X using d+ 1 shares, such that X =

⊕d
0 X

i, can be done by assigning random

values to X0, . . . , Xd−1 and deriving Xd = X ⊕⊕d−1
0 Xi. Such a sharing then

is uniform if all random variables X0, . . . , Xd−1 are independent of each other
and have a uniform distribution over F2.

In practice, the uniformity of the output sharing of gadgets has been defined
as a fundamental requirement for Threshold Implementations (TIs), particularly
for secure composition of gadgets [39]. Otherwise, a non-uniform output sharing
of a gadget becomes the non-uniform input sharing of another gadget, hence
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violating the essential assumption of uniformity for (Boolean) masking schemes.
Note, however, that a gadget can be probing secure, but it is not necessarily
uniform. Likewise, a uniform gadget does not automatically lead to a probing-
secure construction. This has been handled specifically in NI and SNI gadgets,
e.g., by injecting fresh randomness at the output thereby refreshing the output
sharing, i.e., achieving uniformity.

Definition 8 formalizes the notion of a uniform sharing as it states that for
every unshared value, each valid sharing has to occur with the same probability.

Definition 8 (Uniform Sharing). Let Y be a set of binary random variable
and Sh(Y) its corresponding Boolean sharing. Then Sh(Y) is said to be a uni-
form sharing iff for some constant p

Pr
[
Sh(Y) = y∗|Y = y

]
=

{
p if y∗ is a valid sharing for y

0 else
. (4)

3 Verification Concept

This section briefly elaborates our main idea and concept for our verification
model and approach.

3.1 Leakage Models

For verification, we additionally consider each security notion under two different
leakage models denoted standard respectively robust leakage model.

Standard Leakage Model. For our standard leakage model following the
concept of the traditional ISW d-probing model [31], we assume an ideal circuit
without any physical defaults such as glitches or transitions. In practice, this
leakage model relates to a software scenario where each result of an operation
(i.e., a gate in a circuit C) is stored in a register before it is used by subsequent
operations (gates). Note that in this model, the implementation platform’s spe-
cific effects like pipelines are entirely ignored. In this model, an adversarial probe
provides access to the field element carried on the probed wire. More precisely,
the adversary gains full access to the Boolean function represented by the driving
gate in order to derive the field element.

Robust Leakage Model. In contrast to our standard leakage model, for our
robust model following the leakage model in [26], we also take physical default
in terms of glitches into consideration, hence, in practice this model relates to a
hardware scenario. Since only circuit inputs and memory elements are assumed
to switch synchronous to a circuit clock, glitches will propagate through all
combinational gates between two synchronization points. Therefore, by probing
a wire, the adversary not only gains access to the field element of the driving gate



10 D. Knichel et al.

but also can access all stable field elements of the last synchronization points
which drive the probed gate (having a path to the driving gate in the circuit
graph). More precisely, the adversary gains full access to the set of these field
elements (and any subset) through so called glitch-extended probes.

3.2 Verification Approach

Based on some fundamental observation, this section outlines our basic concept
and explains our main approach to verify different security notions starting from
a circuit model given as gate-level netlist.

Random Variables with Binary Events. According to our circuit model,
each edge in the circuit graph models a wire and carries an element from the field
F2 with two elements. Thus, we first observe each wire, and its associated field
element can be modeled as a binary random variable defined over the sample
space Ω = {0, 1} of two basic events given the assumption that all primary
circuit inputs are independent and identically distributed (i.i.d.). Based on this
observation, we can use the probability distributions of all random variables in
order to analyze and verify a circuit model against the security notions defined
in Section 2.4.

Probability Distribution and Satisfiability. In general, the probability of
an event is defined by the sum of the probabilities of all outcomes that satisfy
the event. In the context of our circuit model, an outcome can be considered
as a variable assignment to the primary circuit inputs that leads to the desired
element of the sample space at the observed random variable. For this, com-
puting the probability density function of a random variable associated with a
circuit wire reduces to enumerating and counting the primary input variable as-
signments that satisfy the corresponding basic events for the observed random
variable.

Symbolic Simulation using ROBDDs. As the naive approach of exhaustive
and literal simulation of the circuit model expeditiously becomes infeasible with
increasing circuit complexity and number of primary circuit inputs, symbolic
simulation and analysis is necessary to maintain the generation of all probabil-
ity distributions practicable even for large and complex circuit models. More
precisely, each gate in the circuit model represents a sub-circuit and is associ-
ated with a Boolean function given as ROBDD that computes the gate output
over the set of primary circuit inputs. Since ROBDDs are concise and canonical
representations of Boolean functions, counting the number of cubes, i.e., the sat-
isfying variable assignments, for each basic binary event can be done efficiently
using symbolic analysis. Knowing the total number of possible variable assign-
ments, computing the probability distribution for each random variable remains
feasible even for large and complex circuits.
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Standard and Glitch-Extended Probes. Considering our two different leak-
age models, we also have to differentiate the capabilities and knowledge of the
adversary. Firstly, for the standard model we thus assume that an adversarial
probe gives access to the probability distribution of a field element carried on an
arbitrary wire observed by the adversarial probe. More precisely, the adversary
in this case learns the Boolean sub-function associated with the driving gate in
order to compute the field element and its probability distribution as function of
the primary circuit inputs. Secondly, in contrast to the standard model, a robust
or glitch-extended probe extends the capabilities and knowledge of the adversary
as it also provides access to the joint distribution of all hindmost contributing
synchronization points (memory elements or primary inputs). Hence, in order
to model physical defaults and in particular glitches, the adversary also learns
the Boolean sub-functions associated with the corresponding synchronization
elements.

Statistical Independence and Security Checks. Eventually, depending on
the targeted security order d, an adversarial observation can consist of up to d
independently placed adversarial probes and the adversary is allowed to combine
the information and knowledge of all probes to learn details of the secret. In or-
der to verify security under the given security notions as defined in Section 2.4,
we perform an exhaustive exploration and check of all possible adversarial obser-
vations Q combining up to d probes. For this, the following section is dedicated
to a detail description and verification of our performed security checks.

4 Statistical Independence and Security Checks

Before formally analysis and verification of the correctness of our security checks,
we briefly recap the definitions of (joint) probability mass functions and statis-
tical independence for sets of random variables.

4.1 Statistical Independence

The probability mass function provides the probability of all possible values for
a set of discrete random variables based on their probability distribution.

Definition 9 (Probability Mass Function). Let X be a set of discrete ran-
dom variables. The probability mass function pX(x) is defined as:

pX(x) = Pr[X = x].

Based on this, given two arbitrary sets of discrete random variables, the
joint probability mass function between these two variable sets then is defined
as follows.
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Definition 10 (Joint Probability Mass Function). Let X,Y be two sets
of discrete random variables. The joint probability mass function pX,Y(x,y) is
defined as:

pX,Y(x,y) = Pr[X = x and Y = y].

Using the definitions of probability mass function and joint probability mass
function, we can express the notion of statistical independence of two sets of
discrete random variables according to the following definition.

Definition 11 (Statistical Independence). Let X,Y be two sets of discrete
random variables. X,Y are statistically independent if and only if the joint prob-
ability mass function for ∀x and ∀y satisfies

pX,Y(x,y) = pX(x) · pY(y).

Statistical Independence of Binary Random Variables. In the context
of our security notions, we are mainly interested in statistical independence
of binary random variables. As any binary random variable can only take two
different events, Theorem 1 states that checking statistical independence for one
event implies statistical independence for both events, even extending to the case
of sets of binary random variables.

Theorem 1. Let X,Y be two sets of binary random variables. Then X and Y
are statistically independent, if and only if pX′,Y′(a,b) = pX′(a) ·pY′(b) for any
fixed values a and b and every possible combination of X′ ⊆ X and Y′ ⊆ Y.

In order to proof correctness of Theorem 1, we start with the basic case of
two binary random variables (i.e., sets of cardinality one).

Lemma 1. Let X,Y ∈ F2 be two binary random variables. Then, a necessary
and sufficient condition for X to be statistically independent of Y is that, for
any fixed values a, b ∈ {0, 1}, it holds

pX,Y (a, b) = pX(a) · pY (b).

Proof. According to Definition 11, the necessity of this proposition is obvious,
hence, the proof focuses on the sufficiency. Without loss of generality, we now
assume Lemma 1 is true for a = b = 1, i.e., pX,Y (1, 1) = pX(1) · pY (1). Since
X = 0 and X = 1 are counter events for binary variables, both the fact pX(0)+
pX(1) = 1 and the fact pX,Y (0, 1) + pX,Y (1, 1) = pY (1) hold, and we have

pX,Y (0, 1) + pX,Y (1, 1) = pY (1)

⇔ pX,Y (0, 1) + pX(1) · pY (1) = pY (1)

⇔ pX,Y (0, 1) = (1− pX(1)) · pY (1)
⇔ pX,Y (0, 1) = pX(0) · pY (1)

Proving the cases for a = 1, b = 0 and a = b = 0 is trivial as it follows the same
approach, hence is left out for brevity. ⊓⊔
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In a next step, we extend the basic case through mathematical induction in
order to prove statistical independence between a single random binary variable
and a set of random binary variables.

Lemma 2. Let X be a binary random variable and Y a set of n random binary
variables. Further, let X be statistically independent of the joint distribution of
Y. Now, the joint distribution Y+, with Y ⊂ Y+ and |Y+| = n+1 is statistically
independent of X, if and only if pX,Y+(a,b+) = pX(a) · pY+(b+) for any fixed
values a,b+.

Proof. We now give a formal proof using mathematical induction on n.

Base case: We first show that Lemma 2 holds for n = 0.

Clearly, if n = 0, Y is the empty set while Y+ is a single binary random
variable. Then, according to Lemma 1, X and Y+ are statistically independent
if and only if for any fixed values a, b it holds that pX,Y+(a, b) = pX(a) · pY+(b).

⊓⊔
Induction: If Lemma 2 holds for n = k, it also holds for n = k + 1 with k ≥ 0.

For this, we first show that, without loss of generality, forX,Y+ the following
fact pX,Y+(a,b+

i
) = pX(a) · pY+(b+

i
) with b+

i
= {y0, y1, . . . , yi, . . . , yk, yk+1}

holds, if:

(i) pX,Y(a,b) = pX(a) · pY(b) with b = {y0, y1, . . . , yi−1, yi+1, . . . , yk, yk+1},
(ii) pX,Y+(a,b+) = pX(a) · pY+(b+) with b+ = {y0, y1, . . . , yi, . . . , yk, yk+1}
Further, we note that for binary random variables it always holds that:

pX,Y(a,b) = pX,Y+(a,b+) + pX,Y+(a,b+

i
)

Given that (i), (ii) are conditions for Lemma 2, we can state the following:

pX,Y(a,b) = pX(a) · pY(b)

⇔ pX,Y+(a,b+) + pX,Y+(a,b+

i
) = pX(a) · pY(b)

⇔ pX(a) · pY+(b+) + pX,Y+(a,b+

i
) = pX(a) · pY(b)

⇔ pX,Y+(a,b+

i
) = pX(a) · pY(b)− pX(a) · pY+(b+)

⇔ pX,Y+(a,b+

i
) = pX(a) · [pY(b)− pY+(b+)]

⇔ pX,Y+(a,b+

i
) = pX(a) · pY+(b+

i
)

As the sorting of variables in Y+ is not fixed, this approach also extends
to inversion of any other event and therefore can easily be extended to show
statistical independence for every combination of events. ⊓⊔

Eventually, this also proves Theorem 1. In particular, knowing that X,Y are
statistically independent, we can argue that X+,Y with X ⊂ X+, |X| = n, and
|X+| = n + 1 must be statistically independent, if and only if pX+,Y(a+,b) =
pX+(a+) · pY(b) using the same approach as for Lemma 2.
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Algorithm 1: Explore d-Probing Security.

Input : X – Set of n secret variables.
Output: Q – Set of d+ 1 successful probes.

1 d← 1
2 while true do
3 foreach probing set Q with |Q| = d do
4 for t = 1 to n do
5 foreach X′ ⊆ X with X′ = t do
6 if pQ,X′(1,1) ̸= pQ(1) · pX′(1) then
7 return Q
8 end

9 end

10 end

11 end
12 d← d+ 1

13 end

4.2 d-Probing Security

Checking d-probing security according to Definition 4 requires to verify statistical
independence of the set of secret variables and any observation of at most d
probes. This section presents an exploration algorithm that allows to find and
verify the maximum security order of a given circuit with secret variables X.
Eventually, the algorithm will return the first set of d + 1 probes that is not
statistically independent of the secret variables.

Algorithmic Verification Approach. Algorithm 1 presents our algorithmic
approach to explore and verify d-probing security of a Circuit Under Test (CUT).
In general, the algorithm is initialized with d = 1, i.e., starts to explore and
verify first-order security before extending verification to higher orders. Since
for |Q| = 1 each observation set contains only a single binary variable (observed
by a single probe placed on a wire within the circuit C), according to Theorem 1
it is sufficient to verify:

pQ,X′(1,1)
?
= pQ(1) · pX′(1) (5)

for all possible combinations of secret variables X′ ⊆ X. If any of those checks
fails, the current observation is not statistically independent of the secret vari-
ables and Algorithm 1 terminates with returning the current set of observation
indicating the security of the CUT to be at most d = |Q| − 1.

If probing security is verified for all joint distributions of d probes, the algo-
rithm continues with all combinations of d+1 probes. However, for independence
of the current set of probes Q, it is still sufficient to check Equation (5) for all
combinations of secret variables (but only the current combination of probes),
since any subset of probes has already been verified during previous iterations
(for smaller d).
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Algorithm 2: Explore d-Non-Interference Security.

Input : Sh(X) – Set of all shares of n secret variables X.
Output: Q – Set of d+ 1 successful probes.

1 d← 1
2 while true do
3 foreach probing set Q with |Q| = d do
4 simulatable← true
5 for t = 0 to d do
6 foreach S ⊆ Sh(X) with |S|∀i = t do
7 if pQ,Sh(X)(1,1) ̸= pQ,S(1,1) · pS(1) then
8 simulatable← false
9 end

10 end

11 end
12 if not simulatable then
13 return Q
14 end

15 end
16 d← d+ 1

17 end

Eventually, all verification and statistical independence checks are performed
based on ROBDDs in order to generate all (joint) probability mass functions
pQ, pX, and pQ,X. In particular, evaluation of the probability mass functions
for 1 is very efficient for ROBDD-based representations, usually implemented as
satisfiability-check.

4.3 d-Non-Interference

Checking d-NI security using Definition 5 requires to verify Equation (3) that
every set of at most d probes Q on a circuit C has to be perfectly simulatable
using only a subset S of all shares of the secret variables X. Using the concept of
statistical independence of two sets of random binary variables, we can express
NI using the following theorem.

Theorem 2. Let S := Sh(X) \S. Since all input shares are i.i.d., Equation (3)
simplifies to:

pQ,Sh(X)(q,x) = pQ,S(q, s) · pS(s). (6)

In particular, since Sh(X) = S∪S, we can simply verify statistical independence
of Q ∪ S and S (with x = s ∪ s).
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Algorithm 3: Explore d-Strong Non-Interference Security.

Input : Sh(X) – Set of all shares of n secret variables X.
Output: Q – Set of d+ 1 successful probes.

1 d← 1
2 while true do
3 foreach probing set Q with |Q| = t1 + t2 ≤ d (t1 internal, t2 output

probes) do
4 simulatable← true
5 for t = 0 to t1 do
6 foreach S ⊆ Sh(X) with |S|∀i = t do
7 if pQ,Sh(X)(1,1) ̸= pQ,S(1,1) · pS(1) then
8 simulatable← false
9 end

10 end

11 end
12 if not simulatable then
13 return Q
14 end

15 end
16 d← d+ 1

17 end

Proof.

Pr[Q|S] = Pr[Q|Sh(X)]

⇔ Pr[Q,S] · Pr[Sh(X)] = Pr[Q, Sh(X)] · Pr[S]

i.i.d.Sh(X)⇔ Pr[Q,S] · Pr[S] = Pr[Q, Sh(X)]

⇔ pQ,S(q, s) · pS(s) = pQ,Sh(X)(q,x)

⊓⊔

Algorithmic Verification Approach. Algorithm 2 explores and verifies d-NI
for increasing d and all possible observationsQ of at most d probes. In particular,
the algorithm proceeds as soon as a successful simulation set S of input shares
is found for the current set of probes Q, such that Q is perfectly simulatable
using S. However, if the algorithm encounters a set of probes Q with |Q| = d+1
which is not simulatable for set of input shares (according to the definition of
NI), the algorithm terminates and returns the current set of probes indicating
d-NI with d = |Q| − 1.

4.4 d-Strong Non-Interference

Checking d-SNI is very similar to checking d-NI, except for stronger constraints
on the simulation set S due to stronger distinction between internal and output
probes.
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Algorithm 4: Explore d-Probe-Isolating Non-Interference Security.

Input : Sh(X) – Set of all shares of n secret variables X.
Output: Q – Set of d+ 1 successful probes.

1 d← 1
2 while true do
3 foreach probing set Q with |Q| = d do
4 simulatable← true

5 foreach S ⊆ Sh(X)IO∪II do
6 if pQ,Sh(X)(1,1) ̸= pQ,S(1,1) · pS(1) then
7 simulatable← false
8 end

9 end
10 if not simulatable then
11 return Q
12 end

13 end
14 d← d+ 1

15 end

Algorithmic Verification Approach. In contrast to NI, for SNI the number
of shares per input in each simulation set is bounded by the number of internal
probes (instead of the number of all probes). Hence, except for minor difference,
the algorithmic verification approach given in Algorithm 3 (notation matching
the one given in Definition 6) has the same structure as the approach for NI,
but enforcing stronger constraints on the selection of shares (lines 5 and 6) for
the simulation set S.

4.5 d-Probe-Isolating Non-Interference

For the notion of PINI, the index of any input or output wires correspond to
the associated circuit share. In contrast to NI and SNI, the concept of PINI con-
strains the simulation set not by the number of (internal) probes, but according
to the associated circuit shares.

Verification Approach. The algorithmic verification approach in order to ex-
plore and verify the security notion of PINI for increasing security order d is
given in Algorithm 4. Again, the algorithm is based on the concept of perfect
simulatability of every Q with a set S, in conformity with the notions in Defini-
tion 7.

4.6 Uniformity

In order to examine the uniformity of the output sharing of a gadget, we start
with the following observation.
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Lemma 3. Assume the function f with single output Y ∈ F2 whose shared ver-
sion is realized by a gadget with d+1 output shares Sh(Y ) = (Y 0, . . . , Y d). The
gadget’s output sharing is uniform iff any selection of d output shares make a
balanced function.

Proof. We start with d = 1, i.e., 2 output shares. Let us denote the joint prob-
ability of the output shares by ρ0,0 = Pr[Y 0 = 0, Y 1 = 0], ρ0,1 = Pr[Y 0 =
0, Y 1 = 1], ρ1,0 = Pr[Y 0 = 1, Y 1 = 0], and ρ1,1 = Pr[Y 0 = 1, Y 1 = 1], assuming
that the gadget’s input is uniformly distributed, which is true since the gadget’s
input sharing should be uniform (essential assumption of Boolean masking, see
Section 2.4). Hence, the probability of the output shares can be written as

Pr[Y 0 = 0] = ρ0,0 + ρ0,1, P r[Y 0 = 1] = ρ1,0 + ρ1,1,

P r[Y 1 = 0] = ρ0,0 + ρ1,0, P r[Y 1 = 1] = ρ0,1 + ρ1,1.

1) If Sh(Y ) is uniform, (Y 0 = 0, Y 1 = 0) and (Y 0 = 1, Y 1 = 1) are equally
likely to occur, i.e., ρ0,0 = ρ1,1. The same holds for (Y 0 = 0, Y 1 = 1) and
(Y 0 = 1, Y 1 = 0), i.e., ρ0,1 = ρ1,0. Therefore, Pr[Y 0 = 0] = ρ0,0 + ρ0,1 =
ρ1,1 + ρ1,0 = Pr[Y 0 = 1], i.e., the gadget’s coordinate function f0 with output
Y 0 is balanced. The same trivially holds for Y 1. Hence, individual balancedness
of each output share is essential for uniformity.
2) If the coordinate functions of Y 0 and Y 1 are balanced, we can write

Pr[Y 0 = 0] = Pr[Y 0 = 1] ⇐⇒ ρ0,0 + ρ0,1 = ρ1,0 + ρ1,1,

P r[Y 1 = 0] = Pr[Y 1 = 1] ⇐⇒ ρ0,0 + ρ1,0 = ρ0,1 + ρ1,1.

These two equations directly translate into ρ0,0 = ρ1,1 and ρ0,1 = ρ1,0. This
means that (Y 0 = 0, Y 1 = 0) and (Y 0 = 1, Y 1 = 1) are equally likely to occur.
The same holds for (Y 0 = 0, Y 1 = 1) and (Y 0 = 1, Y 1 = 0), i.e., Sh(Y ) is a
uniform sharing. Hence, individual balancedness of each output share is also a
sufficient condition for uniformity.

For d = 2, we have Sh(Y ) = (Y 0, Y 1, Y 2). Assuming a uniform sharing for
the gadget’s input, similar to the above case for d = 1, we denote the joint
probability of the output shares by ρy0,y1,y2 = Pr[Y 0 = y0, Y 1 = y1, Y 2 = y2],
e.g., ρ1,0,1 = Pr[Y 0 = 1, Y 1 = 0, Y 2 = 1]. Exemplary, the joint probability of
two output shares (Y 0, Y 1) can be derived as

Pr[Y 0 = 0, Y 1 = 0] = ρ0,0,0+ρ0,0,1, P r[Y 0 = 0, Y 1 = 1] = ρ0,1,0 +ρ0,1,1,

P r[Y 0 = 1, Y 1 = 0] = ρ1,0,0+ρ1,0,1, P r[Y 0 = 1, Y 1 = 1] = ρ1,1,0 +ρ1,1,1.
(7)

1) In case Sh(Y ) is uniform, we have

ρ0,0,0 = ρ0,1,1 = ρ1,0,1 = ρ1,1,0, ρ0,0,1 = ρ0,1,0 = ρ1,0,0 = ρ1,1,1. (8)

Hence, it can be trivially seen that

Pr[Y 0=0, Y 1=0]=Pr[Y 0=0, Y 1=1]=Pr[Y 0=1, Y 1=0]=Pr[Y 0=1, Y 1=1],
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meaning that (Y 0, Y 1) are jointly balanced. The same holds for other output
shares (Y 0, Y 2) and (Y 1, Y 2).
2) If (Y 0, Y 1) are jointly balanced, all probabilities given in Equation (7) are the
same, i.e.,

ρ0,0,0 + ρ0,0,1 = ρ0,1,0 + ρ0,1,1 = ρ1,0,0 + ρ1,0,1 = ρ1,1,0 + ρ1,1,1.

The same can be written for (Y 0, Y 2) and (Y 1, Y 2) as

ρ0,0,0 + ρ0,1,0 = ρ0,0,1 + ρ0,1,1 = ρ1,0,0 + ρ1,1,0 = ρ1,0,1 + ρ1,1,1,

ρ0,0,0 + ρ1,0,0 = ρ0,0,1 + ρ1,0,1 = ρ0,1,0 + ρ1,1,0 = ρ0,1,1 + ρ1,1,1.

Combination of these equations leads to the expressions given in Equation (8),
indicating the uniformity of Sh(Y ).

The same procedure can be followed to trivially verify Lemma 3 for d > 2.
⊓⊔

Lemma 4. Assume the function f with n-bit output Y = (Y0, . . . , Yn−1) ∈ Fn
2

whose shared version is realized by a gadget with d + 1 output shares Sh(Y) =
(Y0, . . . ,Yd). The gadget’s output sharing is uniform iff any selection of up to
n · d output shares is balanced excluding the cases where all d + 1 shares of the
same output are involved in the selection.

Proof. For n = 1 it is the same as Lemma 3. Hence, we start with n = 2 and
minimum number of output shares, d + 1 = 2. Assuming a uniform sharing
for the gadget’s input, we denote the joint probability of the output shares by
ρ(y0

0 ,y
1
0),(y

0
1 ,y

1
1)

= Pr[Y 0
0 = y00 , Y

1
0 = y10 , Y

0
1 = y01 , Y

1
1 = y11 ], e.g., ρ(1,0),(1,1) =

Pr[Y 0
0 = 1, Y 1

0 = 0, Y 0
1 = 1, Y 1

1 = 1].
Exemplary, the joint probability of two output shares (Y 0

0 , Y
1
1 ) is written as

Pr[Y 0
0 = 0, Y 1

1 = 0] = ρ(0,0),(0,0) + ρ(0,0),(1,0) + ρ(0,1),(0,0) + ρ(0,1),(1,0),

P r[Y 0
0 = 0, Y 1

1 = 1] = ρ(0,0),(0,1) + ρ(0,0),(1,1) + ρ(0,1),(0,1) + ρ(0,1),(1,1),

P r[Y 0
0 = 1, Y 1

1 = 0] = ρ(1,0),(0,0) + ρ(1,0),(1,0) + ρ(1,1),(0,0) + ρ(1,1),(1,0),

P r[Y 0
0 = 1, Y 1

1 = 1] = ρ(1,0),(0,1) + ρ(1,0),(1,1) + ρ(1,1),(0,1) + ρ(1,1),(1,1).

(9)

1) If Sh(Y) is uniform, we have

ρ(0,0),(0,0) = ρ(0,0),(1,1) = ρ(1,1),(0,0) = ρ(1,1),(1,1),

ρ(0,0),(0,1) = ρ(0,0),(1,0) = ρ(1,1),(0,1) = ρ(1,1),(1,0),

ρ(0,1),(0,0) = ρ(0,1),(1,1) = ρ(1,0),(0,0) = ρ(1,0),(1,1),

ρ(0,1),(0,1) = ρ(0,1),(1,0) = ρ(1,0),(0,1) = ρ(1,0),(1,0).

This results in equal probabilities for all probabilities given in Equation (9), such
that

Pr[Y 0
0 =0, Y 1

1 =0]=Pr[Y 0
0 =0, Y 1

1 =1]=Pr[Y 0
0 =1, Y 1

1 =0]=Pr[Y 0
0 = 1, Y 1

1 = 1],
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i.e., the two output shares (Y 0
0 , Y

1
1 ) are jointly balanced. The same can be sim-

ilarly verified all other combinations (Y 0
0 , Y

0
1 ), (Y

1
0 , Y

0
1 ), and (Y 1

0 , Y
1
1 ).

2) If (Y 0
0 , Y

1
1 ) are jointly balanced, based on Equation (9) we have

ρ(0,0),(0,0) + ρ(0,0),(1,0) + ρ(0,1),(0,0) + ρ(0,1),(1,0) =

ρ(0,0),(0,1) + ρ(0,0),(1,1) + ρ(0,1),(0,1) + ρ(0,1),(1,1) =

ρ(1,0),(0,0) + ρ(1,0),(1,0) + ρ(1,1),(0,0) + ρ(1,1),(1,0) =

ρ(1,0),(0,1) + ρ(1,0),(1,1) + ρ(1,1),(0,1) + ρ(1,1),(1,1) = 1/4.

(10)

This leads to

ρ(0,0),(0,0) + ρ(0,0),(1,0) + ρ(0,1),(0,0) + ρ(0,1),(1,0)

+ ρ(0,0),(0,1) + ρ(0,0),(1,1) + ρ(0,1),(0,1) + ρ(0,1),(1,1) =

ρ(1,0),(0,0) + ρ(1,0),(1,0) + ρ(1,1),(0,0) + ρ(1,1),(1,0)

+ ρ(1,0),(0,1) + ρ(1,0),(1,1) + ρ(1,1),(0,1) + ρ(1,1),(1,1) = 1/2,

(11)

meaning that Pr[Y 0
0 = 0] = Pr[Y 0

0 = 1], i.e., it is balanced. The same can be
written for Pr[Y 1

1 = 0] = Pr[Y 1
1 = 1], and similarly for (Y 0

0 , Y
0
1 ), (Y

1
0 , Y

0
1 ),

and (Y 1
0 , Y

1
1 ). In short, every single output bit is balanced, hence, according

to Lemma 3, the sharing of every output is individually uniform. Note that,
in general when a function with d output bits is balanced, any combination of
d′ < d output bits also makes a balanced function [34, §12.1.2].

According to Equation (9) and Equation (10), we exemplary write

Pr[Y 0
0 = 0, Y 1

1 = 0] = 1/4.

On the other hand, according to Equation (11) we have

Pr[Y 0
0 = 0] = 1/2, P r[Y 1

1 = 0] = 1/2,

which implies Pr[Y 0
0 = 0, Y 1

1 = 0] = Pr[Y 0
0 = 0] · Pr[Y 1

1 = 0]. The same can
similarly be seen for (Y 0

0 , Y
1
1 ) = (0, 1), (1, 0) and (1, 1), meaning that

Pr[Y 0
0 , Y

1
1 ] = Pr[Y 0

0 ] · Pr[Y 1
1 ]. (12)

In other words, Y 0
0 and Y 1

1 are statistically independent. In a similar way, sta-
tistical independence of (Y 0

0 , Y
0
1 ), (Y

1
0 , Y

0
1 ), and (Y 1

0 , Y
1
1 ) can be shown.

Now, let us denote conditional probability Pr[Y 0
0 = y00 , Y

1
0 = y10 , Y

0
1 =

y01 , Y
1
1 = y11 |Y0 = y0, Y1 = y1] by ρ(y0

0 ,y
1
0),(y

0
1 ,y

1
1)|(y0,y1). For the sharing Sh(Y)

to be uniform, according to Equation (4) and exemplary for Y = (0, 0) we
should have

ρ(0,0),(0,0)|(0,0) = ρ(0,0),(1,1)|(0,0) = ρ(1,1),(0,0)|(0,0) = ρ(1,1),(1,1)|(0,0) = 1/4. (13)

The same should hold for other values of Y = (0, 1), (1, 0), and (1, 1). Consid-
ering the statistical independence of (Y 1

0 , Y
0
1 ) explained above, We can write

ρ(0,0),(0,0)|(0,0) =Pr
[
Y 0
0 =0,Y 1

0 =0,Y 0
1 =0,Y 1

1 =0
∣∣Y0=0,Y1=0

]

=Pr
[
Y 0
0 =0,Y 1

1 =0
∣∣Y 1

0 =0,Y 0
1 =0,Y0=0,Y1=0

]
· Pr

[
Y 1
0 =0,Y 0

1 =0
∣∣Y0=0,Y1=0

]

=1 · Pr
[
Y 1
0 =0

∣∣Y0=0,Y1=0
]
· Pr

[
Y 0
1 =0

∣∣Y0=0,Y1=0
]
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Due to the balancedness of every individual output, we have

Pr
[
Y 1
0 = 0

∣∣Y0 = 0, Y1 = 0
]
= Pr

[
Y 1
0 = 0

∣∣Y0 = 0, Y1 = 0
]
= 1/2.

This leads to ρ(0,0),(0,0)|(0,0) = 1/4. The same can be shown for ρ(0,0),(1,1)|(0,0),
ρ(1,1),(0,0)|(0,0), and ρ(1,1),(1,1)|(0,0), satisfying Equation (13). The same can be
similarly verified for Y = (0, 1), (1, 0), and (1, 1), hence the uniformity of Sh(Y).

The same procedure can be followed to verify Lemma 4 for n > 2 and d > 2.
⊓⊔

Indeed, for a given circuit netlist we efficiently perform balancedness checks
directly based on the ROBDDs of the circuit.

5 Related Work

For formal verification of masked implementations, both in software and hard-
ware, several tools and frameworks have been proposed, each following a different
methodology and verification approach.

Formal Verification of Software Implementations. For automated mask-
ing of software implementations, the work of Moss et al. [38] was first to consider
a type-based methodology for security annotation while dynamically repairing
the masked implementation based on heuristics if leakage was detected at some
point in the program flow. As any type-based approach inevitably results in an
overly conservative verification, logic-based methods have been proposed as an
alternative approach. Here, the work by Byrak et al. Byrak [6] translates verifi-
cation to a set of Boolean satisfiability problems which can then be solved by a
SAT solver. Nonetheless, both approaches only consider verification of masking
against first-order attacks.

Later, an SMT-solver-based method for formally verifying even higher-order
security has been introduced in [24]. As for [6], this verification method is also
based on the notion of perfect masking as presented in [13]. Similarly, in [44]
another method for verifying perfect masking was introduced, this time aiming
to optimize the trade-off between accuracy (as offered by logic-based approaches)
and efficiency (as given in type-based verification). Eventually, a composition-
based verification approach in direct conformity with d-probing security (i.e.,
without any false negatives) is given by Beläıd et al. in [9].

Formal Verification of Hardware Implementations. Considering hard-
ware designs, the work of Bloem et al. [11,12] resulted in a seminal tool enabling
formal verification even in the presence of glitches, but with restriction to veri-
fication of probing security only. Most recently, the work of Cassiers et al. [16]
proposes a composition-based approach of verifying probing security of a con-
crete implementation composed of so-called Hardware Private Circuits.
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Besides, the latest version of maskVerif – as presented in [2] – supports
efficient verification of d-probing security, d-NI, and d-SNI for arbitrary orders for
both software and hardware designs, even in the presence of glitches. Currently,
maskVerif is the state-of-the-art tool offering the widest-ranging verification
features which is not composition-based, hence, in the following we provide a
more detailed discussion and comparison to our developed tool.

5.1 Comparison to maskVerif

In general, maskVerif offers an efficient approach to verify security of masked
software and hardware implementations. In contrast to our approach, maskVerif
utilizes a symbolic representation of leakage defined by a given syntax and se-
mantic. For verifying security, the tool first assigns a symbolic leakage set to
every instruction. Depending on the security order, each combination of sym-
bolic leakage sets, i.e., each possible observation, is exploited afterwards and
tested for the absence of secret dependency through performing a syntactical
check and applying semantic-preserving transformation on the sets.

Due to its language-based verification approach, security checks in maskVerif

follow a very conservative approach for particular designs. More precisely, it may
falsely reject some secure designs because the checks are not based on explicit
statistical properties in conformity with the actual definition of the security
notions. Due to these limitations of a purely syntactical verification, it more
likely fails to provide correct verification of probing security if an output of
a masked circuit is not non-complete (as used for TIs) but also does not rely
on fresh randomness. In other words, its computation is a result of all input
shares of at least one input without using any fresh randomness for blinding
purposes. In particular, a computation using all input shares not necessarily
implies statistical dependency on the corresponding input (e.g., due to blinding
with shares of different inputs). Nonetheless, since the verification approach of
maskVerif is mainly based on syntactical checks, it may falsely categorize the
design as not being probing secure although it is (i.e., resulting in false negative).

Examples for False Negatives in maskVerif. One small example is a shared
version of the 4-bit bijection quadratic class Q4

12 (based on the classification
given in [10]), utilizing two shares per input, as presented in Appendix of [42].
Using maskVerif, this design is falsely categorized as not being first-order prob-
ing secure although all possible probes are statistically independent of the se-
crets. Hence, according to maskVerif, in order to gain successful verification,
one possible solution would be to introduce additional randomness r ∈ F2 into
the design, such that:

x1 = F1(a,b, c,d) = a1

x2 = F2(a,b, c,d) = a2

y1 = G1(a,b, c,d) = a1c1 ⊕ b1 ⊕ r x̄1 = x1
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y2 = G2(a,b, c,d) = a1c2 x̄2 = x2

y3 = G3(a,b, c,d) = a2c1 ⊕ b2 ⊕ r ȳ1 = y1 ⊕ y2

y4 = G4(a,b, c,d) = a2c2 ȳ2 = y3 ⊕ y4

z1 = H1(a,b, c,d) = a1b1 ⊕ a1c1 ⊕ c1 z̄1 = z1 ⊕ z2

z2 = H2(a,b, c,d) = a1b2 ⊕ a1c2 ⊕ r z̄2 = z3 ⊕ z4

z3 = H3(a,b, c,d) = a2b1 ⊕ a2c1 ⊕ r t̄1 = t1

z4 = H4(a,b, c,d) = a2b2 ⊕ a2c2 ⊕ c2 t̄2 = t2

t1 = K1(a,b, c,d) = d1

t2 = K2(a,b, c,d) = d2

This new realization of Q4
12 is now correctly verified by maskVerif as being

first-order probing secure. However, introducing randomness is costly and not
necessary to gain independence of the secret input, i.e., fulfilling first-order prob-
ing security.

However, this given example based on Q4
12 is only a small design. For larger

and more complex circuits, this inaccurate determination of the security level will
lead to significantly more overhead being introduced during the design process.
An example for a more complex design, which is falsely classified as not begin
first-order probing secure, is the PRESENT S-box realized as a TI utilizing three
shares for every output and input bit as presented in [40].

In fact, in order to achieve a sufficient security level while only introducing
marginal overhead into the design, it is thus necessary to be in conformity with
the security notions. As our verification is based on actual statistical properties
between probes and inputs, i.e., in accordance with the formal definitions of the
security notions, we actually meet this need and completely avoid false nega-
tives. This eventually is expected to result in less overhead in terms of area and
randomness when designing and implementing masked implementations. More-
over, and in addition to features in maskVerif, our tool is extended to verify
dth-order PINI and the output uniformity of a given design while also returning
the first probe combination found which is not in conformity with the respective
security notion.

Hence, despite being slower and slightly less efficient for larger design com-
pared to a type-based approach, as used for instance in maskVerif, our tool is
assumed to close the gap between accuracy and efficiency by providing a com-
plete and sound verification framework for the security and composability of
both software and hardware designs.

6 Experiments and Evaluations

This section presents implementation, evaluation, and performance results of our
proposed tool for formal verification of masked circuits.

https://github.com/chair-for-security-engineering/silver
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Implementation. For a practical evaluation of our proposed concepts and
methodologies, we opted to implement a formal verification tool using Sylvan [22],
a state-of-the-art BDD high-performance, multi-core decision diagram package
implemented in C/C++. Further, we also customized and extended the native
instructions of Sylvan in order to provide and support dedicated operations
computing pX(1) and pX,Y(1,1) based on [35], i.e., without formal construction
of new BDDs each time these operations are executed. Eventually, our framework
implements all verification algorithms presented in Section 4 for both, standard
and robust probing model, and is running in a 64-bit Linux Operating Sys-
tem (OS) environment on an Intel Xeon E5-1660v4 CPU with a clock frequency
of 3.20GHz and 128GB of Random-Access Memory (RAM).

Our tool process a netlist file as the specification of the CUT. The user
can either make such a netlist manually, e.g., for software applications or a
sequence of operations, or can provide a verilog file as the result of a hardware
synthesis, e.g., Design Compiler or Yosys, using a restricted library (defined in
Section 2.3). It is beneficial to directly evaluate the circuit’s netlist as any user-
originated mistakes or flaws (e.g., not keeping design hierarchy, hence violating
non-completeness [39]) can be detected.

Experiments and Benchmarks. In Table 1, we summarize verification and
performance results for our tool using various different examples as a benchmark.
For this, the number d indicates the masking order of the circuit design (i.e.,
the number of input shares given as d + 1), while the number next to the tick
indicates the maximum security order found by our tool during security check
and verification (i.e., the number of probes that did not lead to a failing check).
For all designs, we provide analysis results for the security notions of d-probing,
NI, SNI, PINI, and uniformity of the output sharing. Except for uniformity, all
security checks are performed for the standard (i.e., without physical defaults in
terms of glitches) and robust (i.e., with glitches) leakage models as presented in
Section 3. Eventually, along with the number of potential probe positions, i.e.,
the number of distinct wires determined by the number of gates in the circuit,
the security parameter d yields the verification complexity in terms of possible
observations O =

∑d
i=1

(
pos
i

)
.

Examples. In Table 1, we list verification results for three different categories of
masked circuits. In the first category, denoted as Gadgets, we analyze different
variants to implement a masked field multiplication for F2. Note, that for the SNI
variant of Domain-Oriented Masking (DOM) multiplier [29], we simply added
additional registers at the output to achieve an SNI-secure circuit. Interestingly,
PARA1 [5] and PARA2 gadgets are up to d-SNI secure in both models, but
higher-order variants cannot achieve full security, and need design modifications
instead (although still SNI for smaller d). We should stress that maskVerif

reports PARA3 to be not SNI, while it is up to 2-SNI, which is correctly reported

http://www.clifford.at/yosys/
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Table 1. Verification of Various Masked Circuits and Security Notions.

Scheme Pos.† d Probing NI SNI PINI Unif.

std. rob. std. rob. std. rob. std. rob.

Gadgets

DOM [29] 19 1 ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✗1 [0 ms] ✗1 [0 ms] ✗1 [0 ms] ✓[0 ms]

DOM [29] 42 2 ✓2 [3 ms] ✓2 [4 ms] ✓2 [6 ms] ✓2 [19 ms] ✓2 [8 ms] ✗1 [0 ms] ✗1 [0 ms] ✗1 [0 ms] ✓[0 ms]

DOM [29] 74 3 ✓3 [98 ms] ✓3 [1.2 s] ✓3 [2.2 s] ✓3 [23.7 s] ✓3 [3.2 s] ✗1 [0 ms] ✗1 [0 ms] ✗1 [0 ms] ✓[0 ms]

DOM SNI [26] 21 1 ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✗1 [0 ms] ✗1 [0 ms] ✓[0 ms]

DOM SNI [26] 45 2 ✓2 [3 ms] ✓2 [5 ms] ✓2 [6 ms] ✓2 [30 ms] ✓2 [7 ms] ✓2 [29 ms] ✗1 [0 ms] ✗1 [0 ms] ✓[0 ms]

DOM SNI [26] 78 3 ✓3 [0.1 s] ✓3 [1.5 s] ✓3 [2.4 s] ✓3 [39.4 s] ✓3 [3.7 s] ✓3 [39.4 s] ✗1 [0.0 s] ✗1 [0.0 s] ✓[0.0 s]

PARA1 [5] 22 1 ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✗1 [0 ms] ✗1 [0 ms] ✓[0 ms]

PARA2 [5] 45 2 ✓2 [3 ms] ✓2 [6 ms] ✓2 [5 ms] ✓2 [32 ms] ✓2 [8 ms] ✓2 [37 ms] ✗1 [0 ms] ✗1 [0 ms] ✓[0 ms]

PARA3 [5] 68 3 ✓3 [61 ms] ✓3 [0.5 s] ✓3 [1.2 s] ✓3 [12.1 s] ✗3 /✓2 [0.6 s] ✗1 [0 ms] ✗1 [0 ms] ✗1 [0 ms] ✓[0 ms]

PARA3 SNI [5] 82 3 ✓3 [0.2 s] ✓3 [1.4 s] ✓3 [2.8 s] ✓3 [35.5 s] ✓3 [4.1 s] ✓3 [40.4 s] ✗1 [0 ms] ✗1 [0 ms] ✓[0 ms]

PINI1 [17] 21 1 ✓1 [0 ms] ✗1 [0 ms] ✓1 [0 ms] ✗1 [0 ms] ✓1 [0 ms] ✗1 [0 ms] ✓1 [0 ms] ✗1 [0 ms] ✓[0 ms]

PINI2 [17] 51 2 ✓2 [7 ms] ✗1 [0 ms] ✓2 [10 ms] ✗1 [0 ms] ✓2 [12 ms] ✗1 [0 ms] ✓2 [22 ms] ✗1 [0 ms] ✓[0 ms]

HPC1 [16] 22 1 ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✗1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓[0 ms]

HPC1 [16] 52 2 ✓2 [5 ms] ✓2 [7 ms] ✓2 [7 ms] ✓2 [23 ms] ✓2 [9 ms] ✗1 [0 ms] ✓2 [16 ms] ✓2 [46 ms] ✓[0 ms]

HPC2 [16] 32 1 ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✗1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓[0 ms]

HPC2 [16] 75 2 ✓2 [6 ms] ✓2 [12 ms] ✓2 [11 ms] ✓2 [37 ms] ✓2 [13 ms] ✗1 [0 ms] ✓2 [19 ms] ✓2 [61 ms] ✓[0 ms]

ISW SNI REF [26] 26 1 ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓[0 ms]

ISW SNI REF [26] 65 2 ✓2 [5 ms] ✓2 [8 ms] ✓2 [7 ms] ✓2 [36 ms] ✓2 [9 ms] ✓2 [34 ms] ✓2 [16 ms] ✓2 [59 ms] ✓[0 ms]

CMS3 [36] 104 3 ✗3 /✓2 [0.1 s] ✗3 /✓2 [0.3 s] ✗3 /✓2 [0.8 s] ✗3 /✓2 [2.6 s] ✗3 /✓2 [1.3 s] ✗3 /✓2 [4.4 s] ✗1 [0 ms] ✗1 [0 ms] ✓[0 ms]

UMA2 [36] 81 2 ✗2 /✓1 [2 ms] ✗2 /✓1 [0 ms] ✗2 /✓1 [7 ms] ✗2 /✓1 [4 ms] ✗2 /✓1 [6 ms] ✗2 /✓1 [3 ms] ✗1 [0 ms] ✗1 [0 ms] ✓[0 ms]

DOM2 DEP‡ [36] 56 2 ✓2 [4 ms] ✗2 /✓1 [8 ms] ✓2 [3 ms] ✗2 /✓1 [20 ms] ✓2 [4 ms] ✗1 [0 ms] ✓2 [4 ms] ✗2 /✓1 [21 ms] ✓[0 ms]

S-boxes

PRESENTTI [40] 177 2 ✓1 [4 ms] ✓1 [8 ms] ✗1 [4 ms] ✗1 [0 ms] ✗1 [3 ms] ✗1 [0 ms] ✗1 [0 ms] ✗1 [0 ms] ✓[2 ms]

PRESENTTI [25] 377 2 ✓1 [15 ms] ✓1 [6 ms] ✗1 [2 ms] ✗1 [0 ms] ✗1 [2 ms] ✗1 [0 ms] ✗1 [1 ms] ✗1 [0 ms] ✓[0 ms]

PRESENTTI [25] 161 2 ✗1 [3 ms] ✗1 [4 ms] ✗1 [32 ms] ✗1 [0 ms] ✗1 [26 ms] ✗1 [0 ms] ✗1 [2 ms] ✗1 [0 ms] ✗[0 ms]

PRINCETI [37] 150 2 ✓1 [2 ms] ✓1 [10 ms] ✗1 [2 ms] ✗1 [0 ms] ✗1 [2 ms] ✗1 [0 ms] ✗1 [0 ms] ✗1 [0 ms] ✓[0 ms]

PRINCECMS [14] 261 1 ✓1 [3 ms] ✓1 [97 ms] ✓1 [7 ms] ✓1 [2.8 s] ✓1 [9 ms] ✗1 [1 ms] ✗1 [0 ms] ✗1 [0 ms] ✓[0 ms]

SKINNY8TI [7] 240 2 ✓1 [51.2 s] ✓1 [2 min] ✗1 [2 min] ✗1 [2.0 s] ✗1 [2 min] ✗1 [2.0 s] ✗1 [77 ms] ✗1 [1.3 s] ✓[29.6 s]

SKINNY8CMS [8] 192 1 ✓1 [20 ms] ✓1 [0.3 s] ✗1 [0.3 s] ✗1 [17 ms] ✗1 [0.3 s] ✗1 [15 ms] ✗1 [1 ms] ✗1 [1 ms] ✓[1 ms]

AESDOM [29] 884 1 ✓1 [3.3 s] ✓1 [21 min] ✗1 [0.8 s] ✗1 [0.4 s] ✗1 [0.8 s] ✗1 [0.4 s] ✗1 [0.2 s] ✗1 [40 ms] ✓[0.1 s]

AESCMS [19] 938 1 ✓1 [9.4 s] ✓1 [2.9 h] ✗1 [0.9 s] ✗1 [0.5 s] ✗1 [0.9 s] ✗1 [0.5 s] ✗1 [0.2 s] ✗1 [42 ms] ✓[1.8 s]

Functions

Ain [37] 18 1 ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✗1 [0 ms] ✗1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓[0 ms]

Am [37] 20 1 ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✗1 [0 ms] ✗1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓[0 ms]

Aout [37] 20 1 ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✗1 [0 ms] ✗1 [0 ms] ✓1 [0 ms] ✓1 [0 ms] ✓[0 ms]

Q4
12 [42] 48 1 ✓1 [0 ms] ✓1 [0 ms] ✗1 [0 ms] ✗1 [0 ms] ✗1 [0 ms] ✗1 [0 ms] ✗1 [0 ms] ✗1 [0 ms] ✓[0 ms]

† Number of possible probe positions, i.e., output wires of gates. ‡ Assuming identical inputs, i.e., a = b.

by our tool. Also, our tool could identify and report all flaws described in [36]
including the probes as identified by the authors. Our second category lists
different masked S-boxes of lightweight and standard block ciphers implemented
following the concepts of Consolidating Masking Schemes (CMS) [42], TI [39],
or DOM [29]. Eventually, our last category Functions lists arbitrary masked
functions with linear or quadratic algebraic complexity.

Interestingly, besides the linear functions, only the Hardware Private Circuit
(HPC) gadgets [16] and the ISW-SNI gadget [26] extended by an additional
refresh of one input are secure in the robust, glitch-extended probing model
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under the notion of PINI. Since PINI gadgets [17] are not robust probing secure,
they are mainly useful in software applications (i.e., standard probing model).
Indeed, since all HPC gadgets are secure under the PINI notion (for both probing
models) and can be composed trivially, security under the SNI notion is no
longer compulsory (as confirmed by our evaluation results for the robust, glitch-
extended probing model). Also, besides Q4

12 we also analyzed other quadratic
functions provided in [42] and our tool revealed that the implementation of Q4

300

as given by the authors is not uniform.

Verification Complexity. In contrast to the language-based verification ap-
proach of maskVerif, our framework heavily relies on statistical independence
verification of probability distributions in order to avoid false negatives. There-
fore, the overall run time of our verification approach is mainly governed by con-
struction of intermediate ROBDDs representing the logical conjunctions as part
of the statistical independence checks for the security notions. As already shown
in [41], the complexity of constructing ROBDDs increases mainly by the number
of product terms occurring in the minimal Disjunctive Normal Form (DNF) of
the represented Boolean function.

Generally speaking, when considering higher-order security verification, we
have to test for statistical independence of larger sets of random variables with
possible non-linear dependence on many of the inputs. As our test of statistical
independence is based on logical conjunctions of sets of random variables (and
every possible subset), this leads to a high number of product terms occurring
in the resulting DNF, and hence to an increased complexity of the constructed
ROBDDs. As a result, verification speed of our framework is mainly influenced
by the complexity, i.e., input dependencies of wires, and the maximum security
order of the CUT.

Further, with increasing security order, the combinatorial complexity O of
constructing all possible observations grows exponentially. However, as we opted
for accurate security verification without relying on heuristics, reducing the num-
ber of probe combinations is not trivial, but instead we have to check and verify
all of them. Although some joint distributions might be similar for different probe
combinations, we still have to analyze most combinations which is rather time
consuming for higher security orders and larger circuits. It is worth to mention
that if any of the combinations leads to a negative statistical independence, the
tool stops and reports the found leaking probes. Hence, the maximum run time
is taken only if the CUT passes all desired security checks.

7 Conclusion

In this work, we developed and presented a sound and accurate framework to
verify the security and composability of masked gate-level netlists and circuits

This case is caught by the internal caching scheme of the Sylvan BDD package
which first checks if the current operation has been performed and cached recently
before executing the actual operation in case no cache entry was found.
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directly resulting from hardware logic synthesis processes. In particular, our ap-
proach enables formal verification of all pertinent security notions in the domain
of physical security and is applicable to both, software and hardware designs,
even considering physical defaults in terms of glitches. More concretely, it sup-
ports sound, accurate, and immediate verification whether a masked implemen-
tation provides probing security, Non-Interference, Strong Non-Interference, and
Probe-Isolating Non-Interference – even for higher security orders. In addition,
we proposed and integrated a novel methodology of verifying uniformity of the
output sharing of a masked gadget. Eventually, if verification fails, it reports
the failing set of probes being in non-conformity with the corresponding security
notion.

In contrast to common type-based methods, our approach is based on formal
verification of statistical properties in direct conformity with the fundamental
definitions of the security notions. As a result, our approach completely avoids
overly conservative decisions when falsely declaring designs as not being secure
(false negatives), ultimately leading to a reduction in design overhead as oth-
erwise introduced by additional (and expensive) fresh randomness. For this, all
verification checks of statistical properties are executed efficiently by reducing
statistical independence checks on joint distributions over multiple binary ran-
dom variables to checks of distributions over single binary random variables,
which can be efficiently done utilizing the concepts of ROBDDs. Eventually, this
results in a framework exceeding comparable tools in accuracy and functionality
while still being reasonable efficient for most applications and common use cases.

The current version of our tool is mainly beneficial to evaluate gadgets, par-
ticularly at higher orders, although we have given its capability to examine the
entire S-boxes (see Table 1). For future work, we will focus on extending ca-
pabilities and improving efficiency of our tool, mainly with respect to larger
and more complex circuits and implementations and higher security orders. For
this, distinguishing univariate and multivariate leakages would be interesting,
as it would allow divide-and-conquer approaches based on partitioning complex
circuits along register stages while security analysis then would be performed
an smaller circuits automatically. Certainly, verification then can be performed
more efficiently, even for large and complex designs and higher-orders as long as
the design is not entirely combinational but contains register stages. The future
version of our tool should receive the netlist of a complete cipher implemen-
tation, unroll the loops, divide it into separate gadgets, and conduct security
evaluation respectively.
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16. Cassiers, G., Grégoire, B., Levi, I., Standaert, F.: Hardware private circuits: From
trivial composition to full verification. IACR Cryptol. ePrint Arch. (2020)

17. Cassiers, G., Standaert, F.: Trivially and Efficiently Composing Masked Gadgets
With Probe Isolating Non-Interference. IEEE Trans. Information Forensics and
Security (2020)

18. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Proceedings. LNCS, vol. 1666, pp.
398–412. Springer (1999)

19. Cnudde, T.D., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Mask-
ing AES with d+1 shares in hardware. In: Cryptographic Hardware and Embed-
ded Systems - CHES 2016 - 18th International Conference, Proceedings. LNCS,
vol. 9813, pp. 194–212. Springer (2016)

20. Coron, J.: Formal Verification of Side-Channel Countermeasures via Elementary
Circuit Transformations. In: Applied Cryptography and Network Security - 16th
International Conference, ACNS 2018, Proceedings. LNCS, vol. 10892, pp. 65–82.
Springer (2018)

21. De Meyer, L., Bilgin, B., Reparaz, O.: Consolidating Security Notions in Hardware
Masking. IACR Trans. Cryptogr. Hardw. Embed. Syst. (2019)

22. van Dijk, T.: Sylvan: multi-core decision diagrams. Ph.D. thesis, University of
Twente, Enschede, Netherlands (2016)

23. Duc, A., Dziembowski, S., Faust, S.: Unifying Leakage Models: From Probing At-
tacks to Noisy Leakage. In: Advances in Cryptology - EUROCRYPT 2014 - 33rd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Proceedings. LNCS, vol. 8441, pp. 423–440. Springer (2014)

24. Eldib, H., Wang, C., Schaumont, P.: Formal Verification of Software Countermea-
sures against Side-Channel Attacks. ACM Trans. Softw. Eng. Methodol. (2014)

25. Ender, M., Ghandali, S., Moradi, A., Paar, C.: The first thorough side-channel
hardware trojan. In: Advances in Cryptology - ASIACRYPT 2017 - 23rd Interna-
tional Conference on the Theory and Applications of Cryptology and Information
Security, Proceedings, Part I. LNCS, vol. 10624, pp. 755–780. Springer (2017)

26. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.: Composable
Masking Schemes in the Presence of Physical Defaults & the Robust Probing
Model. IACR Trans. Cryptogr. Hardw. Embed. Syst. (2018)

27. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Cryptographic Hardware and Embedded Systems - CHES 2001, Third Inter-
national Workshop, Proceedings. LNCS, vol. 2162, pp. 251–261. Springer (2001)

28. Groß, H., Mangard, S.: A Unified Masking Approach. J. Cryptographic Engineering
(2018)

29. Groß, H., Mangard, S., Korak, T.: An Efficient Side-Channel Protected AES Im-
plementation with Arbitrary Protection Order. In: Topics in Cryptology - CT-RSA
2017 - The Cryptographers’ Track at the RSA Conference 2017, San Francisco, CA,



30 D. Knichel et al.

USA, February 14-17, 2017, Proceedings. LNCS, vol. 10159, pp. 95–112. Springer
(2017)

30. Hutter, M., Schmidt, J.: The Temperature Side Channel and Heating Fault At-
tacks. In: Smart Card Research and Advanced Applications - 12th International
Conference, CARDIS 2013, Revised Selected Papers. LNCS, vol. 8419, pp. 219–235.
Springer (2013)

31. Ishai, Y., Sahai, A., Wagner, D.A.: Private Circuits: Securing Hardware against
Probing Attacks. In: Advances in Cryptology - CRYPTO 2003, 23rd Annual In-
ternational Cryptology Conference, Proceedings. LNCS, vol. 2729, pp. 463–481.
Springer (2003)

32. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, Proceedings. LNCS, vol. 1109, pp. 104–113.
Springer (1996)

33. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Advances in Cryp-
tology - CRYPTO ’99, 19th Annual International Cryptology Conference, Proceed-
ings. LNCS, vol. 1666, pp. 388–397. Springer (1999)

34. Mesnager, S.: Bent Functions - Fundamentals and Results. Springer (2016)
35. Miller, D.M.: An improved method for computing a generalized spectral coefficient.

IEEE Trans. on CAD of Integrated Circuits and Systems (1998)
36. Moos, T., Moradi, A., Schneider, T., Standaert, F.: Glitch-Resistant Masking Re-

visited or Why Proofs in the Robust Probing Model are Needed. IACR Trans.
Cryptogr. Hardw. Embed. Syst. (2019)

37. Moradi, A., Schneider, T.: Side-Channel Analysis Protection and Low-Latency
in Action - - Case Study of PRINCE and Midori -. In: Advances in Cryptology -
ASIACRYPT 2016 - 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Proceedings, Part I. LNCS, vol. 10031,
pp. 517–547 (2016)

38. Moss, A., Oswald, E., Page, D., Tunstall, M.: Compiler Assisted Masking. In:
Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th International
Workshop, Proceedings. LNCS, vol. 7428, pp. 58–75. Springer (2012)
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Abstract. Accelerated by the increased interconnection of highly accessible devices,
the demand for effective and efficient protection of hardware designs against Side-
Channel Analysis (SCA) is ever rising, causing its topical relevance to remain immense
in both, academia and industry. Among a wide range of proposed countermeasures
against SCA, masking is a highly promising candidate due to its sound foundations
and well-understood security requirements. In addition, formal adversary models
have been introduced, aiming to accurately capture real-world attack scenarios
while remaining sufficiently simple to efficiently reason about the SCA resilience
of designs. Here, the d-probing model is the most prominent and well-studied
adversary model. Its extension, introduced as the robust d-probing model, covers
physical defaults occurring in hardware implementations, particularly focusing on
combinational recombinations (glitches), memory recombinations (transitions), and
routing recombinations (coupling).
With increasing complexity of modern cryptographic designs and logic circuits, formal
security verification becomes ever more cumbersome. This started to spark innovative
research on automated verification frameworks. Unfortunately, these verification
frameworks mostly focus on security verification of hardware circuits in the presence of
glitches, but remain limited in identification and verification of transitional leakage. To
this end, we extend SILVER, a recently proposed tool for formal security verification
of masked logic circuits, to also detect and verify information leakage resulting from
combinations of glitches and transitions. Based on extensive case studies, we further
confirm the accuracy and practical relevance of our methodology when assessing and
verifying information leakage in hardware implementations.
Keywords: Side-Channel Analysis · Transitional Leakage · Masking · Hardware

1 Introduction
Physical Attacks and Countermeasures. Even though design of secure cryptographic
algorithms is a well-researched topic, secure implementation remains a late-breaking
challenge. Principally, cryptographic algorithms are designed to withstand adversaries in
the black-box model, limiting adversarial observations to inputs and outputs. However,
practical implementations on physical devices usually entail side-channel information.
Within the context of such a gray-box model, adversaries may observe any physical
behavior and characteristics of an electronic device during execution of security-critical
applications, such as temporal behavior [Koc96], instantaneous power consumption [KJJ99],
Electromagnetic (EM) radiations [GMO01], or temperature and heat dissipation [HS13],
in order to reveal secret and sensitive information.
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Consequently, many protection mechanisms have been proposed, among which masking
(based on the concepts of secret-sharing) prevails as most promising candidate, due to a
formal and sound theoretical foundation [CJRR99]. Specifically in the context of hardware
implementations, different masking schemes and flavors have been proposed over the
years [ISW03, NRR06, RBN+15, GMK17, GM18], continuously improving efficiency and
security. At the same time, not a few schemes have been shown to be insecure due to design
flaws [MMSS19]. Nowadays, there is a growing awareness that design, implementation,
and protection of cryptographic algorithms is still a (mostly) manual, delicate, and error-
prone process requiring long-standing expertise and experience in hardware design and
security. Moreover, this recognition propels an entirely new branch of research intending
to consolidate security models and formal methods to assess and verify the security of
hardware implementations.

Formal Verification of Hardware Security. Strong theoretical foundations, such as
formal models for adversaries and physical execution environments, along with formal
verification methods can support and accelerate design, implementation, and verification
of secure cryptographic devices and applications. In connection with hardware masking,
the simple and abstract Ishai, Sahai, and Wagner (ISW) d-probing adversary and security
model [ISW03] usually provides a baseline verification model to reason about security in
a gray-box context. In its basic appearance, the d-probing model allows an adversary to
arbitrarily observe up to d intermediate values of an ideal circuit1 during the processing
of sensitive information. Along with some basic assumptions on noise, independence of
inputs, and circuit encoding, the security of masked cryptographic implementations can
be verified and proved under the d-probing model.

With respect to physical hardware and digital logic circuits, however, unconsidered
and unintentional physical effects, such as glitches [MPG05, MS06], transitions [CGP+12,
BGG+14], or couplings [CBG+17], and implementation defects due to architectural con-
ditions, such as parallelism [BDF+17] or pipelining [CGD18], have been shown to be
responsible for security degradation of theoretically secure designs and implementations.
Most of all, glitches are long-known causes for leakage of sensitive information even in the
presence of appropriate masking countermeasures [MPG05]. Adjusting the deficiencies in
the original ISW d-probing model, a more robust extension of the standard model has been
proposed recently [FGP+18], particularly allowing to incorporate unintentional physical
defaults as part of the adversarial model.

Automated Tools for Formal Verification. Through the ever increasing integration
of modern circuits and systems, complexity of hardware designs and implementations
grows further. In a sense, this continuous progress and increasing complexity of hardware
structures limits manual verification of masked circuits mostly to atomic parts and minor
components only, often considered as masked gadgets in recent literature. To this end,
the development of automated tools assisting designers in formal verification of masked
circuits is a natural and long overdue step.

Set within the context of automated formal verification, maskVerif [BBD+15, BBD+16,
BBC+19] is the first proposal addressing this direction of research. Originally, maskVerif
was designed to verify d-probing security for ideal circuits in the presence of transitional
leakage, but later versions of the tool have been extended to cover d-probing security
and security notions for composability, i.e., Non-Interference (NI) [BBD+15] and Strong
Non-Interference (SNI) [BBD+16], in the presence of glitches, however, still considering
transitions for ideal circuits only. While maskVerif pursuits a language-based formal
verification approach, Rebecca [BGI+18] and Coco [GHP+21] rely on Fourier coefficient

1In an ideal circuit, it is supposed that the gates have no delay to propagate the input changes to the
output, hence no glitches.



N. Müller, D. Knichel, P. Sasdrich, A. Moradi 3

estimation to automatically verify security of masked circuits. Even though Rebecca
was the first tool to explicitly consider glitches as physical defaults, it is still limited
to verification of d-probing security only, without supporting verification of additional
composability notions (the same holds for Coco, extending Rebecca to verification of
masked software implementations on CPUs). Only recently, SILVER [KSM20] has been
presented, allowing to verify pure d-probing security and all recent security notions for
composability (NI, SNI, and PINI [CS20]) in the presence of glitches while using an exact
verification approach based on Reduced Ordered Binary Decision Diagrams (ROBDDs),
avoiding false negatives (in contrast to maskVerif which relies on an optimistic approach).

(In-)complete Modeling of Physical Defaults. Comparing these existing approaches
and tools for formal verification of masked hardware circuits, what becomes immediately
apparent is the fact that all tools only consider glitches as undesired physical defaults while
neglecting information leakage due to transitions. In a sense, even though transitional
leakage is well-known to cause security degradation [CGP+12, BGG+14, CS21], only
maskVerif implements a rudimentary verification under such conditions, however, focusing
on ideal logic circuits only, hence, neglecting glitches as further source of unintentional
security degradation. As a consequence, none of the existing tools supports a complete
modeling of unintentional physical defaults occurring in hardware, i.e., glitches and
transitions, for the security verification of masked circuits. Even worse, under certain
circumstances, all tools may lead to false positives, i.e., reporting a hardware design secure
in the presence of glitches, while the presence of transition leakage actually breaks the
security of the masking scheme.

Our Contributions. In this work, we translate the transition-related findings of [FGP+18]
into an algorithmic evaluation approach well suited for its integration into leakage ver-
ification tools. The result is a novel probe-extension procedure allowing us to model
information leakage due to physical effects originating in combinational and memory
recombinations, i.e., glitches and transitions. In a next step, we extend the state-of-the-
art leakage verification framework SILVER to assess the security of masked hardware
circuits considering glitches and transitions simultaneously. For this, we further extend
the capabilities of SILVER to process and analyze iterative digital logic circuits, i.e.,
digital logic that processes data in a sequential fashion. Eventually, demonstrating the
power of our extended model and verification framework as well as the practical relevance
of accurately modeling glitches and transitions during security verification, we analyze
different iterative 8-bit S-box constructions, proposed by Boss et al. [BGG+16], and report
information leakage due to transitions, both in formal security verification as well as in
experimental Side-Channel Analysis (SCA) evaluations. In a second set of case studies, we
deal with iterative circuits, while Hardware Private Circuit (HPC) gadgets are integrated.
In contrast to the original version of SILVER, we are able to evaluate such circuits made by
Output-Probe-Isolating Non-Interference (O-PINI) secure gadgets as presented in [CS21].
Thanks to our extended version of SILVER, while confirming the issues reported and
claims made in [CS21], we provide other insights through theoretical and experimental
analyses when HPC gadgets are processed iteratively.

2 Background
2.1 Notations
We denote Boolean variables x ∈ F2 by lower case letters and vectors of multiple Boolean
variables X ∈ Fn

2 by upper case letters. To denote single elements of a vector X ∈ Fn
2 we

use subscripts. Hence, xi ∈ F2 denotes the element at position i of X. Moreover, we use
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subscripts and curly brackets to denote a primary input at a specific point in time. For
example, x{i} is forwarded to a circuit in clock cycle i. Further, we denote shares of a
variable with superscripts. Hence, Xi ∈ Fn

2 denotes share i of the unshared variable X.
To formalize the probing model, we use upper case bold letters to denote a set of probes,
e.g., P while we apply lower case bold letters to denote a single probe p ∈ P. Again, we
denote the ith probe pi ∈ P of a set with subscripts. For Boolean functions f and vectorial
Boolean functions F we use sans-serif fonts.

2.2 d-Probing Model
In the standard d-probing model, originally introduced in [ISW03], an adversary is granted
the ability to probe up to d wires in an ideal circuit. This means, every probe is instanta-
neous and independent of all other probes while providing access to the exact, noise-free,
and stable signal of a wire upon invocation of the circuit, i.e., for specific input assignments
and states of memory elements. Following this model, a circuit provides dth-order probing
security, if and only if an adversary is not able to learn anything about the secret, i.e.,
the joint distribution over observations made by up to d probes is independent of the
distribution of any secret processed by the circuit.

By introducing the robust probing model in [FGP+18], Faust et al. extended the
standard probing model in order to sufficiently capture information leakage originating
from physical defaults occurring in physical logic circuits and hardware implementations.
More precisely, the work covers combinational recombinations (glitches), memory recombi-
nations (transitions), and routing recombinations (couplings), aiming to accurately cover
all phenomenons relevant to side-channel leakage in hardware. For each considered physical
default, a probe extension was introduced to increase the number of observed values within
a circuit according to the considered physical default.

Glitch-Extended Probes. Glitches are unintentional and undesired signal transitions due
to different delay paths and switching delays within a combinational circuit. In order to
model such a behavior within the framework of the robust d-probing adversarial model,
any glitch-extended probe allows an adversary to learn all stable inputs (and hence all
possible combinations) flowing into the computation of the probed wire. As such, assuming
a worst-case scenario, a single glitch-extended probe on a combinational circuit is then
substituted by all relevant (standard) probes on the outputs of the last register stage or
on primary inputs.

Transition-Extended Probes. Transitions are unintentional and undesired recombinations
of memory contents due to consecutive invocations (e.g., clock cycles) of a circuit. In order
to model this behavior within the context of the robust d-probing adversarial model, each
transition-extended probe, placed on a memory element, is substituted by two (standard)
probes, one on the memory input and one on the memory output, effectively doubling the
number of adversarial probes.

Coupling-Extended Probes. Couplings are unintentional and undesired recombinations
of values carried on neighboring wires. In order to model such a behavior in the robust d-
probing adversarial model, each coupling-extended probe is replaced by the set of (standard)
probes observing the set of neighboring wires.

(g, t, c)-Extended Probes. We apply the notation proposed in [FGP+18], denoting a
(g, t, c)-extended probe as a glitch-extended (if g = 1), transition-extended (if t = 1), and
coupling-extended (if c = 1) probe within the robust d-probing adversarial model. More
specifically, throughout the given work, we will focus on (g, t, 0)-extended probes, as we
intend to analyze circuits on a gate-level for which layout and routing information usually
is not available and coupling cannot be modeled with adequate precision.
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2.3 Boolean Masking
Following the approach of secret sharing, Boolean masking splits a secret X ∈ Fn

2 into s
independently and uniformly distributed shares Xi, 0 ≤ i < s, such that the sum over

all these shares equals X, i.e., X =
s−1⊕
i=0

Xi. Known as uniform sharing, this is commonly

achieved by drawing Xi uniformly and at random from Fn
2 for all 0 ≤ i < s − 1 and

computing the remaining share as Xs−1 = X ⊕
s−2⊕
i=0

Xi, transforming the unshared secret

X ∈ Fn
2 into its shared representation X ′ =

(
Xi
)

0≤i<s
∈ Fn×s

2 . Naturally, this approach
requires splitting any secret in at least d + 1 shares to achieve security against an adversary
that is able to probe up to d wires in a circuit, i.e., to achieve d-probing security.

2.4 Threshold Implementation
Threshold Implementations (TIs) have been introduced and developed as a way to re-
alize masked circuits and to avoid leakage in hardware implementations caused due to
glitches [Bil15, CBR+15, BGN+14, NRR06, NRS08]. The number of input (sin) and
output sharings (sout) necessary to realize a dth-order TI of a given Boolean function
F : Fn

2 7→ Fm
2 with algebraic degree t is restricted by sin ≥ t× d + 1 and sout ≥

(
sin

t

)
where

FTI : Fn×sin
2 7→ Fm×sout

2 denotes the resulting TI which can be denoted as a set of sout

component functions Fi≤sout

TI : Fn×sin
2 7→ Fm

2 . A secure dth-order TI further should fulfill
the following properties:

Correctness. Let X ′ ∈ Fn×sin
2 be a valid Boolean masking of X ∈ Fn

2 . Then Y ′ =
FTI(X ′) ∈ Fm×sout

2 is a valid Boolean masking of Y = F(X) ∈ Fm
2 .

Non-Completeness. Any combination of up to d component functions Fi
TI of FTI must

be independent of at least one input share for every secret. Intuitively, when solitary
considering a circuit fulfilling non-completeness, an adversary in the d-probing model will
not learn anything about a secret X, as non-completeness guarantees that any observation
made by up to d probes will be independent of at least one circuit share and due to the
uniformity property of Boolean masking, these circuit shares will hence be independent of
the secret.

Uniformity. When grouped corresponding to their unshared input value X, each valid
output sharing Y ′ of Y = F(X) within this group has to occur p times, where p is constant
over all X and Y ′, while each invalid sharing does not occur at all. This guarantees that
Y ′ always is a uniform sharing of Y when given as input to a subsequent circuit.

2.5 Trivially Composable Gadgets
Finding secure, masked circuits for high security orders and large functions has proven to
be a hard task. For this, a wide variety of composability notions have been established,
aiming to define properties of masked circuits that are sufficient to guarantee security in
the d-probing model when combined to a larger design. This enables the construction of
small sub-circuits (typically realizing simple two-input gates for AND and XOR) that lead
to d-probing secure circuits when combined and interconnected. In recent literature, these
composable, atomic sub-circuits are commonly referred to as gadgets.

In the course of this direction of research, Non-Interference (NI) and Strong Non-
Interference (SNI) [BBD+15, BBD+16] were introduced first, where SNI remedied compos-
ability flaws discovered for NI by further restricting propagation [CS20] of probes placed on
output wires of a gadget. As the scope of SNI was initially limited to single-output gadgets,
Cassiers et al. [CS20] extended this notion to capture multiple-output gadgets as well, but
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in the same work, they introduced the notion of Probe-Isolating Non-Interference (PINI)
as a way to further reduce overhead requirements of composable gadgets and allowing
trivial implementation of linear functions.

Probe-Isolating Non-Interference. Following the principles of Domain Oriented Masking
(DOM) [GMK17], share domains were introduced for PINI [CS20] and output probes are
restricted to propagate within their own share domain while internal probes are limited
to propagate into a single, but arbitrary, domain. This allows trivial implementation
of linear functions, i.e., their share-wise application, while enabling trivial composition
of gadgets fulfilling the notion of PINI by simply interconnecting different input- and
output-shares with respect to their share domain, i.e., not mixing share domains through
interconnections.

Output-Probe-Isolating Non-Interferences. Recently, in order to model and achieve
trivial composition under transitions, the notion of O-PINI was introduced in [CS21], as
an extension to the original definition of PINI, aiming to solve issues that may occur when
there exist a feedback loop in the design, e.g., one input of a gadget depends on an output
of itself. In order to model this, at first, it is determined in which input share domains
the original probes propagate, before output probes are added (if they do not already
exist) to all these domains. The gadgets must then be PINI with respect to the new set of
probes in its original definition. This extension is motivated by the fact that adding an
internal probe placed on a gadget allows an additional – but arbitrary – domain to be in
the set of input shares resulting from propagation. Now, if there is a feedback loop in the
design and an output of the gadget is input to itself, these input shares will propagate
into the previous iteration, which can be effectively modeled by putting another probe on
the corresponding output domain, possibly reducing the security order. For example, as
presented in [CS21], Figure 1 visualizes why HPC2 is not O-PINI when initialized for the
second security order. For three input shares, we consider p0 and p1 placed on the gadget
internals x1 r01 propagating into share domain 1 (due to x1) and x2 r21 propagating into
share domain 2 (due to x2). Since there exists a feedback loop from its outputs to the
gadget’s inputs, p0 and p1 would further propagate into the outputs belonging to share
domain 1 and 2, which is similar to placing additional output probes p6 and p7. Now,
given {p0, p1, p6, p7}, i.e., two output probes placed on domain 1 and domain 2 and two
internal probes, PINI only guarantees that in this case the propagation is limited to input
share domain 1 and 2 (due to p6 and p7) and at most two other, domains (due to the
internal probes) which may potentially include share domain 0. In summary, {p0, p1}
may now propagate into three share domains 0, 1, and 2, rendering the design insecure.

HPC2
y0

y1
y2

R

x0 0
x1

x2 z0
z1

z2

1

s
p0

p1

p2

p3

p4

p5

p6

p7

Figure 1: Iterative HPC2 gadget.

By adding output probes corresponding to the input share domains resulting from
propagation and still guaranteeing that the original number of input domains, in which the
new set of probes propagates into, does not increase, O-PINI enables trivial composition
of iterative designs in the presence of transitions.
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HPC Gadgets. In [CGLS21], Cassiers et al. introduced novel gadget constructions called
Hardware Private Circuits (HPCs). This included HPC2, a gadget realizing a 2-input AND
gate and offering trivial composability under the notion of PINI in the glitch-extended
probing model for arbitrary security orders. This allows trivial construction of secure
circuits by simply substituting AND gates with its shared representation, i.e., HPC gadgets.
The security and composability guarantees provided by these gadgets are in conformity
with the notion of PINI in the presence of only glitches, excluding transitions. As a refined
notion which is able to handle transitions, O-PINI was introduced in [CS21], and at the
same time HPC2 was further adapted to be in conformity with it an hence be trivially
composable under transitions combined with glitches.

2.6 Formal Verification
In order to verify the security and composability of a design in the d-probing model, a
wide variety of tools have been proposed which differ in the their abstraction and accu-
racy levels [BGI+18, BBC+19, KSM20, BDM+20, BBD+16, BGR18, BBD+15, CGLS21].
However, all these tools offer a valuable assistance in finding provable secure masking
schemes and enable a designer to catch flaws in an early stage of the design process.

SILVER. In [KSM20], Knichel et al. introduced SILVER, a verification tool that utilizes
a methodology based on Binary Decision Diagrams (BDDs) for checking statistical inde-
pendence between observations made by (glitch-extended) probes and secret values or
set of shares, effectively enabling a verification of all common security and composability
notions (including PINI) in the standard and glitch-extended robust d-probing model. As
SILVER currently is the only publicly-available2 tool supporting the notion of PINI and is
free of false negatives, we opted to integrate our results into its verification framework.
Fortunately, following the concepts outlined Section 2.2, extending the probes with respect
to physical defaults is a simple pre-processing step, possibly increasing the number of
(standard) probes which have to be considered. This means, the core of SILVER, i.e., the
check for statistical independence utilizing BDDs, remains unchanged regardless of any
probe extension (which is already demonstrated for glitch-extended probes in the current
version of the tool).

Limitations. As SILVER constructs BDDs for representing Boolean functions, the verifi-
cation run time mainly depends on the complexity of the underlying Boolean functions,
in particular, the number of product terms in the disjunctive normal form of the cir-
cuit [KSM20]. Therefore, SILVER is applicable to small circuits like gadgets or single
S-Boxes, but not to a full cipher design. Moreover, the complexity of constructing all
relevant probe combinations grows exponentially with the security order, and each com-
bination itself encompasses a larger set of random variables. Consequently, higher-order
leakage verification with SILVER is only possible for small circuits. Further, due to its
nature, the construction of BDDs for a circuit containing a loop is not possible. Hence,
SILVER is not able to handle such circuits.

3 Transitional Leakage
As discussed in Section 2.2, the (g, t, c)-robust d-probing security model formalizes models
for capturing three different type of physical defaults (glitches, transitions, and couplings).
In particular, modeling of any considered default [FGP+18] or even a combination of
multiple defaults relies on extending a d-set of probes on intermediate values according to
the corresponding extension scheme.

2https://github.com/Chair-for-Security-Engineering/SILVER
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Figure 2: Iterative design of F with static primary inputs.

Currently, verifications are mostly performed for the widely used specification of
(1, 0, 0)-robust d-probing, i.e., a d-set, generated by glitch-extended probes, is used to take
combinational recombinations into account. However, to further allow the verification given
the combined occurrence of glitches and transitions, we present an automated procedure
for the combination of glitch-extended and transition-extended probes. For this, the final
set of probes can then be used for verification within the (1, 1, 0)-robust d-probing model
as part of security verification tools such as SILVER [KSM20].

For the sake of clarity, we start this section by presenting two examples and explain
how the expansion of probes is performed when (1) the primary inputs are stable and
(2) they change during the evaluation of the circuit. As discussed in [CS21], leakages due to
transitions often lead to problems if the same physical instance of a function F is evaluated
multiple times by different but not necessarily independent inputs. This holds for the
evaluation of an iterative circuit which is the underlying architecture of our experiments.
For this, we first define the structure of an iterative circuit.

Definition 1 (Iterative Circuit). An iterative circuit implements an iteration function
F : Fn

2 → Fm
2 , U 7→ Y driven by a multiplexer MUX : Fn

2 × Fn
2 × F2 → Fn

2 , (X, V, s) 7→ U as

U =
{

X if s = 0,
V otherwise ,

while X denotes the primary input and Y the primary output. Further, V ⊆ Y stands for
the feedback meaning that it is taken from the output of F. One execution of the circuit
means iterating F k times, for a constant k ≥ 2. Depending on s, the MUX selects either
the primary input X or the feedback V to be given to F. In a typical case, X is selected
for the first iteration while a part of the output of F is given to its input for the following
iterations.

Given this definition, we consider an iterative circuit for the examples given below,
which realize an exemplary function F = F1 ◦F0 using two combinational circuits F0 and F1
whose outputs are directly stored in registers. Hence, each iteration of F takes two clock
cycles. Further, the circuit receives three shares of an n-bit primary input (X0, X1, X2),
Xi ∈ Fn

2 , while the shared output of the function is also fed back as the new input, selected
by a multiplexer. After k iterations, the circuit output is taken as the (shared) result of
such an execution (Y 0, Y 1, Y 2), Y i ∈ Fn

2 . Further, in order to ensure the correctness of
the operation, the select signal of the multiplexer s = 0 if k = 0 (first iteration) while s = 1
for any subsequent iteration k 6= 0. Figure 2 and Figure 3 depict such an iterative circuit.

Example 1 (Static Primary Inputs). For the first example, we suppose that all primary
inputs remain stable throughout the entire execution. In this sense, the primary inputs
do not change during each of the k iterations. Now, let us consider a set of two probes
P = {p0, p1} placed on an output of F0 and F1 respectively, as shown in Figure 2. In the
following, we intend to extend the set P to cover both glitches and transitions.
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Step 1: Glitch-Extension. We start to model glitches for all p ∈ P by adding the relevant
probes, according to Section 2.2, into Pg, i.e., the set of probes after glitch-extension. As
p0 (resp. p1) is placed on one output share of F0 (resp. F1), we need to add probes on all
inputs of the combinational logic that contribute to the computation of p0 (resp. p1). As
an exemplary case, we assume the following extensions.

p1
(1,0,0)−−−−→ {p2, p3}, p0

(1,0,0)−−−−→ {p4, p5, p6, p7}, Pg = {p2, p3, p4, p5, p6, p7}

Supposing that p0 is extended to two input shares of F0, we need to examine all
corresponding inputs of the multiplexer. More precisely, if s switches from 0 to 1, the
multiplexer output replaces the primary inputs with the feedback signals. Hence, any
glitches, propagated to the multiplexer outputs, depend on the primary inputs as well as
the feedback signals, i.e., the outputs of the previously accomplished iteration. We model
this effect by adding probes on the corresponding feedback signals to Pg, i.e., adding p4
and p5, and on the corresponding primary inputs, i.e., p6 and p7.

Step 2: Transition-Extension. Second, we now extend the probes in Pg to take transitions
into account. Note, that it is also possible to first extend the probes based on transitions
and then continue with the extension scheme for glitches. This eventually will result in
the same d-set of probes that can be evaluated for statistical independence.

In a sense, according to [FGP+18], transitions combine two values that are consecutively
seen on the same register. Modeling the overwriting effect for registers allows the extension
of a probe p ∈ Pg placed on a register output by another probe p′ on the corresponding
register input. Consequently, our approach analyzes Pg and extends all contained probes
after the glitch-extension that are already at the register outputs (or primary inputs). For
instance, as p2 (resp. p3) is placed on an output of the first register stage, it holds that:

p2
(0,1,0)−−−−→ {p2, p′2}, p3

(0,1,0)−−−−→ {p3, p′3}

The same extensions must be applied on p4 and p5 placed on outputs of the second register
stage. Hence, it holds that:

p4
(0,1,0)−−−−→ {p4, p′4}, p5

(0,1,0)−−−−→ {p5, p′5},
Pg,t = {p2, p′2, p3, p′3, p4, p′4, p5, p′5, p6, p7}.

As a consequence, {p′2, p′3, p′4, p′5} denote the transition-extension probes on the
register inputs. Note that all register inputs are stable when stored. Hence, no further
glitch-extension on {p′2, p′3, p′4, p′5} is necessary and this step of our algorithm terminates
here. Ultimately, Pg,t now covers glitches and transitions, and its statistical independence
to the secrets (i.e., the unmasked primary input X = (X0 ⊕X1 ⊕X2) can be examined
implying the evaluation of two probes {p0, p1} under a (1, 1, 0)-robust 2-probing model.

3.1 Changes on Primary Inputs
In the previous example, we mainly followed the concepts and assumptions provided
in [CS21], particularly assuming that all primary inputs remain stable and static for the
entire execution of the circuit through multiple iterations. In one of the case studies, which
we present in Section 5, we demonstrate that such an assumption in fact can be the source
of security flaws. For this, in the following example, we allow transitions on primary inputs
such that each primary input can change at every clock cycle.

Example 2 (Dynamic Primary Inputs). In order to deal with inputs being changed
at every clock cycle, we introduce the notion of input sequences, denoting input values
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Figure 3: Iterative design of F with transitional primary inputs.

given per clock cycle. Hence, with such an implicit notion of time, we define the primary
input X at cycle l as X{l}. We further consider the same iterative circuit as shown in
Example 1, but, for the sake of simplicity, we limit the set of probes to a single probe
P = {p0} as visualized in Figure 3. Again, we start with extending the probes based
on glitches. Following the same procedure as in Example 1, p0 is extended such that
p0

(1,0,0)−−−−→ {p4, p5, p6, p7}. Now, the fundamental difference to Example 1 is that we
have different input values consecutively given in every clock cycle. As a consequence,
transitions not only occur between input and output of registers, but may also occur due
to the consecutive primary input values. Hence, modeling the transitions by extending
the probes to cover registers, i.e., {p′4, p′5}, is not sufficient. For this, let us examine the
probes on the primary inputs {p6, p7}. Generally, if we are in clock cycle l, probe p6
observes a bit of X0

{l} and p7 a bit of X2
{l}. Obviously, such an extension does not consider

the fact that input values in cycle l have been replaced by the associated values of cycle
l + 1, i.e., the corresponding bits of X0

{l+1} and X2
{l+1}. Therefore, we need to include

two additional standard probes. Since the feedback signals and primary inputs have two
clock cycles distance (see Figure 3), if we are in the second clock cycle (l = 1), the first
iteration of the circuit k = 1 is accomplished, the feedback signals traverse the output
of F1 being stored in the register, and the select signal of the multiplexer switches. This
means that p4 and p5 observe the feedback value, and p6 and p7 the corresponding bits
of X0

{1} and X2
{1}. Due to the primary input transitions, p6 and p7 are also extended

to p′6 and p′7 observing the corresponding bits of X0
{2} and X2

{2}. As a consequence, the
resulting extensions can be modeled as:

p4
(0,1,0)−−−−→ {p4, p′4}, p5

(0,1,0)−−−−→ {p5, p′5}, p6
(0,1,0)−−−−→ {p6, p′6}, p7

(0,1,0)−−−−→ {p7, p′7}
Pg,t{2} = {p4, p′4, p5, p′5, p6, p′6, p7, p′7}.

Note that in the former cycles l < 1, the feedback signal does not yet carry the output of
F1 depending on the given primary inputs. Hence, the extension of the probes is slightly
different. For example, in the first clock cycle (l = 0), p0 extends to

p0
(1,1,0)−−−−→ Pg,t{1} = {p6, p′6, p7, p′7},

and the following primary inputs are probed:

p6
probe←−−− X0

{0}, p′6
probe←−−− X0

{1}, p7
probe←−−− X2

{0}, p′7
probe←−−− X2

{1}

3.2 Modeling Glitch- and Transition-Extended Probes
After giving a first intuition on the modeling and generation of (1, 1, 0)-extended probes in
the d-probing model using the two above examples, we now formally define the algorithmic
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solution for the identified problems and challenges. In addition, we show how to integrate
these algorithmic concepts into state-of-the-art formal verification tools, such as SILVER3.

Circuit Model. We model a circuit as Directed Acyclic Graph (DAG) that represents
all gates as nodes and all wires as edges. Hence, as the first step, such a graph should
be made for the circuit under evaluation. For circuits without loops, this can be trivially
done, knowing the netlist of the circuit.4 However, as shown above, we deal with iterative
circuits, which contain loops. To handle this, and extract a loop-free graph5, we remove
all loops and store a list of transitions F indicating the feedback signals. Each list entry
f ∈ F formalizes a single feedback loop together with its corresponding input multiplexer.
We denote each f ∈ F as a triple f = (i, j, l), where i ∈ I denotes a primary input
overwritten by a feedback signal j (i.e. both inputs of the multiplexer) during clock cycle
l. With F , we keep all information regarding loops while structurally removing them
from the circuit. F itself is created by analyzing all initial multiplexers MUX(i, j, s) that
select (depending on the selection signal s) if a primary input i or a feedback signal j is
given to the circuit. The corresponding clock cycle can then be found by analyzing the
latency of the feedback signal. As j is computed during one iteration, l corresponds to
the number of clock cycles per iteration. For example, if we consider Figure 2, we analyze
and remove three multiplexers MUX0(X0, Y 0, s), MUX1(X1, Y 1, s), and MUX2(X2, Y 2, s).
The list of transitions is F = {(X0, Y 0, 2), (X1, Y 1, 2), (X2, Y 2, 2)} and I = {X0, X1, X2}
which are given to F1. Based on the given circuit model, we formalize the glitch and
transition extension scheme as shown in Algorithm 1. For better understanding, we define
the following functions:

gate(w): returns the source gate of wire w.
type(g): returns reg if gate g is a register.
inputs(g): returns a set containing all input wires of gate g.
dfs(w): performs a depth-first search starting at wire w but stops going deeper

if a found wire w′ carries a synchronized element (either register
output or primary input). It returns all found w′.

Algorithm 1 receives a d-set of probes together with a manually created list of all primary
inputs I and a list of all transitions based on feedback signals F for all evaluated points in
time. The output of Algorithm 1 is the set of probes after glitch and transition extension.

Modeling Glitches. For any p ∈ P, we model glitches by placing probes on all syn-
chronized elements (either register outputs or primary inputs) that contribute to the
computation of the value that p observes. We realize the extension by a depth-first
search starting at p as the root node. The search itself is performed backwards and stops
evaluating a branch if a synchronized element is found. Only for the synchronized element,
we add a probe on its output wire. This can be seen in Lines 6-8 of Algorithm 1. Since
the circuit became loop-free, for any probe placed on an primary input, we check if the
primary input is input of an initial multiplexer during the evaluated clock cycle. This is
done by searching the tuple with the primary input and the evaluation cycle in F . If the
tuple exists, we place probes on both multiplexer inputs. Note that the glitches related to
both primary input and feedback occur during an individual clock cycle and on a specific
input given during this clock cycle. Hence, we create one set of probes per clock cycle
containing its individual probes. This can be seen in Lines 10-18 of Algorithm 1.

3We opted to integrate our solution into SILVER as it allows to avoid false negatives and provides
extensive support for additional composability notions.

4In digital circuit design, a netlist is a description of the connectivity of a circuit. In its simplest form,
a netlist consists of a list of the cells in a circuit and a list of the nodes they are connected to.

5It is essential for some verification tools, e.g., SILVER, as evaluating, e.g., constructing BDDs of a
circuit with loop, becomes impossible.
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Algorithm 1 Glitch and transition extension of a probing set
Input: P . Probing set P
Input: I,F . List of primary inputs I, list of feedback signals F
Input: n . Total latency of one interation
Output: Pg,t{0}, Pg,t{1}, . . . , Pg,t{n−1} . Final probing sets for all clock cycles
1:
2: Pg ← ∅ . Initialize set of probes
3: for ∀l ∈ {0, . . . , n− 1} do
4: R{l} ← ∅, S{l} ← ∅, Pg,t{l} ← ∅ . Initialize set of probes for cycle l

5: end for

6: for all p ∈ P do . Perform glitch-extension
7: Pg ← Pg ∪ dfs(p)
8: end for

9: for ∀l ∈ {0, . . . , n− 1} do
10: for all p ∈ Pg do . Perform glitch-extension on feedbacks
11: x← p
12: if ∃(x, y, l) ∈ F then . Check if x exist in F
13: p1

probe←−−− x, p2
probe←−−− y

14: R{l} ← R{l} ∪ {dfs(p1), dfs(p2)}
15: else
16: R{l} ← R{l} ∪ {p}
17: end if
18: end for

19: for all r ∈ R{l} do . Perform transition-extension on registers
20: if type(r) = reg then . Search all probes on register outputs
21: {x} ← inputs(r)
22: if ∃(x, y, l) ∈ F then
23: r′ probe←−−− {y}
24: else
25: r′ probe←−−− {x}
26: end if
27: S{l} ← S{l} ∪ {r, r′}
28: else
29: S{l} ← S{l} ∪ {r}
30: end if
31: end for

32: for all s ∈ S{l} do . Perform transition-extension on primary inputs
33: if l > 0 ∧ s = x{l} ∈ I then
34: s′ probe←−−− x{l−1} . Add the primary input of the previous clock cycle
35: Pg,t{l} ← Pg,t{l} ∪ {s, s′}
36: else
37: Pg,t{l} ← Pg,t{l} ∪ {s}
38: end if
39: end for
40: end for

Modeling Transitions. For any probe p ∈ Pg placed on a register output, we model
transitions on the corresponding register by placing a standard probe on the register input.
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Figure 4: The underlying constructions of the 8-bit S-boxes introduced in [BGG+17].

Technically, we place the probe on the wire that drives the register. This can be seen in
Lines 19-31 of Algorithm 1. For any probe placed on a primary input x{l} we place an
additional standard probe on x{l−1}. This step must be repeated for all evaluated clock
cycles. This can be seen in Lines 32-39 of Algorithm 1.

3.3 Integration into SILVER
Since manual verification is time-consuming and hardly feasible for larger constructions,
we opted to automate our approach and integrated our probe-extension algorithm into the
already existing leakage verification tool SILVER [KSM20]. Given that SILVER operates
on an annotated gate-level netlist, we extended the initial parsing and pre-processing
procedures to support the conversion of an iterative circuit to a loop-free graph as well as
the generation of the list of transitions F . Further, transitions due to sequences of primary
inputs are indicated through an extended annotation scheme in the original gate-level
netlist.

In terms of analysis and verification, since SILVER already implements the security
verification within the (1, 0, 0)-robust probing model, we leave the already provided glitch-
extension scheme unchanged but only integrate our novel transition-extension scheme
accordingly, as shown above. Eventually, the final statistical independence check is now
performed on the newly created set of probes Pg,t{l} instead of P or Pg, as before. As a
result, if SILVER detects a statistical dependency for any Pg,t{l}, i.e., the set of probes
during cycle l, it will report information leakage accordingly.

4 Case Study 1: Strong 8-bit S-boxes
In order to apply the above-presented leakage evaluation procedure based on iterative
circuits existing in literature, we consider the strong 8-bit S-box designs originally proposed
at CHES 2016 [BGG+16] and later extended in [BGG+17]. During the following case
study, we evaluate all S-box designs with our extended version of SILVER and compare
the outcome with practical results based on physical measurements.

S-Box Architecture. The core idea of [BGG+17] is to construct a set of 8-bit S-boxes
using smaller 4-bit S-boxes and some linear operations in known constructions, namely a
Feistel network, a MISTY construction, or a Substitution Permutation Network (SPN).
Figure 4 presents all such constructions, where the 4-bit S-boxes are denoted by Si and a
linear layer by L. These constructions should be iterated k times with k ≥ 2 to build a
cryptographically strong 8-bit S-box. This allowed the authors to build a relatively small
masked circuit (TI) trivially realizing one round of such constructions (denoted by SB) and
iterate it to achieve an area-efficient masked implementation of the 8-bit S-box. Figure 5
shows such an iterative design, which is similar to what the authors proposed in [BGG+17,
Fig. 3(c)]. The authors have mainly constructed first-order secure TIs of their designs using
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Figure 5: Iterative S-box architecture.

td + 1 = 3 shares, which satisfy (1, 0, 0)-robust 1-probing security. As shown in Figure 5,
all input shares of SB are synchronized by a single register stage. Consequently, each
iteration of SB is performed within a single clock cycle. In total, the authors introduced a
set of eight different S-boxes SB1 to SB8. We give the basic properties of each S-box in
Table 1, where Perm. refers to Figure 4(c) with linear layer L being a bit permutation,
and Matrix a matrix multiplication.

We implemented the same circuits receiving three input shares (X0, X1, X2) ∈ F8×3
2

and returning three output shares (Y 0, Y 1, Y 2) ∈ F8×3
2 . The output of the combinational

logic builds the feedback signal and is given as the new input to the circuit if k 6= 0.
This is handled by a multiplexer driven by the select signal s ∈ F2. Additionally, we
have instantiated a share permutation module, denoted by P in the feedback path (see
Figure 5). The purpose of such a module is to permute the shares. Although it has
not been discussed or pointed out in [BGG+17], the output shares of SB should not
necessarily be identically given to its input shares in the successive iteration. We denote
this permutation as a mapping of share indices. For example (0, 1, 2)→ (0, 1, 2) denotes
the identity as all shares are mapped to their original position. Note, however, that each
of the six possible permutations has no impact on the claimed first-order security of this
construction considering the (1, 0, 0)-robust probing model.

Example 3 (Strong 8-bit Iterative S-Boxes). Example 1 and Example 2 indicated that
iterative circuits are prone to transitional leakage. Therefore, using our transition-extended
version of SILVER, we tried to examine all eight different S-box constructions. We first
examined the combinational function of all such designs by (1, 0, 0)-robust probing model
and verified with SILVER that considering only glitches, the combinational function is
first-order secure and provides a uniform output sharing, i.e., its composition does not
violate security properties. As stated, permuting the shares of the feedback signals should
not affect the security if the probes are only extended due to glitches. This is also trivially
confirmed by SILVER. However, such a permutation may have an effect when transitions
are taken into account. Therefore, we evaluated all eight iterative designs for all six possible
share permutations considering the (1, 1, 0)-robust probing model. The results of such
evaluations are summarized in Table 1. Beside the result of first-order evaluations, we give
the corresponding number of evaluated probe combinations and the execution time next
to each evaluation result.

It can be seen that considering the identity (0, 1, 2) → (0, 1, 2), i.e., the original
construction in [BGG+17], none of the constructed iterative S-boxes is secure when the
probes are extended based on glitches and transitions. Interestingly, our extended version
of SILVER reports no leakage for three designs SB1, SB4, and SB5 when feedback shares
are permuted as (0, 1, 2) → (1, 2, 0). The same holds for two designs SB1 and SB4 for
permutation (0, 1, 2) → (2, 0, 1). Since these designs belong to different categories, we
believe that it is a coincidence with no dependency on the underlying construction of these
S-boxes. As a consequence, among the iterative designs introduced in [BGG+17] there is
no certain design category combined with a specific permutation of feedback shares which
guarantees the security in presence of glitches and transitions, independent of the employed
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Table 1: First-order evaluation results of all 8-bit S-boxes reported by SILVER under
the (1, 1, 0)-robust probing model, including the number of probe combinations and the
execution time on a Windows 10 server with 96 cores and 256GB RAM.

S-Box Type Iter. Area Share Permutation P: (0, 1, 2) →
# GE (0, 1, 2) (0, 2, 1) (1, 0, 2) (1, 2, 0) (2, 0, 1) (2, 1, 0)

SB1 Perm. 8 241 73
2.2 s 719

9.9 s 73
2.1 s 3108

2.2 min 3116
2.2 min 711

10.3 s

SB2 Matrix 2 446 71
1.5 min 71

1.5 min 71
1.5 min 72

10.7 min 71
1.3 min 72

10.2 min

SB3 Matrix 4 458 71
3.6 min 71

1.5 min 71
1.4 min 71

19.8 min 71
2.0 h 71

20.5 min

SB4 Feistel 5 363 75
1.2 s 721

22.8 min 75
1.5 s 352

1.2 h 352
1.5 h 713

21.8 min

SB5 Perm. 9 263 73
3.7 s 73

3.6 s 73
3.8 s 356

6.9 min 73
3.4 s 711

13.3 s

SB6 Matrix 4 420 71
37.6 s 71

34.5 s 71
37.0 s 71

7.4 min 71
4.6 min 71

7.7 min

SB7 Feistel 4 431 77
6.9 s 77

36.2 s 77
1.9 s 77

33.1 s 77
32.3 s 77

33.7 s

SB8 Feistel 8 332 78
2.7 s 78

1.1 min 78
2.7 s 78

1.1 min 78
2.3 min 78

1.1 min
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(f) (0, 1, 2) → (2, 1, 0)

Figure 6: Iterative SB1, first-order fixed vs. random t-test results over time, using 100
million traces.

components (i.e., 4-bit S-boxes, linear layers, round function of the Feistel network).

4.1 Experimental Analysis
As a sanity check, we examined the leakage of one of the iterative designs using real
measurements. To this end, we have taken the iterative design of SB1 (which is a first-order
TI with 3 shares) and implemented the corresponding circuit on the Spartan-6 target
Field-Programmable Gate Array (FPGA) of a SAKURA-G evaluation board [SAK] and
recorded the dynamic power consumption by means of a digital oscilloscope at a sampling
rate of 625MS/s. During all measurements, the target architecture was being operated
by a 6MHz stable clock source. For the analysis, we applied the common Test Vector
Leakage Assessment (TVLA) [GJJR11] approach on a set containing 100 million traces,
measured while the circuit receives either a fixed or a random 3-share 8-bit input (to the
8-bit S-box). We have examined the same circuit for all six share permutations and limited
our analyses to only first-order t-tests, as the underlying constructions are only supposed
to provide first-order security.

The resulting t-statistics, which are shown in Figure 6 and Figure 7, precisely confirm
our theoretical findings reported by our extended version of SILVER. More specifically, for
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(d) (0, 1, 2) → (1, 2, 0)
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(e) (0, 1, 2) → (2, 0, 1)

� �� �� �� 	� ���
���������
�����106

��

�

�

�

�

��

��

���
��
�

���

���

(f) (0, 1, 2) → (2, 1, 0)

Figure 7: Iterative SB1, first-order fixed vs. random t-test results over number of traces.

all designs that exhibit information leakage according to SILVER, we also observe leakage
in the real measurements. Interestingly, for the original settings (0, 1, 2)→ (0, 1, 2) and
(0, 1, 2) → (0, 2, 1), the t-statistics surpasses the 4.5 threshold by less than five million
traces, while for other insecure cases, many more traces are required to observe a significant
leakage. This experiment indicates and confirms that transitional leakage, which we have
detected by our transition-extended version of SILVER, is not only a purely theoretical
issue but can have a severe practical impact on the security of a design.

5 Case Study 2: HPC Gadgets
As given in Section 2.5, HPC2 gadgets offer trivial composability under the notion of PINI
only in the (1, 0, 0)-robust probing model [CGLS21]. In order to be in conformity with the
refined notion of O-PINI under transitions and glitches, a novel O-PINI2 multiplication
gadget has been proposed in [CS21]. In contrast to the original HPC2 gadget, such an
extended O-PINI2 gadget requires d additional fresh random bits and an extra register
stage, with d referring to the security order of the gadget, i.e., operating on d + 1 shares of
each input.

In the course of this case study, we first verify the results from [CS21] with our extension
of SILVER and confirm the reported issues related to transitional leakage when iterating
PINI-secure gadgets as described. Moreover, we verify the (1, 1, 0)-robust probing security
of an iterative design if the considered gadget is in conformity with the O-PINI notion.
Second, we show that the proposed O-PINI security notion is only necessary for a scenario
where the circuit’s loop is made by a single register stage. Eventually, we show how to
avoid transitional leakages even without the application of an O-PINI secure gadget but
solely relying on the length of the circuit’s loop.

Example 4 (Original Design). We first focus on the issues reported in [CS21]. More
precisely, we consider the iterative circuit shown in Figure 8, where input shares x and y
are given to an HPC 2-input multiplication gadget, which is iterated several times while
using the gadget output shares z as new input shares instead of x. Following [CS21], we
instantiated both, an HPC2 and an O-PINI2 gadget as the underlying 2-input multiplication
gadget in Figure 8, and verified both constructions up to the third security order, i.e.,
d ≤ 3, using our extended version of SILVER. As a side note, there is an inherent latency
imbalance in the design of any HPC2 and O-PINI2 gadget, i.e., the required refreshing of
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Figure 8: Iterative circuit for Examples 4 and 5.

Table 2: Leakage verification results of iterated HPC2 and O-PINI2 gadgets under (1,1,0)-
robust probing model, including the number of probe combinations and the execution time
on a Windows 10 server with 96 cores and 256GB RAM.

Gadget Area Random. Security Order d Complexity
[GE] [bits] [expected] [achieved] [# of probes] [run time]

HPC2 104 1 1 0 7 8 0.01 s
HPC2 250 3 2 1 7 51 0.2 s
HPC2 459 6 3 2 7 1 862 53.8min

O-PINI2 142 2 1 1 3 22 0.03 s
O-PINI2 309 5 2 2 3 1 035 2.7min
O-PINI2 539 9 3 3 3 73 226 1.5 d

a single input introduces an additional cycle of latency for this input only. Hence, with
respect to the generation of the output z, the input x has a lower latency compared to the
other input y. Table 2 summarizes our evaluation results.

Our results indeed confirm the issues reported in [CS21], i.e., transitional leakage
decreases the security order by one if the gadget is PINI secure but not O-PINI secure.
Hence, in these cases, d-order security under the (1, 1, 0)-robust probing model is only
satisfied if the gadget is at least (d + 1)-order (1, 0, 0)-robust probing secure. When
evaluating the HPC2 gadgets, we noticed that SILVER detects the leakage in the second
clock cycle, when the feedback z is given as the new input instead of x. We show the
details of this issue for d = 1 in Figure 9(a) which depicts half of the circuit, i.e., the part
of the circuit which generates the first output share z0.

For this example, SILVER identified a single probe P = {p0} indicating first-order
leakage. More precisely, p0 is placed on an AND gate computing r x0 during the second
clock cycle when r is stored in a register. Note that we provided the tool with a sequence
of primary inputs r, i.e., distinct r{i} ∈ F2 in cycle i indicating that the fresh mask is
updated at every clock cycle.

Starting with the glitch-extension scheme, p0 is extended as follows:

p0
(1,0,0)−−−−→ {p1, p2, p3, p4, p5}, Pg = {p1, p2, p3, p4, p5},

where p1 observes the register which stores r and p5 the primary input x0. During the
next clock cycle, x0 is replaced by the feedback signal z0, hence a transition between x0

and z0. This leads to the following glitch-extended and transition-extended set of probes.

p1
(0,1,0)−−−−→ {p1, p′1}, p2

(0,1,0)−−−−→ {p2, p′2}, p3
(0,1,0)−−−−→ {p3, p0}, p4

(0,1,0)−−−−→ {p4, p′4},
Pg,t = {p1, p′1, p2, p′2, p3, p0, p4, p′4, p5}

Now, we consider the output after the first iteration, i.e., z0 = x0y0 ⊕ x0y1 ⊕ r{0}, while
the extended probes {p2, p3, p4} observe

(
x0y0, r{0}x0, x0(y1 ⊕ r{0})

)
. Simultaneously,

p′1 observes the fresh mask at the second clock cycle, i.e., r{1}. Therefore, probe p0
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Figure 9: Single share computation of a first-order HPC2 2-input multiplication gadget.

leads to an observation including
(
r{0}, r{1}, x0, x0y0, r{0}x0, x0(y1 ⊕ r{0})

)
. This trivially

leaks information about y. For an O-PINI2 gadget, z0 would be refreshed with another
mask independent of r and stored in a register, which avoids such a first-order leakage by
extending p0 under the (1,1,0)-robust probing model.

Example 5 (Delayed Feedback). As stated, the latency of x to z is one clock cycle.
Therefore, the feedback is propagated at a point in time when the applied fresh mask is
updated simultaneously. Hence, the transition-extended probes would capture the applied
fresh mask and the feedback signal which is blinded by the same fresh mask, hence an
undesired information leakage. A potential solution is to delay the feedback for (at least)
one additional clock cycle in such a way that, when the transition between the old input x
and the feedback signal z occurs, the fresh masks are updated (at least) one clock cycle
before. We realize this by delaying input x one clock cycle to be synchronized with the
other input y. This is shown in Figure 9(b).

Hence, a single probe p0 would still be extended by glitches to Pg = {p1, p2, p3, p4, p5}.
At the third clock cycle, p5 observes x0 while {p2, p3, p4} observe the result of the first
iteration, i.e.,

(
x0y0, r{0}x0, x0(y1 ⊕ r{0})

)
. At the same clock cycle, p1 observes two

consecutive fresh masks r{1} and r{2}. This obviously does not lead to any leakage as the
result of the first iteration is blinded by r{0} which is not observed by p1. Placing any other
single probe on this circuit does not lead to any first-order leakage under (1, 1, 0)-probing
model. We have confirmed this by evaluating such a circuit (for d ≤ 3) with our extended
version of SILVER.

As a side note, such a synchronization of inputs of the HPC2 gadget would solve the
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issue and at the same time keep its total latency of two clock cycles, in contrast to O-PINI2
multiplication gadget which has a latency of three clock cycles. As a result, if HPC gadgets
are used in an iterative circuit as shown in Figure 8, transitional leakage does not degrade
their security if the sequential loop (involving the feedback signal) consists of at least two
register stages and essentially fresh masks are updated at every clock cycle.

5.1 Experimental Analysis

Similar to the first case study (Section 4), we confirm our theoretical findings by means of an
experimental analysis. We have used the same measurement setup, and implemented both
designs of Example 4 and Example 5 for d = 1, collected 100 million traces recording the
instantaneous power consumption during 5 iterations, and conducted the same evaluation,
i.e., fixed-versus-random t-test.

The results, shown in Figure 10 and Figure 11, are inline with those reported by
SILVER. Most importantly, we do not observe any first-order leakage from the design
used in Example 5, while this is not the case for the design of Example 4. Note that the
leakage detected for Example 4 is slightly above the threshold, i.e., more than 50 million
measurements are required to observe the leakage. By this, we would like to highlight
that with the theory and tools at hand (SILVER), we can detect the security flaws in such
designs, but we cannot acquire any overview on their detectability and/or exploitability in
practice.
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Figure 10: Iterative HPC gadget, first-order fixed v. random t-test results over time, using
100 million traces.
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(b) Delayed Feedback

Figure 11: Iterative HPC gadget, first-order fixed v. random t-test results over number of
traces.
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6 Conclusions
In this work, we present a novel methodology for modeling transition- and glitch-extended
probes, enabling us to integrate the verification of transition-based leakage into SILVER,
an existing software framework for formal verification of masked circuits which before was
limited to perform verification in the (1, 0, 0)-robust d-probing model only, i.e., under the
occurrence of glitches. With the integration of our methodology into SILVER, we enable
designers to now also formally evaluate the security of hardware designs in the presence of
glitches combined with transitions (i.e., in the (1, 1, 0)-robust d-probing model), which is
highly relevant for constructing SCA-resilient iterative hardware designs.

For this, we present fundamental concepts to model and verify transition-based infor-
mation leakage originating from memory recombinations, feedback loops, and transitions
in primary inputs. We further demonstrate the relevance of our model extension by means
of two different case studies. More precisely, the first case study demonstrates the power of
the extended version of SILVER, for the first time enabling the verification and detection
of security flaws in the iterative S-box designs introduced in [BGG+17].

Additionally, our second study confirms the composition flaws of HPC2 multiplication
gadgets, as initially discussed in [CS21], when operated iteratively. In particular, this
also allows us to show that some constructions proposed in [CS21] might be seen over-
conservative with respect to security. Ultimately, for both case studies, we validate and
confirm our findings (i.e., information leakage reported by our extended version of SILVER)
by means of experimental leakage assessments.

While this work covers formal verification of SCA-resilience under glitches combined
with transitions and is publicly available at GitHub6, we should stress that its ability
to cover transitional leakage is limited to a certain form of circuits. More precisely, the
transitions associated to the input sequences are covered as long as the probes are placed
at the combinational circuit receiving such primary inputs. If the probes are places on the
combinational circuits which are not directly fed by the primary inputs, the transitional
leakage originating from the input sequences might not be detected. Further, this tool
does not yet cover any coupling-related leakage. As the detection of this would require
additional routing information, the overall extension scheme cannot be performed on netlist
level anymore. Nevertheless, a complete leakage verification should also take coupling
effects into account. Hence, the automated verification under the (1, 1, 1)-robust d-probing
model is a promising topic for future works.
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Chapter 5

Novel and Securely Composable Hardware
Modules for Masking

In this chapter, we present all peer-reviewed publications accumulated during this
thesis that relate to novel and secuerl composable hardware modules for masking. In
this context, we present two papers published in in the IACR Transactions on Cryp-
tographic Hardware and Embedded Systems (TCHES) and one that was published in
the proceedings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS).
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This work is reproduced here with permission. This work is licensed under a Creative Com-
mons Attribution 4.0 International License. Copyright is held by the authors. The author
of this thesis is also an author of this research paper.

Content. In this work, we present a methodology to transform any unprotected circuit into
a PINI-composable hardware gadget in the first-order glitch-extended robust probing model.
The transformation can simply be performed by means of the Boolean function description.
We present two variants of our gadget construction. GHPC, in its standard variant, allows
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to transform any vectorial Boolean function into a PINI-composable masked circuit which has
a latency of two clock cycles and needs one random bit per coordinate function. With our
low-latency variant, GHPCLL, we can even lower the latency to a single clock cycle while the
randomness requirements are increased to 2n per coordinate function where n is the number of
unshared inputs. Next to presenting formal security arguments for all constructions, we provide
extensive case studies and experimental leakage assessments.

Contribution. The author of this thesis is the principal author of this work. The author of
this thesis likes to thank his co-authors for their contributions to this publication.
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Abstract. With an increasing number of mobile devices and their high accessibility,
protecting the implementation of cryptographic functions in the presence of physical
adversaries has become more relevant than ever. Over the last decade, a lion’s share
of research in this area has been dedicated to developing countermeasures at an
algorithmic level. Here, masking has proven to be a promising approach due to
the possibility of formally proving the implementation’s security solely based on its
algorithmic description by elegantly modeling the circuit behavior. Theoretically
verifying the security of masked circuits becomes more and more challenging with
increasing circuit complexity. This motivated the introduction of security notions
that enable masking of single gates while still guaranteeing the security when the
masked gates are composed. Systematic approaches to generate these masked gates –
commonly referred to as gadgets – were restricted to very simple gates like 2-input
AND gates. Simply substituting such small gates by a secure gadget usually leads to
a large overhead in terms of fresh randomness and additional latency (register stages)
being introduced to the design.
In this work, we address these problems by presenting a generic framework to
construct trivially composable and secure hardware gadgets for arbitrary vectorial
Boolean functions, enabling the transformation of much larger sub-circuits into
gadgets. In particular, we present a design methodology to generate first-order secure
masked gadgets which is well-suited for integration into existing Electronic Design
Automation (EDA) tools for automated hardware masking as only the Boolean
function expression is required. Furthermore, we practically verify our findings by
conducting several case studies and show that our methodology outperforms various
other masking schemes in terms of introduced latency or fresh randomness – especially
for large circuits.
Keywords: Masking, Generic and Composable Hardware Gadgets, Automated Mask-
ing, Side-Channel Analysis

1 Introduction
Even though Side-Channel Analysis (SCA) has been studied extensively by academic and
industrial researchers, secure implementation of strong cryptographic implementations
remains a challenging task. In the wake of the seminal description by Paul Kocher [Koc96],
different approaches for countermeasures against SCA adversaries have been proposed.
Among all candidates, masking, inspired by secret sharing concepts, is fascinating by its
theoretical and sound security foundation [CJRR99] and has been applied manifold until
today [ISW03, Tri03, NRS11, RBN+15, GMK17, GM18]. Unfortunately, not many of
the proposed schemes have survived due to design flaws, inaccurate models, or invalid
assumptions [MMSS19]. As a consequence, this trend of schemes whose assumptions have
been proven invalid only confirms that, to the present day, design and implementation
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of masking schemes is still a mostly manual, complex, and error-prone process, even for
experienced security experts and hardware designers.

Facing such challenges, researchers recently started to focus on development of formal
and accurate models of physical adversaries, hardware platforms, and execution environ-
ments as a mandatory foundation for formal verification and provably-secure schemes. In
this light, formal verification of masked circuits is frequently conducted in the simple and
abstract Ishai-Sahai-Wagner (ISW) d-probing security model [ISW03], given some basic
assumptions on input and noise distribution, and its extension for more accuracy in the
presence of physical defaults, e.g., glitches, transitions, and couplings [FGP+18].

Even though the introduction of a simple, yet practical, formal model accelerated
verification, most security proofs are still limited to small circuits and masked gadgets only,
mostly due to constraints in computational complexity. Naturally, modern approaches
endeavor to extend formal verification to larger circuits through composition of formally
verified gadgets, however, experience has shown that composition of secure gadgets is
non-trivial and security proofs do not extend immediately.

Accordingly, several security notions for secure and trivial composition of masked
gadgets have been proposed recently [BBD+15, BBD+16, CS20]. Although the security
notions aim to assist in design and verification of larger circuits, creation of gadgets
according to these rules in order to meet the requirements is still a challenge. More
specifically, design of efficient gadgets under several optimization metrics, e.g., compu-
tational complexity, area demands, randomness requirements, performance in terms of
latency and throughput, or higher-order protection still requires manual interaction and
long-standing experience. To this end, the list of existing secure gadgets is limited, as most
of them are hand-crafted, mainly focusing on protection of small gates, e.g., a 2-input
AND [Tri03, BDF+17, FGP+18, CGLS20]. More importantly, these approaches usually
are limited to atomic Boolean functions, e.g., AND and XOR, but do not provide a generic
or automated approach to design secure, efficient, and trivially composable gadgets for
different or arbitrary Boolean functions.

Contributions. In this work, we present a novel and generic framework that allows to
easily construct trivially composable gadgets for arbitrary vectorial Boolean functions.
In particular, relying on the glitch-extended probing adversary model and the secure
composability notion of Probe-Isolating Non-Interference (PINI), our framework enables
simple and generic construction of hardware private circuits and opens the possibility
to transform any unprotected Boolean function into a first-order secure and composable
gadget. In addition, backed by a thorough and sound theoretical security analysis and
formal security arguments, our constructions enable efficient formal verification of entire
cryptographic circuits and systems with respect to the PINI security notion. Eventually,
we show practical relevance of our construction through experimental verification using
different case studies and compare implementation results with respect to area, latency,
and fresh randomness for various gadget constructions and related work.

Outline. Before we present our fundamental design principles based on Shannon’s Decom-
position and provide a dedicated security analysis for our first-order secure construction
schemes in Section 3, we first briefly present underlying assumptions and concepts in
Section 2, including circuit representation, adversary model, security notions, and Boolean
masking. In Section 4, we discuss and compare our proposed constructions to related works
from literature, focusing on the metrics of area, latency, randomness, and composability.
We further present different case studies to emphasize practical application of our concepts
in Section 5 and experimentally confirm our theoretical security analyses based on leakage
assessment for different PRESENT and AES designs. Eventually, we give a conclusion of
the research conducted in this work in Section 6.
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2 Background
2.1 Notation
Let us denote functions using sans-serif fonts, e.g., F. Next, we denote random variables
with uppercase letters, e.g., X, while sets of random variables are given in bold, such as X.
Further, we use subscripts to indicate elements within a set while superscripts are used
to denote (randomized) shares of random variables. Moreover, lowercase letters are used
for the value of a random variable and bold lowercase letters indicate values for sets of
variables accordingly. As a special case, the set of all shares of each random variable in
X is denoted as Sh(X) and P [X = x] = P [X] denotes the joint probability that every
Xi ∈ X takes the value xi ∈ x. Moreover, Xj , j ≥ 0, denotes the set containing all shares
with index j. If S is a set over arbitrary shares Xj

i , i.e., S ⊂ Sh(X), then |S|i denotes the
number of shares in S that correspond to Xi.

2.2 Circuit Model
Throughout this work, any deterministic logic circuit C will be considered and modeled as
a Directed Acyclic Graph (DAG) GC = {V, E}, where V gives the list of vertices and E the
list of edges of the DAG. Further, each vertex v ∈ V represents a single combinational
or sequential gate in the netlist while each edge e ∈ E represents a single wire carrying
an element from the finite field F2. In its entirety, a circuit realizes a vectorial Boolean
function F : Fn

2 → Fm
2 given its coordinate functions F0, . . . , Fm−1, where F is defined over

its input X ∈ Fn
2 .

Encoded Circuit Model As formalized by Ananth et al. [AIS18], a circuit compiler is a
set of algorithms {Compile, Encode, Decode}, such that Compile is a deterministic algorithm
that takes as input a circuit C and generates a randomized and encoded circuit C̄. Further,
Encode is a probabilistic algorithm that takes as input a set of (secret) random variables
X and generates a shared representation Sh(X) with respect to some masking scheme
(e.g., Boolean masking). Lastly, Decode is a deterministic algorithm that takes as input a
shared representation Sh(Y) and reconstructs the according set of random variables Y.
Moreover, the circuit compiler has to satisfy correctness such that:

Decode(C̄(Encode(X))) = C(X),∀X.

2.3 Adversary Model
Before discussing common security notions and Boolean masking as theoretically sound
countermeasure against SCA, we introduce the foundational d-probing adversary model
which is used in modern literature to model side-channel adversaries and verify security of
hardware circuits in presence of such adversaries.

Traditional d-Probing Model. In the traditional ISW d-probing model [ISW03], the
adversarial strength is solely defined and limited by the number of probes that are granted
to an adversary. Each probe can be used to observe and extract information carried
on a single circuit1 wire at a time. Assuming an ideal circuit, all gates and wires are
updated simultaneously and each wire only carries the result of the driving gate under the
current assignment of primary inputs. Then, depending on the number of granted probes,
an adversary can combine information of up to d wires in the circuit to infer sensitive
information. Further, a circuit is assumed to be secure under the d-probing adversary

1In the remainder of this work, we assume that the adversary is only able to observe an encoded circuit
C̄ while the Encode and Decode algorithms are unavailable for the adversary.
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Algorithm 1 glitch-extend
Input: Probe P ∈ F2
Output: Glitch-extended probe Pext ∈ Fe

2, e > 0
if P is placed on an output of a combinational gate then

Pext ←
⋃

0≤i<n

glitch-extend(Pi) . where Pi, 0 ≤ i < n are
all inputs to the combina-
tional gate

else
if P is placed on an output of a register or on a primary input then

Pext ← {P}
end if

end if

model if for any combination of up to d probes, the adversary is not able to learn about
sensitive information (more details are given in Section 2.5).

Probing in the Presence of Glitches. Research has shown that physical circuits do
not have an ideal behavior but physical defaults, e.g., glitches, transitions, and cou-
pling [FGP+18], may cause unintentional leakages. In particular glitches, causing unin-
tentional transitions on circuit wires due to non-ideal gates and different path delays,
have been shown to introduce design vulnerabilities even for circuits that are secure under
the standard d-probing adversary model [MPG05]. As a consequence, a robust d-probing
model has been proposed [FGP+18] assuming a worst-case scenario under glitch-occurrence
in physical circuits. More precisely, in contrast to the standard model, probes in the robust
model are considered as glitch-extended and grant an adversary not only access to the
signal on the probed wire but also any combination of stable driving signals (primary or
registered inputs).

If P ∈ F2 is a probe in the standard probing model, the corresponding glitch-extended
probe can be derived by performing glitch-extend(P ), where glitch-extend(·) can be defined
recursively by returning either all extended probes on the input to the combinational
gate, if P is placed on the output of such gate, or is defined by the identity function, if
P is placed on an output of a register or a primary input. This is formally defined in
Algorithm 1. A set of probes can be extended by union of the glitch extension of each
probe.

2.4 Probe Simulatability
The concept of probe simulation helps to formally argue about dependencies between the
probability distribution over probe observations and inputs to a masked (i.e., encoded)
circuit.

Definition 2.1 (Perfect Probe Simulation). Given a set P = {P0, P1, . . . , Pl−1} of l
(glitch-extended) probes on a masked circuit C with input Sh(X), P can be perfectly
simulated with a set over arbitrary shares S iff there exists a simulator Sim such that for
any shared input Sh(X) to C, the probability distribution over P and Sim(S) are equal,
where Sim : F|S|2 7→ Fl

2 with input S ⊆ Sh(X) is a probalistic polynomial time (p.p.t.)
simulator.

Probe Propagation in Composed Circuits. Experience has shown that composition of
secure circuits, in the presence of d adversarial probes, may not result in secure composed
circuits, given the same adversarial strength. More specifically, even though each circuit
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separately can be proven to resist up to d adversarial probes, the effect of probe propagation
may provide the adversary with more information than initially assumed. In particular,
as downstream sub-circuits in a composed circuit usually process and combine results of
upstream sub-circuits, placing up to d adversarial probes in those sub-circuits can provide
information that, for isolated circuits, might only be obtainable by placing more than d
probes, hence, virtually extending the adversarial strength beyond the limit of d probes.
With the help of Definition 2.1, we can formally define probe propagation as:

Definition 2.2 (Probe Propagation). A probe P ∈ Fl
2 is said to propagate into an input

wire I ∈ F2 iff I is required to perfectly simulate P , i.e., I has to be in the simulation set
S as defined in Definition 2.1.

2.5 Security Notions
Since the seminal introduction of the ISW d-probing adversary model [ISW03], many
different security notions to analyze and verify the security of physical circuits have been
proposed, in particular to ensure composition of secure circuits from provably secure sub-
circuits. Below, we introduce the most common security notions, based on the consolidated
definitions in [DBR19] and their generalization, unification, and extension as recently
presented in [KSM20].

Probing Security. Granted access to internal values of a circuit through adversarial probes,
an adversary may learn (partial) information on the processed secrets. Hence, in order to
achieve probing security in the presence of up to d adversarial probes, any combination
of up to d probes on internal values carried on wires must be statistically independent
of the processed secrets. More specifically, this will limit the partial information any
d-probing adversary can learn on the secrets, such that correct guessing and recovering of
the sensitive information is impossible. More formally, probing security can be defined
through Definition 2.3.

Definition 2.3 (d-Probing Security). An encoded circuit C̄, with secret input Encode(X), X ∈
Fn

2 , is d-probing secure, if and only if for any observation Q of t ≤ d wires, X is statistically
independent of the observation, i.e., P [Q|X] = P [Q].

Non-Interference. While d-probing security purely focuses on the security of circuits in
the presence of adversarial probes, the security notion of Non-Interference (NI) additionally
targets the composition of masked circuits, usually considered as gadgets, such that security
spans across the composed circuit instead of isolated gadgets only.

Through the concept of NI, flow of sensitive information is limited, although a d-probing
adversary is still allowed to gain partial information on internal values and wires through
adversarial probes. However, the original circuit, and in particular the original distribution
of probed values, must not be distinguishable from a simulated distribution generated only
based on the available partial information. As a consequence, each adversarial probe must
be perfectly simulatable on partial information comprising a subset of all primary input
shares limited by the security order d. More formally, the security notion of NI can be
expressed through Definition 2.4.

Definition 2.4 (d-Non-Interference). An encoded circuit C̄, with secret input Encode(X), X ∈
Fn

2 , is d-non-interfering if and only if for any observation Q of t ≤ d wires, there exists a
set S of input shares, with |S|i ≤ t,∀i, such that P [Q|S] = P [Q|Sh(X)].

Strong Non-Interference. Unfortunately, the security notion of NI could not ensure
composability of d-probing secure gadgets, due to the problem of probe propagation in
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composed circuits. More precisely, composing gadgets may result in combination of partial
information such that the placing of adversarial probes on downstream gadgets may
propagate into upstream gadgets and grant the adversary access to partial information
that otherwise could only be observed by placing more than d adversarial probes.

Hence, to correct deficiencies in the NI notion, once it comes to composition of secure
gadgets, the stronger notion of Strong Non-Interference (SNI) was introduced. In particular,
the concept of SNI intercepts probe propagation at the primary output of gadgets which
again limits the partial information accessible through adversarial probes. As a consequence,
each primary output of an SNI-secure gadget must be perfectly simulatable even without
any partial information gained through adversarial probes. More formally, the security
notion of SNI can be expressed through Definition 2.5.

Definition 2.5 (d-Strong Non-Interference). An encoded circuit C̄, with secret input
Encode(X), X ∈ Fn

2 , is d-strong-non-interfering if and only if for any observation Q of
t = t1 + t2 ≤ d wires, with t1 being internal wires and t2 being output wires, there exists a
set S of input shares, with |S|i ≤ t1,∀i, such that P [Q|S] = P [Q|Sh(X)].

Probe-Isolating Non-Interference. Although the security notion of SNI resolves short-
comings in NI and allows secure composition of gadgets, this security notion, however, is
rather conservative and inefficient in practice with respect to fresh entropy and circuit area.
Moreover, Cassiers and Standaert [CS20] have shown that the concept of SNI is limited to
single-output gadgets only, but does not scale for multi-output gadgets, again due to probe
propagation. Although the concept of Multiple-Input-Multiple-Output SNI (MIMO-SNI)
could fix the deficiencies, PINI was introduced as a more elegant and efficient solution.

In particular, the approach of PINI is inspired by trivial composition of linear func-
tions (assuming Boolean masking) and the concept of domain separation as introduced
in [GMK17]. More precisely, PINI-secure gadgets limit the propagation of adversarial
probes with respect to share domains (also referred to as circuit shares), i.e., each share
domain is separated and any adversarial probe will only propagate into its associated
share domain. Given this, PINI-gadgets are trivially composable, similar to linear gadgets,
regardless of the number of primary outputs. More formally, the security notion of PINI
can be expressed through Definition 2.6.

Definition 2.6 (d-Probe-Isolating Non-Interference). An encoded circuit C̄ with secret input
Encode(X), X ∈ Fn

2 , is probe-isolating non-interfering if and only if for any observation
Q of t = t1 + t2 ≤ d wires, with t1 being internal wires and t2 being output wires, there
exists a set of Ipi primary input indices, with |Ipi| ≤ t1, and Ipo primary output indices,
with |Ipo| ≤ t2, such that Q can be perfectly simulated by S = Sh(X)Ipi∪Ipo .

2.6 Boolean Masking
Due to its sound theoretical foundation, Boolean masking has been established as the
most predominant approach to mitigate side-channel leakage in digital logic. In general,
Encode for Boolean masking relies on concepts of secret sharing to split sensitive variables
X into Boolean shares Xi, such that X =

⊕d
i=0 Xi, which allows simple masking of linear

functions, but requires special considerations for non-linear operations.
Assuming that each Boolean share Xi is independent of the secret X and all other

shares, a circuit implementing Boolean masking with d+1 shares can be evaluated securely
even in the presence of d adversarial probes. However, as already mentioned, transient
computations, i.e., glitches in hardware circuits, may recombine independent shares
resulting in secret-dependent evaluations that may leak sensitive information. Hence,
careful construction and layout of the masking scheme is imperative and a variety of
different schemes has been proposed to ensure resistance even in the presence of glitches.
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As a consequence, different hardware masking schemes have been proposed over the last
years [ISW03, Tri03, NRS11, RBN+15, GMK17, GM18], most of them being extendable
to higher-order protection and providing different trade-offs for computational and area
complexity, memory requirement, latency, and randomness demand.

3 Generic Hardware Private Circuits (GHPC)
3.1 Shannon Decomposition
In general, our construction for the design of generic and composable hardware private
circuits for arbitrary Boolean functions utilizes the so-called Shannon Decomposition which
was initially presented by Boole in [Boo48].

Theorem 1 (Shannon Decomposition). Any Boolean function F : Fn
2 7→ F2 can be written

as

F(X0, X1, . . . , Xi, . . . , Xn−1) =Xi · F(X0, X1, . . . , 0, . . . , Xn−1) ⊕
Xi · F(X0, X1, . . . , 1, . . . , Xn−1),

or in short: F = Xi ·F|Xi=0⊕Xi ·F|Xi=1, where F|Xi=0 and F|Xi=1 are called the Shannon
cofactors.

Note that in the original definition, the Shannon cofactors were connected by a simple
OR operation instead of an XOR. Correctness of both versions is nonetheless obvious,
as by assigning a value to Xi, the corresponding Shannon cofactor is selected as output
function, such that:

F =
{

F|Xi=0, if Xi = 0
F|Xi=1, if Xi = 1

(1)

Since F|Xi=0 and F|Xi=1 are again Boolean functions, this decomposition can be applied
recursively, depending on arbitrary input variables. For example, F can be decomposed
choosing Xi and Xj , i 6= j, then leading to:

F = Xi Xj · F|Xi=0,Xj=0 ⊕
Xi Xj · F|Xi=0,Xj=1 ⊕
Xi Xj · F|Xi=1,Xj=0 ⊕
Xi Xj · F|Xi=1,Xj=1.

(2)

In essence, translating a Shannon Decomposition of F into a logic circuit can be repre-
sented as a multiplexer (cascade) selecting the cofactors depending on the decomposition
variables. For this, Equation 1 results in a 2-input multiplexer selecting depending on Xi,
while Equation 2 results in a 4-input multiplexer selecting depending on Xi and Xj .

3.2 Design
A high-level overview of our methodology for generating composable private circuits from
unprotected circuits is depicted in Figure 1. Given an unprotected circuit C realizing a
Boolean function F : Fn

2 7→ Fm
2 and knowing the function expression of F, our masking

approach enables the construction of a first-order protected and composable hardware
private circuit GHPC with two input and output shares under the PINI security notion
(even in the presence of glitches). Further, the number of refreshing random bits of
our approach is limited to only a single fresh random bit per coordinate function (i.e.,
R ∈R Fm

2 ). In fact, the result of the GHPC is a textbook sharing of each original coordinate
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Figure 1: An overview of first-order masking

function Fi, i.e., each coordinate function is blinded by a different fresh mask Ri ∈ R,
while the second share is simply assigned the chosen random value Ri drawn from R,
hence, immediately ensuring uniformity and correctness of the sharing.

Construction Principle. Given the circuit C, our construction principle for translation
into a GHPC allows to process and transform each coordinate function Fi with 0 ≤ i < m
independently. For this, we will restrict the discussion of the construction principle to
arbitrary single-output Boolean functions F : Fn

2 7→ F2, as extension to vectorial Boolean
functions is given trivially through application on each coordinate function separately.

In general, given a shared function expression obtained through direct sharing of the
original function F, i.e., F′ = F(X0

0 ⊕X1
0 , X0

1 ⊕X1
1 , . . . , X0

n−1 ⊕X1
n−1), our construction

can be seen as Shannon Decomposition of F′, where each Shannon cofactor is blinded
by R and F′ is evaluated and decomposed based on shares from a single share domain.
However, it is important to note that F′ itself is never constructed explicitly, as a Shannon
Decomposition based on one share allows to construct F′ implicitly, as this, given simple
Boolean masking, results in substituting any variable in the original function F with the
corresponding (possibly negated) other share. For instance, it holds that if X1

0 = 0, X1
1 = 1,

. . ., and X1
n−1 = 1, then F′|X1=(0,1,...,1) = F(X0

0 , X0
1 , . . . , X1

n−1). Interestingly, in this case,
the Shannon cofactors only depend on a single share domain, while selection of the correct
computation, i.e., the selection of the correct cofactor, only depends on the other share
domain.

Hence, the foundation of our construction is a multiplexer design that selects function
evaluations restricted to one share, each evaluation blinded by the same random value
R ∈R F2, as shown in Figure 2 and algorithmically described in Algorithm 2. Then, the
selection of the correct evaluation only depends on the second share, e.g., shares from
domain 1 for the given design. Note, however, that naming of share domains is not fixed
but may be chosen arbitrarily, as long as the share domain naming is applied consistently
throughout the entire design and the naming of the output domains is adopted accordingly
(to ensure security under the PINI notion). Then, each blinded Shannon cofactor is stored
in a register, and selected according to the other share subsequently. For this, the registers
depicted in dashed lines (and denoted as Regpipe[] in Algorithm 2) ensure synchronization
and enable a pipelined architecture, but do not have any effect on the security in the
glitch-extended robust probing model in general. Eventually, as only the correct Shannon
cofactor is enabled through an AND gate but all other factors are gated, summing up the
values in the final register stage results in the correct but blinded output, hence, assigning
R to the second share of the GHPC ensures correctness.
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F′|X1=(0,0,...,0)(X0)
R

F′|X1=(0,0,...,1)(X0)
R

F′|X1=(1,1,...,1)(X0)
R

X1
0 ·X1

1 · ... ·X1
n−1

X1
0 ·X1

1 · ... ·X1
n−1

X1
0 ·X1

1 · ... ·X1
n−1

O1 = F⊕R

...... ... ...
O0 = RR

...
X1

0 X1
1 X1

n−1

Figure 2: General GHPC design.

Security Analysis. In this section, we briefly prove the correctness and security of our
construction under the notion of PINI, as stated in Theorem 2, assuming the d-probing
model with glitch-extended probes.

Theorem 2. For an arbitrary circuit C, realizing a Boolean function F : Fn
2 7→ F2, the

transformation into a GHPC results in a correct and first-order PINI-secure circuit under
the glitch-extended d-probing model.

Proof.
Correctness: The correctness of the Shannon Decomposition directly implies that O1 =
F′⊕R. As [X0, X1] is a valid sharing of X, it follows that O1 = F⊕R, hence O = O0⊕O1 = F.

PINI: Considering Figure 2 and Algorithm 2, any extended probe on an input to the
non-optional elements of the first register stage reveals all variables contributing to
Ti ← Reg[F′|X1=bin(i)⊕R] for a fixed 0 ≤ i < 2n−1, i.e., the joint distribution over [R, X0],
which can be perfectly simulated with shares restricted to share domain 0 and drawing
R ∈R F2. Further, any extended probe on the input of the second register stage reveals
every stable variable contributing to Mi ← Reg[Si · Ti], which translates to a leakage
of the joint distribution over [Ti, X1]. Due to the blinding with R, Ti can be simulated
by drawing Ti ∈R F2. Hence, every observation can be simulated with shares restricted
to domain 1. Eventually, placing an extended probe on the output O1 reveals the joint
distribution over [M0, M1, . . . , M2n−1]. Here, depending on which input Ti is selected as
the output, each observation will be of the form [0, . . . , 0, Mi, 0, . . . , 0], i.e., a vector where
all coordinates are zero except the one that shows a function perfectly blinded by R. This
is due to the fact that by construction of the multiplexer design, only one second-stage
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Algorithm 2 GHPC
Input: input shares X0,X1 ∈ Fn

2 , fresh randomness R ∈ F2
Output: F ∈ F2

2, F = [F0, F1] = [R, F⊕R]
O1 ∈ F2, O1 ← 0
O0 ← Regpipe[Regpipe[R]] . Computation of O0

for ∀i ∈ {0, . . . , 2n − 1} do . Computation of O1

Si ← Regpipe[product(i, X1)]
Ti ← Reg[F′|X1=bin(i) ⊕R] . bin(i) is the binary representation

of i
Mi ← Reg[Si · Ti]
O1 ← O1 ⊕Mi

end for
function product(V ∈ Fn

2 , X ∈ Fn
2 )

P ∈ F2, P ← 1
for ∀i ∈ {0, . . . , n− 1} do

if [bin(V )]i = 1 then . [bin(V )]i is the i-th bit of the binary repre-
sentation of V

P ← P ·Xi

else
P ← P ·Xi

end if
end for

return P
end function

register contains the selected input — all others contain zero. The resulting vector can be
perfectly simulated by drawing a fresh random bit and placing it at the right position i of
the vector. However, note that in this example, the position i depends on the shares from
share domain 1, hence, in order to provide PINI-security, exchanging the indices of the
circuit output shares is not allowed. Eventually, every extended probe on the output O0

will only reveal a fresh random bit R, i.e., no information about the original input and/or
output.

Examples. In Figure 3, the designs resulting from masking a 2-input AND (Figure 3a) and
a 3-input AND (Figure 3b) are given as examples. For this, we would like to highlight the
clocked multiplexer symbol used in these figures, which refer to the same module identified
by a blue border in Figure 2. As previously explained, the inputs to the multiplexer can
be simply derived by inserting every combination of negated/non-negated shares from
domain 0 into F = A B. This results in 2n=2 input functions for the multiplexer design
realizing a 2-input AND and in 2n=3 = 8 input functions for the 3-input AND. As an
extra verification, we checked these designs with SILVER [KSM20] – a software tool for
formal verification of masked circuits – which confirmed our theory by reporting first-order
security under the PINI notion in the robust probing model.

3.3 Reducing the Latency
If desired, in order to reduce the overall latency, the number of register stages in the design
can be reduced to a single stage.
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O1

A0B0 ⊕R

A0B0 ⊕R

A0B0 ⊕R

A0 B0 ⊕R

A1 B1

R O0

(a) 2-input AND

A1B1C1

O1

A0 B0 C0 ⊕R

A0 B0 C0 ⊕R

A0 B0 C0 ⊕R

A0 B0 C0 ⊕R

A0 B0 C0 ⊕R

R O0

A0 B0 C0 ⊕R

A0 B0 C0 ⊕R

A0 B0 C0 ⊕R

(b) 3-input AND

Figure 3: Examples for first-order PINI-secure GHPC constructions.

Algorithm 3 GHPCLL

Input: input shares X0,X1 ∈ Fn
2 , fresh randomness R ∈ F2n

2
Output: F ∈ F2

2, F = [F0, F1] = [R, F⊕R], with R ∈ R
R ∈ F2, R← 0
O1 ∈ F2, O1 ← 0
for ∀i ∈ {0, . . . , 2n − 1} do

Si ← Regpipe[product(i, X1)] . product(.) as defined in Algorithm 2
Ti ← Reg[F′|X1=bin(i) ⊕Ri]
Mi ← Si · Ti

R← R⊕ Si ·Ri

O1 ← O1 ⊕Mi

end for
O0 ← Reg[R]

Construction Principle. For this, every input to the multiplexer must be blinded by a
different freshly drawn random mask, as only this way, the second register stage in the first
circuit share can be entirely omitted. For the output of circuit share 0, i.e., for O0, the
corresponding randomness has to be selected by a standard multiplexer before it is stored
in a register. The resulting design with one register stage – referred to as GHPCLL in the
following – can be seen in Figure 4 and in Algorithm 3. The architecture of circuit share
1 uses the same multiplexer architecture as presented in Figure 2, but with the second
register stage omitted. Hence, this design has a reduced latency of 1 clock cycle, while
expanding the demand for fresh randomness to 2n bits.

Security Analysis. Again, we briefly prove the correctness and security under the notion
of PINI, as stated in Theorem 3, assuming the glitch-extended d-probing model.

Theorem 3. For an arbitrary circuit C, realizing a Boolean function F : Fn
2 7→ F2, the

transformation into a GHPCLL results in a correct and first-order PINI-secure circuit under
the glitch-extended probing model.

Proof.
Correctness: Following the same argumentation as for Theorem 2, O1 outputs F⊕Ri with
i ∈ {0, . . . , 2n − 1} and for any valid input sharing. As by construction, O0 equals Ri,
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F′|X1=(0,0,...,0)(X0)
R0

F′|X1=(0,0,...,1)(X0)
R1

F′|X1=(1,1,...,1)(X0)
R2n−1

X1
0 ·X1

1 · ... ·X1
n−1

X1
0 ·X1

1 · ... ·X1
n−1

X1
0 ·X1

1 · ... ·X1
n−1

O1

...... ...

...
X1

0 X1
1 X1

n−1

R0

R1

R2n−1

O0...

X1

Figure 4: General GHPCLL design with reduced latency.

correctness of this masking is fulfilled.

PINI: Considering Figure 4 and Algorithm 3, the joint distribution [X0, Ri] using a probe
on the input of Ti ← Reg[F′|X1=bin(i)⊕Ri] can be simulated using only shares from domain
0 and drawing Ri ∈R F2. An extended output probe on O1 will observe a joint distribution
of the form [X1, T0, T1, . . . , T2n−1], which can be simulated with X1 and drawing 2n fresh
random bits as Ti ∈R F2, ∀0 ≤ i < 2n − 1. Due to the output register, a probe on O0 can
be perfectly simulated using one fresh random bit, while each internal probe (on R) is
perfectly simulatable by fresh randomness and shares drawn only from share domain 1, as
the whole circuit share does not involve computation on shares from share domain 0.

4 Comparisons
In this section, we briefly discuss and compare our proposed constructions to state-of-the-
art masking schemes with respect to common metrics, such as latency, demand for fresh
randomness, area consumption, and composability of gadgets. To this end, Table 1 lists
recent approaches from literature and their application to hardware circuits. In particular,
we align our discussion and comparison by focusing on basic non-linear gates, i.e., 2-input
AND gates, which are commonly used to create secure and composable gadgets required
for construction of larger circuits. Further, we extend our discussion by comparing different
techniques with respect to larger circuits, particularly using the PRESENT, PRINCE, Skinny,
Prøst, Rectangle, Class-13, and AES S-boxes as illustrating examples. For the 4-bit S-boxes,
we realized the corresponding descriptions given in [CGLS20] which are optimized with
respect to the number of cascaded 2-input AND gates, i.e., favoring HPC1 and HPC2 as
instantiated gadget. For the AES S-box, we considered the design given in [BP12], where
– based on a tower field representation – a low-depth circuit has been constructed. It
contains two isomorphisms at the start and end of the GF(28) inversion, and excluding
the XOR gates, has at most 4 cascaded 2-input AND gates, which also is in favor of HPC1
and HPC2. In addition, we also include results reported in [GIB18], proposing a generic
approach for low-latency masking which has been applied to the AES S-box considering
different low-latency constructions.
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Table 1: Comparison of different first-order masking schemes.
(using Synopsis Design Compiler and UMC180 standard cell library)

Target Scheme Func. Latency Rand. Area Compos. Ref.
n m [cycle] [bit] [GE] notion

AND2

DOM

2 1

2 1 56 SNI [FGP+18]
HPC1 2 2 94 PINI [CGLS20]
HPC2 2 1 66 PINI [CGLS20]
GHPC 2 1 82 PINI new
GHPCLL 1 4 59 PINI new

PRESENT
S-box

HPC1

4 4

3 8 403 PINI [CGLS20]
HPC2 3 4 320 PINI [CGLS20]
GHPCLL-AND 2 16 310 PINI new
GHPC 2 4 1308 PINI new
GHPCLL 1 64 959 PINI new

PRINCE
S-box

HPC1

4 4

4 12 645 PINI [CGLS20]
HPC2 4 6 467 PINI [CGLS20]
GHPCLL-AND 2 24 445 PINI new
GHPC 2 4 1384 PINI new
GHPCLL 1 64 987 PINI new

Skinny
S-box

HPC1

4 4

4 8 467 PINI [CGLS20]
HPC2 4 4 301 PINI [CGLS20]
GHPCLL-AND 2 16 288 PINI new
GHPC 2 4 1232 PINI new
GHPCLL 1 64 951 PINI new

Prøst
S-box

HPC1

4 4

3 8 432 PINI [CGLS20]
HPC2 3 4 309 PINI [CGLS20]
GHPCLL-AND 2 16 302 PINI new
GHPC 2 4 1225 PINI new
GHPCLL 1 64 952 PINI new

Rectangle
S-box

HPC1

4 4

3 8 439 PINI [CGLS20]
HPC2 3 4 319 PINI [CGLS20]
GHPCLL-AND 2 16 311 PINI new
GHPC 2 4 1229 PINI new
GHPCLL 1 64 962 PINI new

Class-13
S-box

HPC1

4 4

3 8 432 PINI [CGLS20]
HPC2 3 4 304 PINI [CGLS20]
GHPCLL-AND 2 16 303 PINI new
GHPC 2 4 951 PINI new
GHPCLL 1 64 933 PINI new

AES
S-box

CMS

8 8

5 54 2530 - [CRB+16]
DOM 8 18 2851 - [GMK17]
GLLM 1 2048 607302 - [GIB18]
GLLM 2 416 67402 - [GIB18]
HPC1 5 68 3504 PINI [BP12]
HPC2 5 34 2452 PINI [BP12]
GHPCLL-AND 4 136 2376 PINI new
GHPC 2 8 77145 PINI new
GHPCLL 1 2048 64111 PINI new

2These designs were synthesized using a different UMC 90 nm process technology.

Further, note that the descriptions given in [CGLS20] are without considering pipeline
registers to synchronize the inputs of each gate. Therefore, in order to provide a fair
comparison, all performance figures reported in Table 1 are for non-pipeline designs.
Besides, similar to the state of the art, we did not include the area required for generation
of fresh masks in the reported area footprints. All area results have been obtained by
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synthesizing the Hardware Description Language (HDL) code of the design using Synopsis
Design Compiler and UMC180 nm standard cell library, unless indicated otherwise.

Latency. Since the final latency of our constructions does not depend on the underlying
Boolean function and its algebraic degree, its application on larger functions leads to a
higher efficiency with respect to latency compared to other approaches. Certainly, for
small circuits and simple Boolean functions, e.g., a 2-input AND gate, hand-crafted and
optimized gadgets might be more efficient in terms of latency. However, as our approach
easily scales for larger functions, even with high algebraic degree, e.g., for an entire AES
S-box, construction of masked circuits with low latency becomes feasible. More specifically,
focusing on our low-latency approach GHPCLL (at cost of additional randomness), our
secure constructions outperform all other schemes listed in Table 1 in terms of latency.
More precisely, to the best of our knowledge, the GHPCLL is the only first-order composable
construction with one clock cycle latency.

Although Groß et al. proposed a generic low-latency masking approach in [GIB18],
the resulting AES S-box constructions certainly have a comparable latency (along with
demand for fresh randomness and area), but do not result in a composable design but only
focus on proving a probing-secure construction.

Randomness. In contrast to latency, the demand for fresh randomness of our constructions
is mainly governed by the underlying Boolean function. The number of required fresh
random bits r per circuit evaluation is given as

rGHPC = m, rGHPCLL = m · 2n.

More precisely, for GHPC this number is independent of the number of inputs n but only
depends on the number of outputs m of the underlying Boolean function F : Fn

2 → Fm
2 .

Hence, for large functions, such as 4-bit or 8-bit S-boxes, this results in randomness-efficient
designs. This view for sure changes when lower latency is favorable, i.e., GHPCLL whose
required fresh randomness depends on both m and n.

Then again, efficiency of our approach, in terms of required fresh randomness, does
not change with the optimizations done on the implementation of the Boolean function.
Taking the HPC1 and HPC2 of the S-boxes covered by Table 1, the foundational S-box
implementations have been optimized through application of SAT solvers in order to
reduce the latency and number of 2-input AND gates [CGLS20, BP12]. However, for
our approach, the number of random bits is independent of how the Boolean function is
realized. Instead, it only depends on its number of input and output bits. For this, our
approach is particularly suitable for integration into EDA tools and automated integration
of masking countermeasures into logic circuits.

Area. Besides latency and demand for fresh randomness during execution, the footprint
in terms of area of the resulting design is an often considered metric in evaluation of
efficiency and expense of a final design. In this regard, reduction in area usually can be
traded for increasing latency and demand for fresh randomness.

In turn, this implies that our proposals optimized for low-latency (GHPCLL) and
low-randomness (GHPC) naturally are outperformed by hand-crafted and sophisticatedly
optimized gadgets and constructions. However, observing that our GHPCLL construction
for a 2-input AND not only provides best results in latency but also is smaller than all
related (PINI-secure) hand-crafted gadgets, we opted to instantiated all S-box constructions
provided in Table 1 with our GHPCLL gadget instead of HPC1 or HPC2. Given this, we
can observe that all our GHPCLL-AND S-box constructions outperform related designs in
terms of area (and even latency to some extent), but at cost of additional randomness
that is required for secure execution. Construction of larger GHPCLL-AND gadgets (3- or
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4-bit input) to be used in the implementation of the S-boxes is also possible, but since the
S-box descriptions we have in hand are not optimized to efficiently use such large-input
gates, we have not included such cases in the presented results.

Composability. Eventually, our construction allows to build secure and composable
hardware gadgets from arbitrary Boolean functions. As a consequence, even entire S-
boxes, as shown in Table 1 can be transformed into securely-composable gadgets under
the PINI notion. However, in contrast to the existing designs focusing on construction
of secure circuits through composition of secure AND and XOR gates, our approach
efficiently scales for arbitrary Boolean functions. For instance, AES S-box designs presented
in [GMK17, CRB+16] rely on a careful instantiation of secure 2-input (and larger) AND
gates. However, as these gadgets are not trivially composable, the resulting S-box circuit
is indeed probing secure, but does not necessarily provide composability.

In contrast to this, our approach always results in PINI-secure gadgets, independent of
the underlying function, allowing to construct gadgets even for larger circuits such as the
AES S-box. As a result, we can conclude that due to its flexibility, our approach provides
a clear road map for automatization of masking arbitrary circuits through generation of
composable secure gadgets. It is true that a secure variant of any circuit can be constructed
by HPC1 and HPC2 2-input AND (and XOR) gadgets, but there is a lower bound for
the latency of the resulting circuit – which is of crucial importance in hardware designs –
defined by the algebraic degree of the components of the underlying cryptographic function.
However, our scheme uncouples this dependency while maintaining the same generality.

5 Case Studies
Below, we present the experimental results obtained when applying our construction
principle to different block cipher implementations.

5.1 Target Device and Measurement Setup
The analyses have been conducted on a SAKURA-G board [SAK], where a Spartan-6
Field-Programmable Gate Array (FPGA) is embedded to host cryptographic cores. For
all case studies given in the remainder of this section, the power consumption traces of
the target FPGA have been collected by monitoring the voltage drop over a 1Ω resistor
placed in the Vdd path amplified by an on-board AC amplifier. During the measurements
performed by a digital oscilloscope at the sampling rate of 500MS/s, the implemented
cryptographic core was supplied by a stable and jitter-free clock source at the frequency of
6MHz.

PRNG. For the generation of each fresh random bit, we constructed a 31-bit Linear-
Feedback Shift Register (LFSR) with the feedback polynomial x31 + x28 + 1, which has a
maximum cycle of 231 − 1 with only two taps [WM12]. Each LFSR is initialized by an
arbitrary value right after the FPGA power-up, making sure that no LFSR is entirely
filled by zero, and there is no common initialization value for two LFSRs.

5.2 Byte-Serial AES
For our first case study, we opted to implement a first-order secure AES encryption based
on the byte-serial architecture of Moradi et al. [MPL+11] with only minor modifications
in the control logic due to the increased S-box latency. It is worth to highlight that all our
HDL designs of the case studies are provided in the GitHub: https://github.com/Chair-
for-Security-Engineering/GHPC.
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Design. For this, a single GHPC AES S-box is instantiated and shared between data path
and key expansion circuits, requiring both, data and key to be shared using d+1 = 2 shares.
Further, due to the two-cycle latency of the GHPC S-box design, and this component being
the bottleneck of the architecture, we opted to include all pipelining registers to enable
processing of all byte substitutions within 22 cycles, i.e., 2 cycles initial latency, 16 cycles
for the round function S-box computations, and 4 cycles for the key expansion. Further,
shifting of rows and mixing of columns is done in one respectively four cycles, while the
key is updated simultaneously. In total, a single first-order secure AES round function
(including key expansion) requires 23 cycles, resulting in a total of 230 cycles for an AES-128
encryption. Note that, although mixing of columns is omitted in the last round, expansion
of the final post-whitening key is stalling the final round computation. We also provide a
generic HDL description of our architecture in the GitHub: https://github.com/Chair-for-
Security-Engineering/GHPC which allows to select GHPC or GHPCLL as the underlying
design while adjusting the S-box, control logic, and randomness automatically (see more
details in Appendix A). However, we considered only the GHPC design in our experimental
analyses due to the similarity of the results.

Then, as given in Table 2, our entire first-order AES encryption architecture has a size
of 86.3 kGE, using an 180 nm cell library while it requires only 8-bit fresh randomness per
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Figure 5: Experimental analysis of our first-order AES byte-serial encryption design
(covering the entire encryption); fixed vs. random t-test results using 100 million traces.
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Table 2: Performance figures of our case studies.
(using Synopsis Design Compiler and UMC180 standard cell library)

Design Scheme Order Random. Area Delay Latency
d [bit] [GE] [ns] [cycle]

AES
Serial

unprotected 0 0 3646 8.13 195
GHPC 1 8 86 326 21.34 215
GHPCLL 1 2048 76 339 23.48 205

PRESENT
Serial

unprotected 0 0 2139 5.12 545
GHPC 1 4 5604 5.76 607
GHPCLL 1 64 5253 5.92 576

PRESENT
Round-
based

unprotected 0 0 2798 4.39 31
GHPC 1 72 31 559 5.22 62
GHPCLL 1 1152 25 264 5.28 31

clock cycle to maintain the first-order security.

Leakage Assessment. Using a fix-versus-random Test Vector Leakage Assessment (TVLA)
methodology according to [SM15], Figure 5b and Figure 5c show evaluation results for first-
order and second-order statistical moments using 100 million power traces. As expected,
our design does not exhibit any observable leakage for the first-order statistical moment
while expectedly we could observe significant differences in the second-order statistical
moment. These results indeed confirm our theoretical security evaluations for the GHPC
construction, showing its applicability to arbitrary Boolean functions in order to construct
generic and composable PINI-secure gadgets.

5.3 Nibble-Serial PRESENT
For our second case study, we implemented the nibble-serial design of Poschmann et
al. [PMK+11], realizing the PRESENT encryption where a single S-box instance is shared
for the entire data and key processing. Per clock cycle, both state and key registers are
shifted nibble-wise to conduct key addition and S-box look-up at the same time, while
the permutation layer is done in parallel (in a single clock cycle). Again, we constructed
a general design, in which the user can set the desired GHPC or GHPCLL scheme. The
number of required fresh masks as well as the latency of the S-box, required for the control
logic, is automatically adjusted accordingly. For more detail on the design architecture,
we refer to the HDL code given in the GitHub: https://github.com/Chair-for-Security-
Engineering/GHPC. Table 2 also lists the performance figures of our designs including the
area overhead, required fresh randomness, latency, and delay.

Focusing on our GHPC design, we collected 100 million traces and performed fix-versus-
random TVLA at different orders. The results shown in Figure 6 confirm our claims and
expectations on the security level of our construction.

5.4 Round-Based PRESENT
We also implemented the PRESENT encryption function in a round-based fashion. The
unprotected design performs each cipher round in a single clock cycle, resulting in 31
cycles for the entire encryption. The first-order GHPC design needs 2 clock cycles per
round while forming a pipeline design, i.e., encrypting two plaintexts in consecutive clock
cycles, resulting in 62 clock cycles for two encryptions. Note that we made use of the
internal registers of the S-box as the state register. This allowed us to keep 31 clock cycle
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Figure 6: Experimental analysis of our first-order PRESENT nibble-serial encryption design
(covering the first five rounds); fixed vs. random t-test results using 100 million traces.
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Figure 7: Experimental analysis of our first-order PRESENT round-based encryption design
(covering the entire encryption); fixed vs. random t-test results using 100 million traces.

latency in GHPCLL design (see Table 2). Similar to all other case studies, we practically
examined this construction by performing the same leakage assessment at different orders.
The results, which are along the same line as the formerly presented ones, are shown in
Figure 7. Nevertheless, Table 2 covers the performance figures of this design as well.

As a remark, the evaluation results of the GHPCLL circuits of all case studies are very
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similar to the figures presented above. Therefore, we omit showing the identical results.

6 Discussions and Conclusions
In this work, we developed and presented a generic framework to construct trivially
composable hardware private circuits with a compact latency from arbitrary vectorial
Boolean functions. Following the concept of Shannon’s decomposition, we derived generic
circuit constructions which offer both, first-order probing security in the presence of glitches
and trivial composability, by fulfilling the notion of PINI in the robust probing model.
More specifically, we presented the fundamental design principles, security analyses, and
simple examples to illustrate our contribution.

After establishing the concept, we compared our constructions to state-of-the-art
masking schemes. Based on this comparison, we conclude that our approach can be
used to achieve optimized designs for different metrics, in particular focusing on latency,
randomness, and area.

In terms of latency, our proposed GHPCLL gadgets outperform all handcrafted and
carefully optimized constructions, independent of the complexity and appearance of the
underlying Boolean function. In fact, all our presented results constructed according to the
GHPCLL approach have the smallest latency of a single cycle, while still being PINI-secure,
however, introducing higher demands on area and fresh randomness.

Then, considering low-randomness optimizations, our GHPC provides the best results
in comparison to related works due to its independence on the targeted Boolean function
and its appearance, while the number of random bits only depends on the number of
outputs the underlying function has. Focusing on the designs with low fresh randomness,
our GHPC approach scales well particularly for larger functions, e.g., an AES S-box, with
only modest increase of latency in comparison to the GHPCLL approach while requiring
only 8 bit fresh randomness as it is a function with 8-bit output.

Eventually, low-area constructions for all S-boxes can be achieved by replacing
the HPC1 or HPC2 2-input AND gadget with our proposed GHPCLL-AND construction.
Interestingly, such constructions provide the smallest area footprint along with competitive
latency. This however comes at cost of increased demand for fresh randomness.

Furthermore, our methodology was verified by (i) testing small examples with the state-
of-the-art formal verification tool SILVER [KSM20], and by (ii) experimentally evaluating
several case studies. As a first case study for our first-order approach, we decided to analyze
a byte-serialized version of AES where the entire S-box was translated into a single first-
order secure and composable gadget based on our presented design principle. For a second
case study, we constructed a secure nibble-serialized and round-based PRESENT encryption,
again translating the entire S-box into a single gadget following the corresponding first-order
design concepts. All case studies evidently support our theoretical findings by showing
no leakage in the first-order statistical moment when performing a non-specific leakage
assessment.

To conclude, our generic methodology for constructing masked gadgets for arbitrary
vectorial Boolean functions pioneers automatic generation of masked circuits in hardware
solely based on the function expression and with a constant latency of 2 clock cycles for
GHPC and 1 clock cycle for GHPCLL (at cost of higher fresh randomness). A fundamental
question, which is not yet answered and still needs proper attention, is how expensive it is
to generate a certain number of fresh masks per clock cycle. For this, choosing area, energy,
power, or delay as the metric and cost function are certainly possible choices. However,
without any detailed insight on the cost factors, we cannot easily prefer one design over
another even though they have, for example, the same latency.

Since the presented solution is restricted to the first order with 2 shares, extension of
the technique to cover higher-order security is naturally among our future works. As our
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approach pioneers the automated construction of masked hardware circuits, development
of a proper tool is an interesting exercise to pursue. In this context, exploration of
trade-offs between randomness and latency for functions larger than 4 bits through clever
construction of atomic gadgets is an interesting question also left open for future work.
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A Appendix
We have provided the HDL code of our case studies of Section 5 in the GitHub:
https://github.com/Chair-for-Security-Engineering/GHPC. A “PINI_pkg.vhd” file is given
for each design, where the settings of the desired implementation can be adjusted. This
includes parameters like “low_latency” with which the gadget type (GHPC/ GHPCLL) can
be selected, and “pipeline” which sets if pipeline registers should be instantiated into the
designs.

We further constructed the designs in such a way that it can easily realize different
Boolean functions (i.e., different S-boxes). In the “PINI_pkg.vhd” file, the number of input
bits and the output bits (via parameters “in_size” and “out_size”) can be adjusted, and
the target Boolean function can be set as a case statement of the “PINI_Step1.vhd” file
as a look-up table. This eases the process of automatic generation of GHPC and GHPCLL
gadgets of arbitrary Boolean functions.
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Content. In this work, we present COMAR, a methodology that allows for first-order auto-
mated masking with only 6 fresh random bits in total (not counting fresh randomness needed
of the initial input masking), regardless of the size and complexity of the unprotected circuit.
This is possible as our construction enable complete randomness reusage across gadgets. We
present gadget constructions for (i) a masked variant of an AND gate, from which we can de-
rive any other atomic non-linear gadget and (ii) a masked variant of the XOR operation. As
each of the gadgets adds individual latency into the design, we introduce construction of our
masked AND and XOR gadget with arbitrary (unshared) input width. While slightly increasing
the randomness requirements, this way, we allow to reduce the overall latency of the design.
Eventually, we integrate support for Composable Gadgets with Reused Fresh Mask (COMAR)
into AGEMA.

Contribution. The author was involved in verifying and testing the developed gadgets and
formalizing security arguments for the novel construction. Last but not least, the author sig-
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Abstract. Albeit its many benefits, masking cryptographic hardware designs has
proven to be a non-trivial and error-prone task, even for experienced engineers.
Masked variants of atomic logic gates, like AND or XOR – commonly referred to
as gadgets – aim to facilitate the process of masking large circuits by offering free
composition while sustaining the overall design’s security in the d-probing adversary
model. A wide variety of research has already been conducted to (i) find formal
properties a gadget must fulfill to guarantee composability and (ii) construct gadgets
that fulfill these properties, while minimizing overhead requirements. In all existing
composition frameworks like NI/SNI/PINI and all corresponding gadget realizations,
the security argument relies on the fact that each gadget requires individual fresh
randomness. Naturally, this approach leads to very high randomness requirements
of the resulting composed circuit. In this work, we present composable gadgets with
reused fresh masks (COMAR), allowing the composition of any first-order secure
hardware circuit utilizing only 6 fresh masks in total. By construction, our newly
presented gadgets render individual fresh randomness unnecessary, while retaining
free composition and first-order security in the robust probing model. More precisely,
we give an instantiation of gadgets realizing arbitrary XOR and AND gates with an
arbitrary number of inputs which can be trivially extended to all basic logic gates.
With these, we break the linear dependency between the number of (non-linear)
gates in a circuit and the randomness requirements, hence offering the designers
the possibility to highly optimize a masked circuit’s randomness requirements while
keeping error susceptibility to a minimum.

Keywords: Side-Channel Analysis · Masking · Probing Security · Composability ·
COMAR

1 Introduction
Masking. The increasing amount of easily accessible devices creates a permanent surge
in demand for highly effective countermeasures against physical attacks, causing Side-
Channel Analysis (SCA) attacks to retain their topical relevance since its first seminal
description in [Koc96, KJJ99]. Since then, a considerable amount of effort has been put into
mitigating the threat originating from a wide variety of divers side channels, ranging from
timing [Koc96], power consumption [KJJ99], electromagnetic (EM) emanations [GMO01],
or temperature and heat dissipation [HS13]. Among a multitude of proposed methods,
masking has evolved to be a promising technique to achieve SCA resilience due to is solid
theoretical background rooted in the concepts of secret sharing. Despite the strong effort
committed to masking cryptographic primitives [ISW03, Tri03, NRS11, RBN+15, GMK17,
GM18], many of the proposed schemes have proven to suffer from invalid assumption or
design flaws [MMSS19], eventually compromising their practical security.
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Formal Adversary Models. In order to prevent these bugs, researchers have started to
lay focus on establishing formal adversary models which aim to accurately capturing the
adversary’s capabilities and the circuit behavior in the real world, while being sufficiently
abstract to enable (automated) evaluation of SCA resilience on an algorithmic level [ISW03,
BDF+17, PR13, FGP+18]. As a consequence, these models, on the one hand, enable
detecting security flaws in an early stage of the design process. For this, a wide variety
of tools have been proposed [BGI+18, BBC+19, KSM20, BDM+20, BBD+16, BGR18,
BBD+15, CGLS21]. On the other hand, they allow following a more systematic approach
when constructing provable-secure masking schemes. The ISW d-probing model – initially
introduced in [ISW03] – and its extension to model physical defaults contributing to data
leakage in hardware implementations [FGP+18], has turned out to be an adversary model
well suited for finding implementations that are provably resilient against SCA attacks due
to both, its sufficiently high abstraction and the existing reduction into the Noisy Leakage
Model [DDF14], which is considered to be the closest to reality with respect to accurately
modeling leakage behavior.

Composable Gadgets. As it has proven to be a hard task to mask circuits realizing large
functions for high security orders, a new line of research has emerged aiming to formally
define composability notions which enable the construction of masked circuits in a divide-
and-conquer fashion. Here, the goal is to derive masked realizations of atomic logic gates –
typically AND and XOR – that fulfill the properties specified by the composability notion,
and in so doing, guaranteeing security in the d-probing model, even when interconnected
into a larger circuit. Hence, this reduces the task of finding (higher-order) masked versions
of large circuits to constructing masked, atomic logic gates that are in conformity with the
security notions and then modularly constructing the overall circuit based on these masked
gates – commonly referred to as gadgets. In the context of the d-probing model, Non-
Interference (NI)/Strong Non-Interference (SNI) [BBD+15, BBD+16] and Probe-Isolating
Non-Interference (PINI) [CS20] were introduced as such notions, where SNI ironed out
flaws of NI whose properties were not sufficient to guarantee composability. As the scope
of SNI was originally limited to single-output gates, Cassiers et al. generalized it in [CS20],
but at the same time introduced PINI as an elegant notion to construct composable
gadgets which further reduces implementation overheads and allows trivial realization, i.e.,
share-wise application, of linear functions. Accompanied by the introduction of this wide
variety of notions, many concrete gadget constructions have been proposed, either realizing
small logic gates [ISW03, BDM+20, BBD+16, CS20, CGLS21, CS21], or even arbitrary
logic functions [KSM22].

Randomness Reduction. As gadgets typically realize atomic logic functions like a simple 2-
input AND gate, and fresh randomness is required for each of these gadgets, the composition
to entire cipher designs results in a significant randomness overhead being introduced
to the circuit. As fresh randomness needs to be provided by a source, i.e., Pseudo-
Random Number Generators (PRNGs), randomness requirements directly translate into
area consumption on a chip and hence into an increase in costs of production. Consequently,
it is an interesting research topic to elaborate on how randomness overhead of composable
gadgets can be further reduced. One possible solution is to extend the functionalities
of the gadgets while preserving individual randomness requirements. In [KSM22], a
methodology was presented that allows the construction of first-order-secure gadgets
realizing arbitrary Boolean functions with only one random bit per output. Although this
certainly leads to randomness reductions compared to the utilization of 2-input gadgets
when constructing large masked circuits, it also significantly increases the area requirements
of the implementation.

Another approach is to minimize the randomness requirements per gadget. In [GSM+19],
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Gross et al. presented a methodology to derive a first-order-secure implementation from
AND and XOR gadgets requiring two fresh random bits in total – including the initial
sharing. This approach is restricted to software implementations, i.e., does not guarantee
SCA resilience in the presence of physical defaults [WM18]. Another drawback is that
interconnection of gadgets is not trivial, i.e., the designer has to follow a certain set of
rules when composing the gadgets.

Faust et al. introduced a methodology for reusing randomness in masked implemen-
tations in [FPS17]. Interestingly, the authors proposed a scheme that requires only two
fresh random bits to achieve first-order security in the probing model, and they applied
their findings to an AES implementation. However, their designs do not offer free compos-
ability, as the protected implementation must be carefully constructed to suit a specific
structure. Moreover, the work does not consider physical defaults that drive leakage in
their discussions, making it not directly applicable to the hardware context.

Theoretical discussions on defining the necessary properties of PRNGs to reduce the
overall randomness requirements of masked implementations are presented in [IKL+13,
CGZ20, GIS22a, GIS22b]. In [CGZ20], Coron et al. demonstrated a practical application
of their findings by protecting an AES at the second security order using only 384 random
bits. However, their work does not take into account physical defaults that may occur in
hardware. In delimitation to these works, our goal is to derive concrete, secure, and freely
composable structures in the hardware context that utilize very few fresh random bits and
are well-suited for automated masking.

Our Contributions. In this work, we present COMAR, a methodology for achieving free
composition of hardware gadgets that enable construction of arbitrary first-order-secure
hardware implementations in the d-probing model under glitches, utilizing – apart from
the initial sharing – only 6 fresh random bits in total. In this context, we construct
freely-composable gadgets, realizing 2-input XOR and AND gates which can be trivially
converted to all atomic logic gates. We further show how to extend such gadgets to cover
an arbitrary number of inputs at the cost of investing more fresh masks which can still
be reused by other gadgets. We demonstrate that our constructions lead to a significant
reduction with respect to randomness overhead introduced into the design compared to
existing schemes, offering the same composability and security guarantees. Our work hence
paves the ground for enabling the designer to optimize for different overhead parameters
when masking a cryptographic implementation, while keeping design constraints and error
susceptibility as low as possible. We further practically verify our findings by means of
case studies and leakage assessments.

Outline. We first present a brief recap of all necessary concepts and methodologies in
Section 2. In particular, we give an introduction to the robust d-probing model and all
well-established composability notions. In Section 3, we present our novel methodology
for constructing gadgets with constant randomness requirements, and argue about their
first-order security and composability, before we discuss the practical implications of
our work by means of different case studies in Section 4. After presenting a dedicated
comparison to the state of the art in Section 5 and conducting an exemplary leakage
assessment in Section 6, we conclude our work in Section 7.

2 Preliminaries
2.1 Notations
While we denote random variables by capital letters, e.g., X ∈ F2 is a binary random
variable, we use bold capital letters, e.g., X, for sets containing random variables. The
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i-th input to a function is identified by Xi, while superscripts are used to denote share
indices when dealing with masked functions. Consequently, Xi is the i-th share of X.
Moreover, Xi denotes the set of all elements in X with subscript i. When masking a
function F : Fn

2 7→ Fm
2 with t shares per input, the set containing all input shares is given

as Sh(X) = [X0
0 , X1

0 , . . . , Xt−1
0 , X0

1 , . . . , Xt−1
n−1]. In the same manner, for a set of share

indices I ⊆ [0, . . . , t− 1], Sh(X)I denotes the set of all input shares Xs∈I
0≤i<n. Eventually,

drawing a value X uniformly and at random from a set R is denoted as X
$← R.

2.2 Boolean Masking
Rooted in the concept of secret sharing, a Boolean Masking of a secret X ∈ Fn

2 is a set

X ∈ Fn×s
2 of s independent secret shares Xi ∈ Fn

2 , 0 ≤ i < s, such that X =
s−1⊕
i=0

Xi. The

secret shares are commonly derived by sampling Xi $← Fn
2 , for 0 ≤ i < s− 1 and deriving

the remaining share as Xs−1 = X ⊕
( s−2⊕

i=0
Xi

)
. This directly implies that, in order to

achieve d-th order security, all sensitive data has to be split in at least d + 1 shares, i.e.,
two shares in the case of first-order security.

2.3 Circuit Model
As derived in [ISW03] and later in its extension [FGP+18], any stateful, deterministic
circuit C can be modeled as a Directed Acyclic Graph (DAG) GC = {V, E} with V being
the set of vertices and E the set of edges of GC. The edges represent wires carrying elements
of F2 while the vertices model combinational gates such as AND and XOR or memory gates,
i.e., registers. On any circuit invocation, registers output the previous input to the gate
while storing the current input for the next invocation. Eventually, GC realizes a Boolean
function F : Fn

2 7→ Fm
2 .

Encoded Circuit Model. To precisely define the adversary’s capabilities when probing a
masked circuit, a more fine-grained breakdown of the circuit becomes necessary. As defined
in [AIS18], a circuit compiler consists of three algorithms. The COMPILE algorithm is
deterministic and takes a circuit C as input and outputs a randomized (masked) circuit C̃.
The probabilistic ENCODE algorithm takes as input X and outputs the encoded input X̃.
In our case, this corresponds to performing Boolean masking as described in Section 2.2.
DECODE is a deterministic algorithm, eventually taking encoded data Ỹ and outputting
Y. In the case of Boolean masking, this can be simply achieved by building the XOR-sum
of all shares, i.e., unsharing.

Given these three algorithms, data processing in a shared manner can be described by
computing Y← DECODE ◦ C̃ ◦ ENCODE(X) for Y← C(X). It is important to highlight
that the adversary’s probing capabilities are limited to only collect observations in C̃, while
the actual execution of the ENCODE and DECODE operations stay hidden. In other words,
these operation are known to the adversary, i.e., no obscurity, but they cannot be probed.

2.4 Probing Security
2.4.1 d-Probing Model

The traditional ISW d-probing model [ISW03] grants the attacker the ability to probe up
to d wires in the circuit and hence to observe the values carried by them. Modeling the
circuit behavior relies on the assumption that at any given time, each wire carries a stable
signal defined by the combinatorical function contributing to it. As a result, a circuit is
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Algorithm 1 glitch-extend
Input: Non-extended probe P

Output: Glitch-extended probes Pext

1: if P is placed on an output of a combinational gate then
2: Pext ← ⋃

0≤i<n

glitch-extend(Pi) ▷ where {P0, . . . , Pn−1} are all
inputs of the driving gate

3: else if P is placed on an output of a register or on a primary input then
4: Pext ← {P}
5: end if

considered secure in the d-probing model, if, and only if, observing the joint distribution
of up to d probes reveals no information about any sensitive data.

2.4.2 Robust Probing Model

The traditional ISW d-probing model is mainly relevant for verifying the security of software
implementations, as the assumption of wires carrying stable signals has proven to be false
for hardware implementations due to physical defaults additionally contributing to the
circuit’s information leakage. In [FGP+18], Faust et al. introduced the robust d-probing
model, broadening the scope of the d-probing model to accurately model (i) glitches, i.e.,
differences in signal delays, possibly causing unintentional share recombinations, (ii) data
transitions occurring at registers, and (iii) coupling, i.e., dependencies between adjacent
wires in a circuit.

Glitches are captured by the robust probing model in a worst-case manner, meaning
that a probe is not restricted to observe the stable, and functionally intended, value of a
wire, but is also able to observe any value contributing to its computation up to the last
register stage or primary input. This is formalized in Definition 1, where a standard probe
on a wire is recursively extended by either extending all input probes of the driving gates
or by returning the standard probe itself if it probes a register output or a primary input.
For a set of probes, the corresponding extended set of probes is built straightforwardly by
the union of all individual extended probes.

Definition 1 (Glitch-Extended Probes). A set of standard probes P = {P0, P1, ..., Pd−1}
is glitch-extended through Pext =

⋃
0≤i<d

glitch-extend(Pi), where the procedure of glitch-

extend is given in Algorithm 1 and Pext is called the set of glitch-extended probes with
respect to P.

2.5 Composability Notions
Previous efforts have shown that direct masking of large and complex functions is a hard
task, especially for higher orders. This is why a new stream of research has emerged,
dealing with developing composability notions which aim at defining sufficient properties a
masked sub-circuit – in this context, commonly referred to as gadgets – must fulfill in order
to guarantee security in the (robust) d-probing model of a larger, composed circuit. All
these notions focus on limiting the propagation of probes which intuitively describes, how
leakage is traversed backwards throughout a circuit [CS20], originating from the position
where the probe is initially placed and which is directly connected to the concept of probe
simulatability [BBP+16]. Probes placed on a gadget are restricted to propagate only into
a limited set of input shares, allowing to draw conclusions about probe propagation into
primary inputs of the larger, composed circuit.
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2.6 Probe Simulatability
Probe simulatability helps to formalize probe propagation, i.e., dependencies between
probes placed on the encoded circuit and input shares. It can be formally defined as
follows.

Definition 2 (Perfect Probe Simulation). Given a set of (extended) probes P with
cardinality |P| = t placed on a masked circuit C̃, P is said to be perfectly simulatable
by a set of input shares S iff there exist a simulator SIM, such that for any value for
the inputs of C̃, the joint probability distribution over P and SIM(S) are equal, where
SIM(S) : F|S|

2 7→ Ft
2 with input S ⊆ Sh(X) is a probabilistic polynomial time (p.p.t.)

simulator.

With the help of this formal definition, we can give a definition for the common
composability notions in the following.

2.6.1 Non-Interference/Strong Non-Interference

As introduced in [BBD+15], NI does not differentiate between internal and output probes
and limits probe propagation likewise for both. Due to the lack of any distinction between
internal and output probes placed on a masked circuit, NI has proven to be non-sufficient
to guarantee composability. As a remedy, its definition was adjusted by Barthe et al. in
[BBD+16], resulting in the notion of SNI where probes placed on the output of a gadget
are not allowed to propagate into any input share at all.

2.6.2 Probe-Isolating Non-Interference

As the definition of SNI only covers single-output gadgets in its original form, Cassiers et
al. extended it in [CS20] to be applicable to multiple-output gadgets as well. At the same
time, they introduced the notion of PINI as an alternative to guarantee composability. Its
advantages stem from its reduced overhead and enabling trivial construction, i.e., share-
wise application, of masked linear functions without the need for any fresh randomness
and without introducing any additional latency into the design.

Borrowed from Domain-Oriented Masking (DOM) [GMK16], share domains where
introduced and probe propagation of output probes was restricted to only occur within
the same share domain, while internal probes are limited to propagate within a single, but
arbitrary, share domain.

Definition 3 (d-Probe-Isolating Non-Interference (PINI)). Let PI be the set of internal
probes with |PI| = t1. Further, let IO be the index set (share domains) assigned to the
output wires probed by PO with |IO| = t2 and PO containing all output probes.

A masked circuit C̃ provides d-Probe-Isolating Non-Interference iff for every set of
probes P = PI ∪PO with t1 + t2 ≤ d, there exists a set II of circuit input share indices
with |II| ≤ t1 such that P can be perfectly simulated by S = Sh(X)II∪IO .

2.7 Hardware Private Circuits
Along with the introduction of this multitude of notions, several concrete realizations
of composable gadgets have been proposed. As a limitation, these gadgets mostly cover
only atomic gates – like 2-input AND or XOR – as finding efficient constructions, which
are provably secure in the (robust) d-probing model under a sufficient composability
notion, is a hard task for large functions. The only exception poses GHPC [KSM22],
which is a methodology for constructing first-order secure and trivial composable gadgets
for arbitrary, vectorial Boolean functions requiring only one bit of fresh randomness per
coordinate function, but leaves a relatively large area footprint. Nevertheless, all known
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gadgets leverage the introduction of gadget-individual fresh randomness to guarantee the
confirmatory to the corresponding probe propagation restrictions and hence composability.
As complete cipher designs are composed of many of these fundamental gates (AND-XOR),
this directly implies a significant randomness overhead for the implementation of full
encryption/decryption functions. A concrete instantiation of a gadget realizing a simple
AND gate and fulfilling trivial composability by means of the PINI notion is given as HPC2
which is initially presented in [CGLS21]. HPC2 contains two register stages, introducing
a latency of two clock cycles regardless of the security order. In Figure 1, a schematic
representing an exemplary circuit composed of first-order HPC2 AND gadgets is depicted,
where each gadget is supplied with an individual fresh random bit, already resulting
in a total of 7 fresh random bits for this simple example. Note that every share-wise
implementation of a linear function is already PINI-conform. Hence, the XOR operation
does not introduce any additional randomness or latency into the design.

HPC2

R0

HPC2

R1

HPC2

R2

HPC2

R3

HPC2

R4

HPC2

R5

HPC2

R6

⊕

X0

X1

X2

X3

X4

X5

X6

X7

2
2

2
2

2
2

2
2

Z
2

2

2

2

2

2

22

2

2

Figure 1: Example for a circuit composed of first-order HPC2 AND gadgets.

2.8 Automated Generation of Masked Hardware
Composable hardware gadgets are well suited for automated masking of hardware designs.
The underlying methodology is to simply synthesize a given unprotected design utilizing
a restricted library including only those cells for which composable gadgets exist, before
substituting each of the resulting cells with the corresponding gadget. If these gadgets
provably guarantee secure composition, the resulting netlist will be secure in the (robust)
probing model.

AGEMA [KMMS22] is a software tool for realizing this transformation from an unpro-
tected netlist to a protected one. For this, the Verilog netlist is represented as a graph
before it is translated into a Mealy machine, i.e., a combinational circuit and a single main
register stage. The designer can then specify which part of the netlist should be masked,
and which family of gadgets should be instantiated. In the naive approach integrated
in AGEMA, the structure of the given netlist stays unchanged, and only the cells are
substituted by their corresponding gadgets. Of course, since these gadgets introduce
additional latency, pipelining or clock gating is automatically applied to ensure the correct
functionality of the circuit. This process elegantly ensures security in the glitch-extended
robust probing model while being less error-prone than manually applying the masking at



8 Composable Gadgets with Reused Fresh Masks

ANDCOMAR

R||R′

ANDCOMAR

R||R′

ANDCOMAR

R||R′

ANDCOMAR

R||R′

ANDCOMAR

R||R′
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XORCOMAR

R||R′
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2
2

2
2

2
2

2
2

Z
2

2

2

2

2

2

22

2

2

6

6

6

6

6

6

6 6

Figure 2: Exemplary circuit composed of COMAR gadgets.

the algorithmic level. In this work, we utilize AGEMA to construct the masked ciphers
for our case studies, i.e., we provide our gadget definitions to AGEMA when selecting the
naive approach. This intentional choice allows fair comparison with several case studies
given in the original work [KMMS22].

3 Technique
3.1 Overview
Our objective is to reduce the randomness requirements of gadget-composed cipher designs
in hardware. As given in Section 2.7, each 2-input HPC2 AND gadget requires one
individual fresh mask bit which is necessary to guarantee composability under the PINI
notion and can thus not be nullified. Therefore, pursuing our goal, we introduce COMAR, a
methodology for constructing first-order secure gadgets, which allows us to reuse the same
randomness in each gadget, drastically reducing the randomness requirements compared
to existing designs which rely on gadget-individual masks. Thanks to the composability of
COMAR gadgets, their composition to larger circuits leads to d-probing secure designs (for
d = 1) under glitch-extended probes.

Naturally, the randomness requirements of HPC2 (and also other composable gadgets)
scale with the size and complexity of the target function which is to be masked, i.e., the
number of 2-input non-linear gates, while our approach only demands for 6 random bits
regardless of the underlying function.

In Figure 2, the same circuit as presented in Section 2.7 is depicted where every input
is split into two shares, but now the circuit is realized by instantiating our new COMAR
gadgets instead of HPC2 AND. In contrast to HPC2, each of our 2-input AND gadgets
needs 6 random masks, instead of only a single one, but as these fresh masks can be reused
for every gadget, it is directly obvious that the break-even-point with respect to fresh
randomness requirements of our approach compared to HPC2 lies at a number of 6 AND
gadgets. Meaning that if a circuit contains more than 6 AND gates, our approach requires
less fresh randomness compared to HPC2. This threshold is actually fulfilled for every
real-world logic circuit. Figure 2 shows an example to demonstrate this break-even-point.
Compared to Figure 1, our approach here needs only 6 instead of 7 bits. Naturally, this
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⊕ P

R

X0

. . . ..
.

X1

G
Figure 3: Example probe on a gadget.

advantage becomes more significant for larger circuit.
Note that, in contrast to PINI gadgets, a trivial, i.e., share-wise, realization of an XOR

gadget is not possible in case of COMAR. Here, the XORCOMAR needs 6 random mask bits,
which are the same as those 6 bits reused in every other COMAR gadget. It also needs two
register stages, increasing the latency requirements for composed circuits. Nonetheless,
there are usecases where it is favorable for designer to trade additional latency against
significantly less randomness requirements. We give more detail about this trade-off in
Section 4 and Section 5.

3.2 On the Necessity of Introducing Fresh Randomness into Gadgets
Usually, fresh randomness is introduced into gadgets wherever probe propagation is to be
stopped into certain inputs of the gadget. Often, introducing fresh randomness conveniently
allows simulation of a wire independent of any other value contributing to its distribution.
Considering the simple example given in Figure 3, a probe on the output of the register
can be perfectly simulated tossing a fair coin if R is a fresh random bit, i.e., R is certainly
independent of any other wire in the design – in particular independent of X0. Therefore,
P = R⊕X0 can be perfectly simulated by P

$← F2 which is formalized by Theorem 1.
The situation changes if X0 depends on R. We assume X0 = X ⊕ R and X1 = R

as stable input signals. In this case, P is not perfectly simulatable using only X0, as
P = (X ⊕R)⊕R = X. To simulate this, we need both input shares X0 and X1.

Theorem 1. If a wire W of a gadget G is statistically independent of R, P = Reg[W ⊕R]
can be simulated by flipping a coin, i.e., P

$← F2.

Proof. It holds that Pr[W ⊕R = 1] = Pr[W = 1] + Pr[R = 1]− 2 · Pr[W = 1 ∨R = 1].
If now W is statistically independent of R, it follows that Pr[W ⊕ R = 1] = Pr[W =
1] + Pr[R = 1]− 2 · Pr[W = 1]Pr[R = 1]. It is directly observable that if R is uniformly
distributed over F2, then Pr[W ⊕R = 1] = Pr[W = 1] + 1

2 − 2 · P r[W =1]
2 = 1

2 , regardless
of the value of Pr[W = 1].

3.3 COMAR
Before presenting the details of COMAR gadgets, we define Simple Sharing below, which
is required to understand the underlying concept.

Definition 4 (Simple Sharing). A sharing F ∈ Fn
2 of F ∈ F2 is called Simple Sharing iff

∃!i ∈ [0, n− 1] with F i = F ⊕ ⊕
∀j ̸=i

Rj and F ∀j ̸=i = Rj
$← F2, i.e., n− 1 shares are set to

individual random masks and one share is set to the unmasked value F added by the sum
of all n− 1 masks.
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A0
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⊕
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⊕
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⊕
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R′
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R′
3

⊕ C1

Figure 4: COMAR first-order 2-input AND gate (ANDCOMAR).

Algorithm 2 COMAR first-order n-input AND (ANDn
COMAR)

Input: shares (A0
0, A1

0), . . . , (A0
n−1, A1

n−1) s.t. A0≤j<n = A0
j ⊕A1

j and
fresh masks (Rj)0≤j<n and (R′

i)0≤i<2n

Output: shares (C0, C1) s.t. C0 ⊕ C1 =
∏
j

Aj

1: for ∀j ∈ {0, . . . , n− 1} do ▷ input sharing refresh
2: A′0

j ← Reg[A0
j ⊕Rj ]

3: A′1
j ← Reg[A1

j ⊕Rj ]
4: end for
5: for ∀i ∈ {0, . . . , 2n − 1} do
6: C ′

i ← Reg
[ ∏

j

A
′bitj(i)
j ⊕R′

i

]
▷ bitj(i): j-th bit of binary representation of i

7: end for
8: C0 ← ⊕

0≤i<2n

C ′
i

9: C1 ← Reg
[ ⊕

0≤i<2n

R′
i

]

3.3.1 AND

Figure 4 represents the first-order COMAR 2-input AND gate. Based on the above given
definitions, every signal at the output of a gate is simply shared with the same mask bit
R, e.g., (A0, A1) : (A⊕M, M), and (B0, B1) : (B + M, M). Therefore, each input A and
B should be first refreshed using R0 and R1 respectively. We further require 4 fresh mask
bits R′

0 to R′
3 to blind the non-linear monomials. As shown, the shared output is formed

as (C0, C1) : (AB ⊕M, M) with M = R′
0 ⊕R′

1 ⊕R′
2 ⊕R′

3, i.e., satisfying simple sharing
given in Definition 4. Further, placing any probe at the output sharing does not propagate
to any input shares.

In total, the gadget has a latency of 2 clock cycles and requires 6 fresh mask bits. This
is clearly larger than HPC2 2-input AND gadget (Section 2.7), but all our gadgets can
receive the same fresh masks ⟨R0, R1, R′

0, R′
1, R′

2, R′
3⟩. In other words, independent of the

size of the circuit, and the number of instantiated 2-input AND gates, only 6 fresh masks
are required.

This scheme can be extended to AND operations with a higher number of inputs. The
corresponding pseudo-code is given in Algorithm 2. For an n-input AND gate, n fresh mask
bits are required to refresh the sharing of n inputs, and 2n fresh mask bits for blinding the
non-linear monomials. In short, in a circuit with at most n-input AND gates, n + 2n fresh
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Figure 5: COMAR first-order 2-input XOR gate (XORCOMAR).

mask bits are required which are reused by all corresponding gadgets.
Note that since the second shares A1, B1 and C1 in all such AND gadgets are the

same, for the sake of performance, the associated gates and registers (i.e., lines 3 and 9 of
Algorithm 2 and Reg[A1 ⊕R0], Reg[B1 ⊕R1], and Reg[R′

0 ⊕ . . .⊕R′
3] in Figure 4) do not

need to be repeated for every gadget.

3.3.2 XOR

We should highlight that the share-wise application of XOR operations in HPC2 naturally
fulfill the composability requirements and can be easily cascaded. However, this is not
the case for COMAR, since the output of every gadget is shared by the same mask, and
XORing them would clearly lead to unmasked values, i.e., first-order leakage. Therefore,
in contrast to HPC2, we constructed an XOR gadget, whose block diagram is shown in
Figure 5 and whose structure is very similar to that of the ANDCOMAR. Originating from
another gadget’s output, both inputs A and B are shared with the same M = R′

0⊕ . . .⊕R′
3,

before they are refreshed by R0 and R1 respectively, which are the same R0 and R1 used
in ANDCOMAR gadgets. In the next stage, each of the refreshed shares is XORed with
one R′

i∈{0,...,3}, also being the same as those applied in ANDCOMAR gadget. Therefore, the
output shares of the XOR gadget become C0 = A⊕B⊕M and C1 = M , i.e., satisfying the
definition of a Simple Sharing with the same M as used for all other inputs and outputs of
other gadgets.

As a disadvantage, its area footprint is higher than the HPC2 XOR and it requires
two register stages. However, similar to AND2

COMAR, we can extend the construction of
XORCOMAR to support XORing a higher number of operands. The corresponding pseudo-
code is given in Algorithm 3. Similar to the ANDCOMAR, the gates and registers associated
to the second share, i.e., Reg[A1 ⊕R0]⊕R′

1, Reg[B1 ⊕R1]⊕R′
3, C1 = Reg[R′

0 ⊕ . . .⊕R′
3]

and lines 3 and 9 in Algorithm 3 do not need to be repeated for every gadget.

3.3.3 Proofs

Below, we provide necessary theorems to prove the security of our constructed COMAR
gadgets when composed to build larger circuits.
Assumption 1. Every COMAR gadget with n inputs is supplied with two sets of fresh
masks

(
R

)
0≤j<n

and
(
R′)

0≤i<n′ with n′ = 2n for ANDn
COMAR and n′ = 2n for XORn

COMAR.
For every evaluation of the gadget, each of these n + n′ fresh masks is individually drawn
from a uniform distribution at random and is independent of other n + n′ − 1 bits.
Theorem 2. If each Rj is statistically independent of A0

j and A1
j , for every 0 ≤ j < n,

ANDn
COMAR provides first-order security under the Probe-Isolating Non-Interference notion.
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Algorithm 3 COMAR first-order n-input XOR (XORn
COMAR)

Input: shares (A0
0, A1

0), . . . , (A0
n−1, A1

n−1) s.t. A0≤j<n = A0
j ⊕A1

j and
fresh masks (Rj)0≤j<n and (R′

i)0≤i<2n

Output: shares (C0, C1) s.t. C0 ⊕ C1 =
⊕
j

Aj

1: for ∀j ∈ {0, . . . , n− 1} do ▷ input sharing refresh
2: A′0

j ← Reg[A0
j ⊕Rj ],

3: A′1
j ← Reg[A1

j ⊕Rj ]
4: end for
5: for ∀j ∈ {0, . . . , n− 1} do
6: C ′

2j ← Reg
[
A′0

j ⊕R′
2j

]
, C ′

2j+1 ← Reg
[
A′1

j ⊕R′
2j+1

]

7: end for
8: C0 ← ⊕

0≤i<2n

C ′
i

9: C1 ← Reg
[ ⊕

0≤i<2n

R′
i

]

Proof.

Input to the first register stage: A probe on the input to the first register stage
observes the distribution over

(
A

l∈{0,1}
j , Rj

)
. As Al

j is independent of Rj , this can be
simulated by Al

j and choosing Rj
$← F2. Hence, an extended probe only propagates

into Al
j .

Input to the second register stage: An extended probe on the input to
the second register stage reveals the distribution over

(
A

′bit0(i)
0 ⊕ R0, A

′bit1(i)
1 ⊕

R1, . . . , A
′bitn−1(i)
n−1 ⊕Rn−1, R′

i

)
for i ∈ {0, . . . , 2n − 1}. Directly following Theorem 1,

each such an observation, so-called O, can be simulated by sampling O
$← Fn+1

2 .

Output: An extended probe on the output observes the distribution over
(
C ′

0, C ′
1, . . . ,

C ′
2n−1

)
, with C ′

i =
∏
j

A
′bitj(i)
j ⊕ R′

i. Since
∏
j

A
′bitj(i)
j is independent of R′

i, this can

be simulated by sampling the observation O
$← F(2n)

2 , due to Theorem 1.

Theorem 3. If each Rj is statistically independent of A0
j and A1

j , for every 0 ≤ j < n,
XORn

COMAR provides first-order security under the Probe-Isolating Non-Interference notion.

Proof.

Input to the first register stage: A probe on the input to the first register stage
is similar to that on an ANDn

COMAR, which is covered by Theorem 2.

Input to the second register stage: A probe on the input to the second register
stage observes the distribution over

(
A

bit0(i)
⌊i/2⌋ ⊕R⌊i/2⌋, R′

i

)
for i ∈ {0, . . . , 2n−1}. Due

to the independence of R⌊i/2⌋ and R′
i, following Theorem 1, each such an observation

can be simulated by sampling O
$← F2

2.
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Output: A glitch-extended probe on the output observes the distribution over(
C ′

0, C ′
1, . . . , C ′

2n−1
)
, with C ′

i = A
bit0(i)
⌊i/2⌋ ⊕ R⌊i/2⌋ ⊕ R′

i. Since each A
l∈{0,1}
j is inde-

pendent of Rj (the assumption of the theorem), this can be simulated by sampling
the observation O

$← F(2n)
2 , due to Theorem 1.

Assumption 2. In a circuit composed of only COMAR AND gadgets with at most n inputs
and COMAR XOR gadgets with at most m inputs, all gadgets receive the same set of fresh
masks

(
R

)
max(n,m) and

(
R′)

max(2n,2m).

Theorem 4. Every masked circuit composed of COMAR gadgets is first-order secure in
the glitch-extended d-probing model with d = 1.

Proof.
Let CCOMAR be a masked (sub)-circuit with m outputs realizing the Boolean function
F : Fn

2 7→ Fm
2 , F = ⟨F0, F1, . . . , Fm−1⟩ with each Fi being a coordinate function Fn

2 7→ F2,
solely composed of COMAR gadgets.

- ANDm
COMAR ◦ CCOMAR. First, we consider the case where the inputs to an ANDm

COMAR
are the outputs of a circuit composed of XORCOMAR and ANDCOMAR, i.e., only 2-input
gadgets. A probe placed on such an interconnection hence observes distributions of
one of the following forms:

(
F′

i ⊕R′
0, F′′

i ⊕R′
1, F′′′

i ⊕R′
2, F′′′′

i ⊕R′
3
)

or
(
R′

0 ⊕R′
1 ⊕R′

2 ⊕R′
3
)
,

with Fi = F′
i⊕F′′

i ⊕F′′′
i ⊕F′′′′

i when the output of either an ANDCOMAR or an XORCOMAR
is probed. These probed signals are the input of the next ANDm

COMAR as well which are
blinded by the corresponding Ri. Following Assumption 2, the above-given probed
values are independent of Ri; hence, their simulatability is implied by Theorem 2.
The same holds when m outputs of CCOMAR are provided by larger gadgets, i.e.,
ANDn1>2

COMAR and XORn2>2
COMAR. More precisely, a probe placed on an output of CCOMAR

observes distributions which are blinded by R′
j with 0 ≤ j < 2n

1 for ANDn1
COMAR or

0 ≤ j < 2n2 for XORn2
COMAR. Since the first stage of ANDm

COMAR blinds the inputs with
the corresponding Ri, following Assumption 2 and Theorem 2, their simulatability is
implied.

- XORm
COMAR ◦ CCOMAR. Here, we consider the case where the outputs of CCOMAR are

given to an XORm
COMAR. Since the first stage of XORm

COMAR is identical to that of
ANDm

COMAR, the statements given above for ANDm
COMAR ◦ CCOMAR holds true here as

well.

3.3.4 Other Gates

Other gadgets, e.g., NOT, NAND, OR, NOR, and XNOR, can be easily constructed. In order
to maintain the simple sharing, negation should be performed on the first share. More
precisely, (X0, X1) should be the output of the NOT gadget. The same holds for NAND
and XNOR. Since A|B = A B, an OR gadget is constructed by placing a NOT gate at the
first share of all inputs and the output of an AND gadget. Therefore, all statements and
proofs given in Section 3.3.3 are valid for other COMAR gadgets constructed as explained
above.
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3.3.5 Discussions

If a circuit is made by only NOT and 2-input AND, NAND, OR, NOR, XOR, and XNOR
gates, its first-order secure variant requires 6 fresh mask bits independent of its size and the
number of gates. When larger gadgets (i.,e., with a higher number of inputs) are employed,
naturally the circuit needs more fresh mask bits as a trade-off between the latency and the
amount of demand for fresh randomness. If the circuit instantiates non-linear COMAR
gadgets with at most n inputs and linear COMAR gadgets with at most m inputs, the
number of required fresh mask bits for the entire circuit is max(n, m) + max(2n, 2m). As
stated, the drawback is that the XORs would introduce additional register stages compared
to the equivalent first-order HPC2 circuit, whose required number of fresh mask bits equals
the number of 2-input non-linear gates. Further, note that HPC2 gadgets are only available
for 2-input gates and hence there is no trade-off possible at all. We like to highlight that
supporting n-input gadgets is a valuable feature of COMAR, as it allows a designer to
structure a circuit differently, i.e., allowing gadgets with a larger or smaller number of
inputs, hence adjusting the masked variant towards the specific randomness, area and
latency requirements of the use case.

4 Case Studies
In order to examine the performance and security of our scheme, we have considered five
cases studies including the round-based implementations of the full cipher encryption func-
tions of AES-128 [DR20], Skinny64-64 [BJK+16], CRAFT [BLMR19], LED-64 [GPPR11],
and Midori-64 [BBI+15].

To this end, we have constructed HDL specifications of COMAR gadgets and utilized the
recently introduced open-source tool AGEMA [KMMS22], which translates the gate-level
netlist of an unprotected implementation to a masked description by exchanging the gates
with their corresponding masked gadgets (see Section 2.8). In order to apply AGEMA to
our case studies, we first constructed the custom library of AGEMA, where the definition
of the gadgets are given, i.e., the I/O port names, number of fresh masks and number of
register stages of every gadget. We further used the netlist of the unprotected cores which
are given in the case studies of AGEMA available through GitHub1. Direct application of
AGEMA using COMAR gadgets, would construct the masked circuits correctly, but would
result in individual fresh masks being given to each gadget. However, the underlying idea
of COMAR is to reuse the fresh masks, i.e., giving the same fresh masks to all gadgets.
Therefore, we slightly modified the source code of AGEMA to support this feature. For
the sake of simplicity and to highlight the maximum possible randomness optimization,
we covered just 2-input COMAR gadgets. This implies that only 6 fresh masks are used
for the entire design, which are given to all COMAR gadgets.

After applying our modified version of AGEMA on the aforementioned unprotected
full cipher designs we synthesized the resulting circuits with Design Compiler and Nan-
Gate 45nm standard cell library. The corresponding results are depicted in Table 1 showing
the number of required fresh mask bits, the latency cycles, the critical path delay, and
the area footprint of all designs. In order to enable comparison to the state of the art, we
further covered the performance figures of the same designs realized utilizing HPC2, GHPC,
and GHPCLL gadgets. The last two cases are introduced in [KSM22], which – similar to
COMAR– are limited to first order. They can highly reduce the latency, particularly the
GHPCLL variant at cost of a relatively high demand for randomness. Note that in all case
studies, we applied the masking on all inputs of the circuit, i.e., in case of encryption both

1https://github.com/Chair-for-Security-Engineering/AGEMA
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plaintext and key are masked which results in applying the masking on the key schedule
of the ciphers as well.

The benefit of COMAR with respect to the number of required fresh masks is obvious.
In the most advantageous case, 680 fresh mask bits are required by the round-based
AES-128 HPC2 design reduces to 6 bits in COMAR. The critical path delay of the COMAR
circuits is also most of the time less than the equivalent HPC2 counterparts, allowing high
clock frequencies. On the downside, the added latency of COMAR circuits is significantly
more than the HPC2 circuits. This is somehow expected, since – as stated in Section 3 –
each XORCOMAR gadget introduces two latency cycles. Therefore, in designs with a high
number of cascaded XOR gates, the latency of the COMAR circuit would potentially be
high. As it can be seen in Table 1, the COMAR circuits of AES-128 and LED-64, which
have a strong diffusion layer made by several XORs, have a higher added latency compared
to the other case studies.

For the sake of completeness, we included the performance figures of some first-order
AES designs in Table 1, which have not been designed based on composable gadgets, and it
is not straightforward to prove their (robust) probing security when considering the entire
encryption function as a whole. Nevertheless, we give a detailed discussion on comparison
with the start of the art in Section 5.

4.1 Area Overhead
At first glance, COMAR circuits lead to a higher area overhead, which is shown in
Table 1 by pure area. However, for the sake of a fair comparison, the area requirement
of a design should include the part needed to realize the sources for generating the
fresh random masks. This fact is usually ignored by the state of the art, and different
designs are compared ignoring the area required for generating the fresh masks (see
e.g., [CRB+16, MMW18, SM21b]). The reason behind such a simplification lies in the
nonexistence of a suitable cost function. More precisely, the cost (e.g., required area or
energy) of generating a single-bit fresh mask updated every clock cycle is not well-known.
Here, we try to include this open question into our consideration by giving an intuition for
possible costs of randomness creation.

Randomness Generation. In order to guarantee security, i.e., simulatability of every wire
independent of any secret, each fresh mask bit has to be drawn independently from a
uniform distribution over F2, and the adversary should not have control over or knowledge
about the fresh masks. Note that, this is not an assumption specific to our work, but a
general assumption of Boolean masking. For the sake of simplicity, we can for example
assume that an adversary places a probe on X0(X1 ⊕ R). If R is drawn from a biased
distribution, for example with Pr[R = 0] = 0.6 instead of 0.5, X0X1 will be observed
20% more often than X0X1, trivially leaking information about X = X0 ⊕X1. Hence,
violating the assumption of fresh masks being drawn from a uniform distribution can
naturally cause leakage. This is why the required randomness is commonly generated by a
PRNG seeded with a random initial input. The independence of the generated bits, i.e.,
the PRNG’s non-predictability, and the discussed uniformity requirement may be assessed
following [BRS+].

Looking at the state of the art2, some works used Linear Feedback Shift Registers
(LFSRs), which are randomly seeded during the device power-up. Naturally, a single
individual LFSR should be employed for each required fresh mask bit, i.e., sharing an

2Excluding those which generated the fresh masks on a PC and fed the cryptographic module with all
required fresh masks.



16 Composable Gadgets with Reused Fresh Masks

Table 1: Performance figures of first-order round-based full cipher encryption functions,
excluding PRNGs.

Scheme Fresh Random Latency [cycle] Critical Path Area
[bit/cycle] added full Delay [ns] [GE]

AES-128

HPC2 680 8 99 2.04 52 597
GHPC 680 8 99 1.48 67 193
GHPCLL 2720 4 55 2.28 52 450
COMAR 6 42 473 1.23 140 214
[SBM21a]a 8 216 14 256
[SM21a]a 0 246 6.25 7 136
[Sug19]a 0b 266 17 100
[SBHM20]c 976 10 157 500

Skinny64-64

HPC2 64 4 165 0.55 6 895
GHPC 64 2 99 0.80 22 850
GHPCLL 1024 1 66 0.85 18 705
COMAR 6 22 759 0.58 22 090

CRAFT

HPC2 256 8 288 0.94 15 680
GHPC 64 2 96 0.75 22 106
GHPCLL 1024 1 64 0.81 15 748
COMAR 6 14 480 0.61 23 369

LED-64

HPC2 64 4 165 1.98 7 691
GHPC 64 2 99 1.58 22 904
GHPCLL 1024 1 66 1.84 17 382
COMAR 6 42 1419 0.93 31 163

Midori-64

HPC2 256 8 153 1.10 17 801
GHPC 64 2 51 1.05 23 901
GHPCLL 1024 1 34 1.08 19 493
COMAR 6 16 289 0.80 36 580

a Based on a byte-serial design architecture, and not using NanGate 45nm library.
b Using changing of the guards.
c Using a masked dual-rail pre-charge logic, and not based on NanGate 45nm library.

LFSR between multiple parts of the circuit would potentially lead to weaknesses, and
hence security degradation, as the underlying masking schemes commonly suppose the
independence of fresh masks given to different gadgets (in contrary to the core idea of
COMAR). As an example, 31-bit LFSRs with feedback polynomial x31 + x28 + 1 are used
in multiple works [KMMS22, SM21b, MMW18, KSM22] as each one can highly efficiently
be realized in FPGAs. Each such an LFSR costs 286 GE when synthesized for ASIC using
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Table 2: Performance figures of different PRNGs.

Variant Bitrate∗ Delay Area
[bit/cycle] [ns] [GE]

LFSR 31-bit 1 0.17 286
LFSR 64-bit 1 0.18 565

Keccak−f [25] round-based 15/12 0.61 360
Keccak−f [25] unrolled 15 7.10 4.370
Keccak−f [25] unrolled pipeline 15 0.62 4 320

Keccak−f [50] round-based 30/14 0.74 1 154
Keccak−f [50] unrolled 30 9.97 9 136
Keccak−f [50] unrolled pipeline 30 0.76 16 156

Keccak−f [100] round-based 60/16 1.11 2 137
Keccak−f [100] unrolled 60 17.31 20 692
Keccak−f [100] unrolled pipeline 60 1.12 34 192

Keccak−f [200] round-based 136/18 1.14 4 173
Keccak−f [200] unrolled 136 19.84 43 714
Keccak−f [200] unrolled pipeline 136 1.16 75 114

Keccak−f [400] round-based 336/20 1.05 7 989
Keccak−f [400] unrolled 336 20.43 98 846
Keccak−f [400] unrolled pipeline 336 1.06 159 780

Keccak−f [800] round-based 736/22 1.11 16 209
Keccak−f [800] unrolled 736 23.79 205 250
Keccak−f [800] unrolled pipeline 736 1.13 356 598

Keccak−f [1600] round-based 1536/24 1.04 31 361
Keccak−f [1600] unrolled 1536 24.27 466 682
Keccak−f [1600] unrolled pipeline 1536 1.06 752 664

∗ For all Keccak variants we considered c = min(0.4 × state size, 64), providing a resistance of at most 2c

against state recovery.

NanGate 45nm library. If a larger period is desired, one can instantiate 64-bit LFSRs with
feedback polynomial x64 + x63 + x61 + x60 + 1. This translates to 565 GE. It should be
noted that the majority of the area required for an LFSR is due to the registers. The
combinational circuit is made by a few XORs, and the delay of the circuit is at minimum,
i.e., that of 2 or 3 XORs and the setup and hold time of registers.

Some other works like [CRB+16] used a reduced-round version of a cipher
e.g., PRINCE [BCG+12] in Output FeedBack (OFB) mode implemented in an unrolled
fashion. Since no detailed information about the number of covered rounds and the
security of such random numbers is given, we cannot predict the corresponding area
requirements. Alternatively, Sponge-Based PRNGs are known as a suitable candidate
passing the statistical tests proposed by NIST [BDPA10].

Naturally, different variants of Keccak are suggested to be used in Sponge-Based
PRNGs, depending on the number of required random bits and the desired period. Such
designs allow skimming some bits as random values through a squeezing process, i.e., after
applying the Keccak permutation function. However, the permutation function is made by
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a couple of Keccak round functions depending on the size of the employed variant, i.e.,
the state size. For example, Keccak[r = 96, c = 104] with a 200-bit state and a bitrate
of 96 bits, which provides a resistance of about 2104 against state-recovery attacks3, uses
Keccak−f [200] as the permutation function involving 18 rounds of the Keccak round
function. This means that a typical round-based implementation of such a PRNG would
provide 96 random bits every 18 clock cycles, which are obviously not suitable to be used
as fresh masks that should be updated every clock cycle. One solution is to realize the
unrolled version of such a design, i.e., one clock cycle to fully apply Keccak−f [200] on
the state. This highly increases the area requirements as well as the delay of the entire
design. To mitigate the delay, pipeline registers can be added at each unrolled round
function, realizing an unrolled pipeline design. To give an overview of the performance
of such PRNGs, we constructed and synthesized different variants with different design
architectures whose results are shown in Table 2. We would like to refer to [SBHM20],
where a PRNG based on Keccak−f is used. The authors did not fully explain which
Keccak variant has been integrated, but based on the given statements, their PRNG had
an internal state of 650-1050 bits, they were able to fetch up to 976 bits every clock cycle,
and the PRNG (requiring 14.8 GE) did not impact critical path in their design. It is not
fully clear, but we guess that at every clock cycle only one Keccak round function has
been applied, not a full Keccak−f .

Finally, we considered the area required for the generation of mask bits by each full-
cipher HPC2, GHPC, GHPCLL, and COMAR design, and listed their area footprint for
different choices of PRNGs in Table 3. This clearly shows that COMAR circuits outperform
other gadget-based designs with respect to the area overhead with only one exception, i.e.,
when using 31-bit LFSRs, LED-64 HPC2 design has the smallest area footprint. As stated,
this is due to the extensive number of XORs in the diffusion layer of LED-64, for which
several XORCOMAR gadgets should be instantiated.

5 Comparison with the State of the Art
5.1 Algorithmic-Level Masking
There exists a variety of works – examples being [SM21a, SBM21a, Sug19] – aiming to
achieve high optimization when masking a certain design architecture of a particular cipher
like AES. We in the following refer to these approaches as algorithmic-level masking. The
general advantage of these approaches is that they usually result in implementations with
globally optimized overhead requirements. However, as an disadvantages, they are bound
to a certain architecture of a cipher and transferring the approach to other designs is
not trivially possible or not possible at all. Another major drawback of these schemes is
that they are often based on ad-hoc engineering and that there exist no formal security
and composability proofs of the final design in a whole. This is due to the fact that
existing verification tools like SILVER [KSM20] cannot cope with large hardware circuits.
These works usually present experimental evaluations indicating the security of the design.
However, their (possible) non-conformity with the formal notions in the probing security
model may result in insecure implementations when experienced on different hardware
platform or with more accurate measurement setup.

In [SM21a], the authors present a technique to mask a 2-input AND gate where no fresh
randomness is needed. They further applied the same technique on S-boxes for different
ciphers. However, we would like to highlight that the presented AND realization is not

3Note that LFSRs do not provide security against state recovery. Knowing l consecutive outputs of an
LFSR with an l-bit state would lead to full recovery of the shift register. Nevertheless, it is still unknown
whether security against state recovery in the context of SCA security under probing security model is
required.
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Table 3: Area footprint of first-order round-based full cipher encryption functions, including
PRNGs.

Scheme Area [GE]
LFSR 31-bit LFSR 64-bit Keccak, Variant

AES-128

HPC2 247 281 437 205 409 195, [800]
GHPC 261 673 451 393 423 791, [800]
GHPCLL 830 370 1 589 250 1 557 778, [1600]×2
COMAR 141 932 143 608 144 534, [25]

Skinny64-64

HPC2 25 218 43 093 82 009, [200]
GHPC 41 154 59 010 97 964, [200]
GHPCLL 311 569 597 265 771 369, [1600]
COMAR 23 808 25 483 26 410, [25]

CRAFT

HPC2 88 973 160 473 175 460, [400]
GHPC 40 410 58 266 97 220, [200]
GHPCLL 308 612 594 308 768 412, [1600]
COMAR 25 087 26 762 27 689, [25]

LED-64

HPC2 26 014 43 889 82 805, [200]
GHPC 41 208 59 064 98 018, [200]
GHPCLL 310 246 595 942 770 046, [1600]
COMAR 32 881 34 557 35 483, [25]

Midori-64

HPC2 91 094 162 595 177 581, [400]
GHPC 42 205 60 061 99 015, [200]
GHPCLL 312 357 598 053 772 157, [1600]
COMAR 38 298 39 974 49 900, [25]

directly composable, and hence special care has to be taken when constructing larger
circuits. This manual process might be error-prone and is not well-suited for automated
masking of arbitrary implementations. In short such the masked AND gate of [SM21a] is
first-order probing secure, but it cannot be used as a gadget in composed circuits. Below
we give a counterexample.

Let us assume the target circuit should compute D ← B | (A & B), with | and &
denoting the OR and AND operations respectively. This can be realized through computing
C ← AND(A, B) and D ← AND(B, C) by utilizing the AND gadgets of [SM21a]. Note that
inversion of a masked value can be realized by inverting one of its shares, i.e., C = (C0, C1)
or C = (C0, C1). Following the authors’ definition in [SM21a], we get

C0 ←
[
[A0B0 ⊕B0]⊕ [A0B1]

]
, C1 ←

[
[A1B0]⊕ [A1B1 ⊕B1]

]
,

D0 ←
[
[B0C0 ⊕ C0]⊕ [B0 C1]

]
, D1 ←

[
[B1C0] ⊕ [B1C1 ⊕ C1]

]
,
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where square brackets denote values stored into registers. Placing a single probe at the
first part of D0, i.e., the output of the register storing [B0C0 ⊕ C0], leads to

B0C0 ⊕ C0 = B0C0 = B0(
(A0B0 ⊕B0)⊕ (A0B1)

)
= A0B0 ⊕B0 ⊕A0B0B1

= A0B0 ⊕A0B0B1 = P.

This leaks information about B, since if B = 1, i.e, (B0, B1) = (0, 1) or (B0, B1) = (1, 0),
there is only one fullfilling assignment to A0B0 ⊕ A0B0B1 = 1, namely (A0, B0, B1) =
(1, 1, 0), hence Pr[P = 1|B = 1] = 1/4 instead of 1/2. We verified this by SILVER [KSM20].
Note that this is an arithmetic issue not originating from glitches; hence, placing extra
registers in the circuit would not have any effect on this vulnerability.

Furthermore, no formal security proof has been given in [SM21a] for the robust
probing security of the full cipher implementations. Although several experimental leakage
assessments were performed, we would like to highlight that those experimental assessments
only allow to make security statements under a specific setup, whereas the probing security
model abstracts from a certain setup in order to attest a design’s general SCA resilience.

In another work [SBM21a], the authors efficiently applied two-share Boolean masking on
the cubic bijections of the decomposed AES S-box. Their design requires 16 fresh mask bits
per S-box, which can be reduced to 8 bits via pipelining. Their aim was to fit such masked
cubic functions into BRAM of FPGAs, although they gave ASIC performance results of a
byte-serial design in the eprint version of the paper [SBM21b]. Similar to [SM21a], the
security of the S-Box has been examined by SILVER, but no statement about the security
of the encryption function in a whole can be provided. This becomes more relevant in
serialized architectures, where various parts of the circuit are active in different clock
cycles and several multiplexers decide which modules’ output should be stored in which
registers. Hence, there are more locations, where the designer may unintentionally violate
the probing security requirements.

Other algorithmic-level approaches, like the one presented in [Dae17], can also lead to
good results. The technique, so-called changing of the guards, helps to provide uniformity
in td + 1 Threshold Implementations when the masked S-Box does not have a uniform
output sharing. The underlying concept is conceptually very different to gate-level masking
and composable security. Hence, it cannot be directly compared to our approach as it does
not offer integration into automated masking tools, but need careful engineering when
used in entire cipher designs. For example, we refer to [Sug19], where the same technique
has been carefully applied on each module of a tower-field representation of the AES S-Box
to overcome their non-uniform output sharing. Similar to many other works, the robust
probing security of such a design has not been yet proven, e.g., by means of any tools.

Another promising work is the low-latency masked AES presented in [SBHM20], where
the underlying concept is based a masked dual-rail pre-charge logic, called LMDPL.
This allowed the authors to make large combinational circuits by LMDPL gates without
instantiating register between the gates, hence leading to low-latency masked circuits. The
scheme can be seen as a gate-level approach, but the application of LMDPL gates in a
circuit requires specific pre-computed values which should be generated by a dedicated
module called “mask table generator” designed based on the algorithm of the targeted
circuit. The authors have constructed a round-based implementation, and examined its
resistance by experimental evaluations showing first-order leakage after 400 million traces.
As elaborated in Section 4.1, a form of Keccak− f has been used as the PRNG to generate
fresh masks required for the mask table generator module. As the authors themselves
stated, the technique might not exhibit the same level of resistance if it is used in algorithms
and designs with smaller and/or fewer S-boxes.
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5.2 Gate-Level Masking
Gate-level masking approaches, like in this work, on the other hand, deal with constructing
masked variants of composable subcircuits which guarantee the security of the final
implementation as a whole and under the (robust) probing security model, regardless of
the underlying cipher or the design architecture. These approaches are well suited for
automated masking of any unprotected implementation [KMMS22], while usually coming
at the cost of higher overheads (area and/or latency). However, their benefits compared to
algorithmically-masked, manually-crafted and optimized designs are (i) the ability to prove
the security of the resulting circuit, and (ii) the possibility for any engineer to use existing
tools in order to construct secure masked circuits without requiring extensive expertise,
as the tools and composable gadgets automatically mask any given netlist, preventing
engineering flaws which may possibly compromise an implementation’s practical security.

Next to NI/SNI [BBD+15, BBD+16], PINI [CS20] was introduced as a formal notion to
guarantee gadget composabality. As linear operation can be trivially realized in the PINI
framework and the PINI-secure HPC2 AND gadget [CGLS21] introduces less overhead
than existing SNI-gadgets, utilizing HPC2 gadgets is currently the most efficient way
for gadget-level masking in hardware when only considering basic 2-input logic gates. A
PINI-based approach for transforming any vectorial function into a first-order secure and
trivial composable gadget is proposed in [KSM22]. However this approach comes with a
high area demand if the considered function is large.

The main disadvantage of all NI/SNI/PINI-gadgets is that each gadget of a composed
circuit requires individual and fresh randomness, naturally increasing overhead size with
circuit complexity. COMAR decouples this relation by enabling the reuse of the same 6
random mask bits for every gadget in the circuit. This way, every implementation can
be automatically transformed into a masked variant using only 6 individual masks in
total, drastically reducing the overall randomness requirement of the resulting top-module
circuit compared to other gate-level masking schemes. Of course, as for COMAR, linear
operations introduce additional register stages, applying COMAR gadgets will result in a
higher number of clock cycles needed for the masked implementation.

We further like to highlight that we present AND and XOR COMAR gadgets for an
arbitrary number of inputs, whereas HPC2 is restricted to the realization of only 2-input
non-linear gates. Hence, COMAR can be beneficial if the given unprotected implementation
is optimized for 3-bit, 4-bit, or even larger gates. Although the majority of the currently
available S-box implementations of different ciphers are optimized for 2-input non-linear
gates, there is emerging research in this direction [BDK+21].

With COMAR, we do not aim for an overall better solution, but for offering designers
an alternative when area overhead (which directly translates into production cost) is to be
reduced while additional latency is acceptable.

6 Analyses
As the first analysis step, we examined COMAR gadgets and S-boxes of the case studies
given in Section 4 by SILVER, an open-source tool verifying masked hardware circuits
under different security notions, including the glitch-extended probing model. Since our
work is limited to the first security order, the evaluation runtime of SILVER is rather small
for our cases. Therefore, we could even examine large circuits, e.g., 4 AES S-boxes followed
by a MixColumns composed of COMAR gadgets. Supporting the theory and proofs given
in Section 3, SILVER verified first-order security of all our constructions. Since evaluation
of larger circuits, particularly those with a sequential loop (as in our case studies), is
not feasible with SILVER, we have conducted FPGA-based experiments given as follows.
Note, that these experiments, in contrast to other algorithmic-level masking approaches
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(see Section 5.1), are given for the purpose of presenting a complete work while security
in the probing model is already guaranteed due to the gadget composability proven in
Section 3.3.3.

Setup. For this experimental analysis, we consider our COMAR AES-128 round-based
encryption function, given in Section 4, where both plaintext and key are masked. For
the generation of the fresh masks we instantiated 6 individual 31-bit LFSRs as given in
Section 4.1. We implemented the design on the target FPGA of a SAKURA-G SCA-
evaluation board [SAK], i.e., a Xilinx Spartan-6 FPGA. We have further collected the
corresponding power consumption traces by measuring the voltage drop of a shunt resistor
placed in the VDD path of the target FPGA, amplified by 10 dB and then sampled by
a digital oscilloscope at a sampling rate of 500 MS/s while the targeted AES design was
being operated by a stable clock source at a frequency of 6 MHz. As given in Table 1, the
full encryption of the AES design takes 473 clock cycles, resulting in relatively long traces
to cover the entire encryption process (see Figure 6a).

As the evaluation technique, we applied the common and well-known fixed versus
random t-test [CDMG+13], for which the power consumption traces are measured while the
circuit is supplied with either a fixed (but masked) plaintext or a random one while the key
(also masked) is kept constant for all measurements. In order to avoid false positive/negative
evaluations, we followed the procedure given in [SM15] and collected 100 million traces.
The analysis results are depicted in Figure 6, confirming our expectations, i.e., first-order
security of the design but not second-order. Following [SM15], the second-order t-test
was performed by evaluating the distribution over each sample point individually, i.e.,
univariate, and selecting the second central moment (variance) as the distinguisher between
the fixed and random distributions. As we already identified significant leakage for the
univariate second-order case, we did not extend our evaluation to multivariate analysis,
i.e., the distribution over combination of different sample points.

We should highlight that the underlying cryptographic algorithm of the case study
would not have an affect on the result of this evaluation. This is because – as given in
Section 4 – AGEMA considers the given design as a Mealy machine, and replaces the
gates with the given gadgets. At the end, the equivalent circuit with COMAR gadgets is
constructed. In other words, examining other case studies presented in Section 4 would have
led to the same analysis report. We additionally have examined our COMAR Skinny64-64
design, whose results are omitted for the sake be brevity. The HDL of our designs including
the specification of the COMAR gadgets and the case studies of Section 4 can be found in
the GitHub: https://github.com/Chair-for-Security-Engineering/COMAR.

7 Conclusions
In this work, we presented a new set of gadgets – COMAR– offering security and free
composability in the glitch-extended robust d-probing model for d = 1 and requiring only
6 fresh random bits in total to mask any circuit in its entirety, whereas comparable related
works always introduce a linear dependency between the number of (non-linear) gates,
i.e., circuit size, and the randomness requirements. With a constant number of 6 fresh
random bits when utilizing 2-input COMAR gadgets, we enable the designer to highly
optimize for randomness, while the achieved, free composability keeps the design-error
susceptibility minimized. Moreover, we extended our gadget definitions to realize masked
variants of multiple-input gates, giving the designer the opportunity to adjust a masked
circuit’s latency and randomness requirements to a specific use case. We further gave
formal arguments with respect to the composability and security of our constructions in
the first-order (robust) probing security model and practically confirmed our findings by
means of an exemplary leakage assessment. Eventually, we discussed our results on the
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Figure 6: FPGA-based analysis of first-order round-based AES-128 encryption design,
composed of COMAR gadgets, using 100 million traces.

basis of several case studies. Although our approach exceeds latency requirements when
compared to related approaches, we show that our methodology outperforms them with
respect to the area footprint when a fair comparison is made, i.e., when further considering
the area overhead introduced by the randomness source.

To conclude, we think that COMAR offers a valuable increase in the designer’s flexibility
with respect to different design metrics and use cases, while it remains an interesting
question whether a randomness optimization technique can also be found for higher-order
composable gadgets. Unfortunately, the same concept cannot be easily transferred to
higher orders. When more than one probe is allowed, and two gadgets which reuse the
same fresh masks have simple output sharing (defined in Definition 4), two probes are
also enough to reveal the XOR difference between unmasked output of the corresponding
gadgets. However, there might be other possible techniques to partially reuse some fresh
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masks in certain circuits, which certainly deserve more attention and more research effort.
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ABSTRACT
Over the last years, the rise of the Internet of Things (IoT), and the
connection of mobile – and hence physically accessible – devices,
immensely enhanced the demand for fast and secure hardware im-
plementations of cryptographic algorithms which offer thorough
protection against Side-Channel Analysis (SCA) attacks. Among
a variety of proposed countermeasures against SCA, masking has
transpired to be a promising candidate, attracting significant at-
tention in both, academia and industry. Here, abstract adversary
models have been derived, aiming to accurately model real-world
attack scenarios, while being sufficiently simple to enable formally
proving the SCA resilience of masked implementations on an al-
gorithmic level. In the context of hardware implementations, the
robust probingmodel has become highly relevant for proving SCA re-
silience due to its capability to model physical defaults like glitches
and data transitions. As constructing a correct and secure masked
variant of large and complex circuits is a challenging task, a new line
of research has recently emerged, aiming to design small, masked
subcircuits – realizing for instance a simple AND gate – which still
guarantee security when composed to a larger circuit. Although
several designs realizing such composable subcircuits – commonly
referred to as gadgets – have been proposed, negligible research was
conducted in order to find trade-offs between different overhead
metrics, like randomness requirement, latency, and area consump-
tion.

In this work, we present HPC3, a hardware gadget which is
trivially composable under the notion of PINI in the glitch-extended
robust probing model. HPC3 realizes a two-input AND gate in one
clock cycle which is generalized for any arbitrary security order.
Existing state-of-the-art PINI-gadgets either require a latency of
two clock cycles or are limited to first-order security. In short, HPC3
enables the designer to trade double the randomness for half the
latency compared to existing gadgets, providing high flexibility and
enabling the designer to gain significantly more speed in real-time
applications.
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1 INTRODUCTION
Since the first seminal description of Side-Channel Analysis (SCA)
in [32, 33], a significant increase in physically accessible devices
has further driven demand for effective protection against physical
attacks. At the same time, a wide variety of different exploitable
side channels have been revealed, including timing [32], power
consumption [33], electromagnetic (EM) emanations [21], or tem-
perature and heat dissipation [26], posing a wide-ranging and divers
threat to cryptographic implementations. Despite the increasing
effort which has been committed to developing countermeasures
against SCA attacks during the last decades, it remains a challeng-
ing and complex task to design secure hardware implementations
offering a sufficient security level on the one hand, and high effi-
ciency on the other.

Among a wide range of emerged SCA countermeasures, mask-
ing has proven to be a highly promising candidate due to its well-
founded theoretical background based on secret sharing and its
well-understood security requirements [17]. Although extensive re-
search in this area has been conducted and several masking schemes
were proposed over the last years [23, 25, 27, 38, 40, 48], many of
these schemes have been proven to suffer from either design flaws
or invalid assumptions [36].

As a consequence, researchers started focusing on the estab-
lishment of formal models in order to abstractly define an SCA
attacker’s capabilities and to realistically model circuit behavior [5,
20, 27, 39]. The advantage of these models is twofold. On the one
hand, they enable security verification of masked implementations
on an abstract level, aiming to detect security flaws in an early stage
of the design process. Here, a variety of tools, working at different
abstraction levels and offering various accuracy, have been pro-
posed [2–4, 9, 10, 12, 14, 30]. On the other hand, this formalization
enables the design of masked constructions that are provably secure
with respect to the defined adversary model. The ISW 𝑑-probing
model [27] – and its extension to modeling physical defaults in hard-
ware implementations [20] – has proven to be well suited to find
such secure constructions, due to its convenient level of abstraction
and its existing reduction to the Noisy Leakage Model [19], which
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is considered to be the closest to reality with respect to accurately
modeling leakage behavior.

Although different models for formal security verification have
been established in the context of SCA, finding provably secure
masking schemes remains a hard task for complex circuits and
high security orders. As a remedy, different composability notions
have been proposed which define properties that aim to guarantee
security even when circuits are composed. Following a divide-and-
conquer approach, this reduces the task of finding large secure
circuits to the task of finding small subcircuits which are in confor-
mity with the composability notions. In the context of the𝑑-probing
model, Non-Interference (NI)/Strong Non-Interference (SNI) [3, 4]
and Probe-Isolating Non-Interference (PINI) [15] have been pro-
posed, where SNI was introduced since the restrictions defined by
NI were not sufficient to guarantee composability. As the scope of
SNI was originally limited to single-output gadgets, Cassiers et al.
provided an extension to cover multiple-output gadgets, but at the
same time proposed PINI which further reduces the overhead neces-
sary to construct composable gadgets [15]. In their recent work [16],
Cassiers and Standaert further extended the adversary model to
accurately cope with data transitions between different clock cycles
and formally defined the notion of Output Probe-Isolating Non-
Interference (O-PINI), which aims to achieve trivial composability
under (i) transitions and (ii) transitions + glitches. In the course of
the introduction of these wide variety of notions, several concrete
gadgets have been presented, either realizing atomic logic functions,
like AND or refresh gates [4, 9, 14–16, 24, 27, 35], or even arbitrary
logic functions [31].

As embedded real-time applications become increasingly rele-
vant – especially in the context of the rapidly growing IoT – and
due to the high accessibility of the involved devices, designing
fast and protected cryptographic hardware implementations is the
key to guarantee a high level of security and sufficiently fast data
processing. As a consequence, reducing the latency, introduced by
masking a cryptographic hardware implementation, is an important
task whose difficulty is mainly rooted in omitting leakage through
physical defaults like glitches and transitions [16, 20]. As compos-
able hardware gadgets for arbitrary security orders are restricted
to atomic logic functions, reducing the latency of a gadget would
have a significant effect on the latency of the over-all composed
circuit. It is hence highly beneficial if we can further reduce the
latency of existing schemes.

Contributions. In this work, we present HPC3, a low-latency
hardware gadget, that offers 𝑑-th order security and is trivially
composable under the notion of PINI in the glitch-extended robust
probing model. Similar toHPC1 andHPC2 [14], it realizes a masked
AND gate that can be instantiated for arbitrary security orders 𝑑 .
In contrast to HPC2, our newly introduced HPC3 only needs a
single register stage instead of two, regardless of the security order,
while doubling the randomness requirements. It hence enables the
designer to trade double the randomness for half the latency, while
sustaining the same security level and providing significantly more
flexibility with respect to different use cases – for example in the
context of fast memory encryption. To the best of our knowledge,
HPC3 is the first glitch-robust composable gadget which is set-
tled in the PINI framework and can be instantiated utilizing only

one register stage for any security order. We further show that,
compared to HPC2, our construction itself leads to less chip area
overhead – at the cost of a higher demand for fresh randomness.

Furthermore, we present HPC3+, a gadget that is directly based
on HPC3 and offers trivial composability in the simultaneous pres-
ence of both transition and glitches. Eventually, we prove and for-
mally verify our constructions, compare our work to state-of-the-art
hardware gadgets, and explore multiple case studies and conduct
experimental leakage assessments.

Outline. We start by elaborating all necessary theoretical con-
cepts in Section 2. This includes a summary of all notations used
throughout this work, a definition of the circuit and adversary
model, and recapitulating different security and composability no-
tions. In Section 3, we present our new gadget HPC3 and prove
its conformity to the PINI notion in the glitch-extended robust
probing model. Here, we further present HPC3+ and prove its triv-
ial composability under transitions paired with glitches, before
we compare our designs to state-of-the-art trivially-composable
hardware gadgets in Section 4. After we conduct analyses on an
extensive list of case studies, i.e., different cryptographic implemen-
tations, and perform experimental leakage assessments in Section 5,
we conclude our work in Section 6.

2 BACKGROUND
2.1 Notations
We denote random variables by capital letters, e.g., 𝑋 ∈ F2 de-
notes a binary random variable. Further, we use bold letters like
X to denote sets. Initializations of random variables are denoted
by small letters, while the probability that 𝑋 takes 𝑥 is written as
𝑃𝑟 [𝑋 = 𝑥]. Moreover, we indicate the 𝑖-th input to a function with
subscript 𝑖 while superscripts identify shares of random variables.
Hence, the 𝑠-th share of the 𝑖 input to a function is denoted as
𝑋𝑠
𝑖 . Let further |X|𝑖 denote the number of shares in a set X cor-

responding to 𝑋𝑖 . When masking a function F : F𝑛2 ↦→ F𝑚2 with
𝑡 shares per input, the set containing all input shares is given as
𝑆ℎ(X) = [𝑋 0

0 , 𝑋
1
0 , . . . , 𝑋

𝑡−1
0 , 𝑋 0

1 , . . . , 𝑋
𝑡−1
𝑛−1]. In the same manner, for

a set of share indices I ⊆ [0, . . . , 𝑡 − 1], 𝑆ℎ(X)I denotes the set
of all input shares 𝑋𝑠

𝑖 , with 0 ≤ 𝑖 < 𝑛 and 𝑠 ∈ I. Eventually, 𝑃𝑊
denotes the (extended) probe on a wire𝑊 , while drawing a value
𝑋 uniformly and at random from a set 𝑆 is denoted as 𝑋 $← 𝑆 .

2.2 Circuit Model
As originally considered in [27] and later extended in [20], any
stateful and deterministic circuit C is modeled as a Directed Acyclic
Graph (DAG) GC = {V, E} withV being the set of vertices and E
the set of edges inGC. The edges represent wires carrying elements
of F2 while the vertices are combinational gates such as AND and
XOR, or memory gates, i.e., registers. Memory gates will output the
previous input to the gate on any circuit invocation while storing
the input for the next invocation. Eventually, GC realizes a Boolean
function F : F𝑛2 ↦→ F𝑚2 .

As this model lacks the notion of cycling connections in a circuit,
and the ability to model different executions of the same physical
gate, it has been extended towards a more specific circuit model
in [16]. This model introduces so-called structural gates which
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among its functionality, public and secret parameters, also cap-
tures the latency of a gate. Structural wires are then defined as wires
connecting structural gates, and finally a structural circuit is defined
as a directed graph whose nodes are structural gates and whose
edges are structural wires.

The definition of a structural circuit can then be extended to
cover states in different clock cycles by defining a state of each wire
and gate for every clock cycle:

Definition 2.1 (Circuit Execution). A Circuit Execution of
a structural circuit C = (G,W) for the set of cycles T is a directed
graph GC = (V, E) with V ∈ G × T and E ∈ W × T where wires
connect the gates according to their latency. Here, G and W denote
the structural gates and wires of C.

Note that in this model, combinational gates – like AND and XOR
– are structural gates with latency 𝑙 = 0, realizing the corresponding
Boolean function, while registers are structural gates realizing the
identity function and having latency 𝑙 = 1. Nevertheless, structural
gates are defined in a more general way, possibly containing several
register stages.

Thanks to the previous research conducted in [16] and due to the
share isolating property of PINI, we can conveniently limit all our
considerations to the simpler original circuit model while achieving
secure composition under transitions in the more complex model
of circuit executions.

Encoded Circuit Model. In order to restrict the adversarial prob-
ing solely to the masked circuit, and to exclude the masking and
unmasking of the input data, the process of secure computation
is divided into three steps. As defined in [1], a circuit compiler is
defined by a tuple of three algorithms (COMPILE, ENCODE, DE-
CODE), which are defined as follows.
• The COMPILE algorithm is deterministic and takes as input
a structural circuit C and outputs a randomized (masked) cir-
cuit C̃.
• ENCODE is a probabilistic algorithm that takes as input X and
outputs the encoded input X̃. This encoded input corresponds
to the shared representation of the data, i.e., X̃ = 𝑆ℎ(X), which
– in our case – is derived by means of Boolean masking.
• Eventually, DECODE is a deterministic algorithm that takes
encoded data Ỹ and decodes/unshares it to achieve Y.

As a result, these algorithms enable sharing of the initial input
data (through ENCODE), a computation on the shared represen-
tation of the input (through C̃) and an unsharing of the result
(through DECODE), such that Y← DECODE ◦ C̃ ◦ ENCODE(X)
for Y← C(X), while the adversary is restricted to only make ob-
servations within C̃. It means that the algorithms ENCODE and
DECODE are known to the adversary, but neither the output of
ENCODE nor the input of DECODE.

2.3 Boolean Masking
Following the approach of secret sharing, a Boolean masking of
a secret 𝑋 ∈ F𝑛2 is a set X ∈ F𝑛×𝑠2 of 𝑠 independent secret shares

𝑋 𝑖 ∈ F𝑛2 , 0 ≤ 𝑖 < 𝑠 , such that 𝑋 =
𝑠−1⊕
𝑖=0

𝑋 𝑖 . This is commonly

derived by independently drawing 𝑋 𝑖 $← F𝑛2 , for 0 ≤ 𝑖 < 𝑠 − 1 and

calculating the remaining share as the XOR sum of all other shares:

𝑋𝑠−1 =
𝑠−2⊕
𝑖=0

𝑋 𝑖 . Following the definition described in Section 2.2,

this step describes the ENCODE algorithm in the case of Boolean
masking. A direct implication of Boolean masking necessitates
splitting sensitive data in at least 𝑑 + 1 shares in order to achieve
𝑑-th order security.

2.4 Adversary Model
Following the definition in Section 2.2, for the remainder of this
work, we assume that an adversary’s access to computations is
limited to C̃ and that the execution of ENCODE and DECODE
remain unavailable.

𝑑-Probing Model. The standard 𝑑-probing model, introduced by
Ishai et al. in [27], grants an adversary the ability to probe up to 𝑑
wires of a circuit. Here, every logic gate acts as a synchronization
element, so every wire is considered stable, carrying only the result
of the driving gate under the current assignment of the primary
inputs. Intuitively, security in this model is given, if an adversary is
not able to receive any information about sensitive (unshared) data
by observing the joint distribution over maximal 𝑑 probed wires.

Glitch-Extended Probing. Since the standard probing model does
not cover the modeling of physical defaults occurring in hardware
implementations, it was extended by Faust et al. in [20]. In their
work, the authors introduced the robust probing model which aims
to extend the probes enabling them to capture leakage originat-
ing from (i) data transitions at registers, (ii) coupling effects, i.e.
dependencies between adjacent wires, and (iii) glitches.

The concept of glitches describes signal recombination caused by
different delay paths in a digital circuit. Hence, in practice, a single
probe on a wire is not only able to observe the intended and stable
output signal of its driving gate, but possibly a recombination of
several upstream signals, up to the last synchronization point, i.e.,
registers output or primary inputs. To capture the worst case in this
context, the glitch extension of a probe is hence the set of probes
placed on all these synchronization points.

This is formally defined through Algorithm 1. The glitch exten-
sion of a probe is defined recursively and will either return the
union over all glitch-extended probes placed on the input of the
driving combinational gate, or return the probe itself in case the
probe is placed on an output of a register or a primary input. Even-
tually, the extension of a set of standard probes is simply derived
by uniting all corresponding glitch-extended probes.

Transition-Extended Probing. Considering the definition of a cir-
cuit execution, given in Definition 2.1, the transition-extended
probes on a structural gate – which is formally defined in [16] by the
fact that all its executions are identical except for a shift in time, i.e.,
in clock cycles – are all non-extended probes 𝑃𝑊 and additionally
the sets

{(𝑊, 𝑡 − 1), (𝑊, 𝑡)}. This means the joint distribution of
probes in two consecutive clock cycles while

{(𝑊, 𝑡 − 1), (𝑊, 𝑡)}
belongs to the same execution of the probed structural gate. Here,
𝑡 refers to a clock cycle and (𝑊, 𝑡) refers to the state of𝑊 during
this specific clock cycle, i.e., a node in the circuit execution given
in Definition 2.1. For example, a non-extended probe on a register
output would extend to two probes: on its input and output wires.
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Algorithm 1: Glitch Extension

Input :Non-extended probe 𝑃 ∈ F2

Output :Glitch-extended probes P𝐸 ∈ F𝑝2 , 𝑝 > 0

1 if 𝑃 is placed on an output of a combinational gate then
2 P𝐸 ← ⋃

0≤𝑖<𝑛
glitch-extend(𝑃𝑖 ) // where 𝑃𝑖, 0 ≤ 𝑖 < 𝑛

are all inputs to
the driving gate

3 else
4 if 𝑃 is placed on an output of a register or on a primary input

then
5 P𝐸 ← {𝑃 }
6 end
7 end

Transition+Glitch-Extended Probing. Combining transition- and
glitch-based probe extensions is straightforward. First, all non-
extended probes are glitch-extended, before every resulting probe
becomes transition-extended. This corresponds to the physical prop-
erty that a propagation of a glitch may depend on both the new
and the previous value of the wire.

𝑑-Probing Security. In the (robust) probing model, an adversary
is granted the ability to probe up to 𝑑 wires of a masked circuit
C̃. Naturally, 𝑑-probing security is achieved iff an adversary with
these capabilities, i.e., an adversary in the 𝑑-probing model, does
not learn anything about the processed secrets [27]:

Definition 2.2 (𝑑-Probing Security). A masked circuit C̃ –
derived by compiling C with secret input X – achieves 𝑑-probing
security iff for any set of probes P, |P| ≤ 𝑑 , the joint distribution
over all observations Q made by (extended) probes P is statistically
independent of any secret X, i.e., the following holds for all possible
assignments to variables in Q and X:

𝑃𝑟 [Q|X] = 𝑃𝑟 [Q]

2.5 Circuit Composition
Several security and composability notions have been proposed
in recent years, aiming to enable efficient masking of large and
complex circuits. Before we give an overview of these notions, we
start by introducing the concepts of probe simulation and probe
propagation, paving the ground for the subsequent definitions.

Probe Simulatability. The concept of probe simulatability [15, 27]
helps to argue about dependencies between probes and input shares
to a masked/encoded circuit. Its definition is given in the following.

Definition 2.3 (Perfect Probe Simulation). Given a set of (ex-
tended) probes P ∈ F𝑡2 on an encoded circuit C̃, P is said to be perfectly
simulatable by a set S of input shares iff there exist a simulator SIM,
such that for any values of the inputs to C̃, the joint probability distri-
bution over P and SIM(S) are equal, where SIM(S) : F |S |2 ↦→ F𝑡2 with
input S ⊆ 𝑆ℎ(X) is a probabilistic polynomial time (p.p.t.) simulator.

Probe Propagation. The concept of Probe Propagation – initially
introduced by Cassiers et al. in [15] – is closely related to simulata-
bility, and defines which wires are necessary to perfectly simulate a
probe placed on C̃. Intuitively, it describes, how leakage is traversed

backwards throughout a circuit, beginning from the point where
the probe is placed. Restricting probe propagation has proven to be
a key factor to guarantee composability.

Considering a probe 𝑃 ∈ F2 on a subcircuit , 𝑃 is said to propagate
into an input of the subcircuit, if the input is required to perfectly
simulate 𝑃 . When considering composability notions, propagation
of internal and output probes of a gadget are restricted following
a well defined set of rules and allowing to make statements of the
overall circuit. For this, the propagated probes can be derived by
iteratively substituting a probe by its propagated variant on the
gadgets’ inputs until the overall circuit’s input is reached.

Non-Interference (NI). As directly designingmasked circuits which
achieve 𝑑-probing security has proven to be hard for large and
complex functions, different composability notions have been intro-
duced as a remedy. These notions aim to define sufficient properties
which a masked circuit must fulfill in order to provide 𝑑-th order
security in the probing model when composed to a larger circuit.
Following a divide-and-conquer approach and utilizing atomic logic
functions – typically AND and XOR – large circuits can be derived
by composing masked versions of these atomic gates – commonly
referred to as gadgets.

Utilizing the concept introduced above, and as initially elaborated
in [3], NI aims to restrict probe propagation to a certain set of input
shares:

Definition 2.4 (𝑑-Non-Interference (NI)). A masked circuit C̃
provides 𝑑-Non-Interference iff for any probe set |P| of 𝑡 ≤ 𝑑 probes,
there exists a set S of input shares with |S|∀𝑖 ≤ 𝑡 such that P can be
perfectly simulated by S.

Strong Non-Interference (SNI). The notion of SNI [4] has been
introduced in order to correct composability flaws regarding NI
and restricts probe propagation even further:

Definition 2.5 (𝑑-StrongNon-Interference (SNI)). Amasked
circuit C̃ provides 𝑑-Strong Non-Interference iff for any probe set P,
containing 𝑡 = 𝑡1 + 𝑡2 ≤ 𝑑 probes, where 𝑡1 probes are placed on
internal wires and 𝑡2 on output wires, there exists a simulation set S
of input shares with |S|∀𝑖 ≤ 𝑡1, such that P can be perfectly simulated
by S.

Here, output probes are not allowed to propagate into any input
shares, hence resolving the flaws with respect to composability
discovered for NI [4], but implication of secure composition was
originally still restricted to single-output gadgets.

Probe-Isolating Non-Interference (PINI). In [15], it has been shown
that the original definition of SNI can be extended to cover multiple-
output gadgets as well. Nonetheless, in the same work, the au-
thors introduced the notion of PINI, which elegantly isolates probe
propagation within single share domains, enabling trivial imple-
mentations of linear functions and reducing entropy and area re-
quirements compared to SNI, while guaranteeing straightforward
composability.

Similar to Domain-Oriented Masking (DOM), in the context
of PINI, a specific share domain is assigned to every input and
output share. Now, in order to be PINI, every output probe is only
allowed to propagate within its own share domain (share index)
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while propagation of every internal probe is limited to a single (but
arbitrary) share domain:

Definition 2.6 (𝑑-Probe-Isolating Non-Interference (PINI)).
Let PI be the set of internal probes with |PI | = 𝑡1. Let further IO be the
index set assigned to the output wires probed by PO with |IO | = 𝑡2.

A masked circuit C̃ provides 𝑑-Probe-Isolating Non-Interference
iff for every P = PI ∪ PO with 𝑡1 + 𝑡2 ≤ 𝑑 , there exists a set II of
circuit indices with |II | ≤ 𝑡1 such that P can be perfectly simulated
by S = 𝑆ℎ(X)II∪IO .

Conveniently, this definition directly implies that the trivial im-
plementation of linear functionswith𝑑+1 shares, i.e., the share-wise
application of the unshared function, is 𝑑-PINI even in the glitch-
extended robust probing model. Consequently, linear functions do
not introduce any additional latency or entropy overhead into the
design.

PINI is invariant under composition, i.e., a circuit composed of
gadgets fulfilling 𝑑-PINI is itself 𝑑-PINI. This is true, if gadgets are
carefully connected, i.e., if an output with a certain share index
is only connected to an input with the same share index. There-
fore, since 𝑑-PINI implies 𝑑-probing security, the resulting circuit
will be secure in the 𝑑-probing security model and will reveal no
information about any secret value under 𝑑 (extended) probes.

In order to achieve trivial composition under transitions, an ex-
tension to the original definition of PINI, i.e., O-PINI, was recently
introduced in [16]. It deals with adjacent executions of the same
gadget, i.e., if the input of a gadget depends on the output of itself.
As for simulating the second execution of the gadget, the simulator
may need to also simulate outputs of the first gadget execution, this
leads to an effective probe extension of internal probes to additional
probes on the output. As a consequence, the probed wires may prop-
agate into more circuit shares than allowed, causing a reduction in
the security level of the design. Naturally, a possible solution would
be to avoid adjacent execution of gadgets, for example by means of
an ‘empty/dummy’ clock cycle between executions. As this would
introduce composability restrictions, which make additional design
verifications necessary, O-PINI was introduced in order to guaran-
tee trivial composability. O-PINI copes with the issue of adjacent
executions by additionally enforcing simulatability of every output
wire whose share index is also a share index in the simulation set:

Definition 2.7 (𝑑-Output Probe-Isolating Non-Interfer-
ence (O-PINI)). Let PI be the set of internal probes with |PI | = 𝑡1.
Let further IO be the index set assigned to the output wires probed by
P𝑂 with |IO | = 𝑡2.

A (unrolled) masked circuit C̃ provides 𝑑-Probe-Isolating Non-
Interference iff for every P with 𝑡1 + 𝑡2 ≤ 𝑑 , there exists a set II of
circuit indices with |II | ≤ 𝑡1 such that P = PI ∪ P𝑂 ∪ OII can be
perfectly simulated by S = 𝑆ℎ(X)II∪IO .

Note that, for the sake of simplicity and in contrast to [16], we
restrict the definition of𝑑-O-PINI to unrolled designs (which in [16]
is called pipelined), i.e., designs where no feedback loops exist. Due
to their implication of trivial composability, all our constructions
in this work are based on the PINI and O-PINI notions.

2.6 Automated Masking
Gadgets fulfilling composability notions like PINI are well suited for
automated generation of masked hardware. By simply synthesizing
the implementation based on a library that only includes logic gates
for which a corresponding gadgets exist, the implementation can
be masked by substituting every gate in the resulting netlist with
those gadgets. Since composability notions elegantly guarantee
(robust) probing security when gadgets are composed, the overall
design will be provable secure.

The recently introduced software tool AGEMA [29] realizes such
a transformation by first representing the netlist as a graph, before
translating it into a Mealy machine consisting of a combinational
circuit and a single main register stage. The designer can then select
which parts of the netlist should be masked and specify the gadget
family to apply. In the naive approach, every gate in the netlist is
then simply substituted by the corresponding gadget as explained.
As these gadgets introduce additional latency into the design, the
correct functionality of the circuit is ensured by automatically ap-
plying pipelining or clock gating. We utilized AGEMA in this work
in order to construct our case studies and to offer a fair comparison
to state-of-the-art composable gadgets.

3 LOW-LATENCY HARDWARE PRIVATE
CIRCUITS

In this section, we present the algorithm describing our low-latency
Hardware Private Circuits (HPC3), formally prove its security and
composability and give exemplary schematics for the first and
second security orders, before we extend it to be composable under
transitions and glitches.

3.1 Glitch-Robust Variant
HPC3 is described in Algorithm 2. Here, every cross-domain term
𝑋 𝑖 · 𝑌 𝑗 is blinded by the sum of two freshly drawn random masks
𝑅′𝑖 𝑗 ⊕ 𝑅′′𝑖 𝑗 , where 𝑅′𝑖 𝑗 = 𝑅′𝑗𝑖 and 𝑅

′′
𝑖 𝑗 = 𝑅′′𝑗𝑖 , resulting in a randomness

requirement of 2 · (𝑑 · (𝑑 + 1))/2 = 𝑑 · (𝑑 + 1) and a latency of
a single clock cycle to achieve 𝑑-th order security in the glitch-
extended probing model. The composability under the notion of
PINI – utilizing only a single register stage – is achieved through
blinding 𝑌 𝑗 by 𝑅′𝑖 𝑗 before multiplying 𝑋 𝑖 , and at the same time
blinding the corresponding correction term 𝑋 𝑖 · 𝑅′𝑖 𝑗 by another
fresh randomness 𝑅′′𝑖 𝑗 . This way, a single extended output probe is
never able to reveal 𝑋 𝑖 and 𝑌 𝑗 .

Intuitively, this means that probes on different cross-domain
terms can always be simulated as they are independently blinded
and an adversary would always need two probes on 𝑋 𝑖 · 𝑌 𝑗 and
𝑋 𝑗 · 𝑌 𝑖 to reveal information about domain 𝑖 and 𝑗 . Yet, these
two probes would always be placed on share domain 𝑖 and share
domain 𝑗 , which is in conformity with the PINI security notion. We
formalize this argument by proving Theorem 3.1 as follows.

Theorem 3.1. HPC3– with security parameter 𝑑 – provides a
correct and PINI-secure circuit in the glitch-extended 𝑑-probing model.
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Algorithm 2: HPC3 Multiplication

Input :𝑆ℎ (𝑋 ) = [𝑋 0, . . . , 𝑋𝑑 ], 𝑆ℎ (𝑌 ) = [𝑌 0, . . . , 𝑌𝑑 ] ∈ F𝑑+12

Output :𝑆ℎ (𝑍 ) = [𝑍 0, . . . , 𝑍𝑑 ] ∈ F𝑑+12
/* valid sharings of 𝑋,𝑌,𝑍 = 𝑋 · 𝑌 ∈ F2 */

1 for 𝑖 = 0 to 𝑑 − 1 do
2 for 𝑗 = 𝑖 + 1 to 𝑑 do
3 𝑅′𝑖 𝑗

$← F2, 𝑅′′𝑖 𝑗
$← F2

4 𝑅′𝑗𝑖 ← 𝑅′𝑖 𝑗
5 𝑅′′𝑗𝑖 ← 𝑅′′𝑖 𝑗
6 end
7 end
8 for 𝑖 = 0 to 𝑑 do
9 for 𝑗 = 0 to 𝑑 do
10 if 𝑖 ≠ 𝑗 then
11 𝑈 ′𝑖 𝑗 ← 𝑅𝑒𝑔 [𝑌 𝑗 ⊕ 𝑅′𝑖 𝑗 ]
12 𝑈 ′′𝑖 𝑗 ← 𝑅𝑒𝑔 [𝑋 𝑖 · 𝑅′𝑖 𝑗 ⊕ 𝑅′′𝑖 𝑗 ]
13 𝐶𝑖 𝑗 ← 𝑅𝑒𝑔 [𝑋 𝑖 ] ·𝑈 ′𝑖 𝑗 ⊕𝑈 ′′𝑖 𝑗
14 end
15 end
16 end
17 for 𝑖 = 0 to 𝑑 do
18 𝑍 𝑖 ← 𝑅𝑒𝑔 [𝑋 𝑖 · 𝑌 𝑖 ] ⊕ ⊕

0≤ 𝑗≤𝑑

(
𝐶𝑖 𝑗

)
19 end

Proof.
Correctness. First, we prove the correctness of the construction.
For this, we discard all registers in Algorithm 2. Since

𝐶𝑖 𝑗 = 𝑋 𝑖 · (𝑌 𝑗 ⊕ 𝑅′𝑖 𝑗 ) ⊕ 𝑋 𝑖 · 𝑅′𝑖 𝑗 ⊕ 𝑅′′𝑖 𝑗
= 𝑋 𝑖 · 𝑌 𝑗 ⊕ 𝑋 𝑖 · 𝑅′𝑖 𝑗 ⊕ 𝑋 𝑖 · 𝑅′𝑖 𝑗 ⊕ 𝑅′′𝑖 𝑗
= 𝑋 𝑖 · 𝑌 𝑗 ⊕ 𝑅′𝑖 𝑗 ⊕ 𝑅′′𝑖 𝑗

and 𝑅′𝑖 𝑗 = 𝑅′𝑗𝑖 , 𝑅
′′
𝑖 𝑗 = 𝑅′′𝑗𝑖 , it holds that

𝑍 =
⊕

0≤𝑖≤𝑑
𝑍 𝑖

=
⊕

0≤𝑖≤𝑑

(
𝑋 𝑖 · 𝑌 𝑖

⊕
0≤ 𝑗≤𝑑,𝑗≠𝑖

(
𝑋 𝑖 · 𝑌 𝑗 ⊕ 𝑅′𝑖 𝑗 ⊕ 𝑅′′𝑖 𝑗

) )

=
⊕

0≤𝑖≤𝑑

( ⊕
0≤ 𝑗≤𝑑

𝑋 𝑖 · 𝑌 𝑗
)
⊕

⊕
0≤𝑖≤𝑑

( ⊕
0≤ 𝑗≤𝑑,𝑖≠𝑗

𝑅′𝑖 𝑗 ⊕ 𝑅′′𝑖 𝑗
)

=
⊕

0≤𝑖≤𝑑

( ⊕
0≤ 𝑗≤𝑑

𝑋 𝑖 · 𝑌 𝑗
)

=
( ⊕

0≤𝑖≤𝑑
𝑋 𝑖

)
·
( ⊕

0≤ 𝑗≤𝑑
𝑌 𝑗

)
= 𝑋 · 𝑌 .

PINI. Next, we prove PINI security in the glitch-extended 𝑑-
probing model by considering every relevant case of probe
placement and arguing about simulatability.

I. A glitch-extended probe on the input to 𝑈 ′𝑖 𝑗 , i.e.,
𝑃𝑈 ′𝑖 𝑗 = [𝑌

𝑗 , 𝑅′𝑖 𝑗 ], can be perfectly simulated by 𝑌 𝑗 and toss-

ing a fair coin 𝑅′𝑖 𝑗
$← F2.

II. The glitch-extended probes 𝑃𝑈 ′′𝑖 𝑗 = [𝑋
𝑖 , 𝑅′𝑖 𝑗 , 𝑅

′′
𝑖 𝑗 ] can be simu-

lated by 𝑋 𝑖 and drawing two random bits
𝑅′𝑖 𝑗 , 𝑅

′′
𝑖 𝑗

$← F2. If additionally 𝑃𝑈 ′′𝑗𝑖 needs to be simulated,
this can straightforwardly be done by adding 𝑋 𝑗 to the sim-
ulation set.

III. A glitch-extended probe on 𝐶𝑖 𝑗 , i.e.,

𝑃𝐶𝑖 𝑗 = [𝑋 𝑖 , 𝑌 𝑗 ⊕ 𝑅′𝑖 𝑗 , 𝑋 𝑖 · 𝑅′𝑖 𝑗 ⊕ 𝑅′′𝑖 𝑗 ]

can be simulated by [𝑋 𝑖 , 𝑅′𝑖 𝑗 , 𝑅
′′
𝑖 𝑗 ], where 𝑅′𝑖 𝑗 , 𝑅′′𝑖 𝑗

$← F2. If
additionally 𝑃𝐶 𝑗𝑖 needs to be simulated – which lies in share
domain 𝑗 – this can be done by adding 𝑋 𝑗 , 𝑌 𝑗 and 𝑌 𝑖 to the
input set of the simulator. As now two probes are considered,
this is in conformity to the PINI notion. All other probes can
be handled in the same manner but completely independent,
as every share domain is blinded with completely fresh (and
hence independent) randomness.

IV. A glitch-extended output probe

𝑃𝑍𝑖 = [𝑋 𝑖 , 𝑌 𝑖 ] ∪ { ⋃
0≤ 𝑗≤𝑑,𝑖≠𝑗

𝐶𝑖 𝑗
}

can be simulated by 𝑋 𝑖 and 𝑌 𝑖 and drawing 𝑑 times
𝑅′𝑖 𝑗

$← F2 and 𝑅′′𝑖 𝑗
$← F2 (to simulate 𝐶𝑖 𝑗 ). As by construc-

tion, two outputs have at most one cross domain in common,
and following the same argument as given above in step III,
adding another probe would result in requiring (next to some
additional random bits) inputs from only one other domain.
This is in conformity to the PINI notion.

□

In Figure 1, we provide a schematic overview of our construction,
configured for the first security order and requiring two freshly
drawn random bits. In order to highlight at which points the same
randomness is introduced, we simply denote 𝑅′01 = 𝑅′10 and 𝑅′′01 =
𝑅′′10 by 𝑅

′ and 𝑅′′, respectively. Furthermore, we give the schematics
for the first circuit share of our second-order (𝑑 = 2) design in
Figure 2.

In addition to proving PINI security in the glitch-extended prob-
ing model for general security order 𝑑 , we further formally verified
our construction up to the fourth order utilizing SILVER [30] – an
open-source Binary Decision Diagram (BDD)-based software tool
for formally verifying different security and composability notions
under the glitch-extended probing model. We choose SILVER over
other existing verification tools as, at the time we conducted our
research, it was the only tool available for verifying the notion
of PINI. In parallel to the publication of this work, IronMask [8]
became available as an alternative tool.

3.2 Iterated Glitch+Transition-Robust Variant
As elaborated in [16], fulfilling the notion of PINI may not be suffi-
cient to guarantee security under transitions in an iterative design,
i.e., in a design where the same gadget instantiation is executed
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𝑍 1

𝑌 0 ⊕ 𝑅′

𝑋 1

𝑋
1 · 𝑅′ ⊕ 𝑅′′

𝑋 1 · 𝑌 1

𝑍 0

𝑌 1 ⊕ 𝑅′

𝑋 0

𝑋
0 · 𝑅′ ⊕ 𝑅′′

𝑋 0 · 𝑌 0

Figure 1: Schematics for HPC3 instantiated for 𝑑 = 1.

𝑋
0 · 𝑅′02 ⊕ 𝑅′′02

𝑌 2 ⊕ 𝑅′02

𝑋 0

𝑌 1 ⊕ 𝑅′01

𝑋
0 · 𝑅′01 ⊕ 𝑅′′01

𝑋 0 · 𝑌 0

𝑍 0

Figure 2: Schematics forHPC3 instantiated for 𝑑 = 2, only the
part of the circuit required to generate an output share 𝑍 0.

several times and the input of one iteration depends on the output
of a preceding one. The reason is depicted in Figure 3. During an
execution of gadget G, an adversary places an internal, transition-
extended probe 𝑃1 on the gadget, which w.l.o.g. propagates into
share domain 1. As depicted in Figure 3, in order to simulate the
probe 𝑃1, the output 𝑍 1 of the prior execution is needed, which is
equivalent to placing a second probe 𝑃2 onto 𝑍 1. Now PINI only
guarantees that the new probe set P = {𝑃1, 𝑃2} can be simulated
utilizing two input shares instead of one (while only one probe is
counted), possibly decreasing the design’s security order. As a rem-
edy, the authors introduced the notion O-PINI which, similar to the
methodology described in [16], enables us to extend HPC3 to also
be trivially composable under (iterated) transitions and glitches.
The algorithm of our iterated transition+glitches-robust variant is
given as HPC3+ in Algorithm 3. Here, each output is blinded by
an individual fresh mask 𝑀𝑖 , 0 ≤ 𝑖 ≤ 𝑑 before saved in an output
register, intuitively enabling simpler simulation of the output wires.
For the sake of visualization, Figure 4 depicts the schematic of a
part of the circuit (for an output share) of HPC3+ configured for
𝑑 = 2.

Due to the share-separating nature of O-PINI, and based on
Lemma 1 and Lemma 2 given in [16], we can leverage the fact

G
𝑍 0

𝑍 1

𝑍 2𝑋 2𝑋 1𝑋 0

𝑌 0

𝑌 1

𝑌 2

𝑃1

𝑃2

Figure 3: Schematic probe propagation between different
iterations of the same gadget instantiation

that our glitch+transition-robust HPC3+ gadget is unrolled, which
means that there are no loops within the gadget, enabling us to
prove iterated glitch+transition-robust composability, i.e., compos-
ability under transitions+glitches and subsequent executions of the
same hardware gadget, by conveniently staying in our simplified
circuit model and proving perfect simulatability in conformity with
O-PINI, as given in Definition 2.7.

We now prove the security and trivial composability of our
HPC3+ gadget in the presence of both, iterated transitions and
glitches:

Theorem 3.2. HPC3+ is iterated glitch+transition-robust 𝑡-O-PINI
for 𝑡 ≤ 𝑑 , where 𝑑 is the security order.

Proof.
Correctness. The correctness of the construction is directly im-
plied by the correctness of HPC3 and the fact that

⊕
0≤𝑖≤𝑑

𝑀𝑖 = 0.

O-PINI. The proof follows the same argument as the proof given
in [16]. Based on this and the fact that our design is unrolled, we
only have to prove that one execution of HPC3+ is glitch-robust
O-PINI and we can stay in our simple circuit model. Without
loss of generality, we restrict our analysis to the most powerful
probes and use the probe simulator for HPC3 considered in the
proof of Theorem 3.1. Intuitively, the additional refresh after
executing HPC3 enables a simulator to simulate additional
output probes possibly caused by subsequent executions of the
gadget.
I. Glitch-extended internal probes on𝑊𝑖 are simulated cor-
rectly by the simulator for HPC3.

II. Glitch-extended probes on 𝑃𝑊𝑖 ⊕𝑀𝑖 = [𝑊𝑖 , 𝑀𝑖 ] can be sim-
ulated by running the simulator of HPC3 to generate𝑊𝑖

– which can be simulated using only shares from share
domain 𝑖 – and by drawing a fresh random bit𝑀𝑖

$← F2.
III. For glitch-extended probes 𝑃𝑍𝑖 = [𝑊𝑖 ⊕ 𝑀𝑖 ] which are

added to the output due to the propagation of an internal
probe, i.e., 𝑖 ∈ OII given in Definition 2.7 of Section 2.5, we
consider the following cases:
i. If not all intermediate values of𝑊𝑖 have been simu-
lated, the simulator simply flips a fair coin and outputs
the result.

ii. If all intermediate values of𝑊𝑖 have already been simu-
lated (for example if there is another probe on𝑊𝑖 ), use
these values and perform as specified by the algorithm.
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Algorithm 3: HPC3+ Multiplication

Input :𝑆ℎ (𝑋 ) = [𝑋 0, . . . , 𝑋𝑑 ], 𝑆ℎ (𝑌 ) = [𝑌 0, . . . , 𝑌𝑑 ] ∈ F𝑑+12

Output :𝑆ℎ (𝑍 ) = [𝑍 0, . . . , 𝑍𝑑 ] ∈ F𝑑+12
/* valid sharings of 𝑋,𝑌,𝑍 = 𝑋 · 𝑌 ∈ F2 */

1 𝑊 ← HPC3(X, Y)
2 for 𝑖 = 0 to 𝑑 − 1 do
3 𝑀𝑖

$← F2
4 end
5 𝑀𝑑 ←

⊕
0≤𝑖<𝑑

𝑀𝑖

6 for 𝑖 = 0 to 𝑑 do
7 𝑍𝑖 ← 𝑅𝑒𝑔 [𝑊𝑖 ⊕ 𝑅𝑒𝑔 [𝑀𝑖 ] ]
8 end

𝑋
0 · 𝑅′02 ⊕ 𝑅′′02

𝑌 2 ⊕ 𝑅′02

𝑋 0

𝑌 1 ⊕ 𝑅′01

𝑋
0 · 𝑅′01 ⊕ 𝑅′′01

𝑋 0 · 𝑌 0

𝑍 0

𝑀0

Figure 4: Exemplary circuit share of HPC3+ instantiated for
𝑑 = 2

The simulation of output probes is correct, as for the worst case
where there is a glitch-extended probe on𝑀𝑑 (and hence all𝑀𝑖 , 0 ≤
𝑖 ≤ 𝑑 are observed enabling to unblind all 𝑃𝐶𝑖 ), there are at most
𝑑 − 1 other probes. If one of these probes is 𝑃𝑊𝑖 or 𝑃𝑊𝑖 ⊕𝑆𝑖 , we can
trivially simulate it with shares from share domain 𝑖 and using the
simulator of HPC3. If the probes are internal probes on HPC3, no
glitch-extended probe on a register stage other than 𝑃𝑊𝑖 or 𝑃𝑊𝑖 ⊕𝑆𝑖
can observe more than one 𝑅′𝑖 𝑗 ⊕ 𝑅′′𝑖 𝑗 at once. As a consequence,
maximal 𝑑 − 1 of the 𝑑 terms 𝑅′𝑖 𝑗 ⊕ 𝑅′′𝑖 𝑗 are observed per 𝑖 , and 𝑍𝑖 is
blinded by one fresh random bit. The simulator can hence always
simulate it by tossing a fair coin. □

4 COMPARISON TO STATE-OF-THE-ART HPCs
AND LOW-LATENCY DESIGNS

A wide variety of Hardware Private Circuits (HPCs), i.e., trivially
composable hardware gadgets, have been recently introduced, dif-
fering with respect to their supported security order, their robust-
ness against glitches and transitions, their randomness require-
ments and their latency. In the following, we introduce all related
designs, before we compare them with our low-latency variants.
To ensure comparability with respect to composability guarantees,

we restrict our comparison to gadgets that are trivially composable
in (i) the presence of glitches and/or (ii) transitions.

4.1 Glitch-Robust Hardware Private Circuits
HPC1 [14]. The HPC1 gadget – introduced by Cassiers et al.

– realizes a shared version of a two-input AND gate – generic
for any security order 𝑑 . It is built based on a DOM-AND gadget
and additionally refreshing one of the inputs. As a consequence,
additional randomness has to be introduced into the design in
order to guarantee SNI-conform refreshing. Here, the number of
additional random bits compared to the DOM-AND depends on the
number of shares, i.e., the security order 𝑑 .

HPC2 [14]. In the same work, Cassiers et al. introduced HPC2,
which, in contrast to HPC1, further reduces randomness require-
ments. It is based on blinding terms with fresh randomness de-
pending on their cross domain and guaranteeing that no single
glitch-extended probe can observe two terms involving the same
randomness at the same time.

GHPC [31]. In their work, Knichel et al. presented a methodol-
ogy for transforming any vectorial Boolean function F : F𝑛2 ↦→ F𝑚2
into a Hardware Private Circuit providing security and composabil-
ity under the PINI notion in the glitch-extended probing model. As
a result, GHPC gadgets enable, for example, the creation of a single
gadget realizing entire SBOXes, while requiring only a low amount
of fresh randomness, but are limited to the first security order.

GHPCLL [31]. In the same line of work, Knichel et al. addition-
ally introduced GHPCLL, enabling the realization of any vectorial
Boolean function in one clock cycle – at the cost of significantly
higher randomness requirements. Similar to GHPC, GHPCLL is
restricted to the first security order.

4.2 Iterated Transition-Robust Hardware
Private Circuits

O-PINI1 [16]. O-PINI1 – recently introduced by Cassiers and
Standaert – realizes a masked two-input AND gate that is prov-
ably composable under iterated transitions, i.e., when there exist
a feedback loop in a design and one input of a gadget depends on
the output of the same gadget, and which can be instantiated for
arbitrary security orders 𝑑 . Their construction is directly based on
HPC2, only adding an additional refresh of its output. Note that
this gadget is either glitch-robust or iterated transition-robust, but
not both at the same time. In this work, we focus our consideration
on the case where both, glitches and transitions, happen simultane-
ously, as this is the relevant case for hardware implementations.

O-PINI2 [16]. For the purpose of achieving trivial composability
in the presence of iterated transitions and glitches, Cassiers and
Standaert introduced O-PINI2 in the same work. In comparison
to O-PINI1, it introduces an additional register stage at the end of
the design, subsequent to the refresh of HPC2’s output, further
restricting propagation of output probes and hence enabling trivial
composition, even in the presence of both transitions and glitches.
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4.3 Low-Latency Hardware Designs
CMSLL [35]. In this work, Molteni et al. adapted the original

Consolidating Masking Schemes (CMS) multiplier to be effectively
realized in a single clock cycle by adding pre-computed sums of
random bits to the cross domains. Although the achieved design is
glitch-robust SNI and not PINI – and hence linear operations cannot
be trivially (share-wise) implemented – it is the only other existing
composable gadget which realizes anAND operation within a single
clock cycle for arbitrary security orders. Hence, we give a detailed
comparison between this scheme and our construction later in this
section.

LMDPL [42]. In their work, Sasdrich et al. presented a first-order
secure, masked AES with a latency of a single cycle per round by uti-
lizing the concept of LUT-based masked dual-rail pre-charge logic
(LMDPL). Although the scheme can be seen as a gadget-based ap-
proach, the application of LMDPL gadgets requires circuit-specific
signals, generated by a dedicatedmodule called “masked table gener-
ator”. The authors themselves alleviated the scheme’s generality by
stating that the underlying technique might not guarantee the same
level of SCA resistance when used in ciphers with smaller/fewer
SBOXes. As it is only restricted to the first security order and may
offer lower levels of security when applied in other contexts, we
omit a further, more detailed comparison to this design scheme.

To the best of our knowledge, other non-linear, composable
hardware gadgets like DOM [20, 24] offer strictly worse latency
than our newly proposed gadget. In [22], Gross et al. proposed an
algorithmic-level hardware masking scheme to achieve low latency
for arbitrary security orders which is rooted in the idea of skipping
the compression layer of non-linear DOM gadgets whenever possi-
ble while ensuring that the sharing of inputs to every non-linear
function are independent. Albeit its good results in terms of latency
reduction, no formal security proof is given in the robust probing
model and, as elaborated in [36], the scheme may suffer from com-
posability issues for higher security orders when instantiated in
different settings.

4.4 Comparison
A comparison of our designs with other state-of-the-art PINI gad-
gets is given in Table 1. Here, the latency is given as the number of
register stages, and the required number of random bits is listed.
Note that GHPC and GHPCLL are the only gadgets limited to the
first security order. Similar toHPC2, our newly presentedHPC3 has
a constant latency regardless of the security order, while requiring
only a single register stage instead of two. On the other hand, the
number of required random bits for HPC3 is doubled compared
to HPC2. We would like to highlight that due to the mandatory
blinding of one share domain in order to derive the cross terms
𝑋 𝑖 · 𝑌 𝑗 , our construction achieves an optimal latency with respect
to achieving trivial composability under the notion of PINI in the
glitch-extended probing model. As a consequence, HPC3 allows the
designer to trade double the randomness for half of the latency, or
even combining HPC3 and HPC2 gadgets (as they are both compos-
able under the PINI notion), providing significantly more flexibility
with respect to adjusting the latency and randomness requirements
of a masked implementation in different use cases.

Table 1: Comparison of existing trivially composable Hard-
ware Private Circuits

Scheme Latency Randomness Function Ref.
HPC1 2 𝑑 (𝑑 + 1)/2 + 𝑟 [𝑑]∗ AND [14]
HPC2 2 𝑑 (𝑑 + 1)/2 AND [14]

GHPC† 2 𝑚 F : F𝑛2 ↦→ F𝑚2 [31]

GHPCLL
† 1 2𝑛 ·𝑚 F : F𝑛2 ↦→ F𝑚2 [31]

HPC3 1 𝑑 (𝑑 + 1) AND [new]

O-PINI2‡ 3 𝑑 (𝑑 + 1)/2 + 𝑑 AND [16]

HPC3+ ‡ 2 𝑑 (𝑑 + 1) + 𝑑 AND [new]

∗ 𝑟 [𝑑] = [1, 2, 4, 5, 7, 9, 11, 12, 15, 17] for 𝑑 ≤ 10
† restricted to 𝑑 = 1
‡ with robustness against iterative transitions+glitches

Table 2: Comparison of single-cycle glitch-robust AND gad-
gets

Scheme Framework 𝑑 Randomness Ref.
CMSLL SNI 1 2 [35]

2 6
3 16
≥ 4 2(𝑑 + 1)2

HPC3 PINI 1 2 [new]
2 6
3 12
≥ 4 𝑑 (𝑑 + 1)

We further compare the existing transition-robust gadget with
our newly introduced one. Applying the same methodology as
described in [16] to our HPC3, we derived HPC3+. Similar to O-
PINI2, our HPC3+ construction offers trivial composability under
the simultaneous presence of both, iterated transitions and glitches,
while again trading one clock cycle less for 𝑑 (𝑑 + 1)/2 additional
fresh random bits.

In Table 2, a comparison between the required fresh masks of the
aforementioned single-cycle robust-SNI gadget [35] and our HPC3
is given. While our design is already advantageous for 𝑑 = 3, it
needs less than half of their randomness requirements for𝑑 ≥ 4. An-
other advantage stems from simpler composition conditions of PINI
in comparison to SNI. As shown in [4, 14], trivial, i.e., share-wise,
implementations of linear operations are not SNI. This possibly -
depending on the circuit structure - demands for additional robust-
SNI refresh gadgets to be inserted into the circuit, further increasing
the introduced overhead. As the original composition approach by
Barthe et al. [4] was over-conservative with respect to the insertion
of refresh gadgets, Belaïd et al. introduced a new method in [10],
drastically reducing the number of required refresh gadgets. They
even utilize their method to generate a secured SNI-based AES
implementation without any need for additional refresh gadgets.
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Although this approach immensely reduces the number of neces-
sary refresh gadgets in the SNI context, the overhead still has a
higher dependency on the circuit’s structure than in the context of
PINI where each non-linear gate can simply be substituted by its
gadget variant and the latency is hence simply determined by the
maximum number of non-linear gates in any signal path.

To sum up, while there exist certain circuit structures where our
approach will achieve similar results for low security orders when
compared to CMSLL, the latency, the randomness requirements,
and the area (additional registers, larger sources to generate ran-
domness) of an arbitrary design (including all linear operations and
layers of the cipher) composed of HPC3 gadgets will be favorable
to using CMSLL in most of the cases - and for all cases when 𝑑 ≥ 3.

4.5 Algorithmic-Level Masking vs. Composable
Gadgets

Instead of utilizing composable gadgets, there exist several works
aiming to derive highly optimized masked version for a certain
cipher and design architecture by manually and carefully construct-
ing each block/module in order to ensure security of the entire over-
arching design [42, 44, 45, 47, 47]. We refer to these approaches as
algorithmic-level masking. The main advantage of these approaches
is that they typically lead to a highly optimized implementation
with respect to the introduced overhead. On the downside, these ap-
proaches result in implementations that are commonly restricted to
a low (mostly the first or second) security order. Extending them to
higher orders and translating them to other ciphers or design archi-
tectures is not trivially possible, or not possible at all. They further
require a high expertise while the top-level designs’ security cannot
be easily proved in the formal 𝑑-probing model which is rooted
in the fact that current formal verification tools like SILVER [30]
and IronMask [8] are not able to cope with large circuits. Although
these works typically present a leakage assessment of the result-
ing implementation, we would like to highlight that these leakage
assessments are limited to making security statements about the
implementation in a very specific setup, while the 𝑑-probing model
aims to generalize the SCA resilience of an implementation.

Following a divide-and-conquer approach, composable gadgets,
on the other hand, enable automated construction of masked cir-
cuits [29] by leveraging composability notions like PINI in order to
ensure a provably secure top-level implementation, while typically
coming at the cost of higher overheads. These schemes are not
bounded to any cipher or design architecture but enable straight-
forward transformation of any circuit into its masked variant at
any security order (with GHPC/GHPCLL being an exception re-
stricted to the first order). In order to provide a fair comparison
and as algorithmic-level masking and composable gadgets are con-
ceptually different techniques, we omit any further benchmark
comparison with algorithmic-level masking schemes in this work.

4.6 Discussion on Latency-Optimized Logic
Representations of Masked Circuits

In [14], Cassiers et al. described an optimized design strategy for
small SBOXes using a SAT solver to find a Boolean representation
such that one input to each HPC2 gadget in a later circuit stage
is a linear combination of inputs to an earlier stage. Due to the

unbalance with respect to the input latency of HPC2, this leads
to additional overall latency reduction. They showed, for example,
that they can realize some 4-bit SBOXes utilizing only 3 register
stages instead of trivially using 4 in a binary-tree multiplication of
each monom in the respective coordinate functions. Despite the fact
that this optimization approach is not practical for more complex
functions, e.g., the AES SBOX, our HPC3 gadget still outperforms
HPC2 latency-wise even in these cases where the SBOX represen-
tation is optimized in favor of HPC2. Note that only 2 clock cycles
are necessary to realize a 4-bit SBOX in a trivial way. Hence, in
favor of trivial composability, this optimization step is not required
anymore when employing our HPC3 gadgets.

5 EXPERIMENTS AND EVALUATIONS
In order to give an overview of the performance figures of our
constructed gadgets and the circuits composed of them, in this
section, we present several case studies followed by experimental
evaluation results.

5.1 Case Studies
Before we explain the details of our covered case studies, we re-
fer to the recently introduced tool for automated generation of
masked hardware implementations, AGEMA [29], which is publicly
available through GitHub1. As given in Section 2.6, it receives the
gate-level netlist of the unprotected implementation and generates
a masked version of the same design using the specified gadgets.
Although different processing methods are offered by AGEMA,
we limit our comparisons to the naive approach which does not
re-synthesize the given netlist and just replaces the gates with
their corresponding gadgets. For the sake of comparability, we fo-
cus only on utilizing HPC2, O-PINI2, HPC3, and HPC3+ gadgets
which can all be instantiated for arbitrary security orders. To this
end, we adopted the customized library of AGEMA and specified
the gates of the aforementioned gadgets. We further constructed
generic VHDL code of these gadgets (for all 2-input gates), where
the desired security order 𝑑 can be arbitrarily adjusted. For area
comparison, we utilized Synopsys Design Compiler, together with
the publicly-available standard library Nangate 45 for synthesizing
the design.

Small Circuits. As the first case study, we compare single real-
izations of each of the considered AND gadgets, instantiated for
the first three security orders 𝑑 ∈ {1, 2, 3}. The corresponding re-
sults are shown in Table 3, clearly indicating the benefits of our
constructed gadgets with respect to latency and area requirements.
Our newly introduced HPC3 requires 20% less area compared to
their counterpart HPC2 gadget. This advantage reaches even to
around 55% in case of HPC3+ compared to O-PINI2.

As a more realistic case study, we consider the 4-bit SBOX of the
SKINNY-64 cipher [7]. The authors of [14] have provided a netlist
for the SKINNY SBOX, which is optimized for HPC2 gadgets. The
same netlist has been used for benchmarking purposes of AGEMA
in [29]. Hence, we have taken the same netlist and constructed
the SKINNY SBOX using our new gadgets. The results, which are
shown in Table 4, reflect roughly the same conclusion as for the

1https://github.com/Chair-for-Security-Engineering/AGEMA
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Table 3: Performance figures, 2-input AND.

Scheme Security Latency Rand. Area Ref.[order] [cycle] [bit] [GE]
HPC2 1 2 1 53 [14]

2 2 3 156
3 2 6 311

HPC3 1 1 2 43 [new]
2 1 6 125
3 1 12 249

O-PINI2 1 3 2 137 [16]
2 3 5 301
3 3 9 529

HPC3+ 1 2 3 69 [new]
2 2 8 167
3 2 15 306

Table 4: Performance figures, Skinny SBOX [14] and AES
SBOX [13].

Scheme Security Latency Rand. Area Ref.[order] [cycle] [bit] [GE]
Skinny SBOX

HPC2 1 4 4 281 [14]
2 4 12 730
3 4 24 1384

HPC3 1 2 8 241 [new]
2 2 24 606
3 2 48 1133

AES SBOX
HPC2 1 8 34 2189 [14]

2 8 102 5923
3 8 204 11469

HPC3 1 4 68 1849 [new]
2 4 204 4855
3 4 408 9261

2-input AND. The benefit of our gadgets with respect to latency is
highly visible, but the area advantage is slightly mitigated, which
is justified by the presence of the same XOR gadgets in all designs
independent of the employed gadget family. More precisely, the
application of our gadgets would still lead to a lower area overhead
by a magnitude of 10%−20% while halving the latency. Note that
for the SBOX and full-cipher case studies, we compare the results
corresponding to only HPC2 and HPC3, since we believe that O-
PINI2 and HPC3+ are mainly relevant for the iterative designs
shown in Figure 3 which we already compared in Table 3.

For the AES SBOX, we refer to [13], where a description for
the inversion in GF(28) is given which needs a low number of
cascaded 2-input gates. The same design has been used in the case
studies of AGEMA as well. Hence, our AES SBOX case study is made
based on this netlist, which has 4 layers of cascaded 2-input AND

Table 5: Synthesis results, SKINNY-64-64 round-based encryp-
tion.

Gadget Pipel. Security Area Delay Rand. Latency
[order] [GE] [ns] [bits] [cycles]

unprotected - 0 1494 0.52 - 33

HPC2

1 6895 0.55 64 165
2 15193 0.61 192 165
3 26777 0.65 384 165

✓ 1 20210 0.53 64 165
✓ 2 36147 0.59 192 165
✓ 3 56096 0.63 384 165

HPC3

1 6467 1.06 128 99
2 13517 1.18 384 99
3 23171 1.19 768 99

✓ 1 13462 0.59 128 99
✓ 2 23956 0.64 384 99
✓ 3 37051 0.66 768 99

Table 6: Synthesis results, AES-128 round-based encryption.

Gadget Pipel. Security Area Delay Rand. Latency
[order] [GE] [ns] [bits] [cycles]

unprotected - 0 9906 1.85 - 11

HPC2

1 52597 2.04 680 99
2 131631 2.39 2040 99
3 246924 2.53 4080 99

✓ 1 161440 0.82 680 99
✓ 2 305274 0.89 2040 99
✓ 3 492077 0.93 4080 99

HPC3

1 44581 2.11 1360 55
2 108476 2.34 4080 55
3 200307 2.33 8160 55

✓ 1 94450 0.79 1360 55
✓ 2 182883 0.83 4080 55
✓ 3 299013 0.86 8160 55

gates. Since our HPC3 gadgets make use of only one register stage,
this naturally leads to 4 clock cycles latency for the entire masked
AES SBOX at any arbitrary order. The corresponding results are
illustrated in Table 4, indicating 15%−20% area reduction in addition
to a naturally lower latency compared to the equivalent state-of-
the-art designs. As a side note, in all results presented above, we
have not considered extra registers required to construct pipeline
designs, which is a feature of AGEMA.

Full Ciphers. In order to have a better overview on the benefit
and overhead of our constructed gadgets, we took a selection of
full-cipher designs used by AGEMA as the case study, including
the SKINNY-64-64 round-based encryption and the AES-128 round-
based encryption function. The corresponding results are given in
Table 5 and Table 6.

We provided the comparative results for the first three security
orders 𝑑 ∈ {1, 2, 3} as well as for the pipeline and non-pipeline
designs. The pipeline designs, which naturally have higher area
footprints, can process multiple sequentially-given inputs. For ex-
ample, we refer to Table 5, where HPC2 designs have 165 clock
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cycles latency and HPC3 designs 99 clock cycles. The non-pipeline
designs, receive a single plaintext and key and perform the encryp-
tion after 165 (resp. 99) clock cycles, what the unprotected design
does in 33 clock cycles. The HPC2 pipeline design can process 4
individual plaintext-key pairs in 165 clock cycles, and the HPC3
pipeline design 2 individual inputs in those 99 clock cycles.

The results are indeed along the same line as those given for
SBOX case studies. More precisely, the area overhead and latency
of the circuits made by HPC3 gadgets are less than those made
by HPC2 gadgets while demanding for double amount of fresh
randomness. The area advantage becomes more obvious at higher
orders – particularly for pipeline designs. We should highlight that,
in contrast to the SBOX cases studies, the latency of HPC3 circuits
is not exactly half of the latency of HPC2 circuits since registers
already exist in the unprotected designs. AGEMA models the given
unprotected design as a Mealy machine made by a single-stage
register and a fully combinational circuit whose inputs consists
the circuit’s primary input and the output of the registers provided
by a feedback loop (for more details see [29, § 2.6]). The role of
HPC2, HPC3 or any other gadget lies in how the combinational
circuit is converted into a secure one. Therefore, the register stage
of the Mealy machine stays as it is; just being extended based on
the number shares, i.e., the desired security order 𝑑 . As a result, if
we denote the latency of the unprotected circuit by [, the latency
of the converted circuit becomes (𝑙 + 1)[ cycles, where 𝑙 stands for
the latency of the combinational circuit realized by HPC2 gadgets.
This means that the latency of the same circuit implemented by
HPC3 gadgets becomes (𝑙/2 + 1)[ clock cycles which can also be
seen in Tables 5 and 6. It is worth to highlight that all our HDL
designs of the gadgets and the case studies are provided in the
GitHub: https://github.com/Chair-for-Security-Engineering/HPC3.
Additional case studies can also be found in the extended version
of this paper [28].

5.2 Leakage Assessment
Although (robust) probing security is implied by our gadget’s con-
formity to the PINI notion, we conducted further analysis for the
purpose of presenting a complete work and showing our method-
ologies final practical security. By means of SILVER [30], we have
verified the security of the constructed SBOXes (reported in Sec-
tion 5.1) under the glitch-extended probing model. In short, all our
constructions are reported secure up to the desired security order.
However, evaluation of larger designs, e.g., a cipher round, is out
of the feasibility limits of such verification tools. Therefore, the
remaining choice to evaluate a full cipher implementation is to con-
duct experimental analyses. To this end, we employed a Spartan-6
FPGA-based evaluation platform (SAKURA-G [41]), and collected
power consumption traces of different designs to conduct various
fixed-versus-random t-tests [6].

Setup. We monitored the output of the embedded AC-amplifier
of the SAKURA-G which senses the voltage drop over a 1Ω shunt
resistor placed on the VDD path of the target FPGA, and collected
power consumption traces by sampling such an amplified signal at
a sampling frequency of 500MS/s. During this time, the underlying
design under test was supplied by a stable and jitter-free clock at a
frequency of 6MHz.

For the sake of comparability with the state of the art, we choose
the SKINNY-64-64 encryption function for experimental analysis,
since the same has been used in [29]. This choice has indeed neither
an effect on the validity of our experiments nor on the security
of our constructions. An obvious choice is to examine the AES
implementations. However, the third-order round-based AES can
hardly fit into our FPGA setup, while all variants of SKINNY-64-64
easily fit.

Nevertheless, we have taken the first- to third-order pipeline
designs reported in Table 5. In short, our designs require 99 clock
cycles to accomplish the encryption, in contrast to 33 clock cycles
for the unprotected design and 165 clock cycles for the designs
protected by HPC2 gadgets. Further, our designs require 128, 384,
and 768 freshmask bits, for first- to third-order security respectively,
which should be updated at every clock cycle (the same when using
HPC3 gadgets).

When measuring the power consumption of our designs, we
made sure to cover all 99 clock cycles of each entire encryption
process. In order to supply the required fresh masks, we made
use of the FPGA-optimized construction illustrated in [34], which
realizes an individual 31-bit Linear Feedback Shift Register (LFSR)2
for every fresh mask bit, seeded randomly at the power-up of the
device and updated at every clock cycle.

Results. To analyze the implementations, we conducted various
forms of a fixed-versus-random t-test, commonly referred to as
TVLA [6, 43]. It is a well-known leakage assessment technique
that is able to detect SCA leakage in measurements collected from
cryptographic implementations by examining whether the leakages
associated to two groups are distinguishable; one group with a fixed
plaintext and the other one with randomly-chosen plaintexts, while
a constant and identical key is used in both groups. In all cases, the
entire inputs (plaintext + key) are given to the circuit in a masked
form with respect to the security order of the underlying design.

In the following we will give a detailed exploration of the leakage
assessment for our second-order secure design (𝑑=2). Here, we first
performed the ordinary t-test on each sample point individually (i.e.,
univariate), whose corresponding results – shown in Figure 5b –
confirm its first-order security. For higher-order t-tests, wemade the
traces mean-free (for each group of fixed and random individually).
Afterwards, each mean-free sample point is squared (resp. cubed),
before calculating the t-statistics for univariate second-order (resp.
univariate third-order) t-tests (see Figure 5c and Figure 5d). The
results are as expected, i.e., show no leakage for the second order.

For the bivariate second-order t-tests, we performed an individ-
ual t-test for each combination of every two possible sample points
by multiplying the corresponding mean-free power values. In our
experiments, each power trace contains 10 000 sample points, which
translates to 10 000× 10 000/2 = 50 000 000 individual t-tests, hence
a very time-intensive computation even using large CPU clusters.
Since our constructions utilize fresh masks (updated every clock
cycle), any possible bivariate leakage is expected to be present for a
combination between sample points in close proximity. Therefore,
we limited our bivariate analysis to sample points within a distance
of at most five clock cycles. This strongly reduces the amount of
computations and allows us to accomplish the evaluations in a

2With feedback polynomial 𝑥31 + 𝑥28 + 1.
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Figure 5: Experimental analysis of SKINNY-64-64 encryption
round-based design,maskedwith second-orderHPC3 gadgets
using 100 million traces.

reasonable time frame. As expected, the corresponding results –
shown in Figure 5e – confirm the non-existence of second-order
bivariate leakages.

For the third-order multivariate analysis, the processing is even
more complex. If we limit the maximum distance between the sam-
ple points to, e.g., five clock cycles, the number of possible combina-
tions of three sample points is way above the feasibility threshold.
In order to find an alternative approach, we refer to Figure 5d
and common knowledge indicating that the amount of leakage (in
power traces) associated to a clock cycle is approximately the same
for the entire clock cycle. Therefore, an appropriate sample point
per clock cycle should suffice for such analyses. Indeed, this is a
known concept referred to as memory effect in power consumption
measurements due to the low-pass filter inherently built by the
components involved in the measurement setup, e.g., the shunt
resistor, the chip package, and the Printed Circuit Board (PCB) [37].
Therefore, we down-sampled the traces by taking a sample point
for each clock cycle (carefully selected at the middle of the cycle).
Note that such a down sampling and restricting the multivariate
analysis to a small period of time has been done in the sate of the
art as well [11, 18, 46, 49]. The result of this analysis is shown by a
3D pyramid in Figure 5f, indicating some tuples (of three points)
whose combination (mean-free product) leads to detectable leakage.
Note that third-order univariate and multivariate leakages are ex-
pected in case of this second-order-secure design; we just showed
the detailed results of such analyses as a proof of functionality of
our setup.

The same procedure has been performed on the first - and third-
order designs (𝑑=1 and 𝑑=3 respectively). For the sake of brevity
and as the results are as expected, i.e., no leakage can be detected
up to the 𝑑-th order, we leave out any detailed depiction here. The
interested reader can find these results in the extended version of
this paper [28].

6 CONCLUSIONS
In this work, we presented HPC3, a low-latency Hardware Private
Circuit that is trivially composable under the PINI notion in the
glitch-extended robust probingmodel. To the best of our knowledge,
this is the first PINI-based hardware gadget that realizes a masked
AND-gate in a single clock cycle for any arbitrary security order.
We further gave the algorithm for its construction and formally
proved its conformity to the PINI notion in the glitch-extended
𝑑-probing model. We should stress that the achieved latency of
a single clock cycle is the lowest bound for trivial composability
of an AND gadget under the notion of PINI. This is due to the
necessary computation of cross terms, i.e., multiplication of shares
from different share domains. Hence, HPC3 is the first proposed
gadget achieving this lowest bound for arbitrary security orders.We
additionally presented HPC3+, a masked AND-gate that is trivially
composable under the presence of both, iterated transitions and
glitches and can be instantiated for arbitrary security orders 𝑑 .
Moreover, we practically verified the security of our constructions
by means of various case studies and leakage assessments.

Compared to existing state-of-the-art Hardware Private Circuits,
HPC3 enables the designers to make use of more fresh random-
ness to halve the latency while maintaining trivial composability
(PINI) in the glitch-extended probing model. This offers a signifi-
cant speedup of cryptographic implementations for different use
cases and paving the ground for secure, low-latency applications.
A similar trade-off can be made with HPC3+, which – compared
to OPINI-2 – enables the designers to omit one register stage and
hence reducing the design’s latency by a factor of 2/3.

Future Works. It remains an interesting open topic, if such a
trade-off between the demand for fresh randomness and latency
can be also found for larger gates, i.e., with more inputs than two.
Constructing composable and generic hardware gadgets for 3- or 4-
input non-linear gates can highly increase the efficiency of masked
implementation with respect to latency. Further, there still exists
yet no detailed cost function to examine the overhead introduced
by different metrics. For example, it is not clear at which point area
consumption required to generate additional fresh randomness
compensates the area gain by requiring fewer register stages. It
would be hence beneficial for the research community to have
detailed and realistic cost functions for these factors.
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Chapter 6

Methodologies and Tooling for Automated
Masking

In this chapter, we present a peer-reviewed publication published in the context of this
thesis that relates to methodologies and tooling for automated masking. In particu-
lar, we present one paper published in in the IACR Transactions on Cryptographic
Hardware and Embedded Systems (TCHES).
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gadgets introduce individual latency into the design, either pipeline registers are inserted into
the design or clock gating is applied in order to guarantee proper functionality. For AGEMA’s
trivial approach, atomic logic gates – like AND, OR – are simply replaced by their corresponding
gadget equivalent. Next to introducing AGEMA as a fully functional tool for automated masking
of hardware with many options to find trade-offs between area, latency and area of the resulting
design, we perform several case studies and practical leakage assessements.
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Abstract. Masking has been recognized as a sound and secure countermeasure for
cryptographic implementations, protecting against physical side-channel attacks.
Even though many different masking schemes have been presented over time, design
and implementation of protected cryptographic Integrated Circuits (ICs) remains
a challenging task. More specifically, correct and efficient implementation usually
requires manual interactions accompanied by longstanding experience in hardware
design and physical security. To this end, design and implementation of masked
hardware often proves to be an error-prone task for engineers and practitioners.
As a result, our novel tool for automated generation of masked hardware (AGEMA)
allows even inexperienced engineers and hardware designers to create secure and
efficient masked cryptograhic circuits originating from an unprotected design. More
precisely, exploiting the concepts of Probe-Isolating Non-Interference (PINI) for
secure composition of masked circuits, our tool provides various processing techniques
to transform an unprotected design into a secure one, eventually accelerating and
safeguarding the process of masking cryptographic hardware. Ultimately, we evaluate
our tool in several case studies, emphasizing different trade-offs for the transformation
techniques with respect to common performance metrics, such as latency, area, and
randomness.
Keywords: Side-Channel Analysis · Masking · Hardware · Composable Gadget

1 Introduction
Side-Channel Analysis (SCA) has not lost any of its topicality and remains a major threat
to security-critical implementations, even after more than two decades of intensive research
since its seminal description. In the wake of this lasting discovery [Koc96, KJJ99], it has
been admittedly recognized that secure implementation of cryptographic algorithms is a
challenging task, given that an adversary can observe and measure physical effects in order
to infer sensitive information during execution. Examples include timing [Koc96], power
consumption [KJJ99], electromagnetic (EM) radiations [GMO01], or temperature and
heat dissipation [HS13]. However, in the course of time, different classes of counteractive
measures have emerged amongst which masking [CJRR99], based on concepts of secret
sharing, prevails due to its formal and sound security foundation.

Over the last years, many different hardware masking variants and schemes have been
proposed [ISW03, NRR06, RBN+15, GMK17, GM18], constantly improving efficiency
and security. Unfortunately, experience has shown that new schemes often have a short
retention time, mostly due to inaccuracies and design flaws [MMSS19]. However, even
for schemes that stand the test of time, correct and secure implementation remains an
enormous engineering challenge. As a matter of fact, even with longstanding experience

∗Authors list in alphabetical order; see https://www.ams.org/profession/leaders/culture/
CultureStatement04.pdf
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and expertise in hardware security and design of masked hardware, correct physical
instantiation of masking schemes is a delicate and error-prone task. Evidently, unconsidered
and unintentional physical effects, e.g., glitches [MPG05], transitions [CGP+12, BGG+14],
or coupling [CBG+17], and implementation defects due to architectural conditions, e.g.,
parallelism [BDF+17] or pipelining [CGD18], can render a theoretically secure scheme
practically insecure.

As a consequence, a new line of research emerged, investigating the masking of atomic
and reusable components, often considered as gadgets in literature, to limit the engineering
complexity and error susceptibility [RBN+15, GMK16, GM18, GIB18, BBD+15, BBD+16,
CS20]. In this regard, a great deal of attention has been devoted to the construction of
secure gadgets for basic non-linear operations (e.g., AND), allowing to efficiently mask any
digital logic circuit given its AND-XOR representation. However, the continuous progress
in this domain is inevitably associated with fundamental research and advancements in the
realm of formal security definitions and adversary models. More specifically, the formal
and abstract Ishai-Sahai-Wagner (ISW) d-probing model [ISW03] is consulted prevalently
to reason about security of masked circuits in the presence of side-channel adversaries.

Unfortunately, research has shown that security in this simple model does not imply
secure composition of gadgets [CPRR13]. More precisely, composition of standalone-secure
sub-circuits does not necessarily lead to a secure circuit. As a consequence, advanced
security notions and properties are essential to reason about the composability of masked
gadgets. In a first attempt, Barthe et al. [BBD+15] introduced the notion of Non-
Interference (NI), allowing to verify the composability of gadgets based on the concept of
perfect simulation of joint probability distributions. However, due to disregarded effects
which later became known as probe propagation [CS20], the notion of NI is deficient
and has been complemented by the notion of Strong Non-Interference (SNI) shortly
afterwards [BBD+16]. Most recently, Cassiers and Standaert [CS20] introduced the notion
of Probe-Isolating Non-Interference (PINI) enabling more efficient compositions with
respect to multi-input, multi-output gadgets and trivially secure linear operations.

Now, provided with such sound and formal security and composability notions, hardware
designers are able to construct secure circuits more easily. However, transforming an entirely
unprotected design into a secure circuits remains a complicated and mostly manual process,
even when endowed with an adequate set of secure and composable gadgets.

Contributions. In this work, we present our novel, and open-source, software tool for
automated generation of masked hardware (AGEMA), enabling engineers and hardware
designers of any level of expertise to easily generate masked hardware circuits starting
from a simple but unprotected design. Utilizing different methods for processing the
given netlist1 of a design and supporting arbitrary masked gadgets, AGEMA offers high
flexibility with respect to the security level (i.e., order of the underlying masking scheme),
required fresh randomness, latency, and area overhead and consequently gives designers
the ability to configure AGEMA to their particular needs. Exploiting the essential security
notions for secure composability, the final designs are provably secure (under PINI notion)
and hence are formally verified. They are further free of heuristics, and can mitigate
implementation defects and design mistakes. As a consequence, our tool facilitates and
accelerates the process of masking digital logic circuits while in the same vein, the quality
and security of the resulting designs are increased.

We should highlight that, up to now, various tools have been developed to help
generating masked software implementations. The examples include [BRB+11, BRN+15]
and the recently-introduced ones Tornado [BDM+20] and Rosita [SSB+21]. Further,
fullVerif [CGLS21] is a tool to analyze security of masked circuits at the composition

1In digital circuit design, a netlist is a description of the connectivity of a circuit. In its simplest form,
a netlist consists of a list of the cells in a circuit and a list of the wires they are connected to.
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level. It receives a masked implementation which is built by annotated PINI gadgets, and
examines whether the connection between PINI gadgets is in compliance with the PINI
definitions and requirements, i.e., checking if designers made any mistakes. In short, it
does not build any secure circuit but only verifies correct composition. To the best of our
knowledge, AGEMA is the only tool which is dedicated to generation of masked hardware
implementations, and security of its generated circuits are based on the PINI security
notion which guarantees to maintain the security through composition.

Outline. We start by summarizing our notations and all necessary theoretical concepts
in Section 2, before elaborating the fundamental methodology of AGEMA in Section 3.
This includes a brief summary of existing types of Hardware Private Circuit (HPC) and
a detailed explanation for the supported processing and transformation methods of the
original netlist. In Section 4, we examine AGEMA with an extensive list of case studies on
a broad variety of hardware implementations of different block ciphers and compare the
generated masked designs with respect to common performance metrics such as required
fresh randomness, latency degradation, and area overhead. Before we conclude our work, we
provide reasoning behind the security of HPC circuits constructed by AGEMA in Section 5,
and give result of experimental analyses, i.e., Test Vector Leakage Assessment (TVLA),
on some exemplary designs as outcome of the application of AGEMA.

2 Basics
2.1 Notations
We denote functions using sans-serif fonts, e.g., f for Boolean functions and F for vectorial
Boolean functions. Next, we denote single-bit random variables in F2 by lower case letters
like x, and vectors by uppercase letters X while sets of random variables are given in bold
X. Further, we use subscripts like xi to indicate elements within a vector or a set while
superscripts are used to denote (randomized) shares of random variables, e.g., Xj . As a
special case, the set of all shares of each random variable in X is denoted as Sh(X).

2.2 Boolean Masking
Masking is based on secret sharing and has proven to be well suited for hardware implemen-
tations as a countermeasure against side-channel attacks. In Boolean masking, a sensitive
variable X ∈ Fn is split into s ≥ 2 randomized shares (X0, X1, . . . , Xs−1) ∈ Fsn, such that
X =

⊕s−1
i=0 X

i. Usually this sharing is initially achieved by sampling Xi $← Fn for all
0 ≤ i < s− 1 and calculating Xs−1 =

(⊕s−2
i=0 X

i
)
⊕X. Eventually, instead of performing

logic operations on the sensitive value X, they will be performed on the (randomized)
shared representation of X, i.e., X0, X1, . . . , and Xs−1.

2.3 Probing Security
In order to abstract and formalize the behavior of a masked circuit and the adversarial
capabilities to extract information from the underlying circuit, several models have been
introduced over time, aiming to achieve different trade-offs between simplicity and accuracy.
In the d-probing model, firstly introduced by Ishai et al. in [ISW03], the adversary is
granted the ability to observe the distribution over up to d wires of a given circuit. To
achieve d-probing security for a masked circuit, any adversary in conformity with this
model should not be able to learn anything about the processed sensitive value X.

Definition 1. A masked circuit C is said to achieve d-probing security iff every (joint)
distribution over up to d wires is statistically independent of any sensitive value X.
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Definition 1 directly implies that splitting any sensitive variable into at least d + 1
shares is necessary to achieve d-probing security. In the context of masking, d is also
referred to as the security order of a given masked circuit.

Robust Probing Model and Glitch-Extended Probes. Since the traditional probing
model is limited to software implementations due to its inability to capture physical
defaults occurring in hardware implementations, e.g., transitions (memory recombinations),
glitches (combinational recombinations), or coupling (routing recombinations), the robust
probing model was introduced in [FGP+18], aiming to consider and model these defaults
accurately while being sufficiently simple in order to enable efficient verification of masked
designs. In contrast to the traditional probing model, where the value of a wire is always
assumed stable during evaluation and where no dedicated synchronization elements, i.e.,
registers, exist, the robust probing model loosens this assumption by introducing registers
and so-called extended probes. Here, a single probe can be extended to additionally
capture leakage caused by physical defaults like data transitions at registers, glitches in
combinational logic, and coupling of adjacent wires.

In particular, glitches are switching activities of wires caused by different delays of
signals contributing to their intended values. These glitches enable a probe on a single
wire to observe not only the field element of its driving gate, but possibly a recombination
of signals contributing to its combinatorial value. Hence, in order to capture these effects,
glitch-extended probes were introduced. Here, a single probe on a wire is assumed to
capture the leakage of the joint distribution over every stable signal contributing to the
calculation of the probed wire. As a result, given the glitch-extended probing model, every
probe on a wire is replaced by the set of probes placed on the register outputs and primary
inputs that contribute to the observed wire, i.e., there exists a path from a stable source
to the current probe position.

2.4 Composable Masking Schemes
Especially for higher security orders d and more complex functions, it is hard to find
efficient masked representations for circuits to become provably d-probing secure, as the
number of possible probe combinations increases with the security order and the complexity
of a circuit. Following a divide-and-conquer approach, composable gadgets were introduced
as a remedy to directly derive masked representations of large functions. Composable
gadgets are masked circuits realizing small and atomic logic functions, like a simple AND
or OR gate. Fundamentally, these gadgets fulfill certain properties that imply probing
security when composed to construct a larger circuit. This way, the problem of finding
secure masked realizations of large functions is reduced to the task of finding composable
gadgets realizing small functions with certain properties. In other words, in contrary to
what has been observed in [MMSS19], the gadgets should be designed in such a way that
their composition does not lead to any security degradation.

Probe Propagation and Composability Notions. To understand favorable properties
for gadgets in order to achieve secure composability, we explain the concept of probe
propagation, which was firstly introduced in [CS20] and defines the information a probe
can access and how this access to information is propagated throughout the circuit.
Generally, a (glitch-extended) probe is said to propagate into a wire if this wire is needed to
perfectly simulate each observation of the probe, i.e., in order to compute the underlying
probability distribution. Now, to achieve composability of a gadget, propagation of internal
probes and output probes needs to be restricted to a subset of the input wires of the
gadgets. These constraints on gadget level have to guarantee that all possible probes in a
composed circuit only propagate in a subset of the initial sharing of an input value and
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not into all of them. After Non-Interference (NI) [BBD+15] was proven to be insufficient
to offer composability, Strong Non-Interference (SNI) [BBD+16] was proposed which
further restricts probe propagation and was originally restricted to single-output gadgets.
In [CS20], Cassiers and Standaert showed that the scope of the original definition of
SNI can be extended to cover multiple-output gadgets as well, but at the same time
unveiled issues of SNI with respect to the extent of required entropy and circuit area.
Eventually, Probe-Isolating Non-Interference (PINI) was introduced in the same work
as an elegant way to guarantee composability at any security order. Similar to Domain
Oriented Masking (DOM) [GMK16], share domains were introduced and any probe was
restricted to only propagate within its own share domain, enabling trivial implementation
of linear functions on the one hand and direct composition of gadgets on the other.

2.5 Formal Verification
Several tools have been published for the purpose of formally verifying the security and
composability characteristics of masked hardware circuits [BGI+18a, BGI+18b, CGLS21,
BBC+19, KSM20]. They all support different varieties of security and composability
notions while working on different abstraction levels. We choose SILVER [KSM20] for
performing all verification in this work, due to its unique support of checking composability
under the PINI notion in the glitch-extended probing model.

2.6 Combinational and Sequential Circuits
Combinational circuits are digital circuits where the output is a pure function of the
primary inputs and where no synchronization elements and clock signal exist. In contrast,
in a sequential circuit, a sequence of data, synchronized by a clock signal, is processed. A
sequential circuit may contain a feedback loop through registers, such that the output at
any given time is not only a function of the primary input but of previous outputs as well.

In this work, we model a sequential circuit by the schematic depicted in Figure 1.
Note that this structure offers a unique representation of any given logical circuit without
combinational loops that possibly contains multiple register stages. More precisely, every
given circuit (without a combinational loop) can be represented as a sequential circuit that
follows the structure shown in Figure 1, where all synchronization elements are packed
into the main register stage, the combinational circuit receives the primary input and the
outputs of the main register while the primary output is taken from the combinational
circuit. As a side note, this illustrates a Mealy machine, which covers Moore machines as
well [Mea55].

As it is explained in detail later in Section 3, we model the given unprotected circuit
by the structure shown in Figure 1, hence extracting and processing the combinational
part and the register stage individually to build the masked counterparts.

3 Technique
In this section, we gradually present the technical details of the procedure which AGEMA
follows to generate a secure masked implementation from the given unprotected implemen-
tation. To this end, we first review the masking schemes which are currently supported by
AGEMA.

3.1 PINI Hardware Gadgets
As PINI offers trivial composition of hardware gadgets in the robust probing model, we
restrict our examples to known gadgets fulfilling this security notion. However, we would
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Figure 1: General schematic of a sequential circuit.

like to stress that AGEMA offers a generic framework to dynamically substitute circuit
parts with masked gadgets and is not restricted to any specific type of gadgets. Recently,
several gadgets have been proposed that fullfill the PINI notion in the robust probing
model. As they differ with respect to the logic function they realize, the fresh randomness
they require and their latency, we describe and compare them in the following, where the
number of required fresh randomness is denoted by r and the number of added register
stages (i.e., the latency) by l.

3.1.1 HPC1

HPCs – proposed by Cassiers et al. in [CGLS21] – realize 2-input AND gadgets composable
under the PINI notion in the robust probing model and are generic for arbitrary security
orders. The authors introduced HPC1, which simply consists of a DOM-AND where the
sharing of one input is refreshed. Hence, the added number of register stages is l = 2. The
DOM-AND needs d(d+ 1)/2 bits of fresh masks for any given security order d. However,
since the mask refreshing is expected to be SNI, the required number of additional fresh
masks is identified through the table [1, 2, 4, 5, 7, 9, 11, 12, 15, 17] for security order d ≤ 10.

3.1.2 HPC2

Cassiers et al. further proposed another construction for an AND gadget, HPC2, requiring
r = d(d+ 1)/2 fresh randomness and l = 2 added register stages for any security order d.

3.1.3 GHPC

Generic Hardware Private Circuits (GHPCs), introduced in [KSM22], allow the construction
of gadgets realizing any (vectorial) Boolean function but are limited to first-order security.
Here, l = 2 is the number of added register stages, and the required number of fresh masks
is r = 1 per output bit, regardless of the Boolean function the gadget realizes.

The concept of GHPC is depicted in Figure 2. Every input is split into two shares while
the result of the gadget is simply the coordinate function fi blinded by fresh randomness
ri for every 0 ≤ i < m, with m being the function’s output bit size.

3.1.4 GHPCLL

In [KSM22], the authors further introduced GHPCLL, a low-latency variant of GHPC, which
requires only one register stage (l = 1) to compute any vectorial Boolean function but
needs 2n fresh random bits per output bit for a Boolean function with n inputs, i.e., in
total m× 2n bits.
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Figure 2: The GHPC concept of transforming any vectorial Boolean function into a first-
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Figure 3: First-order GHPCLL-AND realizing o = ab. Dashed registers are optional but
necessary to make a pipelined design.

A simple 2-input AND gadget realized as a GHPCLL is shown in Figure 3. This is the
only known composable AND gadget with a latency of a single clock cycle.

3.1.5 HPC-MUX

Having an HPC-AND gadget, other 2-input non-linear gates can be easily constructed. By
inverting one output share, the HPC-NAND is built, and by additionally inverting one
share of both inputs the HPC-OR is constructed as a ∧ b = a ∨ b. HPC-NOR can also
be made this way. Note that XOR is trivial under PINI notion. In other words, if all
non-linear sub-circuits fulfill the PINI requirements, XOR can be realized with no fresh
randomness and no additional register stage by XORing the corresponding shares of the
given inputs. XNOR can also be made by XOR while inverting one output share.

2-input multiplexers (MUXes) are commonly used in digital circuits as a building block
(available in almost every standard logic library). Designing an efficient shared version
of a 2-input MUX offering security under the PINI notion is straightforward as it can be
directly derived using a single HPC-AND gadget. The Boolean function f, describing a
MUX, where one of two inputs a ∈ F2, b ∈ F2 is selected by s ∈ F2 can be rewritten as
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f = sa⊕sb = s(a⊕b)⊕b. Realizing a composable, shared multiplexer for arbitrary security
orders is hence possible by means of two trivial XOR operations and a single HPC-AND
gadget. As a result, the randomness requirements and the latency is inherited from the
instantiated HPC-AND gadget, i.e., whether an HPC1-, HPC2-, GHPC-, or GHPCLL-AND
is employed, where the two latter cases are restricted to constructing first-order secure
designs only.

3.2 Procedure
Since the main goal is the conversion of an unprotected implementation to a masked one,
we first have to analyze the netlist of the unprotected implementation. In other words,
the unprotected (behavioral) implementation should be first synthesized by a synthesizer,
e.g., Design Compiler [Inc] or Yosys [Wol]. The resulting Verilog netlist2 is then given to
AGEMA. Note that AGEMA has a custom library file, where the designer should specify
the details of each cell, e.g., their input and output ports. Therefore, the synthesizer should
also be set to just use a restricted list of cells to generate the Verilog netlist, typically only
NOT, 2-input AND, NAND, OR, NOR, XOR, XNOR, MUX, and D flip-flops.

Then, as a first step, AGEMA builds a graph based on the given Verilog netlist, and
represents the circuit following the concept given in Section 2.6 as shown in Figure 1, i.e., a
combinational circuit and a single main register stage. Naturally, not necessarily all parts of
the given design should be masked, e.g., excluding the control logic. Further, the designer
may desire to not mask the key, for example if protection against profiling attacks targeting
the key schedule is excluded (for such cases, see [MS16, PMK+11, UHA17, SM20], where
no key masking is applied). In tweakable block ciphers, e.g., CRAFT [BLMR19], the tweak
is supposed to be public knowledge. Hence, in a corresponding encryption/decryption
implementation, there is no need to mask the tweak. In AGEMA, this is supported by
setting the attribute of the primary input signals. If a signal is annotated as secure, it will
be converted to a masked form with d+ 1 shares in the resulting masked circuit, while d
(the order of masking) is also defined by the designer.

Hence, the next step of the process is to identify which parts of the given circuit should
be masked based on the attribute of the primary inputs defined by the designer. If any
input of a cell is marked secure, its output should also be marked secure. Therefore, we
propagate the secure signals through all cells of the circuit until no new signal is marked
as secure. Note that this includes the main registers and their role as the input to the
combinational circuit.

In order to formalize this process, we model the given logic circuit as a Directed Acyclic
Graph (DAG) G = (V, E ,X ,Y) with nodes in V and edges in E . More precisely, any Boolean
function Fn2 7→ Fm2 , over inputs X = {xi|1 ≤ i ≤ n} and outputs Y = {yi|1 ≤ i ≤ m}, can
be modeled as DAG which is defined as follows.

Definition 2 (Syntax of DAG). Given a finite DAG G = (V, E ,X ,Y) with vertices V,
edges E , primary inputs X , and primary outputs Y , an m-rooted DAG is defined as follows:

(1) Each vertex v ∈ V represents a single combinational or sequential gate in the netlist.
(2) Each edge e ∈ E represents a single wire carrying an element from the finite field F2.
(3) There are exactly n terminal nodes v, each labeled with a unique xi ∈ X .
(4) There are exactly m root nodes v, each labeled with a unique yi ∈ Y.

Based on this, Algorithm 1 shows the procedure to propagate the secure signals into
the circuit and how we split the circuit into two parts: the secure zone and the normal
zone.

2This can be set in a script executed by the synthesizer to generate a Verilog netlist as the result of the
synthesis.
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Algorithm 1 Propagation of secure signals
Input: G : {V, E ,X ,Y} . given circuit
Input: Xs : {x ∈ X | attribute(x) = secure} . secure primary inputs
Output: {Vs, Es,Xs,Ys} . secure zone
Output: {Vn, En,Xn,Yn} . normal zone

1: Vs ← ∅, Es ← ∅
2: for ∀x ∈ Xs do
3: Es ← Es ∪ output(x)
4: end for
5: repeat
6: V ′s ← ∅
7: for ∀v ∈ V\Vs do
8: if ∃ input(v) ∈ Es then
9: V ′s ← V ′s ∪ v

10: Es ← Es ∪ output(v)
11: end if
12: end for
13: Vs ← Vs ∪ V ′s
14: until V ′s 6= ∅
15: Ys ← Y ∩ Vs
16: Vn ← V\Vs, En ← E\Es, Xn ← X\Xs, Yn ← Y\Ys

Figure 4 shows a simple example after the application of this algorithm, where the
signals and cells which should be masked are highlighted in red. In this example, i1 is the
only primary input which is marked as secure by the designer, i.e., this primary input
should be masked (Xs = {i1}). Then, the algorithm adds cell #1 and its output t1 to
the secure zone. Next, cell #2 and its output o are added, and then the register cell #3
and its output x. In the next round, cell #0 and its output t0 are marked as secure, and
the algorithm terminates since no other cells can be added to the secure zone. At the
end, as shown in Figure 4, by selecting just i1 as the secure primary input, cells #0 to
#3 and signals ti, t0, t1, o, and x are identified to be masked. Note that other cells and
intermediate signals including y and the primary input i0 (which are inputs to the secure
zone) are not masked. We deal with such a combination in Section 3.3.1. It is noteworthy
that we re-use this exemplary circuit in the next sections to illustrate different processing
methods.

3.3 Processing Methods
The next step is to construct the masked variant of the secure zone. Apart from the fact
that different masking schemes are supported (see Section 3.1), we can process the secure
zone and build a more optimized netlist in favor of the selected masking scheme. To this
end, AGEMA supports four different processing methods explained below with an example
for each method in Figure 5 which is based on the secure zone identified in Figure 4. Such
different processing methods – explained in the following – do not necessary require the
Verilog netlist of the given unprotected circuit. However, in order to keep a constant form
for the input of AGEMA, we developed the processing algorithms to just deal with such a
representation of the given circuit. As a side note, we like to mention that all processing
methods can be freely combined with all supported masking schemes, except ANF which is
dedicated to GHPC and GHPCLL. An overview of the possible combinations is given in
Table 1.
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Figure 4: Exemplary circuit after the propagation of secure signals. i1 is the only primary
input marked as secure. The red signals and cells indicate the extracted parts which should
be masked.

Table 1: Supported masking schemes and processing methods.

Processing Method
Masking Scheme

HPC1/HPC2 GHPC GHPCLL
(d ≥ 1) (d = 1) (d = 1)

Naive 3 3 3

BDDSYLVAN 3 3 3

BDDCUDD 3 3 3

ANF 3 3

3.3.1 Naive

Every cell in the netlist of the secure zone can be naturally exchanged with its masked
variant depending on the selected masking scheme. This also necessitates to replace every
signal of the secure zone with its masked form with d + 1 shares. Since this is just a
translation of one netlist into another while keeping the original structure (i.e., the number
of cells and how they are connected), the efficiency of the resulting masked circuit depends
on how the original circuit has been synthesized. For example, the non-linear gadgets need
fresh randomness and introduce register stages into the gates (see Section 3.1). Therefore,
the number of non-linear gates and how they are composed (i.e., the logical depth of the
circuit) has a direct effect on the number of required fresh masks and latency overhead of
the resulting masked circuit.

We should also highlight that every signal which is not marked as secure but is involved
in the secure zone is padded with 0 to form d+ 1 shares. Examples include the primary
input i0 and the internal signal y in the example shown in Figure 4. Note that it should
be carefully evaluated whether this may pose any security issue in the used gadgets. For
example, cell #1 (NAND gate) in Figure 4 receives the masked i1 and umasked y (i.e., y
padded with 0). Depending on the used gadget, this does not necessarily lead to a secure
design. However, we have examined this in all our employed gadgets HPC1, HPC2, GHPC,
and GHPCLL, and verified that this does not degrade their security.



D. Knichel, A. Moradi, N. Müller, P. Sasdrich 11

x
i0

i1
y

o

(a) Original netlist
o = (x⊕ i0) ∨ (i1 ∧ y)

x

i0 i1

1 1i2

1 y

1 0

0 1

1 0 1 0

0 1

0 1

(b) BDD

0
1

0
1

1
0

1
0 1

0

0
1

y
1

i1 1

i0

1

i0

x

o

(c) MUX-based netlist

1⊕ i1y ⊕ i0i1y

x i1 y

i0

i1
y

x

o

(d) ANF with at most 3 inputs per gadget
o = 1⊕ i1y ⊕ i0i1y ⊕ xi1y

1⊕ i1y ⊕ xi1y ⊕ i0i1y

x

i0

i1
y

o
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Figure 5: Different processing methods for the combinational port of the secure zone of
the exemplary circuit in Figure 4.

3.3.2 BDD

In discrete mathematics and computer science, Binary Decision Diagrams (BDDs) are often
used as basic data structures to represent and manipulate Boolean functions. The seminal
concept of BDDs has been introduced by Akers [Ake78] and refined by Bryant [Bry86],
improving efficiency and conciseness through variable ordering. Nowadays, many appli-
cations in logic synthesis and formal verification of digital Integrated Circuits (ICs) rely
on (reduced and ordered) BDDs3. This also holds for SILVER [KSM20] introduced in
Section 2.5.

Representation. Multi-root BDDs provide a unique, concise, and canonical representation
of Boolean functions Fn2 7→ Fm2 . In particular, any multi-root BDD can be represented as
a DAG with m root nodes and two terminal nodes {0,1}. More precisely, BDDs can be
defined syntactically and semantically as follows.

Definition 3 (Syntax of BDDs). Given a pair (π,G), where π denotes a variable ordering
3For the sake of simplicity, we refer to Reduced Ordered Binary Decision Diagrams as BDDs.
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and G = (V, E) is a finite DAG with vertices V and edges E , the syntax of an m-rooted
Reduced Ordered Binary Decision Diagram is defined as follows:

(1) There are exactly m root nodes and each node v ∈ V is either a non-terminal or one
of the two terminal nodes {0,1}.

(2) Each non-terminal node v ∈ V is labeled with a variable, denoted as var(v) and has
exactly two distinct child nodes in V , which are denoted as then(v) and else(v). More
precisely, there is no non-terminal node v such that then(v) = else(v).

(3) There are no duplicate nodes, i.e., for each pair of nodes {v, v′} ∈ V2 at least one of
the following conditions holds:

(i) The variable label is different, i.e., var(v) 6= var(v′).
(ii) The child nodes are different, i.e., then(v) 6= then(v′) or else(v) 6= else(v′).

(4) For each path from root nodes to terminal nodes, the variable labels are encountered
at most once and in the same order, defined by the variable ordering π.

Using the principle of Shannon decompositions, each multi-rooted BDD recursively
defines a Boolean function Fn2 7→ Fm2 and arbitrary Boolean operations.

Definition 4 (Semantic of BDDs). The representation of a Boolean function f : Fn2 7→ Fm2 ,
defined over the input variables X = {xi|1 ≤ i ≤ n}, is defined recursively according to
the following specification:

(1) Given a terminal node v, then fv|x = 0 if v is the terminal node 0, and fv|x = 1
otherwise.

(2) Given a non-terminal node v and var(v) = xi, then fv is defined recursively by the
Shannon decomposition: fv = xi · fthen(v)|xi=1 + xi · felse(v)|xi=0.

(3) Given two root nodes v1 and v2 and any binary Boolean operation ◦, such that
f = fv1 ◦ fv2 , then f can be derived recursively as:

f = xi · f|xi=1 + xi · f|xi=0

= xi · (fv1 ◦ fv2)|xi=1 + xi · (fv1 ◦ fv2)|xi=0

= xi · (fv1 |xi=1 ◦ fv2 |xi=1) + xi · (fv1 |xi=0 ◦ fv2 |xi=0)

Transformation. The purpose of the BDD processing method is to create a BDD for
the secure zone netlist. More precisely, the Boolean function of the secure zone netlist
is transformed into a multi-root BDD, whereas each node in the BDD corresponds to a
MUX. Note, however, that in the context of BDDs, each select signal is connected to a
primary input, while the data signals are connected to the constants 0 or 1 or any other
MUX corresponding to a BDD node. Therefore, AGEMA extracts an equivalent netlist
of the secure zone, purely based on 2-input MUXes, which afterwards are exchanged and
replaced by their masked counterpart (see an example in Figure 5(b) and Figure 5(c)).

AGEMA employs two different C/C++ libraries for the construction and manipulation
of BDDs, explained as follows.

SYLVAN4 is a state-of-the-art BDD high-performance, multi-core decision diagram pack-
age implemented in C/C++. In particular, manipulation and processing of BDDs
and binary operations has been extensively optimized and implemented for multi-core
support, outperforming existing, but single-core BDD packages.

4https://github.com/utwente-fmt/sylvan.git
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CUDD5 (Colorado University Decision Diagram) is a package for manipulation and
processing of BDDs, Algebraic Decision Diagrams (ADDs), and Zero-suppressed
Binary Decision Diagrams (ZDDs) implemented in C. In contrast to SYLVAN, CUDD
provides an extensive set of features and operations that can be performed on BDDs,
including automatic and dynamic reordering of the variables. Hence, although CUDD
has been mostly designed for single-core processors, it can outperform SYLVAN in
certain applications, mostly due to reduced memory requirements and BDD sizes
(due to more optimal variable orderings).

Limitations. In contrast to the Naive processing method, the BDD transformation results
in a unique representation (under a given variable ordering). As a result, the BDD
representation is independent of the original netlist representation but solely depends on
the underlying Boolean function, hence reducing the effort of optimizing the original and
unprotected design. Further, since each BDD can be represented as a multiplexer cascade
in digital logic, creation and optimization of a single masked MUX-gadget is sufficient
to convert unprotected designs into protected designs (see Section 3.1.5). However, in
contrast to common approaches, the primary inputs of the secure zone serve as selection
signals of the multiplexers (instead of being connected to the multiplexer data inputs).
As a consequence, the logical depth of the multiplexer cascade is solely limited by the
number of primary inputs of the secure zone, hence, determining the resulting latency of
the masked circuit.

Besides, since BDDs are only canonical under a given variable ordering, we employ
two different state-of-the-art BDD libraries. While SYLVAN is a high-performance library
captivating through multi-core algorithms and operations, in particular with respect to
BDD generation and recombination, CUDD also supports automated and dynamic variable
re-ordering. In fact, using some pre-defined and global thresholds, the library automatically
performs variable re-orderings once the thresholds are exceeded, in order to find better
(i.e., smaller) BDD representations through changing the ordering of the variables (i.e.,
primary inputs). As a smaller BDD directly translates to smaller masked circuits using
fewer multiplexers, we decided to support and evaluate both BDD libraries for their various
benefits and limitations.

3.3.3 ANF

As stated in Section 3.1, GHPC and its low-latency variant GHPCLL allow to construct
first-order secure composable gadgets from arbitrary functions. In other words, in addition
to GHPC and GHPCLL gadgets for 2-input non-linear gates (AND, NAND, OR, NOR) which
can be used in other processing methods, GHPC and GHPCLL gadgets can directly be made
for larger Boolean functions with arbitrary number of variables. However, with increasing
variable dependencies, area overhead of the gadgets gradually becomes more obstructive.
To this end, the ANF processing method tries to find trade-offs between single gadget size
and overall circuit size.

Representation. In general, any Boolean function can be expressed canonically using
several normal forms, such as Conjunctive Normal Form (CNF), Disjunctive Normal
Form (DNF), or Algebraic Normal Form (ANF). In particular, the ANF representation is
often considered for masking purposes due to the trivial masking of XOR operations.
Definition 5 (Algebraic Normal Form). For any Boolean function f : Fn2 7→ F2 there
exists a unique AND-XOR representation, called the ANF of f:

f(x) =
⊕

u∈Fn
2

au
∏

ui=1
xi with au ∈ F2,

5https://github.com/ivmai/cudd.git
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where the summands of f are called monomials. Each monomial forms a conjunction of
a unique subset of x defined by its corresponding index u. The degree of a monomial is
defined as the size of its input set. Furthermore, the algebraic degree of f is defined as the
highest degree of all function’s monomials.

Transformation. We first construct the ANF of the secure zone. The construction
mechanism represents each gate (e.g., AND, OR, XOR) of the original netlist with its
corresponding ANF. More precisely, our tool computes the ANF of any gate based on the
primary inputs of the secure zone. To this end, the inputs of each gate are expressed in
terms of an ANF given in the primary inputs.

However, for the construction of gadgets, we are only interested in the ANF of the
outputs of the entire combinational part of the secure zone. Unfortunately, as stated
above, constructing an individual gadget per secure zone output may lead to a very large
circuit if the corresponding ANF depends on a very large number of primary inputs. As a
consequence, to reduce the circuit size, we apply two optimization techniques introduced
in the following. For the sake of simplicity and better understanding, we analyze an
exemplary Boolean function f : F4

2 7→ F2 represented by the following ANF.

f = x0x2 ⊕ x0x3 ⊕ x0x2x3 ⊕ x1x2 ⊕ x1x3 ⊕ x1x2x3 (1)

Now, the trivial approach is to construct the entire function as a single gadget. As f
depends on four different input values, the corresponding gadget also requires four inputs.
Nevertheless, f can be rewritten in a way that the linear combination x0 ⊕ x1 is processed
instead of x0 and x1, i.e.,

f = (x0 ⊕ x1)(x2 ⊕ x3 ⊕ x2x3). (2)

Note that finding suited linear combinations is not trivial. We explain our methodology
in the following. Providing the linear combination (x0 ⊕ x1) to the gadget instead of x0
and x1 reduces the input size of the gadget by one. In practice, such linear combinations
occur in many modern block ciphers including a key addition operation. Hence, detection
of such operations and extraction of linear combinations often allows to typically halve
the number of inputs per gadget. However, the minimization of gadgets due to finding
linear combinations is not only restricted to the gadgets inputs. For instance, considering
h : F4

2 7→ F2 as
h = x0 ⊕ x1 ⊕ x0x1 ⊕ x2 ⊕ x3 ⊕ x2x3,

and computing the entire function in a single gadget is inefficient since the algebraic degree
of h is smaller than the number of inputs. In particular, only x0 and x1 as well as x2 and
x3 are combined non-linearly. In addition, only two different monomials of degree two
(x0x1 and x2x3) exist, i.e., not all inputs are combined in conjunctions. Hence, splitting h
into two functions h = h0 ⊕ h1 such that h0 = x0 ⊕ x1 ⊕ x0x1 and h1 = x2 ⊕ x3 ⊕ x2x3
results in two gadgets with only two inputs each. Compared to a single gadget with four
inputs, the area footprint can be reduced. We also refer to Figure 5(d) and Figure 5(e),
where two ANF gadgets for the exemplary circuit of Figure 4 are shown. As a result, linear
output combinations, as described here, exist in many modern block ciphers where linear
diffusion layers permute the outputs of multiple non-linear S-boxes which typically operate
on a small set of inputs (e.g., 4 or 8 bits).

Now, given an arbitrary Boolean function representing a secure zone output in ANF,
similar to the examples shown above, we can split the entire ANF into multiple sub-
functions of independent inputs. For instance, considering a full round of a block cipher,
this step is beneficial as different S-boxes are usually computed on non-colliding sets of
input variables. Therefore, we should be able to construct gadgets that operate only on a
small set of input values (depending on the S-box input size). More precisely, in order to
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find suitable sub-functions, we first extract all monomials with maximal algebraic degree
and place them into sub-functions. Specifically, all monomials that share no input are
placed in different sub-functions, while monomials sharing at least one input are placed in
the same sub-function. In the next step, we extract all smaller monomials of the ANF and
place them in one of the existing sub-functions such that each monomial is placed in a
sub-function if it shares inputs with the largest monomial of this sub-function. Eventually,
we repeat this procedure for every output ANF while adding new outputs to the gadgets.
Hence, each gadget may be used to compute sub-funtions of multiple output ANFs if they
depend on the same inputs. As a result, each output ANF can be computed as the sum of
different sub-functions while each sub-function receives a different set of inputs. At this
point, the gadgets are independent of each other and we can optimize them individually.

For some lightweight block ciphers, such as PRINCE [BCG+12], PRESENT [BKL+07],
Midori [BBI+15], Skinny [BJK+16], and CRAFT [BLMR19], the diffusion layer only
combines the output of different S-boxes. In other words, the diffusion layer never
combines different output bits of the same S-box. As the gadgets will be optimized at most
up to the S-box sizes, the sub-functions and the outputs of the S-boxes become equivalent.
Prominent exceptions of this rule are the AES [DR02] and LED [GPPR11], where the
MixColumns also linearly combines the outputs computed by the same S-box (through
Galois-field multiplication with constants in the MixColumns matrix). Note that since
we are analyzing the netlist of the secure zone, such a linear combination is not trivially
visible in the output ANFs. This translates to gadgets with a large number of outputs as
the gadgets compute all linear combined outputs separately and not the small set of S-box
outputs resulting in a high area and fresh-randomness overhead.

In order to detect such linear combinations and reduce the number of gadget outputs
(ideally) up to the number of S-box outputs, we search for a minimal set of different
functions whose linear combinations compute all required sub-functions. We perform
such a search with simulated annealing [KGV83], a discrete optimization technique that
searches for a minimal solution by evaluating solutions that are similar to the current
solution (so-called neighbors). The advantages of simulated annealing compared to other
optimization techniques such as constraint programming [Apt03] are the great performance
and the ability to escape local minima. This is achieved since the acceptance of a neighbor
is partially probabilistic. Hence, sometimes also bad neighbors are accepted to escape
local minima. We start with an input solution x (a set of functions) that computes all
sub-functions separately. Therefore, each sub-function is given as a single output and with
a single summand, what translates to a list with a single element. During the simulated
annealing, we split our initial solution into multiple summands that compute the outputs
with a minimal number of different summands. We show our method in Algorithm 2. For
the neighboring function neighbor(z), we randomly modify input solution z by selecting
one summand from a random sub-function (at the beginning, each function is given as a
single summand), XOR it to every occurrence of another randomly-chosen summand, and
insert it to every modified sub-function. Moreover, we define our objective costs cost(z) of
the solution z as the number of different summands required to compute all sub-functions.
It turns out that a very small number of iterations and a very low cooling factor are enough
to recover the minimal set of gadget outputs. In our experiments, we used a cooling factor
c of 0.9 and start with n = 100 iterations per cooling step which increases by 100 after
every cooling step. The initial temperature is t = 1 and cooled down until it reaches
t′ = 0.5. Note that the set of gadget outputs not necessarily encompasses the outputs of
the underlying S-boxes but linear combinations which also result in a minimal number of
gadget outputs.

After optimizing the gadgets outputs we investigate each gadgets inputs. As shown
above in Equation (2), a gadget can depend on a linear combination of its inputs. In order
to detect such cases for a given gadget, for each input (e.g., x0) we first make a set Lf,x0 of
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Algorithm 2 Search for optimal gadget outputs
Input: t, t′, c, n, x . Simulated annealing parameters: Temperature t, minimum

temperature t′, cooling factor c, iterations per cooling step n, initial solution x
Output: z . A local-optimum solution

1: z ← x
2: while t > t′ do
3: for i = 1, . . . , n do
4: y ← neighbor(z)
5: δ ← cost(y)− cost(z)
6: r

$←− [0, 1] ⊂ R . Random value in range [0,1]
7: if δ ≤ 0 or e−δ/t > r then
8: z ← y
9: end if

10: end for
11: t← t · c
12: end while

Algorithm 3 Search for linear input combinations
Input: LGi

, Lx . List of the gadgets output functions and inputs
Output: LGo

. List of the gadgets substituted output functions
1: LGo

← LGi

2: for ∀(x0, x1) ∈ Lx × Lx do
3: if x0 6= x1 then . Get two different inputs of the gadget
4: for ∀F ∈ LGo

do . By F we refer to all monomials of output function f
5: Lf,x0 ← ∅
6: Lf,x1 ← ∅
7: for ∀M ∈ F do . Get a monomial of the output function
8: if x0 ∈M then Lf,x0 ← Lf,x0 ∪M\{x0}
9: end if

10: if x1 ∈M then Lf,x1 ← Lf,x1 ∪M\{x1}
11: end if
12: end for
13: end for
14: if ∀F ∈ LGo , Lf,x0 = Lf,x1 then
15: N ← {x0, x1} . Create the new linear combination
16: Lx ← Lx\{{x0}, {x1}} ∪ N . Update the gadgets inputs
17: for ∀F ∈ LGo

do
18: for ∀M ∈ F do . Substitute the inputs with their linear combination
19: if x0 ∈M thenM←M\{x0} ∪ N
20: end if
21: if x1 ∈M then F ← F\M
22: end if
23: end for
24: end for
25: end if
26: end if
27: end for
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Figure 6: Generic structure of a masked circuit after applying the ANF processing method.
Dashed registers are optional but necessary to make a pipelined design.

all monomials that exist in output function f and include x0. As only monomials including
x0 are in Lf,x0 , we erase x0 from the monomial before storing it. Then, we search for
input combinations by iterating over all pairs of inputs, e.g., (x0, x1), and examining the
corresponding sets Lf,x0 and Lf,x1 . Since we erase x0 from all monomials in Lf,x0 and x1
from all monomials in Lf,x1 both sets are exactly equivalent iff they differ only in (x0, x1).
Hence, equivalence shows that we can replace (x0, x1) by its linear combination. Naturally,
two inputs xi and xj , such that i 6= j, can be replaced by their linear combination xi ⊕ xj
in an ANF, if both xi and xj are similarly combined with other inputs in all monomials.
This is given if both sets of monomials are equal and non-empty for every output function
of the gadget. If both conditions are met, xi and xj can be replaced with their linear
combination xi ⊕ xj in the entire gadget.

As a short example, we verify the linear combination in f given in Equation (1). For the
input pair (x0, x1) it holds that Lf,x0 = {x2, x3, x2x3} and Lf,x1 = {x2, x3, x2x3}. Since it
hold that Lf,x0 = Lf,x1 , the linear input combination (x0, x1) can be applied. This reduces
the number of inputs of the gadget and the complexity of the computed function. We
formalize our technique in Algorithm 3. Internally, we represent each monomial as a set of
its inputs and each function as a set of monomials. Hence, we can represent a gadget (LGi

and LGo
in the algorithm) as a set of its output functions.

Finally, the result of the ANF processing method is a combination of gadgets and linear
layers. A general structure is depicted in Figure 6. Initially, input layer Lin computes all
linear input combinations which are fed to the gadgets computing all non-linear components.
Different outputs of the i-th gadget are then linearly combined (through Li). Finally, the
output layer Lout linearly combines different gadgets outputs.
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Limitations. As already stated, although the other previously discussed processing
methods can be combined with different masking schemes, ANF is purely dedicated to
GHPC and GHPCLL. Hence, ANF can only generate first-order secure circuits. Similar to
BDD, ANF generates a unique ANF of the outputs independent of the optimization level
of the given netlist. Nevertheless, the result of ANF is not unique due to the probabilistic
characteristic of simulated annealing. Hence, improvements in terms of area are possible
by multiple executions of the tool while always selecting ANF as the processing method. In
particular, the algorithms generate inefficient gadgets if the complexity of the secure zone
grows. The given parameters for simulated annealing are suited for the optimization of
typical S-boxes (up to 8-bit input and output sizes). Adjusting the parameters of simulated
annealing could be helpful for more complex secure zones but can increase the runtime in
return. Up to now, all gadgets are instantiated in parallel, leading to a fixed latency of two
clock cycles for GHPC (resp. one cycle for GHPCLL). On the other hand, the largest gadget
cannot be smaller than dictated by the highest algebraic degree of the output functions.

As stated before, BDD and ANF can be constructed from various representations of
the given circuit. For the sake of having a unique form for the inputs to AGEMA, we only
process Verilog netlist of the synthesized circuit.

3.4 Optimization
Up to this point, we have explained how the secure zone is extracted from the netlist and
how it can be translated to a masked circuit. Depending on the chosen processing method
and the masking scheme and more importantly the initial netlist of the secure zone, the
resulting masked circuit introduces additional latency (more clock cycles) to the circuit
and demands for a high or low number of fresh masks. Further, the performance of the
resulting circuit is heavily affected by the multiplexers of the secure zone (if any). We
have already given an efficient way to realize an HPC-MUX in Section 3.1.5. However, it
is commonly seen that the secure zone contains multiplexers whose select signal is not
marked as secure, i.e., not masked. For example, a plaintext which is given as the primary
input is loaded under certain conditions, e.g., when the reset signal is high (or low). As
another example, different computations are performed in different clock cycles, e.g., last
round of the cipher is different to the other rounds (e.g., MixColumns is missing in the
last round of AES), or in a serialized architecture during some clock cycles the output
of the S-box is taken, and in some other clock cycles that of the diffusion layer. In such
cases, these is no need to mask and translate the multiplexer with an HPC-MUX. Similar
to the XOR, which is secure under PINI notion, an ordinary (unmasked) MUX can be
straightforwardly instantiated d+ 1 times (for security order d). Note that security under
the PINI notion requires every signal to have an independent sharing [CS20]. Hence,
connecting corresponding shares of two masked signal to an ordinary MUX controlled by
an insecure signal would not violate any security requirements. This would greatly improve
the efficiency of the resulting masked circuit. As a side note, the synthesizer should be
directed to make use of MUXes in such cases. If the functionality of a MUX is realized by
Boolean gates (AND, OR, XOR, etc.) and the netlist of the secure zone is optimized (e.g.,
for area, latency, or power through the synthesizer), it would not be straightforward to
detect the MUXes in the secure zone, and most likely the resulting circuit would suffer
from a high number of added register stages and a high demand for fresh randomness.

3.5 Synchronization
Since masked gadgets often have internal register stage(s), after applying the selected
masking scheme, the combinational part of the secure zone is not fully combinational
anymore. Therefore, the circuit would not necessarily work properly. Hence, the circuit
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should be adjusted to keep its correct functionality. We achieve this by two different
techniques explained below.

Pipelining. We can add extra registers to synchronize all inputs of every gadget as well
as all inputs of the main register stage. An example is shown in Figure 7(a), which is
based on the circuit depicted in Figure 4. Each HPC2 gadget introduces two register stages.
Hence, in order to synchronize the inputs of the HPC2-OR gate in Figure 7(a) we need to
place two cascaded registers at its first input (those which are marked by the gray color).
This procedure is done by synchronizing all inputs of each gadget processed in order of
their logic depth. At the end, all inputs of the main register stage are also synchronized.
For the example shown in Figure 7(a), four registers are placed in the normal zone to
synchronize it with the output of the secure zone. This way, the circuit keeps its correct
functionality while realizing a pipeline design with p + 1 stages if p register stages are
added to the circuit (in the shown example, p = 4 as two HPC2 gadgets are cascaded, each
with 2 register stages). Hence, the circuit can process p+ 1 consecutive and independent
inputs. We should highlight that the area overhead of the resulting circuit is relatively
high, but it constructs a circuit with a high throughput due to its underlying pipeline
architecture.

We should highlight that AGEMA is not able and does not try to detect control logic
of the given circuit. As explained above, it just synchronizes all inputs of every gadget
by instantiating register(s) at one of the inputs. The same is performed on the inputs
of the main register stage in both secure and normal zones. This is adequate to build a
fully-pipeline circuit with the same functionality as in the given unprotected circuit, but
with p times higher latency. In other words, if the unprotected circuit has a latency of l
clock cycles while processing a given input, the constructed pipeline masked counterpart
has a latency of (p + 1)l clock cycles while consecutively processes p + 1 given inputs.
Note that this is dedicated to neither a certain implementation architecture nor a special
handshaking fashion. This is a valid construction when the circuit is modeled in accordance
with Section 2.6.

Clock Gating. In order to mitigate the area overhead of the former technique, we can
make use of clock gating. More precisely, we need to make sure that the main register
stage keeps its value until the computation of the secure zone is terminated. The same
holds for the primary inputs. Hence, we do not add any extra registers to the circuit, but
change the clock of the main register stage. This way, all internal registers of the gadgets
are controlled by the main clock, whereas the main register stage is controlled by an added
gated clock enabled once per evaluation of the secure zone. A circuit which is equivalent
to the former example is shown in Figure 7(b). In order to keep the generality, a clock
gating module is added to the design which can be adjusted based on the latency of the
masked secure zone, i.e., p. To this end, the clock gating module instantiates a rotating
shift register with p+ 1 bits initialized by 1{0}p using an added control signal rst. Hence,
every p+ 1 cycles the main register stage is clocked to proceed with the next round of the
calculation of the secure zone. As a result, the latency of the clock-gated circuit is the
same as the pipeline one, but it has a lower throughput as well as lower area overhead.
More precisely, if the unprotected circuit has a latency of l clock cycles while processing a
given input, the constructed clock-gating masked counterpart needs (p+ 1)l clock cycles
to accomplish the processing of a single given input.

Similar to the pipelining, AGEMA does not analyze the circuit to detect any part
related to control logic. We have developed a generic HDL code for the clock gating module
with p as its input parameter. AGEMA just instantiates this module, adjusts p, and
changes the clock of the main register stage to be provided by the clock gating module.
This way, the circuit becomes equivalent to the given unprotected circuit, but with p times
higher latency.
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Figure 7: Different architectures: pipeline versus clock gating for the secure zone of the
exemplary circuit in Figure 4 processed by the Naive method using HPC2 masking scheme.

Note that since the primary inputs are only allowed to change once per evaluation
cycle right after the main register stage is clocked, the clock gating module generates an
additional output signal synch to let the outer modules synchronize. More precisely, a
positive edge is seen on the synch signal indicating that the primary inputs may change.
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3.6 Finalize
Based on the explanations given above, the procedure that AGEMA follows to generate a
masked design can be summarized in Figure 8. At the end, based on the settings defined by
the designer (i.e., selected processing method, masking scheme, security order d, pipeline
or clock-gated design) AGEMA generates a new netlist for the masked design, where –
in addition to the unmasked cells of the unprotected design – gadgets are instantiated.
However, the RTL of the gadgets (which support different security orders and pipelining
feature as well) should be provided separately, which are indeed global and the same for
every design. We already provided the HPC1, HPC2, GHPC, and GHPCLL gadgets for the
NOT, 2-input gates (AND, NAND, OR, NOR, XOR, XNOR), MUX and D flip-flop (can be
found in the GitHub: https://github.com/Chair-for-Security-Engineering/AGEMA). If the
designer wants to use any other gadget realizing any other gate, its specification should be
defined in the AGEMA library (e.g., name and size of the ports, how many fresh masks
are required, and how many cycles latency it has) and the RTL of the new corresponding
gadget(s) should be provided. Hence, the generated netlist together with the RTL of the
gadgets need to be synthesized for the target platform, e.g., any ASIC library or an FPGA.

4 Case Studies
In order to examine the efficiency and performance of circuits constructed by AGEMA, we
evaluated several designs including different S-boxes and full cipher implementations under
different settings, i.e., different security orders (up to 4th), various processing methods
and different masking schemes.

4.1 S-boxes
We start with the 4-bit S-box of Skinny [BJK+16] and provide two different representations.
In the first one, we straightforwardly implemented the S-box by a lookup table. The
synthesizer translates such a behavior representation to a netlist, which is then given to
AGEMA for further processing. For the second one, we followed the optimized representa-
tion provided in [CGLS21]. The corresponding results are given in Table 3 and Table 4
respectively. As the results are extensive and many tables are presented, all performance
results are given in Appendix A. Note that all syntheses have been done using Synopsis
Design Compiler and a NanGate 45 nm standard cell library. For these analyses, we covered
all processing methods Naive, BDDSYLVAN, and BDDCUDD for masking scheme HPC2 at
different security orders. For the sake of comparison, we covered HPC1 only for Naive
method. ANF is also covered as a processing method where transformation into a secure
design is only possible in combination with GHPC or GHPCLL (see Table 1). The effect
of the given netlist on the performance of the masked circuit can be easily seen in the
results associated to Naive processing method. The (HPC2, Naive)-approach for the lookup
table based S-box adds 10 clock cycles to the latency compared to 4 clock cycles for the
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optimized S-box. ANF and BDD methods are actually not affected by the optimality of
the given netlist as they reconstruct the netlist. Further, it can be seen that HPC1 leads
to a lower area overhead while it certainly demands for more fresh randomness.

We repeated this procedure for the AES S-box. In addition to a lookup table based
representation, we took the Canright version [Can05] and the optimized design presented
in [BP12], which – in addition to the linear layers (isomorphisms) – has at most 4 cascaded
2-input AND gates, making it suitable for a masked design. Performance results are given
in Table 5, Table 6 and Table 7. The effect of the optimality of the given netlist on the
performance (area and latency) is even clearer compared to the former case study.

4.2 Full Ciphers
For the full cipher implementations, we cover the list given in Table 2. The performance
results are shown in Tables 10-14 in Appendix A. For all such case studies, we considered
the following facts.

• For all designs, we marked the plaintext/cipheretxt and the key as secure for AGEMA.
In other words, the resulting masked circuit receives all inputs (except the control
signals, e.g., clk and rst) in a masked form with d+ 1 shares and provides the output
also with d+ 1.

• If possible and available, we provided an optimized representation of the S-box.
Above, we have given the source of such optimized designs for the Skinny and
AES S-boxes. For PRESENT and LED, which share the same S-box, we took the
optimized S-box representation from [CGLS21]. However, for Midori and CRAFT,
which also share the same S-box, such representations are not available. Therefore,
we represented the S-box by a lookup table. It can be seen in the performance results
of CRAFT and Midori that the added latency (for Naive method) is higher compared
to the other ciphers with an optimized 4-bit S-box.

• We hard-coded the multiplexers (controlled by Finite State Machine (FSM) or
primary input control signals like rst) and directed the synthesizer to not optimize
them (see Section 3.4). The same holds for XORs. If the XORs are also merged
in other combinational circuits, the synthesizer may optimize in other directions,
leading to a netlist with more (cascaded) non-linear gates.

• As explained in Section 3.3.2, BDD processing methods are not necessarily efficient
for large combinational circuits when an optimized representation is available. This
can be seen for Midori and CRAFT, where the S-box is based on a look-up table
representation and BDD methods have the same latency overhead, while this does
not hold true for the other ciphers, where an optimized representation of the S-box is
given. Further, in AES round-based implementation, the round function, including
16 S-boxes followed by the MixColumns and 4 S-boxes of the KeySchedule, is too
large to be processed by BDD methods.

• We reported two columns for the latency in Tables 10-14 in Appendix A. The “added
latency” indicates the number of cycles which are added to each clock cycle of the
unprotected implementation. The “full latency” is then calculated based on the
added latency and the latency of the unprotected implementation. For example, the
unprotected Skinny-64-64 round-based encryption needs 33 clock cycles to accomplish
the encryption, and based on Table 10, the HPC2 Naive implementation adds 4 cycles
latency. This results in the clock-gating implementation requiring 33× (1 + 4) = 165
clock cycles for an encryption. The pipeline implementation has the same latency,
but processes 4 + 1 plaintexts consecutively in those 165 clock cycles. Hence, its
throughput (ignoring the delay) stays the same as the unprotected implementation,
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Table 2: Full cipher implementation case studies.

Cipher Implementation Reference
AES-128 Byte-serial and round-based encryption [DR02]
Skinny64 Round-based encryption with 64-bit key [BJK+16]
CRAFT Round-based encryption without tweak [BLMR19]
PRESENT-80 Nibble-serial encryption [BKL+07]
LED-64 Round-based encryption [GPPR11]
Midori-64 Round-based encryption/decryption [BBI+15]

but has certainly a considerably-higher area overhead compared to the clock-gating
implementation.

4.3 Outcomes
Considering the shown case studies, the following conclusions can be made.

• It should be tried to provide an optimized unprotected implementation. Here,
the optimization reflects the number of 2-input non-linear gates and how they
are cascaded. A lower number of such gates would naturally reduce the number
of required fresh mask bits, and a lower number of cascaded ones would lead to
a lower number of added latency cycles. Note that area-optimized unprotected
implementations, would not necessarily make optimized masked implementations
(see Table 6).
For example, Canright’s design [Can05] has a lower area footprint compared to the
design of Boyar and Peralta [BP12]. Although both designs have at most 4 cascaded
2-input non-linear gates, the construction of Canright instantiates more such gates.
Hence, the masked implementations of both have the same number of added latency
cycles, but the Canright construction demands for a higher number of fresh mask
bits (Table 6 vs. Table 7).

• A suitable choice for the processing method depends on several factors mainly related
to the designer’s goal(s). For instance, if the lowest latency is desired, ANF combined
with GHPC and particularly GHPCLL are the right choices, having in mind that such
a low latency comes at the cost of a high area overhead and a high demand for fresh
randomness while being restricted to only first-order security.
The benefit of the BDD processing methods lies on their independence to the
optimality of the given unprotected implementation. Here, the amount of added
latency cycles is defined by the number of primary inputs. For example, in the Skinny
S-box, the primary input has 4 bits, hence 4 stages of MUXes are cascaded which
results in 8 cycles of added latency when HPC2 gadgets are used. It can be seen
that the number of added latency cycles shown in Tables 3-7 does not depend on the
level of optimality of the unprotected implementation. There is still some differences
between their required number of fresh mask bits which originates from the fact that
by variable reordering in BDDs slightly different circuits are constructed.
When the number of required fresh masks is the key factor, our Naive method seems
to be the best choice, given that the unprotected implementation is optimized with
respect to the number of 2-input non-linear gates.

• With respect to the masking scheme, AGEMA currently supports HPC1, HPC2,
GHPC and GHPCLL6. Apart from the fact that the last two options just cover

6Any other customized gadget can be easily added to the library of AGEMA.
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first-order security, HPC2 is preferred to HPC1 due to its lower number of required
fresh mask bits. However, looking at the results shown in Tables 3-7, employing
HPC1 in Naive method leads to lower area overhead, particularly for higher security
orders.

• The effect of the latency overhead gets more obvious by considering the full cipher
implementations since the number of added latency cycles are repeated at every
evaluation cycle of the circuit. For a better understanding of this fact, we refer to
Figure 1, where after application of AGEMA, the combinational part of the circuit
(which is part of the sequential loop) requires the added latency cycles. Comparing
the results of ANF (particularly when combined with GHPCLL) with other processing
methods in full cipher implementations highlights its extraordinary benefit with
respect to the full latency.

In short, we should say that apart from the above observations, the designers can try
different settings and examine which one fits the best to their needs. Having the netlist of
the unprotected implementation in hand, generation of the masked design by AGEMA for
each setting takes a couple of seconds. As explained in Section 3.6, the resulting design
together with the RTL of the gadgets should be synthesized to obtain the final performance
figures (area and delay). However, the number of added latency cycles and the amount of
required fresh masks (which are known right after the generation of the masked circuit by
AGEMA) already give an overview of the suitability of the constructed circuit.

The tool and all case studies are provided in the GitHub: https://github.com/Chair-
for-Security-Engineering/AGEMA.

4.3.1 Comparison with Hand-Crafted Designs

As given in Section 1, manual construction of masked hardware is a time-consuming and
error-prone process. Further, since such hand-crafted designs are usually not based on any
composable security notion, the security of the final designs cannot be easily proven or
even evaluated. It might be possible to examine the security of the constructed masked
S-box using SILVER, but it is out of the feasibility bounds of such tools to examine
the full cipher implementations. We can exemplary refer to 2-share first-order masked
AES S-box designs [GMK16, CRB+16], which can still be evaluated by SILVER, but not
higher-order ones or those which make use of more than 2 shares [MPL+11, BGN+14,
BGN+15, Sug19, GMK16, CRB+16]. Further, due to the aforementioned difficulty, to the
best of our knowledge, no secure manually-crafted masked hardware design at third (or
higher) order has been reported in literature. We are only aware of [GMK17] and [GSM17]
which are based on DOM multiplier [GMK16], while its security at higher orders has been
criticized in [MMSS19]. In contracts, the security of circuits constructed by AGEMA
utilizing PINI gadgets is formally provable. More details are given in the next section.

Apart from such shortcomings and difficulties, manually-crafted designs are usually
more efficient in terms of performance, i.e., area overhead, number of added latency cycles,
and amount of required fresh masks. For example, several works have been published
with the goal of minimizing the demand for fresh randomness in first-order masked
AES S-box [BGN+14, BGN+15, Sug19, GMK16, CRB+16, SM20]. We have listed the
performance figure of some manually-constructed full cipher implementations in the tables
given in Appendix A.
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5 Analyses
5.1 Theoretical
As explained in Section 2.4, the concept behind composable security implies that if
standalone secure sub-circuits fulfill certain requirements, their composition would maintain
the same level of security. Currently, PINI is known as the most efficient solution which
defines such requirements. In other words, if sub-circuits, i.e., gadgets, are PINI secure
under the (glitch-extended) probing model, and their interconnections do not intermix
share domains, the composed circuit is also PINI secure under (glitch-extended) probing
model. Note that not mixing the share domains predicates that output shares of a gadget
are connected to the input shares of another gadget in the same order. For example, having
(y0, y1, y2) as the output shares of a gadget with 3 shares and (x0, x1, x2) as the shares of
an input of another gadget, the only valid interconnection is (x0, x1, x2) = (y0, y1, y2).

Hence, as the first analysis step, we have examined our implementations of HPC1,
HPC2, GHPC and GHPCLL gadgets with SILVER [KSM20] and verified their PINI security
under glitch-extended probing model. The gadgets include NOT, 2-input AND, NAND,
OR, NOR, XOR, XNOR, and 2-to-1 MUX. We made VHDL/Verilog implementation of all
gadgets parametric, i.e., the security order and whether a pipeline design is desired are
easily set when instantiating such modules.

Further, since AGEMA makes use of deterministic algorithms to connect gadgets to-
gether, their accordance to PINI interconnections is guaranteed. Note that fullVerif [CGLS21]
has been developed to examine this. More precisely, it receives a design where the PINI
gadgets are annotated, and evaluates if their interconnections are valid, i.e., comply with
the aforementioned no-mixing of share domains. For the sake of completeness, we veri-
fied the designs generated by AGEMA with fullVerif, indicating the compliance of their
interconnections with that of PINI.

In addition to these analyses, by means of SILVER we confirmed the security of all
masked Skinny S-boxes and some of the masked AES S-boxes given in Section 4.1 and
listed in Tables 3-7 under the glitch-extended probing model. Note that since SILVER
makes BDD of the given design to evaluate, it is restricted to small-size circuits. Therefore,
we were not able to do the same for masked AES S-boxes at high security orders and
also for full cipher implementations. Note that, analyzing the security of the constructed
circuit using SILVER is a redundant step, since – as stated above – the security of such
composed circuits is inherited from the employed PINI gadgets.

5.2 Experimental
As a common evaluation technique in the state of the art and for the sake of completeness,
we additionally performed Field Programmable Gate Array (FPGA)-based experimental
analyses. Naturally, it is not possible to experimentally examine all designs reported as
case study, and we contented ourselves with two exemplary designs of our masked Skinny
round-based designs. As the first design, we selected the first-order GHPC ANF pipeline
design, and as the second one the second-order HPC2 Naive pipeline design.

We made use of SAKURA-G [SAK] and implemented the selected designs on the target
Spartan-6 FPGA to monitor the power consumption by a digital sampling oscilloscope at
a sampling frequency of 500MS/s. During the measurements the target design was driven
by a stable 6MHz clock. The fresh masks have also been generated internally (inside the
target FPGA). For each required fresh mask bit we instantiated a 31-bit Linear Feedback
Shift Register (LFSR) with the feedback polynomial x31 + x28 + 1 initialized randomly7.

7We have taken the FPGA-optimized LFSR design presented in [DMW18] which requires only three
instances of 6-to-1 LUTs on Xilinx FPGAs.



26 Automated Generation of Masked Hardware

0 4 8 12 16 20
Time [ s]

P
ow

er
 &

 T
rig

ge
r

(a) A sample trace

0 4 8 12 16 20
Time [ s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(b) 1st-order t-test

0 4 8 12 16 20
Time [ s]

-100

-50

0

50

t-
st

at
is

tic
s

(c) 2nd-order t-test

Figure 9: FPGA-based fixed versus random t-test using 100 million traces, Skinny-64-64
round-based encryption, first-order GHPC ANF pipeline.
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Figure 10: FPGA-based fixed versus random t-test using 100 million traces, Skinny-64-64
round-based encryption, second-order HPC2 Naive pipeline.

As the analysis scheme, we conducted the common and well-known TVLA [GJJR11],
where the SCA leakages associated to a fixed input are compared to those associated to
random inputs. In all our experiments, we kept the key constant and performed fixed-
plaintext versus random-plaintext t-tests (at first, second, and third orders). Conducting
such analyses using 100 million traces (for each design) led to the results shown in Figure 9
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and Figure 10 for two aforementioned designs, respectively. As the first design expected
to be only first-order secure (with 2 shares, d = 1), higher-order detected leakages are
expected, as it can also be seen in the corresponding figures. The second design should
be secure up to the second order (with 3 shares, d = 2) and, as shown, no first- and no
second-order leakage is detected, confirming the expected level of security.

6 Conclusions
In this work we introduced a comprehensive framework which we have developed for
automated generation of masked hardware (AGEMA), allowing engineers and hardware
designers of all levels of experience to easily create securely masked cryptographic hardware
circuits. Based on the security and composability notion of PINI, our tool explores different
processing techniques to transform any unprotected cryptographic design into a securely
masked circuit using different masked gadgets as fundamental building blocks.

Demonstrating the benefits and limitations of our developed tool, we provide several
case studies for well-established symmetric block ciphers, showing different performance
trade-offs in terms of area overhead, latency increase, and fresh randomness demands based
on our proposed transformation methodologies. Eventually, verifying the viability of our
tool and the security of the resulting masked circuits, we perform practical experiments
and evaluations that confirm our claims. For this, AGEMA is an important building block
towards security-aware Electronic Design Automation (EDA), assisting in the automation
process of creating secure ICs.

Apart from unique benefits and facilities that AGEMA offers, the intensive case studies,
which we have provided in this article, highlight the importance of the employed gadgets
with respect to their performance. The demands for fresh randomness and the latency
of the constructed masked circuits heavily depend on the employed gadgets and their
requirements. In terms of latency, GHPCLL gadgets are the only known constructions with
only a single additional register stage, but they are limited to only first-order security. In
contrast, HPC2 gadgets, which can arbitrarily be adjusted to any security order, add two
register stages to the circuit. This might be seen as just one more clock cycle, but as shown
by our case studies, the latency of the resulting masked circuit is doubled compared to
that with GHPCLL. This difference is seen more clearly in implementation of ciphers which
employ S-boxes with a high algebraic degree (i.e., a high number of cascaded non-linear
gadgets). Naturally, more research in this area is required to fill the gap. More precisely,
having HPC gadgets at arbitrary security orders with only one register stage even only
for 2-input non-linear gates would greatly decrease the latency of the masked circuits and
their area overheads.
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A Performance Results

Table 3: Synthesis results, Skinny S-box lookup-table representation.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

[GE] [ns] [bit] [cycle]
unprotected – – 0 42 0.20 0 0
GHPCLL ANF 1 962 0.39 64 1
GHPCLL ANF 3 1 1093 0.39 64 1
GHPCLL Naive 1 809 0.42 52 5
GHPCLL Naive 3 1 1172 0.41 52 5
GHPC ANF 1 1270 0.53 4 2
GHPC ANF 3 1 1305 0.53 4 2
GHPC Naive 1 1137 0.30 13 10
GHPC Naive 3 1 1870 0.29 13 10
HPC1 Naive 1 898 0.30 26 10
HPC1 Naive 2 1854 0.34 65 10
HPC1 Naive 3 3065 0.34 130 10
HPC1 Naive 4 4501 0.39 195 10
HPC1 Naive 3 1 1488 0.29 26 10
HPC1 Naive 3 2 2778 0.33 65 10
HPC1 Naive 3 3 4323 0.33 130 10
HPC1 Naive 3 4 6094 0.38 195 10
HPC2 BDDCUDD 1 1083 0.34 17 8
HPC2 BDDCUDD 2 2879 0.43 51 8
HPC2 BDDCUDD 3 5535 0.52 102 8
HPC2 BDDCUDD 4 9009 0.57 170 8
HPC2 BDDCUDD 3 1 2306 0.34 17 8
HPC2 BDDCUDD 3 2 5025 0.42 51 8
HPC2 BDDCUDD 3 3 8792 0.51 102 8
HPC2 BDDCUDD 3 4 13567 0.57 170 8
HPC2 BDDSYLVAN 1 1307 0.36 21 8
HPC2 BDDSYLVAN 2 3517 0.44 63 8
HPC2 BDDSYLVAN 3 6789 0.52 126 8
HPC2 BDDSYLVAN 4 11069 0.61 210 8
HPC2 BDDSYLVAN 3 1 2748 0.35 21 8
HPC2 BDDSYLVAN 3 2 6047 0.44 63 8
HPC2 BDDSYLVAN 3 3 10650 0.51 126 8
HPC2 BDDSYLVAN 3 4 16493 0.60 210 8
HPC2 Naive 1 847 0.35 13 10
HPC2 Naive 2 2236 0.42 39 10
HPC2 Naive 3 4287 0.47 78 10
HPC2 Naive 4 6968 0.56 130 10
HPC2 Naive 3 1 1890 0.34 13 10
HPC2 Naive 3 2 4055 0.41 39 10
HPC2 Naive 3 3 7034 0.47 78 10
HPC2 Naive 3 4 10790 0.55 130 10
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Table 4: Synthesis results, Skinny S-box optimized representation.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

[GE] [ns] [bit] [cycle]
unprotected – – 0 40 0.20 0 0
GHPCLL ANF 1 962 0.39 64 1
GHPCLL ANF 3 1 1093 0.39 64 1
GHPCLL Naive 1 335 0.40 16 2
GHPCLL Naive 3 1 480 0.39 16 2
GHPC ANF 1 1270 0.53 4 2
GHPC ANF 3 1 1305 0.53 4 2
GHPC Naive 1 438 0.30 4 4
GHPC Naive 3 1 739 0.29 4 4
HPC1 Naive 1 365 0.26 8 4
HPC1 Naive 2 698 0.31 20 4
HPC1 Naive 3 1110 0.30 40 4
HPC1 Naive 4 1591 0.35 60 4
HPC1 Naive 3 1 621 0.26 8 4
HPC1 Naive 3 2 1101 0.30 20 4
HPC1 Naive 3 3 1661 0.29 40 4
HPC1 Naive 3 4 2289 0.34 60 4
HPC2 BDDCUDD 1 1072 0.36 17 8
HPC2 BDDCUDD 2 2862 0.43 51 8
HPC2 BDDCUDD 3 5515 0.51 102 8
HPC2 BDDCUDD 4 8979 0.59 170 8
HPC2 BDDCUDD 3 1 2225 0.35 17 8
HPC2 BDDCUDD 3 2 4906 0.42 51 8
HPC2 BDDCUDD 3 3 8633 0.50 102 8
HPC2 BDDCUDD 3 4 13366 0.59 170 8
HPC2 BDDSYLVAN 1 1072 0.36 17 8
HPC2 BDDSYLVAN 2 2862 0.42 51 8
HPC2 BDDSYLVAN 3 5515 0.51 102 8
HPC2 BDDSYLVAN 4 8979 0.60 170 8
HPC2 BDDSYLVAN 3 1 2225 0.35 17 8
HPC2 BDDSYLVAN 3 2 4906 0.42 51 8
HPC2 BDDSYLVAN 3 3 8633 0.50 102 8
HPC2 BDDSYLVAN 3 4 13366 0.59 170 8
HPC2 Naive 1 353 0.32 4 4
HPC2 Naive 2 818 0.39 12 4
HPC2 Naive 3 1489 0.44 24 4
HPC2 Naive 4 2351 0.52 40 4
HPC2 Naive 3 1 747 0.31 4 4
HPC2 Naive 3 2 1497 0.38 12 4
HPC2 Naive 3 3 2498 0.43 24 4
HPC2 Naive 3 4 3736 0.52 40 4
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Table 5: Synthesis results, AES S-box lookup-table representation.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

[GE] [ns] [bit] [cycle]
unprotected – – 0 664 0.35 0 0
GHPCLL ANF 1 150409 0.57 2048 1
GHPCLL ANF 3 1 157377 1.11 2048 1
GHPCLL Naive 1 46476 0.50 3472 17
GHPCLL Naive 3 1 65708 0.49 3472 17
GHPC ANF 1 135228 0.82 8 2
GHPC ANF 3 1 157808 0.92 8 2
GHPC Naive 1 66226 0.40 868 34
GHPC Naive 3 1 104448 0.39 868 34
HPC1 Naive 1 50267 0.33 1736 34
HPC1 Naive 2 111763 0.37 4340 34
HPC1 Naive 3 190377 0.38 8680 34
HPC1 Naive 4 284043 0.42 13020 34
HPC1 Naive 3 1 79087 0.32 1736 34
HPC1 Naive 3 2 155064 0.36 4340 34
HPC1 Naive 3 3 248114 0.36 8680 34
HPC1 Naive 3 4 356210 0.41 13020 34
HPC2 BDDCUDD 1 24841 0.55 406 16
HPC2 BDDCUDD 2 68416 0.56 1218 16
HPC2 BDDCUDD 3 132834 2.72 2436 16
HPC2 BDDCUDD 4 216733 3.23 4060 16
HPC2 BDDCUDD 3 1 53471 0.54 406 16
HPC2 BDDCUDD 3 2 118318 0.55 1218 16
HPC2 BDDCUDD 3 3 208765 0.69 2436 16
HPC2 BDDCUDD 3 4 323122 0.78 4060 16
HPC2 BDDSYLVAN 1 25077 0.52 410 16
HPC2 BDDSYLVAN 2 69065 0.57 1230 16
HPC2 BDDSYLVAN 3 134122 2.65 2460 16
HPC2 BDDSYLVAN 4 218861 3.20 4100 16
HPC2 BDDSYLVAN 3 1 53753 0.51 410 16
HPC2 BDDSYLVAN 3 2 119134 0.55 1230 16
HPC2 BDDSYLVAN 3 3 210328 0.69 2460 16
HPC2 BDDSYLVAN 3 4 325669 0.79 4100 16
HPC2 Naive 1 46854 0.48 868 34
HPC2 Naive 2 137437 0.60 2604 34
HPC2 Naive 3 272327 0.82 5208 34
HPC2 Naive 4 449461 4.33 8680 34
HPC2 Naive 3 1 105908 0.44 868 34
HPC2 Naive 3 2 240470 0.58 2604 34
HPC2 Naive 3 3 429483 0.67 5208 34
HPC2 Naive 3 4 670365 0.76 8680 34
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Table 6: Synthesis results, AES S-box Canright representation.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

[GE] [ns] [bit] [cycle]
unprotected – – 0 246 0.39 0 0
GHPCLL ANF 1 150409 0.57 2048 1
GHPCLL ANF 3 1 157377 1.11 2048 1
GHPCLL Naive 1 2606 0.58 160 4
GHPCLL Naive 3 1 3664 0.57 160 4
GHPC ANF 1 135228 0.82 8 2
GHPC ANF 3 1 157808 0.92 8 2
GHPC Naive 1 3514 0.51 40 8
GHPC Naive 3 1 5691 0.50 40 8
HPC1 Naive 1 2779 0.47 80 8
HPC1 Naive 2 5815 0.52 200 8
HPC1 Naive 3 9640 0.53 400 8
HPC1 Naive 4 14193 0.56 600 8
HPC1 Naive 3 1 4527 0.46 80 8
HPC1 Naive 3 2 8469 0.51 200 8
HPC1 Naive 3 3 13199 0.51 400 8
HPC1 Naive 3 4 18621 0.55 600 8
HPC2 BDDCUDD 1 25157 0.53 707 16
HPC2 BDDCUDD 2 69250 0.61 2121 16
HPC2 BDDCUDD 3 134438 0.69 4242 16
HPC2 BDDCUDD 4 219369 0.74 7070 16
HPC2 BDDCUDD 3 1 54066 0.52 707 16
HPC2 BDDCUDD 3 2 119631 0.60 2121 16
HPC2 BDDCUDD 3 3 211082 0.69 4242 16
HPC2 BDDCUDD 3 4 326842 0.78 7070 16
HPC2 BDDSYLVAN 1 43210 0.73 714 16
HPC2 BDDSYLVAN 2 119554 0.75 2142 16
HPC2 BDDSYLVAN 3 232505 2.55 4284 16
HPC2 BDDSYLVAN 4 379760 3.09 7140 16
HPC2 BDDSYLVAN 3 1 91512 0.72 714 16
HPC2 BDDSYLVAN 3 2 204100 0.73 2142 16
HPC2 BDDSYLVAN 3 3 361667 0.71 4284 16
HPC2 BDDSYLVAN 3 4 561181 0.77 7140 16
HPC2 Naive 1 2629 0.52 40 8
HPC2 Naive 2 7035 0.61 120 8
HPC2 Naive 3 13521 0.66 240 8
HPC2 Naive 4 21896 0.77 400 8
HPC2 Naive 3 1 5765 0.51 40 8
HPC2 Naive 3 2 12401 0.60 120 8
HPC2 Naive 3 3 21577 0.66 240 8
HPC2 Naive 3 4 33159 0.75 400 8
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Table 7: Synthesis results, AES S-box optimized representation.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

[GE] [ns] [bit] [cycle]
unprotected – – 0 299 150 0 0
GHPCLL ANF 1 150409 0.57 2048 1
GHPCLL ANF 3 1 157377 1.11 2048 1
GHPCLL Naive 1 2311 1.41 136 4
GHPCLL Naive 3 1 3382 0.64 136 4
GHPC ANF 1 135228 0.82 8 2
GHPC ANF 3 1 157808 0.92 8 2
GHPC Naive 1 3074 1.09 34 8
GHPC Naive 3 1 5271 0.52 34 8
HPC1 Naive 1 2448 0.92 68 8
HPC1 Naive 2 5084 1.02 170 8
HPC1 Naive 3 8388 1.07 340 8
HPC1 Naive 4 12307 1.17 510 8
HPC1 Naive 3 1 4263 0.40 68 8
HPC1 Naive 3 2 7839 0.44 170 8
HPC1 Naive 3 3 12085 0.44 340 8
HPC1 Naive 3 4 16919 0.51 510 8
HPC2 BDDCUDD 1 25161 2.08 411 16
HPC2 BDDCUDD 2 69291 2.48 1233 16
HPC2 BDDCUDD 3 134490 2.70 2466 16
HPC2 BDDCUDD 4 219462 3.24 4110 16
HPC2 BDDCUDD 3 1 54076 0.57 411 16
HPC2 BDDCUDD 3 2 119704 0.63 1233 16
HPC2 BDDCUDD 3 3 211169 0.69 2466 16
HPC2 BDDCUDD 3 4 326936 0.77 4110 16
HPC2 BDDSYLVAN 1 25072 2.08 410 16
HPC2 BDDSYLVAN 2 69081 2.55 1230 16
HPC2 BDDSYLVAN 3 134122 2.65 2460 16
HPC2 BDDSYLVAN 4 218861 3.20 4100 16
HPC2 BDDSYLVAN 3 1 53764 0.54 410 16
HPC2 BDDSYLVAN 3 2 119135 0.63 1230 16
HPC2 BDDSYLVAN 3 3 210328 0.69 2460 16
HPC2 BDDSYLVAN 3 4 325669 0.79 4100 16
HPC2 Naive 1 2346 1.32 34 8
HPC2 Naive 2 6126 1.61 102 8
HPC2 Naive 3 11716 1.68 204 8
HPC2 Naive 4 18894 1.99 340 8
HPC2 Naive 3 1 5339 0.51 34 8
HPC2 Naive 3 2 11205 0.61 102 8
HPC2 Naive 3 3 19217 0.68 204 8
HPC2 Naive 3 4 29267 0.74 340 8
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Table 8: Synthesis results, AES byte-serial encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

added full
[GE] [ns] [bit] [cycle]

unprotected – – 0 3263 0.83 0 0 227
GHPCLL ANF 1 143778 2.67 2048 1 454
GHPCLL ANF 3 1 161922 2.67 2048 1 454
GHPCLL Naive 1 10056 2.34 136 4 1135
GHPCLL Naive 3 1 25656 0.91 136 4 1135
GHPC ANF 1 146894 2.67 8 2 681
GHPC ANF 3 1 176509 2.83 8 2 681
GHPC Naive 1 10818 1.73 34 8 2043
GHPC Naive 3 1 42078 0.91 34 8 2043
HPC2 BDDCUDD 1 33124 2.56 414 16 3859
HPC2 BDDCUDD 3 1 120293 1.16 414 16 3859
HPC2 BDDSYLVAN 1 34173 2.64 431 16 3859
HPC2 BDDSYLVAN 3 1 122566 0.97 431 16 3859
HPC2 Naive 1 10090 2.11 34 8 2043
HPC2 Naive 2 17649 2.66 102 8 2043
HPC2 Naive 3 27026 2.71 204 8 2043
HPC2 Naive 3 1 42146 0.98 34 8 2043
HPC2 Naive 3 2 65583 1.41 102 8 2043
HPC2 Naive 3 3 91149 1.01 204 8 2043
[MPL+11] – 1 11114 48 266
[BGN+14] – 1 9102 44 246
[BGN+15] – 1 11221 44 246
[BGN+15] – 1 8119 32 246
[Sug19] – 1 17100 0 266
[GMK16] – 1 7600 28 216
[GMK16] – 1 7100 18 246
[CRB+16] – 1 6681 54 276
[SM20] – 1 7136 6.25 1 246
[SM20] – 1 7707 6.25 0 246
[CBR+15] – 2 18600 126 276
[CRB+16] – 2 10449 162 276
[GMK17] – 2 10000 54 246

Table 9: Synthesis results, AES round-based encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

added full
[GE] [ns] [bit] [cycle]

unprotected – – 0 9906 1.85 0 0 11
GHPCLL Naive 1 52450 2.28 2720 4 55
GHPCLL Naive 3 1 98448 0.84 2720 4 55
GHPC Naive 1 67193 1.48 680 8 99
GHPC Naive 3 1 160080 0.83 680 8 99
HPC2 Naive 1 52597 2.04 680 8 99
HPC2 Naive 2 131631 2.39 2040 8 99
HPC2 Naive 3 246924 2.53 4080 8 99
HPC2 Naive 3 1 161440 0.82 680 8 99
HPC2 Naive 3 2 305274 0.89 2040 8 99
HPC2 Naive 3 3 492077 0.93 4080 8 99
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Table 10: Synthesis results, Skinny-64-64 round-based encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

added full
[GE] [ns] [bit] [cycle]

unprotected – – 0 1494 0.52 0 0 33
GHPCLL ANF 1 18705 0.85 1024 1 66
GHPCLL ANF 3 1 18789 0.85 1024 1 66
GHPCLL Naive 1 6817 0.48 256 2 99
GHPCLL Naive 3 1 12725 0.46 256 2 99
GHPC ANF 1 22850 0.80 64 2 99
GHPC ANF 3 1 28850 0.80 64 2 99
GHPC Naive 1 8260 0.46 64 4 165
GHPC Naive 3 1 20082 0.45 64 4 165
HPC2 BDDCUDD 1 18832 1.95 280 16 561
HPC2 BDDCUDD 3 1 68410 0.52 280 16 561
HPC2 BDDSYLVAN 1 17969 1.96 262 16 561
HPC2 BDDSYLVAN 3 1 66933 0.52 262 16 561
HPC2 Naive 1 6895 0.55 64 4 165
HPC2 Naive 2 15193 0.61 192 4 165
HPC2 Naive 3 26777 0.65 384 4 165
HPC2 Naive 3 1 20210 0.53 64 4 165
HPC2 Naive 3 2 36147 0.59 192 4 165
HPC2 Naive 3 3 56096 0.63 384 4 165
[BJK+16] – 3 1 4200 0.95 0 66
[SM21] – 3 2 10600 1.22 128 128

Table 11: Synthesis results, CRAFT round-based encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

added full
[GE] [ns] [bit] [cycle]

unprotected – – 0 1066 0.58 0 0 32
GHPCLL ANF 1 15748 0.81 1024 1 64
GHPCLL ANF 3 1 17605 0.63 1024 1 64
GHPCLL Naive 1 15568 1.01 1024 4 160
GHPCLL Naive 3 1 25852 0.54 1024 4 160
GHPC ANF 1 22106 0.75 64 2 96
GHPC ANF 3 1 27214 0.66 64 2 96
GHPC Naive 1 21365 0.63 256 8 288
GHPC Naive 3 1 41951 0.54 256 8 288
HPC2 BDDCUDD 1 14927 1.13 229 8 288
HPC2 BDDCUDD 3 1 42451 0.55 229 8 288
HPC2 BDDSYLVAN 1 17509 1.16 272 8 288
HPC2 BDDSYLVAN 3 1 47785 0.55 272 8 288
HPC2 Naive 1 15680 0.94 256 8 288
HPC2 Naive 2 43172 1.03 768 8 288
HPC2 Naive 3 84024 1.12 1536 8 288
HPC2 Naive 3 1 42367 0.55 256 8 288
HPC2 Naive 3 2 87291 0.57 768 8 288
HPC2 Naive 3 3 148316 0.50 1536 8 288
[BLMR19] – 3 1 5106 4.05 0 64
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Table 12: Synthesis results, PRESENT nibble-serial encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

added full
[GE] [ns] [bit] [cycle]

unprotected – – 0 1613 0.59 0 0 543
GHPCLL ANF 1 4727 0.89 64 1 1086
GHPCLL ANF 3 1 6734 0.68 64 1 1086
GHPCLL Naive 1 4143 1.03 16 2 1629
GHPCLL Naive 3 1 8061 0.59 16 2 1629
GHPC ANF 1 5177 1.04 4 2 1629
GHPC ANF 3 1 8945 0.70 4 2 1629
GHPC Naive 1 4245 0.68 4 4 2715
GHPC Naive 3 1 12095 0.59 4 4 2715
HPC2 BDDCUDD 1 5180 1.26 22 8 4887
HPC2 BDDCUDD 3 1 21966 0.59 22 8 4887
HPC2 BDDSYLVAN 1 5245 1.30 23 8 4887
HPC2 BDDSYLVAN 3 1 22064 0.59 23 8 4887
HPC2 Naive 1 4160 0.99 4 4 2715
HPC2 Naive 2 6478 1.13 12 4 2715
HPC2 Naive 3 8977 1.18 24 4 2715
HPC2 Naive 3 1 12103 0.59 4 4 2715
HPC2 Naive 3 2 18270 0.55 12 4 2715
HPC2 Naive 3 3 24692 0.67 24 4 2715
[PMK+11] – 1 2282 4.61 0 565
[SM20] – 1 1819 4.59 0 565
[SM21] – 2 3800 2.04 8 666

Table 13: Synthesis results, LED-64 round-based encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

added full
[GE] [ns] [bit] [cycle]

unprotected – – 0 2056 1.22 0 0 33
GHPCLL ANF 1 17382 1.84 1024 1 66
GHPCLL ANF 3 1 19893 1.38 1024 1 66
GHPCLL Naive 1 7611 2.03 256 2 99
GHPCLL Naive 3 1 13383 1.09 256 2 99
GHPC ANF 1 22904 1.58 64 2 99
GHPC ANF 3 1 27309 1.23 64 2 99
GHPC Naive 1 9056 1.60 64 4 165
GHPC Naive 3 1 20615 1.08 64 4 165
HPC2 BDDCUDD 1 31416 2.97 469 16 561
HPC2 BDDCUDD 3 1 96238 0.89 469 16 561
HPC2 BDDSYLVAN 1 38243 3.02 598 16 561
HPC2 BDDSYLVAN 3 1 110725 0.89 598 16 561
HPC2 Naive 1 7691 1.98 64 4 165
HPC2 Naive 2 16375 2.07 192 4 165
HPC2 Naive 3 28322 2.33 384 4 165
HPC2 Naive 3 1 20743 1.07 64 4 165
HPC2 Naive 3 2 36890 1.14 192 4 165
HPC2 Naive 3 3 57021 1.18 384 4 165
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Table 14: Synthesis results, Midori-64 round-based encryption/decryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

added full
[GE] [ns] [bit] [cycle]

unprotected – – 0 2035 0.97 0 0 17
GHPCLL ANF 1 19493 1.08 1024 1 34
GHPCLL ANF 3 1 21986 0.94 1024 1 34
GHPCLL Naive 1 17679 1.10 1024 4 85
GHPCLL Naive 3 1 32898 0.95 1024 4 85
GHPC ANF 1 23901 1.05 64 2 51
GHPC ANF 3 1 30539 0.85 64 2 51
GHPC Naive 1 23508 0.96 256 8 153
GHPC Naive 3 1 53893 0.95 256 8 153
HPC2 BDDCUDD 1 17162 1.29 231 8 153
HPC2 BDDCUDD 3 1 53478 0.95 231 8 153
HPC2 BDDSYLVAN 1 21123 1.27 304 8 153
HPC2 BDDSYLVAN 3 1 61576 0.95 304 8 153
HPC2 Naive 1 17801 1.10 256 8 153
HPC2 Naive 2 46371 1.21 768 8 153
HPC2 Naive 3 88246 1.27 1536 8 153
HPC2 Naive 3 1 54309 0.95 256 8 153
HPC2 Naive 3 2 105198 0.67 768 8 153
HPC2 Naive 3 3 172179 0.69 1536 8 153
[MS16] – 3 1 7297 4.00 0 32
[SM20] – 3 1 7560 4.99 0 32
[SM21] – 3 2 15500 2.86 128 64
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Chapter 7

Conclusions and Open Problems
Summary. In general, this thesis highlights the persistent threat of SCA attacks and provides
advances that reduce the burden for generating SCA-resistant hardware cores. Our accomplish-
ments rest on four pillars.

In the first part of this thesis, we highlighted the importance of continuously evaluating
novel SCA attack scenarios in the context of complex and modularized systems. Here, we
combined publicly available software exploits and SCA to retrieve hardware-fused key material
from an iPhone 4. Knowledge of this key material allowed us to perform a device-independent
passcode search. We showed that the search is arbitrarily scalable and achieves an immense
speedup by performing it on multiple GPUs in parallel, rather than being tied to a single device.
This underscores that software and hardware should never be analyzed in isolation, but that a
thorough consideration of the interplay between the two is crucial to achieving solid protection
in complex systems.

The second part of this thesis dealt with formal verification of masked hardware implementa-
tions. For this, we introduced an accurate and complete tool for formal verification of common
security and composability notions in the robust d-probing model. This allows for pre-sillicon
verification of SCA resistance solely based on the netlist of a digital circuit. For this, we unified
all security and composability notions with respect to the concept of statistical independence
and leverage ROBDDs to perform the actual independence check. While our original version
only covered glitches as leakage-driving physical effects, our extension enables evaluation un-
der the combined occurrence of transitions and glitches in an iterative setting. SILVER has
already proven to be immensely useful in practice and was a key enabler for the design of novel,
gadget-based masking schemes that are part of this thesis.

In the third part, we introduced several novel masking schemes in the context of gadget-
based masking in the robust d-probing model that all offer general applicability and allow for
trade-offs between the different overhead metrics. Overhead metrics we considered cover the
randomness requirements, the latency and the area footprint of a protected hardware design.
While it was always a trade-off between such metrics, we were able to push boundaries for
latency, area footprint and randomness requirements, individually. Our novel constructions all
aim to provide an increase in flexibility with respect to fine-tuning a protected implementation
towards a cost trade-off most beneficial for a specific use case.

Last but not least, this thesis provides a fully functional tool for the automated generation
of masked hardware. Our tool AGEMA takes an unprotected netlist as an input and outputs a
netlist that is functionally equivalent, but thoroughly masked. It is possible to choose from dif-
ferent preprocessing methods, adjust the security level and provide a custom library of trivially
composable hardware gadgets. This lowers the burden for solid masking of hardware circuits,
while it hands great flexibility to the engineer to tailor a design to the considered use case.
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Open Problems. While this thesis offers important advances with respect to the tackled chal-
lenges, there are still plenty of opportunities for future work. Up to the publication of this
thesis, there is a lack of elaborations on the practicality of SCA attacks that are similar to
the one we performed in the course of this thesis, but are performed on more current models
of the iPhone. Furthermore, current tools performing formal verification of security and com-
posability notions settled in the d-probing model remain limited to evaluation of rather small
circuits, especially for higher security orders. A further increase in the efficiency of such tools
would hence be highly beneficial. As minimizing latency is a crucial factor in hardware design
for many use cases, it would be profitable to develop order-generic hardware gadgets with only
a single cycle latency that can achieve extended functionality. For example, it is expected that
the construction of an order-generic 3-input AND gadget would already drastically reduce the
latency of automatically generated and higher-order masked cipher designs.

Another interesting open problem is how to achieve systematic and automatable masking in
the context of embedded software. While there is some relevant work on methods and tools for
verification and systematic masking [MOPT12, BGR18, BDM+20, ABB+21, MPW22], masking
for embedded software is still far from following a systematic and generalized methodology. We
are now at a point where we have a good understanding of the physical effects in hardware
and how to model them sufficiently to capture the capabilities of an SCA adversary, but the
understanding for software is still rather rudimentary. This is due to the variety of microarchi-
tectural effects that occur across the heterogeneous spectrum of microcontrollers [MPW22]. As
a result, it is an interesting question to see if and how the concepts and construction established
for hardware masking can be translated into the context of embedded software.

250



Part IV

Appendix





Bibliography

[ABB+21] Arnold Abromeit, Florian Bache, Leon A. Becker, Marc Gourjon, Tim Güneysu,
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Universitätsstr. 150, ID 2/619
44801 Bochum, Germany

E-Mail david.knichel@rub.de

Date of birth March 21, 1992

Place of birth Essen, Germany

Education

Since 05/2019 PhD student, Ruhr-Universität Bochum, Faculty for Informatics

04/2016 - 10/2018 M.Sc., Ruhr-Universität Bochum, IT Security/Information Tech-
nology

02/2012 - 02/2016 B.Sc., Ruhr-Universität Bochum, IT Security/Information Technol-
ogy

Professional Experience

10/2017 - 09/2018 Student Research Assistant, Ruhr-Universität Bochum, Embed-
ded Security Group (EMSEC), Bochum, Germany

09/2015 - 06/2017 Internship & Working Student, NXP Semiconductors, Ham-
burg, Germany

02/2014 - 07/2015 Working Student, escrypt GmbH, Bochum, Germany



About the Author

Awards

2022 Winner of the German IT Security Award ’22, endowed with
100.000€

2016 G Data Award, Honor for the best Bachelor graduate of the year

274



Publications and Academic Activities

Peer-Review Journal Papers
■ Oleksiy Lisovets, David Knichel, Thorben Moos, and Amir Moradi. Let’s Take it Offline:

Boosting Brute-Force Attacks on iPhone’s User Authentication through SCA. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021(3):496–519, 2021

■ David Knichel, Pascal Sasdrich, and Amir Moradi. Generic Hardware Private Circuits –
Towards Automated Generation of Composable Secure Gadgets. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2022(1):323–344, 2022

■ Nicolai Müller, David Knichel, Pascal Sasdrich, and Amir Moradi. Transitional Leakage in
Theory and Practice – Unveiling Security Flaws in Masked Circuits. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2022(2):266–288, 2022

■ David Knichel, Amir Moradi, Nicolai Müller, and Pascal Sasdrich. Automated Generation
of Masked Hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):589–629, 2022

■ David Knichel and Amir Moradi. Composable Gadgets with Reused Fresh Masks – First-
Order Probing-Secure Hardware Circuits with only 6 Fresh Masks. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2022(3):114–140, 2022

■ Jakob Feldtkeller, David Knichel, Pascal Sasdrich, Amir Moradi, and Tim Güneysu. Ran-
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