Security of Hedged Fiat-Shamir Signatures under Fault Attacks

Eurocrypt 2020
ePrint 2019/956

Diego F. Aranha' Claudio Orlandi’
Akira Takahashi" Greg Zaverucha?

May 14, 2020
LAarhus University, Denmark

2Microsoft Research, United States

/v

AARHUS
UNIVERSITET

& Microsoft

This Talk in a Nutshell...

- Goal
- Formally analyze the fault-resilience of existing Fiat-Shamir signatures,
motivated by actual attacks.
- Outline

1. Brief history of the fault attacks on FS signatures and randomness hedging.
2. Fault attacker model.
3. Overview of our provable security analysis.

Fiat-Shamir-type Signatures and
Attacks

Signature from Canonical ID Protocol

Prover(sk; r) Verifier(pk)
(a, St) «— Com(sk; r) a
€ €<$ CH
z <+ Resp(sk, e, St) z 0/1 < V(a, e, z pk)

Signature from Canonical ID Protocol

Sign(sk, m;) Verifier(pk, m)

(a, St) < Com(sk;)

e < H(a, m)

z < Resp(sk, e, St) a, €, 2 0/1 < V(a, e, z pk)

2

H(a, m) = e

Signature from Canonical ID Protocol

Sign(sk, m;) Verifier(pk, m)

(a, St) < Com(sk;)

e < H(a, m)

z < Resp(sk, e, St) a, €, 2 0/1 < V(a, e, z pk)
H(a, m) Ze

- If ID is special HVZK and special sound (=X-protocol), then SIG := FS[ID] is
UF-CMA secure.

- e.g, Schnorr, Guillou-Quisquater, etc.

Sensitivity of Per-signature Randomness

m RSign(sk, m)
r<— RNG(-)
(a, St) <= Com(sk; r)
e < H(a, m)

2 (& 2 z + Resp(sk, e, St)

« rmust follow the uniform distribution.

- Otherwise there is an attack!

Poorly designed RNGs.

- VM resets ~» same snapshot will
end up with the same seed.

- Side-channel leakage.

- and more...

Randomness Failure in Practice

[B|B|C ICE

News Sport Weather Shop Earth Travel Mc

Home UK = World Business = Politics Tech Science Health = Family & Education H

Technology

iPhone hacker publishes secret Sony
PlayStation 3 key

By Jonathan Fildes
Technology reporter, BBC News

© 6 January 2011 f © ¥ X < shae

The PlayStation 3's security has F
been broken by hackers, |
potentially allowing anyone to run
any software - including pirated
games - on the console.

A collective of hackers recently showed
off a method that could force the system
to reveal secret keys used to load

BBC news. 2011. https://www.bbc.com/news/
technology-12116051

https://www.bbc.com/news/technology-12116051
https://www.bbc.com/news/technology-12116051

Popular Solution: Deterministic Randomness Generation

7<= RNG[")

r < H'(sk, m)

- Hash each message keyed with sk.
- Widely implemented, e.g,, in EADSA, ECDSA, Dilithium, etc.

- However, another practical issue arises...

Deterministic FS is Vulnerable to Faults!

- Fault attack
- Modifies the internal state of the
device.
- Can be performed remotely (e.g.,
Rowhammer)

Deterministic FS is Vulnerable to Faults!

- Fault attack

- Modifies the internal state of the
device.

- Can be performed remotely (e.g.,
Rowhammer)

- Many recent fault attacks on
FS! [BP16, ABFT18, RP17, PSS118,
SB18, BP18, RJH*19]

Deterministic FS is Vulnerable to Faults!

- Fault attack
- Modifies the internal state of the
device.
- Can be performed remotely (e.g.,
Rowhammer)
- Many recent fault attacks on
FS! [BP16, ABF*18, RP17, PSST18,
SB18, BP18, RJH*19]
- |dea: exploit determinism to rewind
the prover (= signer).

Fault Adversary Type I: Special Soundness Attack

m DSign(sk, m)

r < H'(sk, m)
(a, St) <= Com(sk; r)
e < H(a, m)

2 (& 2 z + Resp(sk, e, St)

- Query 1: get the legitimate signature (a, ¢, z) On m.

Fault Adversary Type I: Special Soundness Attack

m, 7 DSign(sk, m)

r < H'(sk, m)
(a, St) <= Com(sk; r)
e < H(a,m)?

a, € 2 Z + Resp(sk, e, St)

- Query 1: get the legitimate signature (a, ¢, z) On m.

- Query 2: get a faulty signature (a, ¢, 2) on the same m, by injecting fault on
hash 1/0 or commitment output.

Fault Adversary Type I: Special Soundness Attack

m, 7 DSign(sk, m)

r < H'(sk, m)
(a, St) <= Com(sk; r)
e < H(a,m)?

a, € 2 Z + Resp(sk, e, St)

- Query 1: get the legitimate signature (a, ¢, z) On m.

- Query 2: get a faulty signature (a, e, z) on the same m, by injecting fault on
hash I/O or commitment output.

- Special soundness allows A to recover sk!

Fault Adversary Type Il: Large Randomness Bias Attack

m DSign(sk, m)

r < H'(sk, m)
(a, St) <= Com(sk; r)
e < H(a, m)

2 (& 2 z + Resp(sk, e, St)

- Query 1: get the legitimate signature (a, ¢, z) On m.

- Query 2: get a faulty signature (a, e, z) on the same m, by injecting fault on r
or Resp input.

- Second signature relies on correlated randomness 7= r+ Al

Fault Adversary Type Il: Large Randomness Bias Attack

m, 7 DSign(sk, m)

7 < H'(sk, m)?
(a,) «— Com(sk;)

« H(a, m)

% < Resp(sk, &, St)

- Query 1: get the legitimate signature (a, ¢, z) On m.

- Query 2: get a faulty signature (a, &, z) on the same m, by injecting fault on r
or Resp input.

- Second signature relies on correlated randomness 7= r+ Al

Fault Adversary Type Il: Large Randomness Bias Attack

m, 7 DSign(sk, m)

7 < H'(sk, m)?
(a,) «— Com(sk;)

« H(a, m)

% < Resp(sk, &, St)

- Query 1: get the legitimate signature (a, ¢, z) On m.

- Query 2: get a faulty signature (a, e, z) on the same m, by injecting fault on r
or Resp input.

- Second signature relies on correlated randomness 7 = r+ Al

Better Countermeasure? - Randomness Hedging

r < H'(sk, m, nonce)

- Nonces could be from low-quality PRNG, or just a counter.

10

Better Countermeasure? - Randomness Hedging

r < H'(sk, m, nonce)

- Nonces could be from low-quality PRNG, or just a counter.
- Randomness r doesn’t repeat on the same message.

10

Better Countermeasure? - Randomness Hedging

r < H'(sk, m, nonce)

- Nonces could be from low-quality PRNG, or just a counter.
- Randomness r doesn’t repeat on the same message.
- Seems secure, but no formal analysis so far.

10

Better Countermeasure? - Randomness Hedging

r < H'(sk, m, nonce)

- Nonces could be from low-quality PRNG, or just a counter.
- Randomness r doesn’t repeat on the same message.
- Seems secure, but no formal analysis so far.

To what extent are hedged FS signatures secure against fault attacks?

10

Contributions

- Formal attacker model and security notions to capture the corrupted nonces
and previous fault attacks.

- Proved that hedged FS schemes in general are (in)secure against certain
class of fault attacks.

- Application to concrete instantiations.

- XEADSA: Variant of EdDSA used in Signal
- Picnic2: NIST PQC competition round 2 candidate

M

Attacker Model and Security Notions

Approach

- UF-fCMNA Security
- UnForgeability against Faults, Chosen Message and Nonce Attacks

12

Approach

- UF-fCMNA Security

- UnForgeability against Faults, Chosen Message and Nonce Attacks
- Models hedged construction and corrupted nonces (inspired by [BPS16, BT16]).

12

Approach

- UF-fCMNA Security

- UnForgeability against Faults, Chosen Message and Nonce Attacks
- Models hedged construction and corrupted nonces (inspired by [BPS16, BT16]).
- Equips the adversary with bit-tampering fault attacks.

12

Approach

- UF-fCMNA Security
- UnForgeability against Faults, Chosen Message and Nonce Attacks
- Models hedged construction and corrupted nonces (inspired by [BPS16, BT16]).
- Equips the adversary with bit-tampering fault attacks.
- Tailored to Fiat=-Shamir.

12

Modeling Fault Attackers

- flip_bit,(z) does a logical negation of the 4-th bit of z.

flip_bit,(0110...) — 0010...

13

Modeling Fault Attackers

- flip_bit,(z) does a logical negation of the 4-th bit of z.
flip_bit,(0110...) — 0010...
- set_bit,;,(z) sets the i-th bit of zto b.

set_bit,(0110...) — 0111 ...

13

Modeling Fault Attackers

- flip_bit,(z) does a logical negation of the 4-th bit of z.
flip_bit,(0110...) — 0010...

- set_bit,;,(z) sets the i-th bit of zto b.
set_bit,,(0110...) — 0111...

- Focuses on the single-bit faults, characterizing recent attacks on FS.

13

Modeling Fault Attackers

- flip_bit,(z) does a logical negation of the 4-th bit of z.
flip_bit,(0110...) — 0010...

- set_bit,;,(z) sets the i-th bit of zto b.
set_bit,,(0110...) — 0111...

- Focuses on the single-bit faults, characterizing recent attacks on FS.
- Models most basic transient fault attackers on data flow, e.g,

- CPU register values
- Data buses
- Memory cells

13

UF-fCMNA Security

ExpHE MV (A): UF-FCMNA experiment

AP (ph)

mg, N ’

OFaultHSign (-, -) \

fj € {set_bit,,, flip_bit;}

7 R(H'(fi(sk), fo(mi, n)))
(a, St) + fa(Com(f3(sk;)))
a, i, pk f5(a, my, pk)

e« fs(H(@a, i, pk))

z <+ fs(Resp(fz(sk, e, St)))

Out Verify(pk, m*,c*) A m* # my

- Hand H’ are modeled as RO.

" - HSIG is UF-fCMNA secure if Pr[ExleJ;gC"ﬂ,N}f,(A) — 1] is negligible.

UF-fCMNA Security

ExpHE MV (A): UF-FCMNA experiment

AP (ph)

mi, n ’

OFaultHSign (-, -) \

f; € {set_bit,,, flip_bit,}

7 R(H'(fi(sk), fo(mi, n)))
(a, St) + fa(Com(f3(sk;)))
a, i, pk f5(a, my, pk)

e« fs(H(@a, i, pk))

z <+ fs(Resp(fz(sk, e, St)))

Out Verify(pk, m*,c*) A m* # my

- Hand H’ are modeled as RO.

" - HSIG is UF-fCMNA secure if Pr[ExleJ;gC"ﬂ,N}f,(A) — 1] is negligible.

UF-fCMNA Security

ExpHE MV (A): UF-FCMNA experiment

AP (ph)

mi, n ’

OFaultHSign (-, -) \

fj € {set_bit,,, flip_bit;}

1 fo(H'(fi(sk), fo(mi, n)))
(a, §t) < fa(Com(fs(sk; 7))
a, mi,];k +— fs(a, my, pk)

e < fs(H(a, ing, pk))

z <+ fs(Resp(fz(sk, e, St)))

Out Verify(pk, m*,c*) A m* # my

- Hand H’ are modeled as RO.

" - HSIG is UF-fCMNA secure if Pr[ExleJ;gC"ﬂ,N}f,(A) — 1] is negligible.

UF-fCMNA Security

ExpHE MV (A): UF-FCMNA experiment

AP (ph)

mi, n ’

OFaultHSign (-, -) \

fj € {set_bit,,, flip_bit;}

7 R(H'(fi(sk), fo(mi, n)))
(a, 5t) < fa(Com(f3(sk; 7))
a, mi,];k « f5(a, my, pk)

e < fs(H(a, my, pk))

z <+ fs(Resp(fz(sk, e, St)))

Out Verify(pk, m*,c*) A m* # my

- Hand H’ are modeled as RO.

" - HSIG is UF-fCMNA secure if Pr[ExleJ;gC"ﬂ,N}f,(A) — 1] is negligible.

Provable Security Analysis

Security Proof Overview

UF-KOA special HVZK

» UF-fTCMNA for {fi, f5, f6, Js, fo, fio }

Non-repeating (m, n)

- UF-KOA (Key Only Attack): A is not given signing oracle.
- UF-KOA — UF-fCMNA

- Simulate the faulty HSign oracle by invoking special HVZK simulator.
- Non-repeating (message, nonce) is crucial, since otherwise the scheme is
deterministic!

15

Security Proof Overview

special HVZK

UF-KOA

UF-fCMNA for {fi, 5. fs: f3: fos fro }

Non-repeating (m, n)

- UF-KOA (Key Only Attack): A is not given signing oracle.
+ UF-KOA — UF-fCMNA

- Simulate the faulty HSign oracle by invoking special HVZK simulator.
- Non-repeating (message, nonce) is crucial, since otherwise the scheme is
deterministic!

15

Overview of Our Results

*

sk XL . o PR ;
n—%o| H Com |+ A H S {Resp B CSF v o

m —~

x
<
<

\<;
<
<

If A doesn’'t query the same (m, n) pair more than once
v/ secure against single-bit faults.
X insecure against single-bit faults.
% security only holds for signatures from subset-revealing ID (e.g, Picnic).
A security only holds for signatures from input-delayed ID (e.g.,, XEdDSA).
16

Overview of Our Results

*

sk XL . o PR ;
n—%o| H Com |+ A H S {Resp B CSF v o

m —~

x
<
<

\<;
<
<

If A doesn’'t query the same (m, n) pair more than once
v/ secure against single-bit faults.
X insecure against single-bit faults.
% security only holds for signatures from subset-revealing ID (e.g, Picnic).
A security only holds for signatures from input-delayed ID (e.g.,, XEdDSA).
16

Main Positive Result + Subset Revealing ID

Prover(sk; r) Verifier(pk)
(a,{St1,...,. St.}) < Com(sk; r) a

eC (1, e<+sCh
2 {Sti}ie : 0/1 < V(a, e, 2 pk)

Intuition: {St;} is resilient to faults since it doesn’t rely on sk!

17

Negative Results

>
— St
A I
sk ¥ ; o AT, B
n ——% H/ com [+ - H v Respl—~ CSF —~— o0
m —f7¢ v’/

- Fault on H" input (m, n) ~ degenerates to deterministic signature.
- Fault on H’ output r~» directly causes randomness bias.
- Remark: still better than DSign, as large randomness bias doesn’t occur.
18

Application to Concrete Schemes

XEdDSA and Picnic2

XEdDSA Picnic2

- EdDSA is essentially a deterministic
Schnorr.

19

XEdDSA and Picnic2

XEdDSA Picnic2

- EdDSA is essentially a deterministic
Schnorr.

- XEdDSA = hedged Schnorr.

19

XEdDSA and Picnic2

XEdDSA Picnic2

- EdDSA is essentially a deterministic
Schnorr.

- XEdDSA = hedged Schnorr.

- More fault resilient than
EADSA/Schnorr!

19

XEdDSA and Picnic2

XEdDSA Picnic2

- EdDSA is essentially a deterministic
Schnorr.

- XEdDSA = hedged Schnorr.

- More fault resilient than
EADSA/Schnorr!

- Already deployed in Signal
protocol.

19

XEdDSA and Picnic2

XEdDSA Picnic2
- EdDSA is essentially a deterministic - Derived from ZKP based on
Schnorr. MPC-in-the-head by [KKW18].

- XEdDSA = hedged Schnorr.

- More fault resilient than
EADSA/Schnorr!

- Already deployed in Signal
protocol.

19

XEdDSA and Picnic2

XEdDSA Picnic2
- EdDSA is essentially a deterministic - Derived from ZKP based on
Schnorr. MPC-in-the-head by [KKW18].
- XEdDSA = hedged Schnorr. - Picnic2 follows FS.
- More fault resilient than
EdDSA/Schnorr!

- Already deployed in Signal
protocol.

19

XEdDSA and Picnic2

XEdDSA Picnic2
- EdDSA is essentially a deterministic - Derived from ZKP based on
Schnorr. MPC-in-the-head by [KKW18].
- XEdDSA = hedged Schnorr. - Picnic2 follows FS.
- More fault resilient than - Underlying ZKP is subset-revealing
EdDSA/Schnorr! ~» Hedged Picnic2 has more fault
- Already deployed in Signal resistance!

protocol.

19

XEdDSA and Picnic2

XEdDSA Picnic2

- EdDSA is essentially a deterministic - Derived from ZKP based on
Schnorr. MPC-in-the-head by [KKW18].

- XEdDSA = hedged Schnorr. - Picnic2 follows FS.

- More fault resilient than - Underlying ZKP is subset-revealing
EdDSA/Schnorr! ~» Hedged Picnic2 has more fault

- Already deployed in Signal resistance!
protocol. - Specification recommends randomness

hedging.

19

Conclusion

- Defined formal model and security notions tailored to FS.

20

Conclusion

- Defined formal model and security notions tailored to FS.
- Proved (in)security of hedged FS signatures against basic faults and corrupt
nonces.

20

Conclusion

- Defined formal model and security notions tailored to FS.

- Proved (in)security of hedged FS signatures against basic faults and corrupt
nonces.

- Hedging is provably more resilient than the randomized/deterministic FS, but
H” input/output should be protected!

20

Conclusion

20

- Defined formal model and security notions tailored to FS.
- Proved (in)security of hedged FS signatures against basic faults and corrupt

nonces.

- Hedging is provably more resilient than the randomized/deterministic FS, but

H” input/output should be protected!

- Open questions

- Extension to more advanced fault attacker model.
- Multi-bit/position faults. Partially handled by Fischlin and Glinther [FG20]
(CT-RSA20) for generic signatures.
- Fault within Com, Resp or public parameters.
- Model for instruction skipping faults.
- Fault + QROM.

- Lattice signatures from FS with aborts.

Conclusion

- Defined formal model and security notions tailored to FS.
- Proved (in)security of hedged FS signatures against basic faults and corrupt
nonces.
- Hedging is provably more resilient than the randomized/deterministic FS, but
H” input/output should be protected!
- Open questions
- Extension to more advanced fault attacker model.
- Multi-bit/position faults. Partially handled by Fischlin and Glinther [FG20]
(CT-RSA20) for generic signatures.
- Fault within Com, Resp or public parameters.

- Model for instruction skipping faults.
- Fault + QROM.

- Lattice signatures from FS with aborts.

Thank you!
20 More details in ePrint 2019/956

References i

[@ Christopher Ambrose, Joppe W. Bos, Bjorn Fay, Marc Joye, Manfred Lochter, and
Bruce Murray.
Differential attacks on deterministic signatures.
In Nigel P. Smart, editor, CT-RSA 2018, volume 10808 of LNCS, pages 339-353.
Springer, Heidelberg, April 2018.

[@ Alessandro Barenghi and Gerardo Pelosi.
A note on fault attacks against deterministic signature schemes.
In Kazuto Ogawa and Katsunari Yoshioka, editors, IWSEC 16, volume 9836 of
LNCS, pages 182-192. Springer, Heidelberg, September 2016.

References ii

[3 Leon Groot Bruinderink and Peter Pessl.
Differential fault attacks on deterministic lattice signatures.

IACR TCHES, 2018(3):21-43, 2018.
https://tches.iacr.org/index.php/TCHES/article/view/7267.

[@ Mihir Bellare, Bertram Poettering, and Douglas Stebila.
From identification to signatures, tightly: A framework and generic

transforms.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I,
volume 10032 of LNCS, pages 435-464. Springer, Heidelberg, December 2016.

https://tches.iacr.org/index.php/TCHES/article/view/7267

References iii

[@ Mihir Bellare and Bjorn Tackmann.
Nonce-based cryptography: Retaining security when randomness fails.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part |,
volume 9665 of LNCS, pages 729-757. Springer, Heidelberg, May 2016.

[3 Marc Fischlin and Felix Gunther.
Modeling memory faults in signature and authenticated encryption
schemes.
In Stanislaw Jarecki, editor, CT-RSA 2020, volume 12006 of LNCS, pages 56—84.

Springer, 2020.

References iv

[@ Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang.
Improved non-interactive zero knowledge with applications to
post-quantum signatures.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 525-537. ACM Press, October 2018.

[@ Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Manfred Lochter,
and Paul Rosler.
Attacking Deterministic Signature Schemes using Fault Attacks.
In Euro S&P 2018, pages 338-352. IEEE, 2018.

References v

[@ Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay,
and Shivam Bhasin.
Exploiting Determinism in Lattice-based Signatures: Practical Fault Attacks
on Pgm4 Implementations of NIST Candidates.
In Asia CCS 2079, Asia CCS '19, pages 427-440. ACM, 2019.

[3 Y.Romailler and S. Pelissier.
Practical Fault Attack against the Ed25519 and EdDSA Signature Schemes.
In FDTC 2017, pages 17-24, September 2017.

References vi

3 Niels Samwel and Lejla Batina.
Practical fault injection on deterministic signatures: The case of EdDSA.
In Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors,
AFRICACRYPT 18, volume 10831 of LNCS, pages 306-321. Springer, Heidelberg,
May 2018.

	Fiat–Shamir-type Signatures and Attacks
	Attacker Model and Security Notions
	Provable Security Analysis
	Application to Concrete Schemes
	Appendix

