
Security of Hedged Fiat–Shamir Signatures under Fault Attacks

Eurocrypt 2020
ePrint 2019/956

Diego F. Aranha1 Claudio Orlandi1
Akira Takahashi1 Greg Zaverucha2

May 14, 2020
1Aarhus University, Denmark

2Microsoft Research, United States

1



This Talk in a Nutshell…

• Goal
• Formally analyze the fault-resilience of existing Fiat–Shamir signatures,
motivated by actual attacks.

• Outline
1. Brief history of the fault attacks on FS signatures and randomness hedging.
2. Fault attacker model.
3. Overview of our provable security analysis.

2



Fiat–Shamir-type Signatures and
Attacks



Signature from Canonical ID Protocol

Prover(sk; r) Verifier(pk)

(a, St)← Com(sk; r) a

e e←$ CH

z← Resp(sk, e, St) z 0/1← V(a, e, z, pk)

• If ID is special HVZK and special sound (=Σ-protocol), then SIG := FS[ID] is
UF-CMA secure.

• e.g., Schnorr, Guillou–Quisquater, etc.
3



Signature from Canonical ID Protocol

Sign(sk,m; r) Verifier(pk,m)

(a, St)← Com(sk; r)
e← H(a,m)

z← Resp(sk, e, St) a, e, z 0/1← V(a, e, z, pk)

H(a,m)
?
= e

• If ID is special HVZK and special sound (=Σ-protocol), then SIG := FS[ID] is
UF-CMA secure.

• e.g., Schnorr, Guillou–Quisquater, etc.
3



Signature from Canonical ID Protocol

Sign(sk,m; r) Verifier(pk,m)

(a, St)← Com(sk; r)
e← H(a,m)

z← Resp(sk, e, St) a, e, z 0/1← V(a, e, z, pk)

H(a,m)
?
= e

• If ID is special HVZK and special sound (=Σ-protocol), then SIG := FS[ID] is
UF-CMA secure.

• e.g., Schnorr, Guillou–Quisquater, etc.
3



Sensitivity of Per-signature Randomness

A m RSign(sk,m)

r← RNG(·)
(a, St)← Com(sk; r)
e← H(a,m)

a, e, z z← Resp(sk, e, St)

• r must follow the uniform distribution.
• Otherwise there is an attack!

4



Randomness Failure in Practice

• Poorly designed RNGs.
• VM resets ; same snapshot will
end up with the same seed.

• Side-channel leakage.
• and more. . .

BBC news. 2011. https://www.bbc.com/news/
technology-12116051

5

https://www.bbc.com/news/technology-12116051
https://www.bbc.com/news/technology-12116051


Popular Solution: Deterministic Randomness Generation

���������r← RNG(·)
r← H′(sk,m)

• Hash each message keyed with sk.
• Widely implemented, e.g., in EdDSA, ECDSA, Dilithium, etc.
• However, another practical issue arises…

6



Deterministic FS is Vulnerable to Faults!

• Fault attack
• Modifies the internal state of the
device.

• Can be performed remotely (e.g.,
Rowhammer)

• Many recent fault attacks on
FS! [BP16, ABF+18, RP17, PSS+18,
SB18, BP18, RJH+19]

• Idea: exploit determinism to rewind
the prover (= signer).

7



Deterministic FS is Vulnerable to Faults!

• Fault attack
• Modifies the internal state of the
device.

• Can be performed remotely (e.g.,
Rowhammer)

• Many recent fault attacks on
FS! [BP16, ABF+18, RP17, PSS+18,
SB18, BP18, RJH+19]

• Idea: exploit determinism to rewind
the prover (= signer).

7



Deterministic FS is Vulnerable to Faults!

• Fault attack
• Modifies the internal state of the
device.

• Can be performed remotely (e.g.,
Rowhammer)

• Many recent fault attacks on
FS! [BP16, ABF+18, RP17, PSS+18,
SB18, BP18, RJH+19]

• Idea: exploit determinism to rewind
the prover (= signer).

7



Fault Adversary Type I: Special Soundness Attack

A m DSign(sk,m)

r← H′(sk,m)

(a, St)← Com(sk; r)
e← H(a,m)

a, e, z z← Resp(sk, e, St)

• Query 1: get the legitimate signature (a, e, z) on m.
• Query 2: get a faulty signature (a, ẽ, z̃) on the same m, by injecting fault on
hash I/O or commitment output.

• Special soundness allows A to recover sk!
8



Fault Adversary Type I: Special Soundness Attack

A m,E DSign(sk,m)

r← H′(sk,m)

(a, St)← Com(sk; r)
ẽ← H(a,m)E

a, ẽ, z̃ z̃← Resp(sk, ẽ, St)

• Query 1: get the legitimate signature (a, e, z) on m.
• Query 2: get a faulty signature (a, ẽ, z̃) on the same m, by injecting fault on
hash I/O or commitment output.

• Special soundness allows A to recover sk!
8



Fault Adversary Type I: Special Soundness Attack

A m,E DSign(sk,m)

r← H′(sk,m)

(a, St)← Com(sk; r)
ẽ← H(a,m)E

a, ẽ, z̃ z̃← Resp(sk, ẽ, St)

• Query 1: get the legitimate signature (a, e, z) on m.
• Query 2: get a faulty signature (a, ẽ, z̃) on the same m, by injecting fault on
hash I/O or commitment output.

• Special soundness allows A to recover sk!
8



Fault Adversary Type II: Large Randomness Bias Attack

A m DSign(sk,m)

r← H′(sk,m)

(a, St)← Com(sk; r)
e← H(a,m)

a, e, z z← Resp(sk, e, St)

• Query 1: get the legitimate signature (a, e, z) on m.
• Query 2: get a faulty signature (ã, ẽ, z̃) on the same m, by injecting fault on r
or Resp input.

• Second signature relies on correlated randomness r̃ = r +∆!
9



Fault Adversary Type II: Large Randomness Bias Attack

A m,E DSign(sk,m)

r̃← H′(sk,m)E
(ã, S̃t)← Com(sk; r̃)
ẽ← H(ã,m)

ã, ẽ, z̃ z̃← Resp(sk, ẽ, S̃t)

• Query 1: get the legitimate signature (a, e, z) on m.
• Query 2: get a faulty signature (ã, ẽ, z̃) on the same m, by injecting fault on r
or Resp input.

• Second signature relies on correlated randomness r̃ = r +∆!
9



Fault Adversary Type II: Large Randomness Bias Attack

A m,E DSign(sk,m)

r̃← H′(sk,m)E
(ã, S̃t)← Com(sk; r̃)
ẽ← H(ã,m)

ã, ẽ, z̃ z̃← Resp(sk, ẽ, S̃t)

• Query 1: get the legitimate signature (a, e, z) on m.
• Query 2: get a faulty signature (ã, ẽ, z̃) on the same m, by injecting fault on r
or Resp input.

• Second signature relies on correlated randomness r̃ = r +∆!
9



Better Countermeasure? – Randomness Hedging

���������r← RNG(·)
((((((((((r← H′(sk,m)

r← H′(sk,m, nonce)

• Nonces could be from low-quality PRNG, or just a counter.
• Randomness r doesn’t repeat on the same message.
• Seems secure, but no formal analysis so far.

To what extent are hedged FS signatures secure against fault attacks?
10



Better Countermeasure? – Randomness Hedging

���������r← RNG(·)
((((((((((r← H′(sk,m)

r← H′(sk,m, nonce)

• Nonces could be from low-quality PRNG, or just a counter.
• Randomness r doesn’t repeat on the same message.
• Seems secure, but no formal analysis so far.

To what extent are hedged FS signatures secure against fault attacks?
10



Better Countermeasure? – Randomness Hedging

���������r← RNG(·)
((((((((((r← H′(sk,m)

r← H′(sk,m, nonce)

• Nonces could be from low-quality PRNG, or just a counter.
• Randomness r doesn’t repeat on the same message.
• Seems secure, but no formal analysis so far.

To what extent are hedged FS signatures secure against fault attacks?
10



Better Countermeasure? – Randomness Hedging

���������r← RNG(·)
((((((((((r← H′(sk,m)

r← H′(sk,m, nonce)

• Nonces could be from low-quality PRNG, or just a counter.
• Randomness r doesn’t repeat on the same message.
• Seems secure, but no formal analysis so far.

To what extent are hedged FS signatures secure against fault attacks?
10



Contributions

• Formal attacker model and security notions to capture the corrupted nonces
and previous fault attacks.

• Proved that hedged FS schemes in general are (in)secure against certain
class of fault attacks.

• Application to concrete instantiations.
• XEdDSA: Variant of EdDSA used in Signal
• Picnic2: NIST PQC competition round 2 candidate

11



Attacker Model and Security Notions



Approach

• UF-fCMNA Security
• UnForgeability against Faults, Chosen Message and Nonce Attacks
• Models hedged construction and corrupted nonces (inspired by [BPS16, BT16]).
• Equips the adversary with bit-tampering fault attacks.
• Tailored to Fiat–Shamir.

12



Approach

• UF-fCMNA Security
• UnForgeability against Faults, Chosen Message and Nonce Attacks
• Models hedged construction and corrupted nonces (inspired by [BPS16, BT16]).
• Equips the adversary with bit-tampering fault attacks.
• Tailored to Fiat–Shamir.

12



Approach

• UF-fCMNA Security
• UnForgeability against Faults, Chosen Message and Nonce Attacks
• Models hedged construction and corrupted nonces (inspired by [BPS16, BT16]).
• Equips the adversary with bit-tampering fault attacks.
• Tailored to Fiat–Shamir.

12



Approach

• UF-fCMNA Security
• UnForgeability against Faults, Chosen Message and Nonce Attacks
• Models hedged construction and corrupted nonces (inspired by [BPS16, BT16]).
• Equips the adversary with bit-tampering fault attacks.
• Tailored to Fiat–Shamir.

12



Modeling Fault Attackers

• flip_biti(x) does a logical negation of the i-th bit of x.

flip_bit2(0110 . . .)→ 0010 . . .

• set_biti,b(x) sets the i-th bit of x to b.

set_bit4,1(0110 . . .)→ 0111 . . .

• Focuses on the single-bit faults, characterizing recent attacks on FS.
• Models most basic transient fault attackers on data flow, e.g.,

• CPU register values
• Data buses
• Memory cells

13



Modeling Fault Attackers

• flip_biti(x) does a logical negation of the i-th bit of x.

flip_bit2(0110 . . .)→ 0010 . . .

• set_biti,b(x) sets the i-th bit of x to b.

set_bit4,1(0110 . . .)→ 0111 . . .

• Focuses on the single-bit faults, characterizing recent attacks on FS.
• Models most basic transient fault attackers on data flow, e.g.,

• CPU register values
• Data buses
• Memory cells

13



Modeling Fault Attackers

• flip_biti(x) does a logical negation of the i-th bit of x.

flip_bit2(0110 . . .)→ 0010 . . .

• set_biti,b(x) sets the i-th bit of x to b.

set_bit4,1(0110 . . .)→ 0111 . . .

• Focuses on the single-bit faults, characterizing recent attacks on FS.
• Models most basic transient fault attackers on data flow, e.g.,

• CPU register values
• Data buses
• Memory cells

13



Modeling Fault Attackers

• flip_biti(x) does a logical negation of the i-th bit of x.

flip_bit2(0110 . . .)→ 0010 . . .

• set_biti,b(x) sets the i-th bit of x to b.

set_bit4,1(0110 . . .)→ 0111 . . .

• Focuses on the single-bit faults, characterizing recent attacks on FS.
• Models most basic transient fault attackers on data flow, e.g.,

• CPU register values
• Data buses
• Memory cells

13



UF-fCMNA Security

ExpUF-fCMNA
HSIG,H,H′ (A): UF-fCMNA experiment

AH,H′
(pk)

mi,n
fj ∈ {set_biti,b,flip_biti}

OFaultHSignsk(·, ·)

r← f2(H′(f1(sk), f0(mi,n)))
(a,St)← f4(Com(f3(sk; r)))
â, m̂i, p̂k← f5(a,mi, pk)
e← f6(H(â, m̂i, p̂k))

a, e, z z← f8(Resp(f7(sk, e,St)))

m∗, σ∗
Out Verify(pk,m∗, σ∗) ∧m∗ ̸= m̂i

• H and H′ are modeled as RO.
• HSIG is UF-fCMNA secure if Pr[ExpUF-fCMNA

HSIG,H,H′ (A) → 1] is negligible.14



UF-fCMNA Security

ExpUF-fCMNA
HSIG,H,H′ (A): UF-fCMNA experiment

AH,H′
(pk)

mi,n
fj ∈ {set_biti,b,flip_biti}

OFaultHSignsk(·, ·)

r← f2(H′(f1(sk), f0(mi,n)))
(a,St)← f4(Com(f3(sk; r)))
â, m̂i, p̂k← f5(a,mi, pk)
e← f6(H(â, m̂i, p̂k))

a, e, z z← f8(Resp(f7(sk, e,St)))

m∗, σ∗
Out Verify(pk,m∗, σ∗) ∧m∗ ̸= m̂i

• H and H′ are modeled as RO.
• HSIG is UF-fCMNA secure if Pr[ExpUF-fCMNA

HSIG,H,H′ (A) → 1] is negligible.14



UF-fCMNA Security

ExpUF-fCMNA
HSIG,H,H′ (A): UF-fCMNA experiment

AH,H′
(pk)

mi,n
fj ∈ {set_biti,b,flip_biti}

OFaultHSignsk(·, ·)

r← f2(H′(f1(sk), f0(mi,n)))
(a,St)← f4(Com(f3(sk; r)))
â, m̂i, p̂k← f5(a,mi, pk)
e← f6(H(â, m̂i, p̂k))

a, e, z z← f8(Resp(f7(sk, e,St)))

m∗, σ∗
Out Verify(pk,m∗, σ∗) ∧m∗ ̸= m̂i

• H and H′ are modeled as RO.
• HSIG is UF-fCMNA secure if Pr[ExpUF-fCMNA

HSIG,H,H′ (A) → 1] is negligible.14



UF-fCMNA Security

ExpUF-fCMNA
HSIG,H,H′ (A): UF-fCMNA experiment

AH,H′
(pk)

mi,n
fj ∈ {set_biti,b,flip_biti}

OFaultHSignsk(·, ·)

r← f2(H′(f1(sk), f0(mi,n)))
(a,St)← f4(Com(f3(sk; r)))
â, m̂i, p̂k← f5(a,mi, pk)
e← f6(H(â, m̂i, p̂k))

a, e, z z← f8(Resp(f7(sk, e,St)))

m∗, σ∗
Out Verify(pk,m∗, σ∗) ∧m∗ ̸= m̂i

• H and H′ are modeled as RO.
• HSIG is UF-fCMNA secure if Pr[ExpUF-fCMNA

HSIG,H,H′ (A) → 1] is negligible.14



Provable Security Analysis



Security Proof Overview

UF-KOA special HVZK−−−−−−−−−−−→
Non-repeating (m,n)

UF-fCMNA for {f1, f5, f6, f8, f9, f10}

• UF-KOA (Key Only Attack): A is not given signing oracle.
• UF-KOA→ UF-fCMNA

• Simulate the faulty HSign oracle by invoking special HVZK simulator.
• Non-repeating (message, nonce) is crucial, since otherwise the scheme is
deterministic!

15



Security Proof Overview

UF-KOA special HVZK−−−−−−−−−−−→
Non-repeating (m,n)

UF-fCMNA for {f1, f5, f6, f8, f9, f10}

• UF-KOA (Key Only Attack): A is not given signing oracle.
• UF-KOA→ UF-fCMNA

• Simulate the faulty HSign oracle by invoking special HVZK simulator.
• Non-repeating (message, nonce) is crucial, since otherwise the scheme is
deterministic!

15



Overview of Our Results

H′ Com H Resp CSF
sk 7
n
m 3

pk
σ

3
7
7

3

▲

⋆

3

r
7

a
33

St ⋆
e

33
z
3

3
3

3

If A doesn’t query the same (m,n) pair more than once
3 secure against single-bit faults.
7 insecure against single-bit faults.
⋆ security only holds for signatures from subset-revealing ID (e.g., Picnic).
▲ security only holds for signatures from input-delayed ID (e.g., XEdDSA).

16



Overview of Our Results

H′ Com H Resp CSF
sk 7
n
m 3

pk
σ

3
7
7

3

▲

⋆

3

r
7

a
33

St ⋆
e

33
z
3

3
3

3

If A doesn’t query the same (m,n) pair more than once
3 secure against single-bit faults.
7 insecure against single-bit faults.
⋆ security only holds for signatures from subset-revealing ID (e.g., Picnic).
▲ security only holds for signatures from input-delayed ID (e.g., XEdDSA).

16



Main Positive Result + Subset Revealing ID

Prover(sk; r) Verifier(pk)

(a, {St1, . . . ,Stc})← Com(sk; r) a

e ⊆ [1, c] e←$ CH

z← {Sti}i∈e z 0/1← V(a, e, z, pk)

Intuition: {Sti} is resilient to faults since it doesn’t rely on sk!

17



Negative Results

H′ Com H Resp CSF
sk 7
n
m 3

pk
σ

3
7
7

3

▲

⋆

3

r
7

a
33

St ⋆
e

33
z
3

3
3

3

• Fault on H′ input (m,n) ; degenerates to deterministic signature.
• Fault on H′ output r ; directly causes randomness bias.

• Remark: still better than DSign, as large randomness bias doesn’t occur.
18



Application to Concrete Schemes



XEdDSA and Picnic2

XEdDSA
• EdDSA is essentially a deterministic
Schnorr.

• XEdDSA = hedged Schnorr.
• More fault resilient than
EdDSA/Schnorr!

• Already deployed in Signal
protocol.

Picnic2
• Derived from ZKP based on
MPC-in-the-head by [KKW18].

• Picnic2 follows FS.
• Underlying ZKP is subset-revealing

; Hedged Picnic2 has more fault
resistance!

• Specification recommends randomness
hedging.

19



XEdDSA and Picnic2

XEdDSA
• EdDSA is essentially a deterministic
Schnorr.

• XEdDSA = hedged Schnorr.
• More fault resilient than
EdDSA/Schnorr!

• Already deployed in Signal
protocol.

Picnic2
• Derived from ZKP based on
MPC-in-the-head by [KKW18].

• Picnic2 follows FS.
• Underlying ZKP is subset-revealing

; Hedged Picnic2 has more fault
resistance!

• Specification recommends randomness
hedging.

19



XEdDSA and Picnic2

XEdDSA
• EdDSA is essentially a deterministic
Schnorr.

• XEdDSA = hedged Schnorr.
• More fault resilient than
EdDSA/Schnorr!

• Already deployed in Signal
protocol.

Picnic2
• Derived from ZKP based on
MPC-in-the-head by [KKW18].

• Picnic2 follows FS.
• Underlying ZKP is subset-revealing

; Hedged Picnic2 has more fault
resistance!

• Specification recommends randomness
hedging.

19



XEdDSA and Picnic2

XEdDSA
• EdDSA is essentially a deterministic
Schnorr.

• XEdDSA = hedged Schnorr.
• More fault resilient than
EdDSA/Schnorr!

• Already deployed in Signal
protocol.

Picnic2
• Derived from ZKP based on
MPC-in-the-head by [KKW18].

• Picnic2 follows FS.
• Underlying ZKP is subset-revealing

; Hedged Picnic2 has more fault
resistance!

• Specification recommends randomness
hedging.

19



XEdDSA and Picnic2

XEdDSA
• EdDSA is essentially a deterministic
Schnorr.

• XEdDSA = hedged Schnorr.
• More fault resilient than
EdDSA/Schnorr!

• Already deployed in Signal
protocol.

Picnic2
• Derived from ZKP based on
MPC-in-the-head by [KKW18].

• Picnic2 follows FS.
• Underlying ZKP is subset-revealing

; Hedged Picnic2 has more fault
resistance!

• Specification recommends randomness
hedging.

19



XEdDSA and Picnic2

XEdDSA
• EdDSA is essentially a deterministic
Schnorr.

• XEdDSA = hedged Schnorr.
• More fault resilient than
EdDSA/Schnorr!

• Already deployed in Signal
protocol.

Picnic2
• Derived from ZKP based on
MPC-in-the-head by [KKW18].

• Picnic2 follows FS.
• Underlying ZKP is subset-revealing

; Hedged Picnic2 has more fault
resistance!

• Specification recommends randomness
hedging.

19



XEdDSA and Picnic2

XEdDSA
• EdDSA is essentially a deterministic
Schnorr.

• XEdDSA = hedged Schnorr.
• More fault resilient than
EdDSA/Schnorr!

• Already deployed in Signal
protocol.

Picnic2
• Derived from ZKP based on
MPC-in-the-head by [KKW18].

• Picnic2 follows FS.
• Underlying ZKP is subset-revealing

; Hedged Picnic2 has more fault
resistance!

• Specification recommends randomness
hedging.

19



XEdDSA and Picnic2

XEdDSA
• EdDSA is essentially a deterministic
Schnorr.

• XEdDSA = hedged Schnorr.
• More fault resilient than
EdDSA/Schnorr!

• Already deployed in Signal
protocol.

Picnic2
• Derived from ZKP based on
MPC-in-the-head by [KKW18].

• Picnic2 follows FS.
• Underlying ZKP is subset-revealing

; Hedged Picnic2 has more fault
resistance!

• Specification recommends randomness
hedging.

19



Conclusion

• Defined formal model and security notions tailored to FS.
• Proved (in)security of hedged FS signatures against basic faults and corrupt
nonces.

• Hedging is provably more resilient than the randomized/deterministic FS, but
H′ input/output should be protected!

• Open questions
• Extension to more advanced fault attacker model.

• Multi-bit/position faults. Partially handled by Fischlin and Günther [FG20]
(CT-RSA’20) for generic signatures.

• Fault within Com, Resp or public parameters.
• Model for instruction skipping faults.
• Fault + QROM.

• Lattice signatures from FS with aborts.

Thank you!
More details in ePrint 2019/95620



Conclusion

• Defined formal model and security notions tailored to FS.
• Proved (in)security of hedged FS signatures against basic faults and corrupt
nonces.

• Hedging is provably more resilient than the randomized/deterministic FS, but
H′ input/output should be protected!

• Open questions
• Extension to more advanced fault attacker model.

• Multi-bit/position faults. Partially handled by Fischlin and Günther [FG20]
(CT-RSA’20) for generic signatures.

• Fault within Com, Resp or public parameters.
• Model for instruction skipping faults.
• Fault + QROM.

• Lattice signatures from FS with aborts.

Thank you!
More details in ePrint 2019/95620



Conclusion

• Defined formal model and security notions tailored to FS.
• Proved (in)security of hedged FS signatures against basic faults and corrupt
nonces.

• Hedging is provably more resilient than the randomized/deterministic FS, but
H′ input/output should be protected!

• Open questions
• Extension to more advanced fault attacker model.

• Multi-bit/position faults. Partially handled by Fischlin and Günther [FG20]
(CT-RSA’20) for generic signatures.

• Fault within Com, Resp or public parameters.
• Model for instruction skipping faults.
• Fault + QROM.

• Lattice signatures from FS with aborts.

Thank you!
More details in ePrint 2019/95620



Conclusion

• Defined formal model and security notions tailored to FS.
• Proved (in)security of hedged FS signatures against basic faults and corrupt
nonces.

• Hedging is provably more resilient than the randomized/deterministic FS, but
H′ input/output should be protected!

• Open questions
• Extension to more advanced fault attacker model.

• Multi-bit/position faults. Partially handled by Fischlin and Günther [FG20]
(CT-RSA’20) for generic signatures.

• Fault within Com, Resp or public parameters.
• Model for instruction skipping faults.
• Fault + QROM.

• Lattice signatures from FS with aborts.

Thank you!
More details in ePrint 2019/95620



Conclusion

• Defined formal model and security notions tailored to FS.
• Proved (in)security of hedged FS signatures against basic faults and corrupt
nonces.

• Hedging is provably more resilient than the randomized/deterministic FS, but
H′ input/output should be protected!

• Open questions
• Extension to more advanced fault attacker model.

• Multi-bit/position faults. Partially handled by Fischlin and Günther [FG20]
(CT-RSA’20) for generic signatures.

• Fault within Com, Resp or public parameters.
• Model for instruction skipping faults.
• Fault + QROM.

• Lattice signatures from FS with aborts.

Thank you!
More details in ePrint 2019/95620



References i

Christopher Ambrose, Joppe W. Bos, Björn Fay, Marc Joye, Manfred Lochter, and
Bruce Murray.
Differential attacks on deterministic signatures.
In Nigel P. Smart, editor, CT-RSA 2018, volume 10808 of LNCS, pages 339–353.
Springer, Heidelberg, April 2018.

Alessandro Barenghi and Gerardo Pelosi.
A note on fault attacks against deterministic signature schemes.
In Kazuto Ogawa and Katsunari Yoshioka, editors, IWSEC 16, volume 9836 of
LNCS, pages 182–192. Springer, Heidelberg, September 2016.



References ii

Leon Groot Bruinderink and Peter Pessl.
Differential fault attacks on deterministic lattice signatures.
IACR TCHES, 2018(3):21–43, 2018.
https://tches.iacr.org/index.php/TCHES/article/view/7267.

Mihir Bellare, Bertram Poettering, and Douglas Stebila.
From identification to signatures, tightly: A framework and generic
transforms.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II,
volume 10032 of LNCS, pages 435–464. Springer, Heidelberg, December 2016.

https://tches.iacr.org/index.php/TCHES/article/view/7267


References iii

Mihir Bellare and Björn Tackmann.
Nonce-based cryptography: Retaining security when randomness fails.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I,
volume 9665 of LNCS, pages 729–757. Springer, Heidelberg, May 2016.

Marc Fischlin and Felix Günther.
Modeling memory faults in signature and authenticated encryption
schemes.
In Stanislaw Jarecki, editor, CT-RSA 2020, volume 12006 of LNCS, pages 56–84.
Springer, 2020.



References iv

Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang.
Improved non-interactive zero knowledge with applications to
post-quantum signatures.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 525–537. ACM Press, October 2018.

Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Manfred Lochter,
and Paul Rosler.
Attacking Deterministic Signature Schemes using Fault Attacks.
In Euro S&P 2018, pages 338–352. IEEE, 2018.



References v

Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay,
and Shivam Bhasin.
Exploiting Determinism in Lattice-based Signatures: Practical Fault Attacks
on Pqm4 Implementations of NIST Candidates.
In Asia CCS 2019, Asia CCS ’19, pages 427–440. ACM, 2019.

Y. Romailler and S. Pelissier.
Practical Fault Attack against the Ed25519 and EdDSA Signature Schemes.
In FDTC 2017, pages 17–24, September 2017.



References vi

Niels Samwel and Lejla Batina.
Practical fault injection on deterministic signatures: The case of EdDSA.
In Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors,
AFRICACRYPT 18, volume 10831 of LNCS, pages 306–321. Springer, Heidelberg,
May 2018.


	Fiat–Shamir-type Signatures and Attacks
	Attacker Model and Security Notions
	Provable Security Analysis
	Application to Concrete Schemes
	Appendix

