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This Talk in a Nutshell…

• Goal
• Formally analyze the fault-resilience of existing Fiat–Shamir signatures,
motivated by actual attacks.

• Outline
1. Brief history of the fault attacks on FS signatures and randomness hedging.
2. Fault attacker model.
3. Overview of our provable security analysis.
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Fiat–Shamir-type Signatures and
Attacks



Signature from Canonical ID Protocol

Prover(sk; r) Verifier(pk)

(a, St)← Com(sk; r) a

e e←$ CH

z← Resp(sk, e, St) z 0/1← V(a, e, z, pk)

• If ID is special HVZK and special sound (=Σ-protocol), then SIG := FS[ID] is
UF-CMA secure.

• e.g., Schnorr, Guillou–Quisquater, etc.
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Signature from Canonical ID Protocol

Sign(sk,m; r) Verifier(pk,m)

(a, St)← Com(sk; r)
e← H(a,m)

z← Resp(sk, e, St) a, e, z 0/1← V(a, e, z, pk)

H(a,m)
?
= e
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Sensitivity of Per-signature Randomness

A m RSign(sk,m)

r← RNG(·)
(a, St)← Com(sk; r)
e← H(a,m)

a, e, z z← Resp(sk, e, St)

• r must follow the uniform distribution.
• Otherwise there is an attack!
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Randomness Failure in Practice

• Poorly designed RNGs.
• VM resets ; same snapshot will
end up with the same seed.

• Side-channel leakage.
• and more. . .

BBC news. 2011. https://www.bbc.com/news/
technology-12116051
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Popular Solution: Deterministic Randomness Generation

���������r← RNG(·)
r← H′(sk,m)

• Hash each message keyed with sk.
• Widely implemented, e.g., in EdDSA, ECDSA, Dilithium, etc.
• However, another practical issue arises…
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Deterministic FS is Vulnerable to Faults!

• Fault attack
• Modifies the internal state of the
device.

• Can be performed remotely (e.g.,
Rowhammer)

• Many recent fault attacks on
FS! [BP16, ABF+18, RP17, PSS+18,
SB18, BP18, RJH+19]

• Idea: exploit determinism to rewind
the prover (= signer).
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Fault Adversary Type I: Special Soundness Attack

A m DSign(sk,m)

r← H′(sk,m)

(a, St)← Com(sk; r)
e← H(a,m)

a, e, z z← Resp(sk, e, St)

• Query 1: get the legitimate signature (a, e, z) on m.
• Query 2: get a faulty signature (a, ẽ, z̃) on the same m, by injecting fault on
hash I/O or commitment output.

• Special soundness allows A to recover sk!
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Fault Adversary Type II: Large Randomness Bias Attack

A m DSign(sk,m)

r← H′(sk,m)

(a, St)← Com(sk; r)
e← H(a,m)

a, e, z z← Resp(sk, e, St)

• Query 1: get the legitimate signature (a, e, z) on m.
• Query 2: get a faulty signature (ã, ẽ, z̃) on the same m, by injecting fault on r
or Resp input.

• Second signature relies on correlated randomness r̃ = r +∆!
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ẽ← H(ã,m)
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Better Countermeasure? – Randomness Hedging

���������r← RNG(·)
((((((((((r← H′(sk,m)

r← H′(sk,m, nonce)

• Nonces could be from low-quality PRNG, or just a counter.
• Randomness r doesn’t repeat on the same message.
• Seems secure, but no formal analysis so far.

To what extent are hedged FS signatures secure against fault attacks?
10



Better Countermeasure? – Randomness Hedging

���������r← RNG(·)
((((((((((r← H′(sk,m)

r← H′(sk,m, nonce)

• Nonces could be from low-quality PRNG, or just a counter.
• Randomness r doesn’t repeat on the same message.
• Seems secure, but no formal analysis so far.

To what extent are hedged FS signatures secure against fault attacks?
10



Better Countermeasure? – Randomness Hedging

���������r← RNG(·)
((((((((((r← H′(sk,m)

r← H′(sk,m, nonce)

• Nonces could be from low-quality PRNG, or just a counter.
• Randomness r doesn’t repeat on the same message.
• Seems secure, but no formal analysis so far.

To what extent are hedged FS signatures secure against fault attacks?
10



Better Countermeasure? – Randomness Hedging

���������r← RNG(·)
((((((((((r← H′(sk,m)

r← H′(sk,m, nonce)

• Nonces could be from low-quality PRNG, or just a counter.
• Randomness r doesn’t repeat on the same message.
• Seems secure, but no formal analysis so far.

To what extent are hedged FS signatures secure against fault attacks?
10



Contributions

• Formal attacker model and security notions to capture the corrupted nonces
and previous fault attacks.

• Proved that hedged FS schemes in general are (in)secure against certain
class of fault attacks.

• Application to concrete instantiations.
• XEdDSA: Variant of EdDSA used in Signal
• Picnic2: NIST PQC competition round 2 candidate
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Attacker Model and Security Notions



Approach

• UF-fCMNA Security
• UnForgeability against Faults, Chosen Message and Nonce Attacks
• Models hedged construction and corrupted nonces (inspired by [BPS16, BT16]).
• Equips the adversary with bit-tampering fault attacks.
• Tailored to Fiat–Shamir.
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Modeling Fault Attackers

• flip_biti(x) does a logical negation of the i-th bit of x.

flip_bit2(0110 . . .)→ 0010 . . .

• set_biti,b(x) sets the i-th bit of x to b.

set_bit4,1(0110 . . .)→ 0111 . . .

• Focuses on the single-bit faults, characterizing recent attacks on FS.
• Models most basic transient fault attackers on data flow, e.g.,

• CPU register values
• Data buses
• Memory cells
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UF-fCMNA Security

ExpUF-fCMNA
HSIG,H,H′ (A): UF-fCMNA experiment

AH,H′
(pk)

mi,n
fj ∈ {set_biti,b,flip_biti}

OFaultHSignsk(·, ·)

r← f2(H′(f1(sk), f0(mi,n)))
(a,St)← f4(Com(f3(sk; r)))
â, m̂i, p̂k← f5(a,mi, pk)
e← f6(H(â, m̂i, p̂k))

a, e, z z← f8(Resp(f7(sk, e,St)))

m∗, σ∗
Out Verify(pk,m∗, σ∗) ∧m∗ ̸= m̂i

• H and H′ are modeled as RO.
• HSIG is UF-fCMNA secure if Pr[ExpUF-fCMNA

HSIG,H,H′ (A) → 1] is negligible.14
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â, m̂i, p̂k← f5(a,mi, pk)
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Provable Security Analysis



Security Proof Overview

UF-KOA special HVZK−−−−−−−−−−−→
Non-repeating (m,n)

UF-fCMNA for {f1, f5, f6, f8, f9, f10}

• UF-KOA (Key Only Attack): A is not given signing oracle.
• UF-KOA→ UF-fCMNA

• Simulate the faulty HSign oracle by invoking special HVZK simulator.
• Non-repeating (message, nonce) is crucial, since otherwise the scheme is
deterministic!
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Overview of Our Results

H′ Com H Resp CSF
sk 7
n
m 3

pk
σ

3
7
7

3

▲

⋆

3

r
7

a
33

St ⋆
e

33
z
3

3
3

3

If A doesn’t query the same (m,n) pair more than once
3 secure against single-bit faults.
7 insecure against single-bit faults.
⋆ security only holds for signatures from subset-revealing ID (e.g., Picnic).
▲ security only holds for signatures from input-delayed ID (e.g., XEdDSA).
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Main Positive Result + Subset Revealing ID

Prover(sk; r) Verifier(pk)

(a, {St1, . . . ,Stc})← Com(sk; r) a

e ⊆ [1, c] e←$ CH

z← {Sti}i∈e z 0/1← V(a, e, z, pk)

Intuition: {Sti} is resilient to faults since it doesn’t rely on sk!
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Negative Results

H′ Com H Resp CSF
sk 7
n
m 3

pk
σ

3
7
7

3

▲

⋆

3

r
7

a
33

St ⋆
e

33
z
3

3
3

3

• Fault on H′ input (m,n) ; degenerates to deterministic signature.
• Fault on H′ output r ; directly causes randomness bias.

• Remark: still better than DSign, as large randomness bias doesn’t occur.
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Application to Concrete Schemes



XEdDSA and Picnic2

XEdDSA
• EdDSA is essentially a deterministic
Schnorr.

• XEdDSA = hedged Schnorr.
• More fault resilient than
EdDSA/Schnorr!

• Already deployed in Signal
protocol.

Picnic2
• Derived from ZKP based on
MPC-in-the-head by [KKW18].

• Picnic2 follows FS.
• Underlying ZKP is subset-revealing

; Hedged Picnic2 has more fault
resistance!

• Specification recommends randomness
hedging.
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Conclusion

• Defined formal model and security notions tailored to FS.
• Proved (in)security of hedged FS signatures against basic faults and corrupt
nonces.

• Hedging is provably more resilient than the randomized/deterministic FS, but
H′ input/output should be protected!

• Open questions
• Extension to more advanced fault attacker model.

• Multi-bit/position faults. Partially handled by Fischlin and Günther [FG20]
(CT-RSA’20) for generic signatures.

• Fault within Com, Resp or public parameters.
• Model for instruction skipping faults.
• Fault + QROM.

• Lattice signatures from FS with aborts.

Thank you!
More details in ePrint 2019/95620
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