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This Talk in a Nutshell...

- Goal
- Formally analyze the fault-resilience of existing Fiat-Shamir signatures,
motivated by actual attacks.
- Outline

1. Brief history of the fault attacks on FS signatures and randomness hedging.
2. Fault attacker model.
3. Overview of our provable security analysis.



Fiat-Shamir-type Signatures and
Attacks



Signature from Canonical ID Protocol
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Signature from Canonical ID Protocol

Sign(sk, m; ) Verifier(pk, m)

(a, St) < Com(sk; )

e < H(a, m)

z < Resp(sk, e, St) a, €, 2 0/1 < V(a, e, z pk)
H(a, m) Ze

- If ID is special HVZK and special sound (=X-protocol), then SIG := FS[ID] is
UF-CMA secure.

- e.g, Schnorr, Guillou-Quisquater, etc.



Sensitivity of Per-signature Randomness

m RSign(sk, m)
r<— RNG(-)
(a, St) <= Com(sk; r)
e < H(a, m)

2 (& 2 z + Resp(sk, e, St)

« rmust follow the uniform distribution.

- Otherwise there is an attack!



Poorly designed RNGs.

- VM resets ~» same snapshot will
end up with the same seed.

- Side-channel leakage.

- and more...

Randomness Failure in Practice
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iPhone hacker publishes secret Sony
PlayStation 3 key

By Jonathan Fildes
Technology reporter, BBC News
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The PlayStation 3's security has F
been broken by hackers, |
potentially allowing anyone to run
any software - including pirated
games - on the console.

A collective of hackers recently showed
off a method that could force the system
to reveal secret keys used to load

BBC news. 2011. https://www.bbc.com/news/
technology-12116051


https://www.bbc.com/news/technology-12116051
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Popular Solution: Deterministic Randomness Generation

7<= RNG[")

r < H'(sk, m)

- Hash each message keyed with sk.
- Widely implemented, e.g,, in EADSA, ECDSA, Dilithium, etc.

- However, another practical issue arises...
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- Fault attack
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Deterministic FS is Vulnerable to Faults!

- Fault attack
- Modifies the internal state of the
device.
- Can be performed remotely (e.g.,
Rowhammer)
- Many recent fault attacks on
FS! [BP16, ABF*18, RP17, PSST18,
SB18, BP18, RJH*19]
- |dea: exploit determinism to rewind
the prover (= signer).




Fault Adversary Type I: Special Soundness Attack

m DSign(sk, m)

r < H'(sk, m)
(a, St) <= Com(sk; r)
e < H(a, m)

2 (& 2 z + Resp(sk, e, St)

- Query 1: get the legitimate signature (a, ¢, z) On m.
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m, 7 DSign(sk, m)

r < H'(sk, m)
(a, St) <= Com(sk; r)
e < H(a,m)?
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- Query 1: get the legitimate signature (a, ¢, z) On m.

- Query 2: get a faulty signature (a, e, z) on the same m, by injecting fault on
hash I/O or commitment output.

- Special soundness allows A to recover sk!
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Better Countermeasure? - Randomness Hedging

r < H'(sk, m, nonce)

- Nonces could be from low-quality PRNG, or just a counter.
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Better Countermeasure? - Randomness Hedging

r < H'(sk, m, nonce)

- Nonces could be from low-quality PRNG, or just a counter.
- Randomness r doesn’t repeat on the same message.
- Seems secure, but no formal analysis so far.

To what extent are hedged FS signatures secure against fault attacks?
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Contributions

- Formal attacker model and security notions to capture the corrupted nonces
and previous fault attacks.

- Proved that hedged FS schemes in general are (in)secure against certain
class of fault attacks.

- Application to concrete instantiations.

- XEADSA: Variant of EdDSA used in Signal
- Picnic2: NIST PQC competition round 2 candidate

M



Attacker Model and Security Notions




Approach

- UF-fCMNA Security
- UnForgeability against Faults, Chosen Message and Nonce Attacks
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Approach

- UF-fCMNA Security
- UnForgeability against Faults, Chosen Message and Nonce Attacks
- Models hedged construction and corrupted nonces (inspired by [BPS16, BT16]).
- Equips the adversary with bit-tampering fault attacks.
- Tailored to Fiat=-Shamir.
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Modeling Fault Attackers

- flip_bit,(z) does a logical negation of the 4-th bit of z.

flip_bit,(0110...) — 0010...
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Modeling Fault Attackers

- flip_bit,(z) does a logical negation of the 4-th bit of z.
flip_bit,(0110...) — 0010...

- set_bit,;,(z) sets the i-th bit of zto b.
set_bit,,(0110...) — 0111...

- Focuses on the single-bit faults, characterizing recent attacks on FS.
- Models most basic transient fault attackers on data flow, e.g,

- CPU register values
- Data buses
- Memory cells

13



UF-fCMNA Security

ExpHE MV (A): UF-FCMNA experiment

AP (ph)

mg, N ’

OFaultHSign (-, -) \

fj € {set_bit,,, flip_bit;}

7 R(H'(fi(sk), fo(mi, n)))
(a, St) + fa(Com(f3(sk;)))
a, i, pk f5(a, my, pk)

e« fs(H(@a, i, pk))

z <+ fs(Resp(fz(sk, e, St)))

Out Verify(pk, m*,c*) A m* # my

- Hand H’ are modeled as RO.

" - HSIG is UF-fCMNA secure if Pr[ExleJ;gC"ﬂ,N}f,(A) — 1] is negligible.
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Security Proof Overview

UF-KOA special HVZK

» UF-fTCMNA for {fi, f5, f6, Js, fo, fio }

Non-repeating (m, n)

- UF-KOA (Key Only Attack): A is not given signing oracle.
- UF-KOA — UF-fCMNA

- Simulate the faulty HSign oracle by invoking special HVZK simulator.
- Non-repeating (message, nonce) is crucial, since otherwise the scheme is
deterministic!
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Security Proof Overview

special HVZK

UF-KOA

UF-fCMNA for {fi, 5. fs: f3: fos fro }

Non-repeating (m, n)

- UF-KOA (Key Only Attack): A is not given signing oracle.
+ UF-KOA — UF-fCMNA

- Simulate the faulty HSign oracle by invoking special HVZK simulator.
- Non-repeating (message, nonce) is crucial, since otherwise the scheme is
deterministic!
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Overview of Our Results

*

sk XL . o PR ;
n—%o| H Com |+ A H S {Resp B CSF v o
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If A doesn’'t query the same (m, n) pair more than once
v/ secure against single-bit faults.
X insecure against single-bit faults.
% security only holds for signatures from subset-revealing ID (e.g, Picnic).
A security only holds for signatures from input-delayed ID (e.g.,, XEdDSA).
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Main Positive Result + Subset Revealing ID

Prover(sk; r) Verifier(pk)
(a,{St1,...,. St.}) < Com(sk; r) a

eC (1, e<+sCh
2 {Sti}ie : 0/1 < V(a, e, 2 pk)

Intuition: {St;} is resilient to faults since it doesn’t rely on sk!

17



Negative Results

>
— St
A I
sk ¥ ; o AT, B
n ——% H/ com [+ - H v Respl—~ CSF —~— o0
m —f7¢ v’/

- Fault on H" input (m, n) ~ degenerates to deterministic signature.
- Fault on H’ output r~» directly causes randomness bias.
- Remark: still better than DSign, as large randomness bias doesn’t occur.
18



Application to Concrete Schemes




XEdDSA and Picnic2
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XEdDSA and Picnic2

XEdDSA Picnic2

- EdDSA is essentially a deterministic - Derived from ZKP based on
Schnorr. MPC-in-the-head by [KKW18].

- XEdDSA = hedged Schnorr. - Picnic2 follows FS.

- More fault resilient than - Underlying ZKP is subset-revealing
EdDSA/Schnorr! ~» Hedged Picnic2 has more fault

- Already deployed in Signal resistance!
protocol. - Specification recommends randomness

hedging.
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Conclusion

- Defined formal model and security notions tailored to FS.
- Proved (in)security of hedged FS signatures against basic faults and corrupt
nonces.
- Hedging is provably more resilient than the randomized/deterministic FS, but
H” input/output should be protected!
- Open questions
- Extension to more advanced fault attacker model.
- Multi-bit/position faults. Partially handled by Fischlin and Glinther [FG20]
(CT-RSA20) for generic signatures.
- Fault within Com, Resp or public parameters.

- Model for instruction skipping faults.
- Fault + QROM.

- Lattice signatures from FS with aborts.

Thank you!
20 More details in ePrint 2019/956
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