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Background & Motivation: NIST PQC Standardization Round 3

Finalists

• CRYSTALS-DILITHIUM

• Falcon

• Rainbow

Alternates

• GeMSS

• Picnic

• SPHINCS+

• Side-channel resilience is becoming more relevant

• Little study on side-channel resilience of Picnic/MPC-in-the-head paradigm
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Picnic & side-channel security

• Fiat–Shamir-type signature from

MPC-in-the-head ZKP [IKOS07]

, No number-theoretic assumptions

• Block cipher

• Hash function (modeled as RO)

, Various parameters

Picnic1

/ Known to be vulnerable to DPA [GSE20]

/ Existing countermeasure breaks

interoperability with verification [SBWE20]

/ Also increases signature size

Picnic3

• Follows MPC-in-the-head with

preprocessing paradigm [KKW18]

• More compact signature

• No side-channel evaluation yet
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Our goal

• Side-channel evaluation of Picnic3 / MPC-in-the-head with preprocessing

• Maintain interoperability and signature size while applying masking

countermeasures
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This work

• Side-channel vulnerabilities of unprotected Picnic3

• Attack I extends [GSE20]

• Attack II is new

• Generic approach to mask ZKP using MPCitH with preprocessing

• Proof for 𝑡-probing security

• Supported by maskVerif formal verification tool [BBC+19]

• Possible to trade-off provable security for lower masking overhead

• First-order masked implementation of Picnic3 & SHA-3

• Practical electromagnetic (EM) leakage analysis
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Side-channel Attacks on Picnic3



Zero-knowledge proof using the MPC-in-the-head [IKOS07, GMO16]
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Attack I: Probing the unopened party (extending [GSE20])

Compute

Must be hidden!!

6



Attack I: Probing the unopened party (extending [GSE20])

Compute

Must be hidden!!

6



Picnic3: MPC-in-the-head with preprocessing [KKW18, KZ20]

Offline
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Why preprocessing? – Multiplication with Beaver triples

Inputs ∶[𝑥] = (𝑥1, … , 𝑥𝑁) and [𝑦] = (𝑦1, … , 𝑦𝑁)
Output ∶[𝑧] = (𝑧1, … , 𝑧𝑁) such that 𝑧 = 𝑥𝑦

Offline

• Generate many random triples

([𝜆𝑥], [𝜆𝑦], [𝜆𝑥𝑦]) with 𝜆𝑥𝑦 = 𝜆𝑥𝜆𝑦

• Easy in MPCitH:

𝜆𝑥𝑦
𝑁 ∶= (

𝑁
∑
𝑖=1

𝜆𝑥
𝑖 ) (

𝑁
∑
𝑖=1

𝜆𝑦
𝑖 )−

𝑁−1
∑
𝑖=1

𝜆𝑥𝑦
𝑖

Online

• Observation:

𝑥𝑦 = ((𝑥 + 𝜆𝑥) − 𝜆𝑥)((𝑦 + 𝜆𝑦) − 𝜆𝑦)
• Reconstruct ̂𝑥 ∶= 𝑥 + 𝜆𝑥 and ̂𝑦 ∶= 𝑦 + 𝜆𝑦

• Compute

[𝑧] = ̂𝑥 ̂𝑦 − ̂𝑥[𝜆𝑦] − ̂𝑦[𝜆𝑥] − [𝜆𝑥𝑦]

No non-linear operations in the online phase!

WARNING: New attack surface arises..
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Attack II: Probing the unopened online phase

Offline

Online
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Masking Picnic3



Our approach: Masking inside each party

Compute
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Masking SHA-3

Masking seed expansion

• [tapes𝑖] ← SHA-3([seed𝑖])

Masking commitments

• [com_off𝑖] ← SHA-3([st𝑖])
• [com_on] ← SHA-3([online_msgs])

Masking everything is expensive..

Heuristic options

• Some hash inputs that are unique per

signature are not sensitive by regarding

SHA-3 as a random oracle and if

attacker only probes 𝑡 bits of input.

• Commitment outputs are not sensitive

• Unmask / selectively mask half of the

SHA-3 computations (without formal

𝑡-probing security)

• Empirically confirmed leakage resilience
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Implementation & leakage analysis



Benchmarking for the First-order Protected Implementations

Picnic

Mask-

ing

SHAKE

Mask-

ing

Sign-

ing

cy-

cles

Hashing Masking

Over-

head

Stack Code Random

bytes(KB)

No None 304 71% 1.00 32,460 121,349 0

Yes None 460 50% 1.51 32,500 131,326 2,025

Yes All-SNI 1663 86% 5.47 32,724 166,216 158,172

Yes All-DOM 1289 81% 4.24 32,724 158,776 80,378

Yes All-IND 856 72% 2.82 32,724 148.712 2,585

Yes Selective 613 62% 2.01 32,460 148,712 2,025

Yes Sel. Half 546 57% 1.80 32,460 148,712 2,025

Table 1: Benchmarks in millions of Cortex-M4 cycles when 𝑡 = 1.
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A Practical Measurement Setup

• Capture: Tektronix MSO 6

• Short traces at 3.125 GS/s and long

traces at 625MS/s sampling rate

• Target device: STM32F4 Discovery board,

Arm Cortex M4, operated at 168 MHz

• Source: EM emanations on a blocking

cap (C29)
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Test Vector Leakage Assessment (TVLA)

A pass-fail test to decide if an

implementation has exploitable leakage

• fixed-vs-random (FvR): to detect all

possible first-order leakage.

• random-vs-random (RvR): to

identify a specific exploitable

leakage.

Goals

• Unprotected Picnic3 is vulnerable

(RvR)

• Protected Picnic3 eliminates such

vulnerabilities (FvR).
14



New Side-channel Attacks on Picnic3 (RvR)

Attack I: Probing the opened online phase

̂𝑥 = 𝑥 + 𝜆1 + ⋯ + 𝜆𝑁−1 + 𝜆𝑁
• Measurements from precomputation phase

• The leakage becomes clear after 6,000 traces.
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New Side-channel Attacks on Picnic3 (RvR)

Attack II: Probing the unopened online phase

̂𝑥 = 𝑥 + 𝜆1 + ⋯ + 𝜆𝑁
• Measurements from online simulation,

• The leakage becomes clear after 2,725 traces.
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Leakage Analysis (FvR)

Masked SHA-3 (All-IND)

• 71 % of the calculation is hashing

• Fixing the mask value to a constant results in a leaking implementation with

2,000 traces.

• Randomizing the mask results in a non-leaky implementation with 106 traces.
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Leakage Analysis (FvR)

Masked Picnic3 (All-IND 4-round Masked SHA-3)

• Beginning of signature generation until the end of the first MPC instance

• Fixed vs Random secret key – fixed message – randomized signature.

• The |𝑡|-value remains below threshold using 100,000 traces.

• Max |𝑡|-value has a stable pattern.
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Takeaways

• Side-channel attacks against MPCitH with preprocessing is a real threat: as

our two attacks demonstrate

• Generic masking countermeasures without breaking interoperability /

increasing signature size

• Application to Picnic3: an overhead in the range of 1.80-5.47.

• Masked implementation of SHA-3: optimized with M4 assembly and supports

a range of options, from slower but SNI-secure, to our much faster options.

Thank you!

Paper: https://ia.cr/2021/735

Implementation: https://github.com/dkales/picnic_m4/
19
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Masking MPC

SNI-secure Masked Online Multiplication

• Mask [ ̂𝑥] ∶= [𝑥 + 𝜆𝑥] and [ ̂𝑦] ∶= [𝑦 + 𝜆𝑦]
• Each 𝑃𝑖 computes

[𝑧𝑖] = 𝛿1,𝑖SMul([ ̂𝑥], [ ̂𝑦]) − SMul([ ̂𝑥], [𝜆𝑦
𝑖 ]) − SMul([ ̂𝑦], [𝜆𝑥

𝑖 ]) − [𝜆𝑥𝑦
𝑖 ]

✓ SMul: Standard SNI secure masked multiplier [ISW03]

✓ Never unmask [ ̂𝑥] and [ ̂𝑦] until the online phase can be safely revealed

✓ Applies to any MPCitH-PP-style signatures

✓ Securely composable with other gadgets thanks to the SNI property



Heuristics overview

• NI/SNI secure gadgets

• Input-sensitive, half-masked

• Output-sensitive, half-masked

• Unmasked
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